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We explore new regimes of laser interferometric gravitational-wave detectors with multiple optical
carriers which allow us to reduce the quantum noise of these detectors. In particular, we show that using
two carriers with the opposite detunings, homodyne angles, and squeezing angles, but identical other
parameters (the antisymmetric carriers), one can suppress the quantum noise in such a way that its spectrum
follows the Standard Quantum Limit (SQL) at low frequencies. Relaxing this antisymmetry condition, it is
also possible to slightly overcome the SQL in broadband. Combining several such pairs in the xylophone
configuration, it is possible to shape the quantum noise spectrum flexibly.
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I. INTRODUCTION

Currently, the second-generation large-scale laser inter-
ferometric gravitational-wave (GW) detectors—Advanced
LIGO [1,2], Advanced VIRGO [3,4], and KAGRA [5,6]—
are under construction. In particular (as of the end of 2014),
commissioning of the two Advanced LIGO interferometers
progresses quickly, and they will start to gather scientific
data soon. The sensitivities of these detectors are expected
to be limited by the quantum noise. Namely, at higher
frequencies, the shot noise will dominate, originating from
quantum fluctuation of the phase of the optical field inside
the interferometer. At lower frequencies, the radiation
pressure noise created by the amplitude fluctuations will
constitute the major part of the noise budget. The shot noise
is inversely proportional to the optical power circulating
inside the interferometer, while the radiation pressure noise
is proportional to it [7]. The optimal point where these two
noises are equal to each other is known as the Standard
Quantum Limit (SQL) [8].
It has to be emphasized that the SQL represents an

ultimate sensitivity limit only for the simplest class of
position measurement schemes, which, however, encom-
passes the baseline design of all second-generation GW
detectors (see details below in Sec. II). Several methods of
overcoming this limit suitable for the laser GW detectors
were proposed (see, e.g., the review paper [9]; we discuss
briefly the two most well-known ones in Sec. II). In most
cases, they require significant modifications in the inter-
ferometer design; and in order to take full advantage of
these methods, the other noise sources of nonquantum
origin (so-called classical instrumental noise) have to be
suppressed correspondingly. Therefore, these configura-
tions are typically considered as possible candidates for
implementation only in the planned third-generation GW

detectors [10], like the Einstein Telescope [11–13] or the
LIGO III [14], where the nonquantum noise will be reduced
by about one order of magnitude (in comparison to the
second-generation detectors). In particular, a so-called
xylophone configuration is planned for the Einstein
Telescope [12,15], which consists of two independent
interferometers, optimized for low-frequency and high-
frequency GW signals, respectively.
However, in the planned Advanced LIGO noise budget,

there is quite a large margin between the quantum noise and
the other instrumental noise sources in the low-frequency
band 10–50 Hz [2], opening the opportunity to improve the
sensitivity in this important frequency band by using a
simplified form of one of the above-mentioned methods. In
particular, the injection of frequency-dependent squeezed
light created by means of a single relatively short (16 m)
filter cavity (a simplified form of the prefiltering topology
proposed in [16]) is considered as a very probable option
for upgrading during some later stage of the Advanced
LIGO [17].
Another approach to reducing quantum noise in GW

detectors is modification of the test masses’ dynamics by
means of the optical spring effect which arises in the
detuned interferometers [18–20]. The optical springs con-
vert GW detector test masses into harmonic oscillators with
eigenfrequencies within the detection band (rigorously
speaking, this approach does not allow us to overcome
the SQL, but instead reduces the SQL itself around the
eigenfrequency). Unfortunately, the optical springs allow
us to improve the sensitivity in a limited frequency band,
while substantially degrading it at other frequencies.
A further development of this method was proposed in

Refs. [21,22]. It is based on the use of two optical carriers
which create two optical springs of the opposite signs.
Provided the appropriate values of the power and the
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detuning of the carriers, as well all as the bandwidths of the
corresponding effective optical cavities, the total effect of
the double optical spring can be described as a negative
optical inertia. It cancels the positive inertia of the test
masses, thus increasing their response to gravitational
waves and correspondingly reducing the SQL within a
broad band from zero frequency to some upper frequency
limited by the available optical power. Unfortunately,
estimates show that for parameters planned for Advanced
LIGO, this upper frequency is equal to only ∼50 Hz and
scales very slowly (as I1=3c ) with the circulating optical power
Ic [22].
In Refs. [23,24] the double-carrier configuration was

proposed as a means to create a dynamically stable optical
spring [25]. The scheme considered in [24] is shown in
Fig. 1. In essence, this is the standardMichelson/Fabry-Perot
topology of the second-generation GW detectors, but with
two optical pump sources, which need either to have
orthogonal polarizations or to be separated by one or more
free spectral ranges (FSRs) of the interferometer in order to
avoid interference between them. Each of the two output
beams is supposed to be measured by its own homodyne
detector, and their output signals are combined with the
optimal weight functions.
In addition, the so-called annihilation regime was

considered in [24], which uses the two carriers with equal
power and opposite detunings; as a result, the optical
springs created by these two carriers completely cancel
each other.
Here we analyze the annihilation regime in more detail

and show that it allows us to reduce the radiation pressure
noise in the second-generation GW detectors down to the
level of their classical instrumental noise. We also show

that, using several such pairs, it is possible to implement the
xylophone configuration within a single interferometer.
It has to be noted that in these configurations, each of

the carriers defines a position meter by its own, which is
independent from the other ones. Really, quantum noises
of these meters (both shot and radiation pressure ones)
originate from quantum fluctuations of different modes
of light, either polarization or frequency ones, down-
converted to the GW signal band by the respective carrier.
Quantum fluctuations of these modes do not correlate with
each other; therefore, the same is true for the input quantum
noises of different meters.
At the same time, the ouput signals of these meters are

cross-correlated, because they contain information about
the motion of the test mirrors, which is perturbed by the sum
radiation pressure noise created by the all carriers together.
As we show below (see Sec. III A and Appendix A), this
cross-correlation plays a very important role in shaping the
total quantum noise of the multicarrier schemes.
We assume in this paper that the main parameters of the

interferometer correspond to the ones planned for
Advanced LIGO [2] (see Table I). In particular, we suppose
that the total circulating optical power of the all carriers is
limited to 840 kW, which corresponds to the normalized
power J ¼ ð2π × 100Þ3 s−3 (the main notations used
throughout this paper are listed in Table I). We suppose
also that for each carrier a frequency-independent squeezed
light can be injected into the dark port of the interferometer
as was proposed by C. Caves in [7].

FIG. 1 (color online). Scheme of a second-generation laser GW
detector with two carriers.

TABLE I. Main notations used in this paper.

Quantity Description

c Speed of light
ℏ Reduced Plank constants
M ¼ 40 kg Mass of each of the arm cavities

mirrors
L ¼ 4 km Length of the interferometer arm

cavities
ωp ¼ 2πc=1.064 μm Optical pump frequency
ωo Resonance frequency of the

interferometer
γ Half-bandwidth of the interferometer
δ ¼ ωp − ωo Detuning
Γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ δ2

p
Effective half-bandwidth

β ¼ arctan δ
γ Normalized detuning

Ω Audio sideband frequency of the
GW signal

Ic Optical power circulating in the arm
cavities

J ¼ 4ωpIc
MLc Normalized optical power

ζ Homodyne angle
er Squeezing factor
θ Squeezing angle
η Unified quantum efficiency
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This paper is organized as follows. In the next section we
briefly review the main features of quantum noise in GW
detectors. In Sec. III we analyze the main features of the
multicarrier quantum noise. In Sec. IV we present the
results of the numerical optimization of this noise. In Sec. V
we discuss the main advantages and disadvantages of the
proposed method and the prospects of its use in future
GW detectors. In the Appendix, the effective quantum
noise spectral densities for the multicarrier configurations
are calculated.

II. GENERAL STRUCTURE OF QUANTUM NOISE

In the particular case of the unmodified free mass
mechanical dynamics (without the optical springs), which
we consider in this paper, spectral density of quantum noise
of the laser interferometric GW detectors, normalized to
GW strain, is equal to (see details in the Appendix and in
Ref. [9])

ShðΩÞ ¼ 8

L2

�
SxxðΩÞ −

2ReSxFðΩÞ
MΩ2

þ SFFðΩÞ
M2Ω4

�
; ð1Þ

where SxxðΩÞ, SFFðΩÞ, and SxFðΩÞ are, respectively,
spectral densities of the shot noise, the radiation pressure
noise, and the cross-correlation spectral density of these
two noises, which obey the following uncertainty relation,

SxxðΩÞSFFðΩÞ − jSxFðΩÞj2 ≥
ℏ2

4
; ð2Þ

with the exact equality in the ideal case of absence of
optical losses. For simplicity, we will assume this case in
the rest of this section (as we show later, the optical losses
significantly influence the sensitivity of the method which
we consider in this paper; however, they are not important
for understanding of the basic features of the quantum
noise).
Suppose first that the shot noise and the radiation

pressure noise are uncorrelated: SxFðΩÞ ¼ 0. In this case
the minimum of (1) is achieved by

SFFðΩÞ ¼
ℏMΩ2

2
ð3Þ

and is equal to the free mass SQL:

SSQLðΩÞ ¼
8ℏ

L2MΩ2
: ð4Þ

In the general case of SxF ≠ 0, the minimum of (1)
[taking account of the condition (2)] is given by

SxFðΩÞ ¼
SFFðΩÞ
MΩ2

ð5Þ

and is equal to

SoptðΩÞ ¼
2ℏ2

L2SFFðΩÞ
: ð6Þ

Therefore, using the cross-correlation of the shot noise and
the radiation pressure noise, it is possible to achieve
arbitrarily high sensitivity, providing SFF is sufficiently
large, that is, the optical power is sufficiently strong.
In the laser interferometric GW detectors, the cross-

correlation can be introduced relatively easily by means of
a homodyne detection with an optimized homodyne angle
ζ. However, in order to reach or overcome the SQL in a
finite frequency band, the quantum noise components need
to have within this band the proper frequency dependencies
dictated by Eqs. (3) or (5), respectively.
Consider the important example of the resonance-tuned

interferometer (δ ¼ 0); it is this case that is planned for the
second-generation GW detectors. In order to avoid unnec-
essary complication, we also suppose here that squeezed
light is not used (however, the squeezing will be taken into
account below in Secs. III and IV).
If its shot and radiation pressure noises are uncorrelated,

then the corresponding total quantum noise spectral density
is equal to (see [9])

ShðΩÞ ¼ SSQLðΩÞ
2

�
1

KPMðΩÞ
þKPMðΩÞ

�
; ð7Þ

where

KPMðΩÞ ¼
2Jγ

Ω2ðγ2 þ Ω2Þ ð8Þ

is the optomechanical coupling factor of the position meter
[16]. It is easy to see that the spectral density (7) reaches the
SQL only at one frequency satisfying the following
equation,

Ω2ðγ2 þ Ω2Þ ¼ 2Jγ; ð9Þ

and goes above the SQL at all other frequencies. In the rest
of this paper, this particular case will be referred to as the
baseline interferometer. We will draw this spectral density
as the reference in all plots below, for the particular case of
J ¼ ð2π × 100Þ3 s−3 and γ ¼ 2π × 500 s−1, which approx-
imately corresponds to the values planned for the Advanced
LIGO [2].
Then consider the case of SxF ≠ 0. The structure of

Eq. (5) suggests that this equation can be fulfilled in a broad
band by making either SFF or SxF frequency dependent.
These two options correspond to two methods of over-
coming the SQL considered as the most probable candi-
dates for implementation in the third-generation GW
detectors. The first one, proposed in Ref. [16], is based
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on the use of additional filter cavities, which allow us to
create the frequency-dependent cross-correlation of the
quantum noises.
The second method which is more relevant for our

consideration, the so-called “quantum speedmeter,” was
first proposed as a semi-gedanken scheme in [26] and later
developed into two realistic interferometer topologies
(based on the Sagnac interferometer and on the ordinary
Michelson one, but with an additional sloshing cavity) in
Refs. [27–31]. This scheme is sensitive to the velocity of
test masses, instead of their displacement (hence, the
designation “speedmeter”). This corresponds to the follow-
ing characteristic frequency dependencies of the quantum
noise spectral densities,

SxxðΩÞ ¼
Svv
Ω2

;

SFFðΩÞ ¼ Ω2Spp; ð10Þ

where Svv, Spp are spectral densities of the velocity
measurement noise and the momentum perturbation noise,
respectively [32]. Within the bandwidth of the interferom-
eter, Ω < γ, these spectral densities can be considered as
frequency-independent ones, which allows us to fulfill
conditions (3) or (5) in broadband by measuring a proper
homodyne angle and without filter cavities.
The explicit equation for the total quantum noise spectral

density of the speedmeter is the following [9],

ShðΩÞ ¼ SSQLðΩÞ
2

�
1

KSMðΩÞ sin2 ζ
− 2 cot ζ þKSMðΩÞ

�
;

ð11Þ
where the optomechanical coupling factor of the speed-
meter KSM is equal to

KSMðΩÞ ¼
4Jγ

ðγ2 þΩ2Þ2 ð12aÞ

for the Sagnac-type speedmeter and

KSMðΩÞ ¼
4Jγ

4γ4 þ Ω4
ð12bÞ

for the speedmeter realized by using an additional sloshing
cavity (only the low-frequency optimized case is shown for
brevity; refer to Ref. [29] for more details). Note that in
both cases (in contrast with KPM), this factor does not
depend on Ω in the asymptotic case of Ω ≪ γ.
Therefore, if the shot noise and the radiation pressure

noise are not correlated, that is ζ ¼ π=2, then the low-
frequency optimization

KSMð0Þ ¼ 1 ⇒ J ¼ γ3

4
ð13Þ

gives the total noise spectral density that asymptotically
follows the SQL within the interferometer bandwidth.
In particular, in the Sagnac speedmeter case, it is equal to

ShðΩÞ ¼ SSQLðΩÞ
2

�
γ4

ðγ2 þ Ω2Þ2 þ
ðγ2 þ Ω2Þ2

γ4

�
: ð14Þ

In contrast, using the quantum noise cross-correlation at
low frequencies by choosing

cot ζ ¼ KSMð0Þ ¼
4J
γ3

ð15Þ

gives the total noise spectral density below the SQL within
the interferometer bandwidth:

ShðΩÞ ¼ SSQLðΩÞ
2KSMðΩÞ

f1þ ½KSMð0Þ −KSMðΩÞ�2g: ð16Þ

These two scenarios are illustrated in Fig. 2, where the
spectral densities (7), (14), (16) are plotted for some
characteristic values of γ and J.
Now, having discussed briefly the quantum noise of the

single-carrier interferometers, we are in a position to
introduce the quantum noise for multiple carriers.

III. MULTICARRIER SHAPING
OF QUANTUM NOISE

A. Speedmeterlike shot noise in the
Michelson/Fabry-Perot interferometer

In a general case of an arbitrary detuning δ and
homodyne angle ζ, the quantum noise spectral densities

FIG. 2 (color online). Plots of the total noise spectral densities
of the baseline interferometer (7) at γ ¼ 2π × 500 s−1 (dots); the
Sagnac speedmeter without the quantum noises cross-correlation
(14) at γ ¼ 22=3 × 2π × 100 s−1 (solid); the Sagnac speedmeter
with the cross-correlation (16) at γ ¼ 2π × 100 s−1, cot ζ ¼ 4

(dashes). Thin solid line: the SQL (4). In all cases, J ¼ ð2π ×
100Þ3 s−3 and η ¼ 1 (no losses).
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of the ordinary Michelson/Fabry-Perot interferometer have
sophisticated frequency dependencies [see Eqs. (B1)]. In
particular, if

���� sinðζ − βÞ
sin ζ

����Γ ≪ Ω ≪ Γ; ð17Þ

then the shot noise spectral density has a speedmeter-type
frequency dependence:

SxxðΩÞ ∝
1

Ω2
: ð18Þ

However, frequency dependencies of the other two spectral
densities are improper: SFFðΩÞ ∝ Ω0 instead of SFFðΩÞ ∝
Ω2 and SxFðΩÞ ∝ 1=Ω instead of SxFðΩÞ ∝ Ω0. Moreover,
while the quantum speedmeter requires the free mass
dynamics, in the detuned interferometer the dynamics of
the test masses is modified by the optical rigidity [33].
Therefore, the frequency dependence (18) by itself does not
allow us to realize the speedmeter-type total quantum noise.
However, both the cross-correlation and the optical

spring can be canceled using the annihilation regime
discussed in [24]. Note that Sxx is an even function of δ,
ζ, θ; SxF is an odd function of these three parameters; andK
is an odd function of δ [see Eqs. (B1) and (B2)]. Therefore,
two carriers with the following parameters,

J1 ¼ J2; ð19aÞ

r1 ¼ r2; ð19bÞ

Γ1 ¼ Γ2; ð19cÞ

β1 ¼ −β2; ð19dÞ

ζ1 ¼ −ζ2; ð19eÞ

θ1 ¼ −θ2; ð19fÞ

(the antisymmetric carriers) create the effective position
meter with canceled optical spring and with the quantum
noise spectral densities equal to [see Eqs. (A18) in the
Appendix]

Seffxx ðΩÞ ¼
SxxðΩÞ

2
; ð20aÞ

SeffFFðΩÞ ¼ 2SFFðΩÞ −
jSxFðΩÞj2
Seffxx ðΩÞ

; ð20bÞ

SeffxFðΩÞ ¼ 0; ð20cÞ

where Sxx, SFF, and �SxF are quantum noise spectral
densities of the individual carriers.

In the ideal case of absence of optical losses, Eq. (20b)
takes the following form:

SeffFFðΩÞ ¼
ℏ2

4Seffxx ðΩÞ
; ð21Þ

which has the proper speedmeterlike frequency dependence
SeffFF ∝ Ω2. The optical losses distort this dependence,
degrading the effect of the described regime.
It is worth noting also that the effective backaction

noise is smaller than the sum of backaction noises of the
individual carriers, SeffFF < 2SFF. This means that the
effective backaction noise actually is a conditional one;
that is, it describes only the residual noise remaining after
subtraction of the part known to the observer due to the
cross-correlation of the shot noise and the radiation
pressure noise. Note that while the residual cross-correlation
(20b) is canceled, the weight functions for the individual
output signals depend on the cross-correlation spectral
densities of the individual carriers [see Eq. (A16)].
Due to the absence of the residual cross-correlation,

opposite to the “real” speedmeter case of Eq. (16), the
perfectly antisymmetric carriers allow us only to reach the
SQL in a broad band, but cannot overcome it, like in
[28–31]. However, due to the quite moderate margin
between the SQL and the low-frequency classical instru-
mental noise planned for the second-generation GW
detectors (most notably, the mirror coating thermal noise,
the suspension thermal noise, and the gravity gradient
noise), only very limited low-frequency sensitivity gain can
be provided by the “real” speedmeter [Eq. (14)], while the
use of ζ ≠ π=2 noticeably increases the shot (high-
frequency) noise (see Fig. 2).
Relaxing to some extent the antisymmetry condition (19)

by removing constraints for the homodyne and squeezing
angles ζ and θ, it is possible to create the residual cross-
correlation SxF and overcome the SQL in some frequency
band. We consider this possibility in more detail in Sec. IV.
Examples of the resulting total quantum noise spectral

densities, based on the simplified analytical optimization
procedure, described in Appendix C1, are shown in Fig. 3.
Comparison of Figs. 2 and 3 shows (assuming the
Advanced LIGO parameters) that the double-carrier
Michelson/Fabry-Perot interferometer can provide the sen-
sitivity comparable with the one of the simplified Sagnac
interferometer with uncorrelated quantum noises described
by Eq. (14).
We would like to emphasize also the unusual depend-

ence of the quantum noise on the circulating optical power
and the squeezing factor er in the double antisymmetric
carriers regime. Similar to the ordinary single-carrier
Michelson/Fabry-Perot interferometer case and to the
quantum speedmeter one, the high-frequency noise spectral
density decreases with increase of the power and the
squeezing factor, although the dependence is different:
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ðIcerÞ−4=3 [see Eq. (C6)] instead of ðIce2rÞ−1. Contrary to
these cases, the low-frequency noise, after the proper
adjustment of the parameters Γ, ζ, β, and θ, does not
increase. Therefore, the double antisymmetric carriers
regime does not require the frequency-dependent squeezing
or the variational readout to take full advantage of the
stronger optical power and/or squeezing.

B. Single interferometer xylophone

The effective shot noise spectral density in the antisym-
metric double carrier regime [see Eqs. (20a) and (B6)] has
one minimum at the frequency Ω0 ∝ Γ [see Eq. (B10)],
with the width depending on β and the squeezing factor (see
Appendix C3). At lower and at higher frequencies, this
spectral density increases as 1=Ω2 and as Ω2, respectively.
The corresponding effective radiation pressure noise spec-
tral density (21) mirrors this frequency dependence, having
the maximum at Ω0 and decreasing as Ω2 and 1=Ω2 at
lower and higher frequencies, respectively.
Therefore, several pairs of the antisymmetric (or nearly

antisymmetric) carriers tuned to different values of Ω0 can
be combined together to form a xylophonelike configura-
tion, with each of the pairs responsible for its own
frequency band. Varying parameters of the pairs, it is
possible to flexibly shape the resulting total quantum noise
spectral density, described by Eqs. (1) and (A18).
In particular, the high-frequency sensitivity of the anti-

symmetric double carrier regime can be improved by
adding one or more additional pair(s) of carriers tuned
to higher frequencies than the main one. Evidently, in the
scenario with the limited total circulating optical power, a

part of this power has to be relocated from the first pair to
the additional ones, degrading its sensitivity. However,
estimates show that this degradation is more than compen-
sated for by the additional pairs and that the overall
sensitivity improves with the increase in the number of pairs.
An example of the configuration with two pairs of

antisymmetric carriers (four carriers total, with the optical
power evenly distributed among them) is shown in Fig. 4.
Parameters of the low-frequency component are calculated
using the same optimization procedure that was used for
the previous example (see Appendix C1). For the high-
frequency pair, another procedure was used (see
Appendix C2) which does not take into consideration the
radiation pressure noise, which in this case is negligibly
small, but takes into account instead that theminimumof the
shot noise spectral density has to correspond to some given
frequency Ω0. However, calculation of the total quantum
noise spectral density is performed using the rigorous
Eq. (A17), which takes into account the radiation pressure
forces of all carriers.
The total noise spectral density of the higher-frequency

pair in this case scales with the optical power and with the
squeezing power as ðIcerÞ−1 (a bit weaker than in the
previous case).
The xylophone configuration can also be used to create

“on demand” some special features of the quantum noise

FIG. 3 (color online). Plots of the total quantum noise spectral
density in the double antisymmetric carriers regime without
squeezing (dashes), with 6 db squeezing (solid), and with
12 db squeezing (dash-dots). The parameters Γ, ζ, β, and θ
are given by Eqs. (C2) and (B5) and Table III, respectively. Dots:
the baseline interferometer (7), at γ ¼ 2π × 500 s−1 (dots). Thin
solid line: the SQL (4). In all cases, J ¼ ð2π × 100Þ3 s−3 and
η ¼ 1 (no losses).

FIG. 4 (color online). Plots of the total quantum noise spectral
densities of the xylophone configuration with two pairs of
antisymmetric carriers with 6 db (solid) and with 12 db (dash-
dots) squeezing. The values of Γ are given by Eq. (C2) for the
lows-frequency pair and Eq. (C8) with Ω0 ¼ 2π × 600 Hz for the
high-frequency pair. The parameters ζ, β, and θ are given by
Eq. (B5) and Table III, respectively. The optical power is
distributed evenly between all carriers. Dashes: the total quantum
noise spectral densities of the individual pairs (in the absence
of the other ones). Dots: the baseline interferometer (7), at
γ ¼ 2π × 500 s−1. Thin solid line: the SQL (4). In all cases,
the total circulating optical power corresponds to J ¼ ð2π ×
100Þ3 s−3 and η ¼ 1 (no losses).
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spectral density, for example, narrow-band minima at some
given frequencies, associated with the known pulsars. This
possibility is demonstrated in Fig. 5, where the total
quantum noise of a configuration with three antisymmetric
pairs is shown. The parameters of the first two (broadband)
pairs are optimized in the same way as in the previous
example. However, 10% of the total optical power is
relocated to the third narrow band pair. Parameters of this
pair are calculated using the optimization procedure
described in Appendix C3. As an example of millisecond
pulsars, we have chosen J0034-0534 [34], which has the
rotation frequency f0 ≈ 532.7 Hz and, therefore, presum-
ably radiates near-monochromatic gravitation waves at
frequency 2f0 ≈ 1065.4 Hz.

IV. NUMERICAL OPTIMIZATION

It is evident that the rigorous analytical optimization of
the considered above multicarrier configurations, which
takes into account optical losses and various nonquantum
noise sources, is impossible. Therefore, here we perform a
numerical optimization. As a figure of merit, we use the
following cost function [10],

CðxÞ ¼
Z

fmax

fmin

log10½Shð2πf;xÞ þ Sclassð2πfÞ�dðlog10fÞ;

ð22Þ

where Sh is the total quantum noise spectral density defined
by Eqs. (A1), (A17), (A18), and (B1), Sclass is the total
spectral density of other (nonquantum) instrumental noise
sources calculated by means of the standard LSC software
tool GWINC [35], fmin ¼ 5 Hz and fmax ¼ 1.5 kHz are the
minimal and maximal frequencies of the optimization
procedure, and x is the set of parameters to be optimized.
Minimization of this cost function reduces the quantum
noise at all frequencies between fmin and fmax with respect
to the classical instrumental noise, providing a smooth
broadband shape of the total noise spectral density suitable
for detection of GW radiation from various types of sources.
The parameter set x consists of 2P vectors of the form

xj ¼ fJj; δj; γj; ζj; rj; θjg; ð23Þ

FIG. 5 (color online). Solid: plot of the total quantum noise
spectral densities of the xylophone configuration with two
broadband pairs of antisymmetric carriers, with the parameters
defined in the same way as in Fig. 4, and one additional narrow-
band pair with Γ ¼ 4π × 532.7 s−1 (the double frequency of the
pulsar J0034-0534), β ¼ π=2 − 0.002, θ ¼ π=2. The optical
power is distributed among all carriers as 45%:45%:10%, and
6 db squeezing is used for all carriers. Dashes: the total quantum
noise spectral densities of the individual pairs (in the absence of
the other ones). Dots: the baseline interferometer (7), at
γ ¼ 2π × 500 s−1. Thin solid line: the SQL (4). In all cases,
the total circulating optical power corresponds to J ¼ ð2π ×
100Þ3 s−3 and η ¼ 1 (no losses).

FIG. 6 (color online). Numerically optimized quantum noise
spectral densities for one (top) and two (bottom) pairs of carriers,
with η ¼ 1 (thick solid lines) and η ¼ 0.95 (thick dashed lines).
The corresponding optimal parameters are listed in Table II. In all
cases, the total circulating optical power corresponds to J ¼
ð2π × 100Þ3 s−3 and 6 db squeezing is used for all carriers. Dots:
the baseline interferometer (7), at γ ¼ 2π × 500 s−1 (dots). Thin
solid line: the SQL (4). Thin dashed line: the total classical
instrumental noise.
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describing the individual carriers, where P is the number of
the carrier pairs. We assume the following relaxed version
of the antisymmetry condition (19),

J2p−1 ¼ J2p; ð24aÞ

r2p−1 ¼ r2p; ð24bÞ

Γ2p−1 ¼ Γ2p; ð24cÞ

β2p−1 ¼ −β2p; ð24dÞ

where p ¼ 1…P is the pair number, varying the homodyne
and the squeeze angles ζj, θj independently in order to
introduce some residual cross-correlation of the shot and
the radiation pressure noises. We suppose that the total
circulating power is limited by 840 kW, which is equivalent
to

P
j Jj ≤ ð2π × 100Þ3 s−3, and the squeezing by 6 db

(e2rj ≤ 4).
The optimized quantum noise spectral densities are

shown in Fig. 6 and the corresponding optimal parameters
are listed in Table II. Two main conclusions can be drawn
from these results.
First, comparison of these spectral densities with the

ones of the ideal perfectly antisymmetric regime (see
Figs. 3 and 4) shows that, relaxing in some degree the
conditions (19e), (19f), and (B5) and creating, thus, the
cross-correlation of the effective shot noise and the effec-
tive radiation pressure noise, it is possible to push the total
quantum noise below the SQL in the low-frequency band,
keeping the high-frequency quantum noise virtually
unchanged. The price for this is the quantum noise increase
at very low frequencies f ≲ 10 Hz. Taking into account
that this frequency band is dominated by the nonquantum
noise anyway, this trade-off could improve the overall
sensitivity.
Second, it is easy to see that the multicarrier regime

considered here is sensitive to the optical losses. The reason
for this is evident: this regime heavily relies on the cross-
correlations of the shot and radiation pressure noises of the
individual optical carriers (see Appendix A), which are
vulnerable to the optical losses.

V. DISCUSSION

Discussing the advantages and disadvantages of the
proposed scheme, as well as the prospects of its implemen-
tation in GW detectors, we use the frequency-dependent
squeezing scheme created by a single relatively short filter
cavity [17,36] as a reference.
Both schemes promise similar overall sensitivity gain, but

ours is more focused on the low-frequency band dominated
by the radiation pressure noise and provides almost no gain
at high frequencies. Both share the same main shortcoming,
namely, the vulnerability to the optical losses, which is a
general feature of methods for overcoming the SQL based on
the quantum noise cross-correlation (which includes, in
particular, all the filter-cavity-based schemes, as well as
the quantum speedmeter [9]).
Concerning the complexity of the practical implementa-

tion of the multicarrier scheme, its most sophisticated
element is the output optics which has to spatially separate
the output beams and send each of them to the correspond-
ing homodyne detector. For a single pair, this separation
can be implemented by using two orthogonal polarizations
for the two carriers, as was proposed in the initial paper
[24]. In the case of two and more pairs, the output beams
can be separated by means of short (tabletop scale) filter
cavities. Assuming the following parameters, the length
lf ¼ 1 m, the losses per bounce Af ∼ 10−5, and the
resulting quantum inefficiency 1 − ηf ∼ 10−2 [37], the
half-bandwidth of such a cavity can be estimated as

γf ¼ cAf

4lfð1 − ηfÞ
∼ 2π × 10 kHz: ð25Þ

If detunings between the carriers exceed 100 kHz, which
roughly corresponds to three free spectral ranges of the
Advanced LIGO interferometer, then this bandwidth gives
the separation efficiency better than 99%. In order to
implement different values of the interferometer bandwidth
γ for different carriers, the optical outputs can be equipped
by the additional signal recycling mirrors, which either
supplement the main signal recycling mirror or completely
replace it.
Concerning the advantages of the multicarrier scheme, we

would like to name two of them. First, simple brute-force
increase of the circulating optical power and/or the squeezing
rate improves high-frequency sensitivity of the multicarrier

TABLE II. The optimized parameters for the one and two pairs of carriers. The optimal total circulating power and the optimal
squeezing in all cases are equal to the maximal allowed values of 840 kW and 6 db, respectively.

I1;2 Γ1;2 β1 ¼ −β2 ζ1 ζ2 θ1 θ2 I3;4 Γ3;4 β3 ¼ −β4 ζ3 ζ4 θ3 θ4

1 pair, η ¼ 1 420 kW 550 s−1 −1.0 −1.12 1.14 0.43 −0.58 � � � � � � � � � � � � � � � � � � � � �
1 pair, η ¼ 0.95 420 kW 820 s−1 −1.13 −1.43 1.57 0.16 −0.15 � � � � � � � � � � � � � � � � � � � � �
2 pairs, η ¼ 1 140 kW 430 s−1 −1.09 −1.12 1.18 −0.08 −0.65 280 kW 1400 s−1 −0.98 −1.21 1.16 0.49 −0.56
2 pairs, η ¼ 0.95 155 kW 525 s−1 −0.915 −1.41 1.56 0.12 −0.27 265 kW 2100 s−1 −0.98 −1.51 1.62 0.25 −0.20
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scheme without degradation of the low-frequency one. In the
“ordinary” single-carrier Michelson interferometer, increase
of the circulating optical power and/or the squeezing
improves the high-frequency sensitivity, but degrades the
low-frequency one. The filter cavities allow us to avoid this
degradation, but in this case increase of the circulating power
has to be supplemented by the proportional increase of
the squeezing in order to keep the low-frequency sensitivity
unchanged.
Second, the multicarrier scheme allows us to tune very

flexibly the shape of the quantum noise. In particular, using
additional carrier pairs, it is possible to create deep minima
in the quantum spectral density without affecting the
sensitivity at other frequencies.
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APPENDIX A: MULTICHANNEL
POSITION METER

In order to simplify the equations, we use the two-sided
force normalized spectral density SF of the sum quantum
noise in this appendix (see details in [9]); the single-sided
GW strain signal normalized spectral density used in the
main text can be obtained from by means of the following
equation:

ShðΩÞ ¼ 8SFðΩÞ
L2M2Ω4

: ðA1Þ

Consider a system consisting of N linear meters meas-
uring position x̂ of a test object. Each of the meters is
described by its measurement noise x̂j and backaction noise

F̂j (j ¼ 1::N), with the spectral densities SðjÞxx , S
ðjÞ
FF, S

ðjÞ
xF.

The test object is described by its susceptibility function

χðΩÞ ¼ 1

DðΩÞ ; ðA2Þ

with the possible dynamic backaction of the meters (the
optical springs) included in it.
In Fourier representation, outputs of these meters are

equal to

GjðΩÞ ¼ GðΩÞ þDðΩÞx̂jðΩÞ þ
XN
k¼1

F̂kðΩÞ; ðA3Þ

where G is the signal force and F̂kðΩÞ is the backaction
force created by k, the carrier. The combined output is
equal to

GðΩÞ ¼
XN
j¼1

αjðΩÞGjðΩÞ ¼ GðΩÞ þ F̂sumðΩÞ; ðA4Þ

where αjðΩÞ are weight functions satisfying the normali-
zation condition

XN
j¼1

αjðΩÞ ¼ 1; ðA5Þ

and

F̂sumðΩÞ ¼
XN
j¼1

½DðΩÞαjðΩÞx̂jðΩÞ þ F̂jðΩÞ� ðA6Þ

is the total effective noise force with the spectral density
being equal to

SFðΩÞ ¼
XN
j¼1

fjDðΩÞj2jαjðΩÞj2SðjÞxx ðΩÞ

þ 2Re½DðΩÞαjðΩÞSðjÞxFðΩÞ� þ SðjÞFFðΩÞg: ðA7Þ

Using the vector notation, Eqs. (A5) and (A7) can be
rewritten as follows:

A†ðΩÞ1 ¼ 1; ðA8Þ

SFsumðΩÞ ¼ jDðΩÞj2A†SxxðΩÞAðΩÞ

þ 2Re½DðΩÞA†ðΩÞSxFðΩÞ� þ
XN
j¼1

SðjÞFFðΩÞ;

ðA9Þ

where

A†ðΩÞ ¼ ð α1ðΩÞ…αNðΩÞ Þ; ðA10Þ

1 ¼

0
B@

1

..

.

1

1
CA; ðA11Þ

SxFðΩÞ ¼

0
BB@

Sð1ÞxF ðΩÞ
..
.

SðNÞ
xF ðΩÞ

1
CCA; ðA12Þ
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Sxx ¼

0
BB@

Sð1Þxx ðΩÞ 0

. .
.

0 SðNÞ
xx ðΩÞ

1
CCA: ðA13Þ

Taking account of condition (A8), the minimum of (A9) is
given by

A†ðΩÞ ¼ −
λ1† þD�ðΩÞS†

xFðΩÞ
jDðΩÞj2 S−1

xx ðΩÞ; ðA14Þ

where λ is the Lagrange factor defined by (A8):

λ ¼ −
jDðΩÞj2 þD�ðΩÞS†

xFðΩÞS−1
xx ðΩÞ1

1†S−1
xx ðΩÞ1

: ðA15Þ

Therefore (returning back to the scalar notation),

αjðΩÞ ¼
1

SðjÞxx ðΩÞ

�
Seffxx ðΩÞ þ

½SeffxFðΩÞ − SðjÞxFðΩÞ��
DðΩÞ

�
ðA16Þ

and

SFsumðΩÞ ¼ jDðΩÞj2Seffxx ðΩÞ þ 2Re½DðΩÞSeffxFðΩÞ� þ SeffFFðΩÞ;
ðA17Þ

where

Seffxx ðΩÞ ¼
�XN
j¼1

1

SðjÞxx ðΩÞ

�−1
;

ðA18aÞ

SeffFFðΩÞ ¼
XN
j¼1

�
SðjÞFFðΩÞ −

jSðjÞxFðΩÞj2
SðjÞxx ðΩÞ

�
þ jSeffxFðΩÞj2

Seffxx ðΩÞ
ðA18bÞ

SeffxFðΩÞ ¼ Seffxx ðΩÞ
XN
j¼1

SðjÞxFðΩÞ
SðjÞxx ðΩÞ

ðA18cÞ
are the effective quantum noise spectral densities.
It follows from these equations that

Seffxx ðΩÞSeffFFðΩÞ − jSeffxFðΩÞj2

¼ Seffxx ðΩÞ
XN
j¼1

�
SðjÞFFðΩÞ −

jSðjÞxFðΩÞj2
SðjÞxx ðΩÞ

�
≥
ℏ2

4
: ðA19Þ

Therefore, if for all j the exact equality takes place in the
uncertainty relation (2), then the same is valid for the
effective spectral densities:

Seffxx ðΩÞSeffFFðΩÞ − jSeffxFðΩÞj2 ¼
ℏ2

4
: ðA20Þ

APPENDIX B: QUANTUM NOISE OF THE LASER
INTERFEROMETRIC POSITION METER

In this Appendix, we consider the single carrier features
only. Therefore, we omit here for brevity the indices
enumerating the carriers.

1. General equations

Neglecting for simplicity the intracavity optical losses in
comparison with the optical losses in the output optical
elements and the photodetector quantum inefficiency (which
can be considered as frequency-independent ones), the
quantum noise spectral densities and the optical rigidity
of the laser interferometric position meter can be presented
as follows (derivation of these equations can be found in [9]):

Sxx ¼
ℏ

4MJγ
1

Γ2 sin2ðζ − βÞ þ Ω2 sin2 ζ

×

�
Q2

cðΩÞe2r þQ2
sðΩÞe−2r þ

1 − η

η
jDðΩÞj2

�
;

ðB1aÞ

SFF ¼ ℏMJγ
jDðΩÞj2 ½jPcðΩÞj2e2r þ jPsðΩÞj2e−2r�; ðB1bÞ

SxF ¼ ℏ
2D�ðΩÞ

QcðΩÞPcðΩÞe2r þQsðΩÞPsðΩÞe−2r
Γ sinðζ − βÞ − iΩ sin ζ

;

ðB1cÞ

KðΩÞ ¼ MJδ
DðΩÞ ; ðB2Þ

where

QcðΩÞ ¼ Γ2 cosð2β þ θ − ζÞ þ Ω2 cosðθ − ζÞ; ðB3aÞ

QsðΩÞ ¼ −Γ2 sinð2β þ θ − ζÞ − Ω2 sinðθ − ζÞ; ðB3bÞ

PcðΩÞ ¼ Γ cosðθ þ βÞ þ iΩ cos θ; ðB3cÞ

PsðΩÞ ¼ −Γ sinðθ þ βÞ − iΩ sin θ; ðB3dÞ

and

DðΩÞ ¼ ðγ − iΩÞ2 þ δ2: ðB4Þ

2. Speedmeterlike frequency dependence
of the shot noise

We assume here for simplicity that η ¼ 1.
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Consider the ultimate case of the condition (17), assum-
ing that

ζ ¼ β: ðB5Þ

This assumption gives the exact speedmeterlike frequency
dependence of the shot noise,

SxxðΩÞ ¼
ℏ

4MJΓ cos β sin2 β
×
AΓ4 þ 2BΓ2Ω2 þ CΩ4

Ω2
;

ðB6Þ
where

A ¼ e2r cos2ðβ þ θÞ þ e−2r sin2ðβ þ θÞ; ðB7aÞ

B ¼ e2r cosðβ þ θÞ cosðθ − βÞ
þ e−2r sinðβ þ θÞ sinðθ − βÞ; ðB7bÞ

C ¼ e2r cos2ðθ − βÞ þ e−2r sin2ðθ − βÞ: ðB7cÞ

The low- and high-frequency asymptotics of (B6) are equal
to

SxxðΩ → 0Þ ¼ ℏΓ3

4MJΩ2 cos β sin2 β
A; ðB8aÞ

SxxðΩ → ∞Þ ¼ ℏΩ2

4MJΓ cos β sin2 β
C: ðB8bÞ

The minimum of (B6) is equal to

SxxðΩ0Þ ¼
ℏΓ

2MJ cos β sin2 β
ð

ffiffiffiffiffiffiffi
AC

p
þ BÞ; ðB9Þ

where

Ω0 ¼ Γ

�
A
C

	
1=4

: ðB10Þ

APPENDIX C: SUBOPTIMAL REGIMES OF THE
DUAL CARRIER INTERFEROMETER

Here we analytically calculate suboptimal parameter
values of the antisymmetric dual-carrier regime, which we
use in the plots in Sec. III, assuming again for simplicity that
η ¼ 1. We enumerate the carriers by the index j, assuming
the condition (19) for the odd and even components.

1. One pair of carriers or the low-frequency
pair of the xylophone

Start with the requirement that the low-frequency
asymptotic of the total quantum noise spectral density
has to be equal to the SQL:

ShðΩ → 0Þ ¼ 8ℏ
L2MΩ2

: ðC1Þ

Taking into account Eqs. (1), (19), (20), (A1), and (B8a)
gives

Seffxx ðΩ → 0Þ ¼ SðjÞxx ðΩ → 0Þ
2

¼ ℏ
2MΩ2

⇒

Γj ¼
�
4Jj cos βj sin2 βj

Aj

	
1=3

; ðC2Þ

where j ¼ 1; 2.
The corresponding high-frequency asymptotic of the

effective shot noise, which dominates at high frequencies,
is equal to

Seffxx ðΩ → ∞Þ ≈ SðjÞxx ðΩ → ∞Þ
2

¼ ℏΩ2

2Mð4JjÞ4=3
F1=3ðβj; θjÞ;

ðC3Þ

where

Fðβ; θÞ ¼ AC3

cos4 β sin8 β
: ðC4Þ

The values of β and θ which provide the minimum of this
function are shown in Table III for some characteristic
values of squeezing. Note that in all cases, θ ≈ π=2þ β,
which cancels the term proportional to e2r in C, giving

Fðβ; θÞ ∝ e−4r: ðC5Þ

Therefore, the high-frequency part of the total noise scales
with the power and with the squeezing as follows:

ShðΩ → ∞Þ ∝ 1

ðJerÞ4=3 : ðC6Þ

TABLE III. Values of Γ, β, and θ which minimize function (C7)

e2r Γ=Ω0 β θ

1.0 (0 db) 1.0 − arccosð1= ffiffiffi
3

p Þ —
2.0 (3 db) 0.75 −1.02 0.51
4.0 (6 db) 0.54 −1.04 0.52
10.0 (10 db) 0.34 −1.05 0.52
> 10.0 e−r= sin 2β −1.047 π=2þ β
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2. Higher-frequency components of the xylophone

At high frequency, the radiation pressure noise can be
neglected. In this case, our goal is to get the most broad-
band shot noise spectral density centered at some given
frequency Ω0. Therefore, we minimize the product of the
low- and high-frequency asymptotics,

Seffxx ðΩ → 0Þ × Seffxx ðΩ → ∞Þ

¼ 1

4
SðjÞxx ðΩ → 0Þ × SðjÞxx ðΩ → ∞Þ

¼ 1

4

�
ℏ

4MJj

	
2 Γ2

jAjCj

cos2 βj sin4 βj
; ðC7Þ

where j ¼ f2pþ 1; 2pþ 2g and p ¼ 2;… is the pair
number, in Γj, βj, and θj for a given value of Ω0.
Equation (B10) gives Γj:

Γj ¼ Ω0

�
Cj

Aj

	
1=4

: ðC8Þ

Therefore,

SðjÞxx ðΩ → 0Þ × SðjÞxx ðΩ → ∞Þ ¼
�

ℏΩ0

4MJj

	
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fðβj; θjÞ
q

;

ðC9Þ
with the same optimal values of βj and θj as for the low-
frequency pair.
In this case, the noise scales with the power and with the

squeezing as follows:

ShðΩ → ∞Þ ∝ 1

Jer
: ðC10Þ

3. Narrowband optimization

The minimum of (B9) in θ is provided by

θj ¼
π

2
: ðC11Þ

In this case,

SðjÞxx ðΩÞ ¼ ℏ
4MJjΓjΩ2 cos βjsin2βj

× ½ðΩ2 − Γ2
jÞ2e2rsin2βj

þ ðΩ2 þ Γ2
jÞ2e−2rcos2βj�: ðC12Þ

If

����αj ¼ π

2
− βj

���� ≪ 1; ðC13Þ

then this spectral density has a sharp minimum at Ω ¼ Γj.
In this case

SðjÞxx ðΩ0 þ νÞ ≈ ℏ
MJΓjαj



ν2e2rj þ Γ2α2je

−2rj
�
: ðC14Þ

Therefore, the values of the minimum and its width are
equal to

SxxðΓÞ ≈ ℏΓjαje
−2rj

MJ ; ðC15Þ

ΔΩ ¼ 2Γjαje−2rj : ðC16Þ

[1] http://www.advancedligo.mit.edu.
[2] G. M. Harry (LIGO Scientic Collaboration), Classical

Quantum Gravity 27, 084006 (2010).
[3] http://wwwcascina.virgo.infn.it/advirgo/.
[4] F. Acernese et al., J. Phys. Conf. Ser. 32, 223 (2006).
[5] http://gwcenter.icrr.u‑tokyo.ac.jp/en/.
[6] Nobuyuki Kanda and the LCGT Collaboration, arXiv:

1112.3092 (2011).
[7] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[8] V. B. Braginsky and F. Ya. Khalili, Quantum Measurement

(Cambridge University Press, Cambridge, England,
1992).

[9] S. L. Danilishin and F. Ya. Khalili, Living Rev. Relativity 15
(2012).

[10] H. Miao, H. Yang, R. Adhikari, and Y. Chen, Classical
Quantum Gravity 31, 165010 (2014).

[11] http://www.et‑gw.eu/.
[12] S. Hild et al., Classical Quantum Gravity 28, 094013

(2011).
[13] B. Sathyaprakash et al., Classical Quantum Gravity 29,

124013 (2012).
[14] LIGO Scientific Collaboration, Instrument science white

paper, 2014, LIGO Document No. T1400316.
[15] S. Hild, S. Chelkowski, A. Freise, J. Franc, N. Morgado,

R. Flaminio, and R. DeSalvoet al., Classical Quantum
Gravity 27, 015003 (2010).

[16] H. J. Kimble, Yu. Levin, A. B. Matsko, K. S. Thorne, and
S. P. Vyatchanin, Phys. Rev. D 65, 022002 (2001).

KOROBKO et al. PHYSICAL REVIEW D 91, 042004 (2015)

042004-12

http://www.advancedligo.mit.edu
http://www.advancedligo.mit.edu
http://www.advancedligo.mit.edu
http://www.advancedligo.mit.edu
http://dx.doi.org/10.1088/0264-9381/27/8/084006
http://dx.doi.org/10.1088/0264-9381/27/8/084006
http://wwwcascina.virgo.infn.it/advirgo/
http://wwwcascina.virgo.infn.it/advirgo/
http://wwwcascina.virgo.infn.it/advirgo/
http://wwwcascina.virgo.infn.it/advirgo/
http://dx.doi.org/10.1088/1742-6596/32/1/033
http://gwcenter.icrr.u-tokyo.ac.jp/en/
http://gwcenter.icrr.u-tokyo.ac.jp/en/
http://gwcenter.icrr.u-tokyo.ac.jp/en/
http://gwcenter.icrr.u-tokyo.ac.jp/en/
http://gwcenter.icrr.u-tokyo.ac.jp/en/
http://arXiv.org/abs/1112.3092
http://arXiv.org/abs/1112.3092
http://dx.doi.org/10.1103/PhysRevD.23.1693
http://dx.doi.org/10.12942/lrr-2012-5
http://dx.doi.org/10.12942/lrr-2012-5
http://dx.doi.org/10.1088/0264-9381/31/16/165010
http://dx.doi.org/10.1088/0264-9381/31/16/165010
http://www.et-gw.eu/
http://www.et-gw.eu/
http://www.et-gw.eu/
http://dx.doi.org/10.1088/0264-9381/28/9/094013
http://dx.doi.org/10.1088/0264-9381/28/9/094013
http://dx.doi.org/10.1088/0264-9381/29/12/124013
http://dx.doi.org/10.1088/0264-9381/29/12/124013
http://dx.doi.org/10.1088/0264-9381/27/1/015003
http://dx.doi.org/10.1088/0264-9381/27/1/015003
http://dx.doi.org/10.1103/PhysRevD.65.022002


[17] M. Evans, L. Barsotti, P. Kwee, J. Harms, and H. Miao,
Phys. Rev. D 88, 022002 (2013).

[18] V. B. Braginsky and F. Ya. Khalili, Phys. Lett. A 257, 241
(1999).

[19] F. Ya. Khalili, Phys. Lett. A 288, 251 (2001).
[20] A. Buonanno and Y. Chen, Phys. Rev. D 65, 042001 (2002).
[21] F. Khalili, S. Danilishin, H. Müller-Ebhardt, H. Miao, Y.

Chen, and C. Zhaoet al., Phys. Rev. D 83, 062003 (2011).
[22] N. V. Voronchev, S. L. Danilishin, and F. Y. Khalili, Opt.

Spectrosc. 112, 377 (2012).
[23] T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D.

Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and
N. Mavalvala, Phys. Rev. Lett. 98, 150802 (2007).

[24] H. Rehbein, H. Müller-Ebhardt, K. Somiya, S. Danilishin,
R. Schnabel, K. Danzmann, and Y. Chen, Phys. Rev. D 78,
062003 (2008).

[25] It is known that, depending on the detuning sign, a single
carrier creates either positive rigidity accompanied by
negative damping, or negative rigidity with positive damp-
ing. Both cases are evidently unstable. However, combining
two carriers with different powers and detunings, it is
possible to implement the stable configuration with the
positive total rigidity and positive total damping.

[26] V. B. Braginsky and F. Ya. Khalili, Phys. Lett. A 147, 251
(1990).

[27] V. B. Braginsky, M. L. Gorodetsky, F. Ya. Khalili, and
K. S. Thorne, Phys. Rev. D 61, 044002 (2000).

[28] P. Purdue, Phys. Rev. D 66, 022001 (2002).
[29] P. Purdue and Y. Chen, Phys. Rev. D 66, 122004

(2002).
[30] Y. Chen, Phys. Rev. D 67, 122004 (2003).
[31] S. L. Danilishin, Phys. Rev. D 69, 102003 (2004).
[32] Note that in the quantum speedmeter scheme, the effective

coupling of the test mass with the meter is proportional to
the velocity v of the former one; therefore, its momentum is
p ≠ mv and Spp ≠ m2Svv.

[33] A. Buonanno and Y. Chen, Phys. Rev. D 67, 062002
(2003).

[34] The Australia National Telescope Facility (ATNF) Pulsar
Catalogue, http://www.atnf.csiro.au/research/pulsar/psrcat/.

[35] Gravitational Wave Interferometer Noise Calculator
(GWINC),https://awiki.ligo‑wa.caltech.edu/aLIGO/GWINC.

[36] F. Ya. Khalili, Phys. Rev. D 81, 122002 (2010).
[37] Defined as 1 − ηf ¼ Af

TfþAf
, where Tf is the input mirror

power transmissivity.

PAIRED CARRIERS AS A WAY TO REDUCE QUANTUM … PHYSICAL REVIEW D 91, 042004 (2015)

042004-13

http://dx.doi.org/10.1103/PhysRevD.88.022002
http://dx.doi.org/10.1016/S0375-9601(99)00337-0
http://dx.doi.org/10.1016/S0375-9601(99)00337-0
http://dx.doi.org/10.1016/S0375-9601(01)00550-3
http://dx.doi.org/10.1103/PhysRevD.65.042001
http://dx.doi.org/10.1103/PhysRevD.83.062003
http://dx.doi.org/10.1134/S0030400X12030216
http://dx.doi.org/10.1134/S0030400X12030216
http://dx.doi.org/10.1103/PhysRevLett.98.150802
http://dx.doi.org/10.1103/PhysRevD.78.062003
http://dx.doi.org/10.1103/PhysRevD.78.062003
http://dx.doi.org/10.1016/0375-9601(90)90442-Q
http://dx.doi.org/10.1016/0375-9601(90)90442-Q
http://dx.doi.org/10.1103/PhysRevD.61.044002
http://dx.doi.org/10.1103/PhysRevD.66.022001
http://dx.doi.org/10.1103/PhysRevD.66.122004
http://dx.doi.org/10.1103/PhysRevD.66.122004
http://dx.doi.org/10.1103/PhysRevD.67.122004
http://dx.doi.org/10.1103/PhysRevD.69.102003
http://dx.doi.org/10.1103/PhysRevD.67.062002
http://dx.doi.org/10.1103/PhysRevD.67.062002
http://www.atnf.csiro.au/research/pulsar/psrcat/
http://www.atnf.csiro.au/research/pulsar/psrcat/
http://www.atnf.csiro.au/research/pulsar/psrcat/
http://www.atnf.csiro.au/research/pulsar/psrcat/
https://awiki.ligo-wa.caltech.edu/aLIGO/GWINC
https://awiki.ligo-wa.caltech.edu/aLIGO/GWINC
https://awiki.ligo-wa.caltech.edu/aLIGO/GWINC
https://awiki.ligo-wa.caltech.edu/aLIGO/GWINC
http://dx.doi.org/10.1103/PhysRevD.81.122002

