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In the framework of a 3-3-1 model with a minimal scalar sector, known as the economical 3-3-1 model,
we study its capabilities of generating realistic quark masses. After a detailed study of the symmetries of the
model, before and after the spontaneous symmetry breaking, we find a remaining axial symmetry that
prevents some quarks from gaining mass at all orders in perturbation theory. Since this accidental symmetry
is anomalous, we also consider briefly the possibility of generating their masses for nonperturbative effects.
However, we find that nonperturbative effects are not enough to generate the measured masses for the three
massless quarks. Hence, these results imply that the economical 3-3-1 model is not a realistic description of
the electroweak interaction.
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I. INTRODUCTION

Up to now, from the experimental point of view, neutrino
masses and their mixing, and dark matter are the only issues
that demand explanations beyond the standard model (SM).
On the other hand, from the theoretical point of view, the
quest for a deeper understanding leads us to believe that a
more fundamental model of the interactions is needed. That
model should be able to answer simple but deep questions.
Some of these questions are the following. Why are their
three families of quarks and leptons? Is there a more
fundamental relation (symmetry) between quarks and
leptons? Why does the observed pattern for the particle
masses have this particular form? Should the parameters
involved have any calculability? What is the origin of
CP violation? Even in the SM, what is the origin of the
CP-violating Cabibbo-Kobayashi-Maskawa phase? Can it
be computed? Is there a more efficient mechanism that is
able to account for the matter-antimatter asymmetry in the
Universe? What is the mechanism that generates masses
and mixing angles for neutrinos? Is there CP violation in
leptons? What would be its role in the evolution of the
Universe? How can dark matter and dark energy be
incorporated? Unfortunately, experimental efforts have
not been able to indicate exactly what the physics beyond
the SM should be.
In the framework of gauge theories, one way of intro-

ducing new physics is to consider a gauge symmetry group
larger than the SM one. Some years ago models with the
SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX gauge symmetry were pro-
posed [1–4], which have experienced considerable devel-
opments. The so-called 3-3-1 models present interesting

features concerning the questions above. One of them is
that, depending on the representation content, the triangle
anomalies cancel out, and the number of families has to be a
multiple of three. More precisely, the number of families
must be three due to the asymptotic freedom. A version of
this kind of model (called minimal [1–4]) presents a
Landau-like pole when sin2 θW ¼ 1=4 at energies of the
order of a few TeV [5]. This particular behavior stabilizes
the electroweak scale (avoiding the hierarchy problem)
and also explains why it is observed sin2 θW < 1=4. This
model also accounts for the electric charge quantization
independently of the nature of the massive neutrinos, i.e.,
whether they are Dirac or Majorana particles [6]. The
model also has interesting features concerning the strong
CP problem. In the minimal 3-3-1 model there is an almost
automatic Peccei-Quinn (PQ) symmetry, and there is an
automatic symmetry in the so-called economical version of
the model, as wewill show below. In both versions there are
ways of solving the strong CP problem while keeping the
corresponding axion invisible and protected against gravi-
tational effects [7,8]. Due to a larger gauge symmetry group
and a rich scalar sector, this kind of model has garnered
some attention in many other subjects, such as new sources
of CP violation, active neutrino mass generation and
mixing, dark matter candidates, and Z0-boson physics.
In this paper we are concerned with the quark mass

generation, in the context of the economical 3-3-1 model
(E331 model, for short). In particular, we investigate the
capabilities of the model in generating realistic quark
masses. The quark sector of this model has already been
considered in the literature, and conflicting results were
found Refs. [8,9]. In this work, in order to clarify this
important issue, we perform a detailed study of the
symmetries (local and global) of the entire E331-model
Lagrangian. Once we have identified all the symmetries,
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and after the spontaneous symmetry breaking of the scalar
potential, we investigate are the remaining symmetries (if
any) of the vacuum state. In other words, we attempt to find
the independent linear combinations (if any) of the group
generators that annihilate the vacuum state, in order to
know if the corresponding symmetries are realized á la
Wigner-Weyl (WW) or Nambu-Goldstone (NG). This is of
fundamental importance since it will affect the physical
particle spectrum. When the total Lagrangian and vacuum
state are both invariant under a symmetry transformation,
this is called a WW realization of the symmetry. On the
other hand, when the vacuum is not invariant, this is called
an NG realization, and this implies a massless NG scalar
boson. We find that there is a WW realization of a subgroup
of the initial symmetry group that protects some quarks
from getting mass at all orders in perturbation theory, as
expected from quantum field theory.
The paper is organized as follows. In Sec. II we briefly

review the economical 3-3-1 model. In Sec. III we make a
detailed study of the symmetries of the model—both before
and after the spontaneous symmetry breakdown—and its
implication for the quark masses. Nonperturbative effects
contributing to quark masses are also briefly considered.
Our conclusions are presented in Sec. IV.

II. A BRIEF REVIEW OF THE ECONOMICAL
3-3-1 MODEL

The model considered has a matter content given
by [10]

ΨaL ¼ ðνa; ea; ðνaRÞCÞTL ∼ ð1; 3;−1=3Þ;
eaR ∼ ð1; 1;−1Þ;
QαL ¼ ðdα; uα; d0αÞTL ∼ ð3; 3�; 0Þ;
Q3L ¼ ðu3; d3; u03ÞTL ∼ ð3; 3; 1=3Þ;
uaR ∼ ð3; 1; 2=3Þ;
u03R ∼ ð3; 1; 2=3Þ;
daR ∼ ð3; 1;−1=3Þ;
d0αR ∼ ð3; 1;−1=3Þ;
χ ¼ ðχ0; χ−; χ01ÞT ∼ ð1; 3;−1=3Þ;
ρ ¼ ðρþ; ρ0; ρþ1 ÞT ∼ ð1; 3; 2=3Þ; ð1Þ

where a ¼ 1, 2, 3, α ¼ 1, 2, and the values in parentheses
denote, respectively, the quantum numbers corresponding
to the ðSUð3ÞC; SUð3ÞL;Uð1ÞXÞ groups. From now on latin
and greek letters always take the values 1, 2, 3 and 1, 2,
respectively.
With the quark, lepton, and scalar multiplets in Eq. (1)

we have that the most general Yukawa interactions allowed
by the gauge symmetries and renormalizability are

LY ¼ YabΨaLebRρþ Y 0
abϵ

ijkðΨaLÞiðΨbLÞCj ðρ�Þk
þ G1Q3Lu03Rχ þ G2

αβQαLd0βRχ
� þG3

aQ3LdaRρ

þ G4
αaQαLuaRρ� þ G5

aQ3LuaRχ þ G6
αaQαLdaRχ�

þ G7
αQ3Ld0αRρþ G8

αQαLu03Rρ
� þ H:c:; ð2Þ

where Gi, Yab, and Y 0
ab are arbitrary complex matrices and

Y 0
ab is also antisymmetric. We use the convention that

addition over repeated indices is implied.
The χ and ρ scalar multiplets break the SUð3ÞC ⊗

SUð3ÞL ⊗ Uð1ÞX gauge symmetry spontaneously. The
vacuum expectation values (VEVs) in this model satisfy
hReρ0i≡ v; hReχ0i≡ u ≪ hReχ01i≡ w. The most general
scalar potential that is both invariant under the gauge
symmetry and renormalizable is

V ¼ μ2χχ
†χ þ μ2ρρ

†ρþ λ1ðχ†χÞ2 þ λ2ðρ†ρÞ2
þ λ3ðχ†χÞðρ†ρÞ þ λ4ðχ†ρÞðρ†χÞ: ð3Þ

With only two scalar multiplets the scalar sector is simple,
which is (in principle) an appealing feature of this model
compared to other 3-3-1 models [1,2,11].
Finally, the electric charge operator is written as

Q ¼ T3 −
1ffiffiffi
3

p T8 þ X; ð4Þ

where T3 and T8 are the diagonal generators of the SUð3ÞL
group and X refers to the quantum number of the Uð1ÞX
group.

III. SPONTANEOUS SYMMETRY BREAKING
AND MASSLESS QUARKS

Before considering which symmetries are broken,
we look for all the exact symmetries—local and
global—that this model actually has. By doing so we
realize that, apart from the local gauge symmetry
SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX, this model has two extra
global Uð1Þ symmetries, which we denote generically
by Uð1Þζ. In order to see this, we write down the
relations that these symmetries must obey in order to
keep the entire Lagrangian invariant. From Eq. (2) we
obtain the following relations:

−ζQ3
þ ζu0

3R
þ ζχ ¼ 0;

−ζQ þ ζd0R − ζχ ¼ 0;

−ζQ3
þ ζuR þ ζχ ¼ 0; ð5Þ

−ζQ þ ζdR − ζχ ¼ 0;

−ζQ3
þ ζdR þ ζρ ¼ 0;

−ζQ þ ζuR − ζρ ¼ 0; ð6Þ
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−ζQ3
þ ζd0R þ ζρ ¼ 0;

−ζQ þ ζu0
3R
− ζρ ¼ 0;

−ζΨ þ ζeR þ ζρ ¼ 0; ð7Þ

2ζΨ þ ζρ ¼ 0; ð8Þ

where the ζψ i
’s above denote the Uð1Þζ charges of the ψ i

fields. Solving Eqs. (5)–(8), we find that all charges ζψ i
can

be written in terms of three independent ones. This means
that the model has only three independent Uð1Þζ sym-
metries. In principle, we can choose any three independent
Uð1Þζ symmetries as a basis. However, some physical
considerations can help us make more appropriate choices.
First, we note that one of these symmetries is the Uð1ÞX
gauge symmetry, which is anomaly free by construction
and has an associated gauge boson. The other two are
global symmetries and they can be divided into a vectorial
and an axial symmetry acting on the quarks. The vectorial
one is the well-known baryon number symmetry, denoted
here as Uð1ÞB, which is an accidental symmetry in this
model (as in the SM). The other one is an axial symmetry
also acting on the quarks, which we denote as Uð1ÞPQ. The
last symmetry is a PQone since it is anomalous andAPQ, the
coefficient of the ½SUð3ÞC�2Uð1ÞPQ anomaly, is∝ −3. Also,
we notice that the Uð1ÞPQ is a natural symmetry in the
sense that it is not imposed; rather, it follows from the
gauge local symmetry and renormalizability. In other
words, the economical model naturally has a PQ symmetry.
The assignment of the three independent U(1) quantum
charges is shown in Table I. (These quantum charges
appeared for the first time in Ref. [8]; we have written
them here for the sake of completeness and clarity.) Thus,
the model actually has a larger symmetry: G≡ SUð3ÞC ⊗
SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞB ⊗ Uð1ÞPQ, where the last two
are accidental and global symmetries.
Now, let us search for the remaining symmetries after

the χ and ρ scalar triplets obtain their VEVs, hχi≡ Vχ ¼
1ffiffi
2

p ðu; 0; wÞT and hρi≡ Vρ ¼ 1ffiffi
2

p ð0; v; 0ÞT . To do this, we

consider an infinitesimal transformation of the total group
G on the vacuum states to find the generators of the
unbroken subgroups as a linear combination of the Ti, X,
PQ, and B generators. Here, it is important to note that the
SUð3ÞC ⊗ Uð1ÞB subgroups are clearly unbroken and thus
we can omit them in the following analysis without
affecting our conclusions. Then, under an infinitesimal
transformation on the vacuum we have

�X8
i¼1

αiTi þ γXχ13×3 þ δPQχ13×3

�
Vχ ¼ 0; ð9Þ

�X8
i¼1

αiTi þ γXρ13×3 þ δPQρ13×3

�
Vρ ¼ 0; ð10Þ

where αi, γ, and δ are independent real constants and 13×3
denotes the 3 × 3 identity matrix. Also, we have from
Table I that Xχ ¼ −1=3, Xρ ¼ 2=3, and PQχ ¼ PQρ ¼ 1.
Since the χ and ρ scalar triplets are in the fundamental
representation of SUð3ÞL, the Ti generators in Eqs. (9)
and (10) are given by λi=2, where λi are the well known
Gell-Mann matrices. From Eqs. (9)–(10) we have

vðα1 − iα2Þ ¼ 0; ð11Þ
vðα6 þ iα7Þ ¼ 0; ð12Þ

uðα1 þ iα2Þ þ wðα6 − iα7Þ ¼ 0; ð13Þ
vð−3α3 þ

ffiffiffi
3

p
α8 þ 4γ þ 6δÞ ¼ 0; ð14Þ

3uðα4 þ iα5Þ − 2wð
ffiffiffi
3

p
α8 þ γ − 3δÞ ¼ 0; ð15Þ

uð3α3 þ
ffiffiffi
3

p
α8 − 2γ þ 6δÞ þ 3wðα4 − iα5Þ ¼ 0; ð16Þ

with i ¼ ffiffiffiffiffiffi
−1

p
. Solving Eqs. (11)–(16) simultaneously

(with u ≠ 0, v ≠ 0, and w ≠ 0), we have that α1 ¼ α2 ¼
α5 ¼ α6 ¼ α7 ¼ 0 and

α4 ¼ −
6uw

u2 þ w2
δ≡ −3 sinð2θÞδ; ð17Þ

α8 ¼
6ffiffiffi
3

p
�

2w2

u2 þ w2
− 1

�
δ −

α3ffiffiffi
3

p ≡ 6 cosð2θÞffiffiffi
3

p δ −
α3ffiffiffi
3

p ;

ð18Þ

γ ¼ −
3w2

u2 þ w2
δþ α3 ≡ −

3

2
ð1þ cosð2θÞÞδþ α3; ð19Þ

where tan θ≡ u=w. Since the parameters α3 and δ are
independent, this implies that from the ten generators only
two linearly independent combinations, say g1 and g2,
remain unbroken. At first glance, the choice of these
generators is arbitrary. However, we take into consideration
that one of them has to be the anomaly-free electric charge
generator, which is achieved by taking δ ¼ 0 and α3 ¼ 1.
By doing so, g1 ¼ Q. The other generator, g2, must have
δ ≠ 0 in order to be linearly independent of g1 (since all
generators with δ ¼ 0 will be proportional to Q). Hence,
the unbroken generators are written as

TABLE I. Assignment of the three independent U(1) quantum charges in the economical 3-3-1 model.

QαL Q3L ðuaR; u03RÞ ðdaR; d0αRÞ ΨaL eaR ρ χ

Uð1ÞX 0 1=3 2=3 −1=3 −1=3 −1 2=3 −1=3
Uð1ÞB 1=3 1=3 1=3 1=3 0 0 0 0
Uð1ÞPQ −1 1 0 0 −1=2 −3=2 1 1
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g1 ¼ T3 −
1ffiffiffi
3

p T8 þ X; ð20Þ

g2 ¼
�
3cos2ðθÞT3 − 3 sinð2θÞT4

þ 1

2

ffiffiffi
3

p
ð3 cosð2θÞ − 1ÞT8 þ PQ

�
δ; ð21Þ

with δ ≠ 0 in the last equation. The symmetry associated to
g1, Uð1ÞQ, is anomaly free, as is well known. The g2
generator, which is independent of g1, is a linear combi-
nation of T3; T4; T8, and PQ generators. We refer to the
symmetry associated to g2 as Uð1ÞH. The key point here is
that a part of the initial axial symmetry, Uð1ÞPQ, remains
unbroken because the coefficient δ in Eq. (21) is always
different from zero. In conclusion, the existence of g1 and
g2 implies that the Uð1ÞQ ⊗ Uð1ÞH subgroup of SUð3ÞL ⊗
Uð1ÞX ⊗ Uð1ÞPQ remains unbroken.
Now, since G is an exact symmetry, i.e., ½G;LT � ¼ 0

(where LT is the total Lagrangian of the model) from
Goldstone’s theorem [12], we have exactly eight NG scalar
bosons (an NG scalar boson for each broken generator),
which in this model will become the longitudinal compo-
nents of the eight massive gauge vector bosons via the
Higgs mechanism. In the physical scalar spectrum this
model has only massive scalar bosons, H0

1; H
0
2; H

þ; H−,
as was shown in Ref. [8]. If the g2 was broken, an NG scalar
boson would appear in the physical scalar spectrum.
Because g2 has a component in the PQ generator, this
physical NG scalar boson would be an axion. However, this
does not happen and the model has three massless quarks
instead (one u-type quark and two d-type quarks). This can
be easily seen from themass matrices, because a pair of rows
in the u-quark mass matrix and two pairs of rows in the
d-quark mass matrix are proportional to each other [see
Eqs. (18) and (19) in Ref. [8]]. The exact form of these
massless quarks is neither clarifying nor relevant for our
analysis, and thus we do not write them here. Thesemassless
quarks are fully expected because an exact axial symmetry
that is realized in theWWmanner impliesmassless fermions.
The action of the remaining Uð1ÞH symmetry preventing

some quarks from gaining mass becomes obvious when we
change the basis to work with the mass eigenstates instead
of the symmetry eigenstates. The symmetry eigenstates
UiL;R; DjL;R (with i ¼ 1;…; 4 and j ¼ 1;…; 5) and the
mass eigenstates ðUMÞiL;R; ðDMÞjL;R are related by UL;R ¼
ðVU

L;RÞ†ðUMÞL;R and DL;R ¼ ðVD
L;RÞ†ðDMÞL;R, where VU;D

L;R

are independent unitary matrices such that VU
LM

UVU†
R ¼

M̂U and VD
LM

DVD†
R ¼ M̂D, where M̂U ¼ diagðmuM1

; muM2
;

muM3
; muM4

Þ and M̂D¼ diagðmdM1
;mdM2

;mdM3
;mdM4

;mdM5
Þ.

Since the mass matrix of the u- and d-quark types are not
Hermitian matrices, in order to obtain the mass eigenstates
we have to solve the matrix equations Vq

LM
qMq†Vq†

L ¼
Vq
RM

q†MqVq†
R ¼ðM̂qÞ2, where q¼U;D. More specifically,

we have to find the base-rotation matrices VU
L;R and VD

L;R to
be able to write the Yukawa interactions in terms of the
quark-mass eigenstates. This task can be done using standard
procedures. Unfortunately, exact analytical expressions for
these matrices are enormous, so it is worthless to show them
here. The diagonalization study shows that we have one
vanishing eigenvalue in the u-quark sector and two in the d-
quark sector, as expected. The respective zero-mass eigen-
states are clearly identified. Let us call them uM1, dM1, and
dM2. This means that there are no mass terms of the form
muM1

uM1LuM1RþmdM1
dM1LdM1RþmdM2

dM2LdM2RþH:c:,
i.e., muM1

¼ mdM1
¼ mdM2

¼ 0.
We find more important results by looking at the quark-

scalar field interactions coming from the Yukawa inter-
actions in Eq. (2). Here we find that there are no
interactions involving the right component of these mass-
less quark states. The right states uM1R, dM1R, and dM2R
disappear from the Yukawa interactions. In other words, no
left quark states are coupled with these massless states
through neutral- or charged-scalar fields. Nonetheless,
these zero-mass right components should have some
interaction after all. In fact, from the quark kinetic terms
we find that they interact only with the neutral vector
bosons Aμ; Zμ, and Z0

μ. These interactions couple only
quarks with the same chirality. This means that each of the
right components uM1R, dM1R, and dM2R can be trans-
formed by an arbitrary Uð1ÞH phase without affecting other
terms in the Lagrangian. Hence, looking at the Yukawa
and the neutral vector-boson interactions, written in terms
of the quark-mass eigenstates, we can identify the Uð1ÞH
symmetry that prevents these quark states from getting
mass: the massless right fields uM1R, dM1R, and dM2R
transform as eiαuM1R; eiαdM1R, and eiαdM2R and all other
fields transform trivially under Uð1ÞH (note that this
symmetry is anomalous with the ½SUð3ÞC�2Uð1ÞH anomaly
∝ −3). This is a clear and undoubtable manifestation of
the remaining symmetry we have found. If we consider
perturbation theory, these massless quarks can not get mass
through radiative corrections to their propagators since the
right component of these fields disappear from the Yukawa
interactions and they only couple to neutral vector bosons,
which conserve chirality. Therefore, there is no way to form
loop diagrams to give mass for these particular fields, at all
orders in perturbation theory.
Now, let us discuss the possibility of generating masses

for these massless quarks through nonperturbative correc-
tions and the viability of this model to explain the
low-energy hadron phenomenology. Roughly speaking, this
can be seen as follows. From both chiral QCD and lattice
calculations the ratio μu=μd is 0.410� 0.036 [13–15], where
μu and μd are the “low-energy quark masses.” These should
be distinguished from the quark-mass parameters mi of the
QCD Lagrangian at high scale [16]. In particular,
μu ¼ β1mu þ β2

mdms
ΛχSB

, where ΛχSB ∼ 1 TeV (where we have

identified naturally the massless quarks as u ¼ uM1,
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d ¼ dM1, and s ¼ dM2). This means that μμ receives an
additive nonperturbative contribution of order mdms in
addition to the perturbative one, β1mu, which is zero because
both mu’s are zero. The nonperturbative contribution is also
zero because md and ms are both zero and β2 is estimated to
be a number of order one. Thus, μu ¼ 0, which is in
complete disagreement with the ratio μu=μd. A similar
analysis is also valid for μd and μs [17].

IV. CONCLUSIONS

The scalar content in the E331 model is not enough to
break the initial symmetry, G to Uð1ÞQ ⊗ Uð1ÞB. Instead,
an extra generator g2 remains unbroken and thus the model
has a Uð1ÞH axial symmetry after the spontaneous sym-
metry breaking. As we have explicitly shown above, g2 is
a linear combination of the T3; T4; T8, and PQ generators
and it is linearly independent of the generators of the
electric charge and baryonic number, g1 and B, respec-
tively. Because of the PQ component in the g2 generator,
we have that the initial axial Uð1ÞPQ symmetry is not
completely broken. In other words, the Uð1ÞQ ⊗ Uð1ÞH
subgroup of the SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞPQ group
remains unbroken. Therefore, the model has three massless
quarks. The Uð1ÞH symmetry acts on the mass eigenstates
as an axial symmetry, uM1R → eiαuM1R, dM1R → eiαdM1R,

dM2R → eiαdM2R, and this will protect these massless
quarks from acquiring mass at any level of perturbation
theory. Furthermore, we recall that the unbroken Uð1ÞH
subgroup has its origin in an axial symmetry, Uð1ÞPQ,
which—although anomalous—is an accidental symmetry
in the sense that it follows from the gauge symmetries and
renormalizability. Therefore, the remaining axial symmetry
acting on quarks will only be broken by nonperturbative
QCD processes [18]. However, these effects are not enough
to provide the necessary low-energy quark masses, μi, to
the three massless quarks to bring the model into agreement
with both chiral QCD and lattice calculations, which give
the ratio μu=μd as 0.410� 0.036 [13–15]. Hence, the
economical version of the 3-3-1 model cannot be consid-
ered a realistic description of the electroweak interaction.
The original 3-3-1 models, such as the model I presented in
Ref. [4], do not suffer from such an illness.
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