
Noncommutative field with constant background fields and neutral fermions

Cui-bai Luo,1 Feng-yao Hou,2,5 Zhu-fang Cui,3,5 Xiao-jun Liu,1,* and Hong-shi Zong3,4,5,†
1Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, and Department of Physics,

Nanjing University, Nanjing 210093, China
2Institute of Theoretical Physics, CAS, Beijing 100190, China

3Department of Physics, Nanjing University, Nanjing 210093, China
4Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093, China

5State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing 100190, China
(Received 28 September 2014; published 27 February 2015)

Introducing constant background fields into the noncommutative gauge theory, we first obtain a
Hermitian fermion Lagrangian which involves a Lorentz violation term, then we generalize it to a new
deformed canonical noncommutation relations for fermion field. Massless neutrino oscillation in the
deformed canonical noncommutation relations is analyzed. The restriction of the noncommutative
coefficients is also discussed. By comparing with the existing experimental data of conventional neutrino
oscillations, the order of noncommutative deformed coefficients is given from different ways.
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I. INTRODUCTION

Neutrinos are massless particles in the Standard Model
of particle physics. In order to explain neutrino oscillation,
the conventional scenario is to assume that neutrino physics
is beyond the Standard Model, and then get neutrinos with
nonzero mass [1–3], where is a spectrum of three or more
neutrino mass eigenstates, and flavor state is a mixing
one of mass eigenstates [4]. D. Colladay, V. A. Kostelecký
[5], S. Coleman and S. L. Glashow [6] noted that neutrino
oscillations may take place for massless neutrinos in which
case that Lorentz invariance is violated in the neutrino
sector.
Lorentz invariance violation could give a preparative

solution to two important experimental problems, namely,
the observation of TeV photons and of cosmic ray events
above the Greisen-Zatsepin-Kuz'min cutoff [6–11], since
the threshold energy at which the cutoff occurs could be
altered by modifying special relativity. The high energy
tests of Lorentz violating depended on a perturbative
framework for neutrinos was discussed in Ref. [7]. The
consequences of Lorentz and CPT violations to the three-
generation neutrino oscillations were abundantly analyzed
in the massless neutrino sector [12–14]. The Lorentz-
violating extension of the minimal Standard Model [15]
includingCPT-even andCPT-odd terms were also studied,
the stability and causality are investigated in quantum field
theories that incorporate Lorentz and CPT violations [16].
The violation of Lorentz invariance may arise from

quantum gravity [17–19], random dynamics [20], string
theory [21], and field theories with gravity [22]. Another
approach is noncommutative field theory [23,24], where

any realistic noncommutative theory is found to be physi-
cally equivalent to a subset of a general Lorentz-violating
Standard-Model extension involving ordinary fields.
Spontaneous violation of CPT=Lorentz symmetries in
string theories is also well known [25], where Lorentz
symmetry breakdown is natural when the perturbative
string vacuum is unstable.
In order to get the oscillation of massless neutrinos, the

introduction of Lorentz- or (and) CPT-violating items into
the Lagrangian is needed, but for this introduction, people
often introduce directly from the Lorentz-violating exten-
sion of the Standard Model, instead of introducing directly
by noncommutative fields theory. Different from the con-
ventional way, J. M. Carmona et al. [26] consider the
Hamiltonian of free complex bosonic field theory and
investigate the connection between Lorentz invariance
violation and noncommutativity of fields by proposing a
new Moyal product between functionals, which is consis-
tent with the commutation relations. In that case, they only
discuss the effects of neutrinos on noncommutative space.
In this paper, since all noncommutative effects vanish for

neutral fermions in noncommutative gauge theories, we
introduce neither a new Moyal product nor a Lorentz-
violation extension of the Standard Model, but mainly
focus on the constant background fields in noncommutative
gauge theories, and obtain a Hermitian fermion Lagrangian
which involves a Lorentz violation term. The Lorentz
violation term deforms the conventional canonical com-
mutation relations. From this we try to generalize our
model to new deformed canonical noncommutation rela-
tions for the fermion field. On this basis of the new
canonical noncommutativity, we obtain the massless neu-
trino Lagrangian which satisfies the deformed canonical
relations. Subsequently, we investigate the restriction of the
noncommutative coefficients. Comparing with the existing
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experimental data on conventional neutrino oscillations,
finally the order of noncommutative deformation coeffi-
cients is given by different ways.

II. NONCOMMUTATIVE COEFFICIENTS OF
NEUTRAL FERMIONS WITH CONSTANT

BACKGROUND FIELDS

The idea that the spacetime coordinates do not commute
is quite old in mathematics and physics [27]. Non-
commutativity [28–32] is the central mathematical concept
expressing uncertainty in quantum mechanics, where it
applies to any pair of conjugate variables, such as position
and momentum. A. Connes et al. [33] build a noncommu-
tative geometry system, and try to apply it to physics or
even the Standard Model. N. Seiberg and E. Witten [34]
extend earlier ideas about the appearance of noncommu-
tative geometry in string theory with a nonzero B field,
and get an equivalence between ordinary gauge fields
and noncommutative gauge fields, which is realized by a
change of variables. The spacetime noncommutativity
undergoes a revival following the realization which occurs
naturally in string theory [35].
In noncommutativity framework, the canonical commu-

tator of the coordinates in the spacetime manifold is

½xμ; xν� ¼ iθμν; ½∂i; ∂j� ¼ 0; ð1Þ

with a parameter θ which is a real and antisymmetric
(constant) tensor. In addition, there are operator and Lie
algebra forms

½xμ; xν� ¼ iθ̂μν; ½xμ; xν� ¼ iCμν
k xk: ð2Þ

In the case of Eq. (1), a simple set of derivatives ∂i can be
defined by the relations

∂ixj ¼ δji ; ½∂i; ∂j� ¼ 0; ð3Þ

and the Leibnitz rule.
To construct a noncommutative quantum field theory,

one approach is to replace conventional fields with non-
commutative fields, and conventional products with Moyal
star products [36], namely,

fðxÞ⋆gðxÞ ¼ exp

�
1

2
iθμν∂xμ∂yν

�
fðxÞgðxÞjx¼y: ð4Þ

It is well known that as noncommutative phase space one
can occasionally generalize Eq. (3) to

½xμ; xν� ¼ iθμν; ½∂μ; ∂ν� ¼ −iΦμν ð5Þ

to incorporate an additional background field [25].
Gauge theories, such as quantum electrodynamics

(QED), are ordinarily transformed into noncommutative

QED [28] by Moyal star products. The actions of pure
noncommutative Uð1Þ Yang-Mills and matter field are,
respectively, [37]

SYM ¼
Z

d4x

�
−

1

4q2

�
F̂μν⋆F̂μν;

SMatter ¼
Z

d4x

�
1

2
i ¯̂ψγμ⋆ D̂

↔

μψ̂ −m ¯̂ψ ⋆ ψ̂
�

where q is the coupling constant. Then for noncommutative
QED, the Hermitian Lagrangian can be written as

L ¼ 1

2
i ¯̂ψγμ⋆D̂

↔

μψ̂ −m ¯̂ψ ⋆ ψ̂ −
1

4q2
F̂μν⋆ F̂μν; ð6Þ

where Âμ and ψ̂ are the fields in noncommutative QED
space, and Aμ together with ψ are for conventional QED,
and have

F̂μν ¼ ∂μÂν − ∂νÂμ − i½Âμ; Âν�⋆;
D̂μψ̂ ¼ ∂μψ̂ − iÂμ⋆ ψ̂ ;

Â⋆D̂
↔

μB̂ ¼ Â⋆D̂μB̂ − B̂⋆D̂μÂ: ð7Þ

Noncommutative coefficient θμν are acceptable only
when θ0k ¼ 0; θij ≠ 0ði; j ¼ 1; 2; 3Þ, on account of the
difficulties with perturbative unitarity [38]. Nonetheless,
presumably certain cases with θ0j ≠ 0 can also be allowed,
since the presence of observer Lorentz invariance implies
that there are no difficulties with perturbative unitarity
provided θμνθ

μν > 0; θμν ~θ
μν ¼ 0, which can be converted

into one with only θjk nonzero by a suitable observer
Lorentz transformation. It is similar to the condition
applying for open bosonic stings where the presence of
a nonzero Bjk field is equivalent to a constant magnetic
field on a Dp brane [34].
N. Seiberg and E. Witten [34] proposed a map from the

noncommutative UðNÞ gauge theory to an ordinary UðNÞ
gauge theory. In 2002, Chaichian, Prešnajder et al. [39]
presented the no-go theorem; this theorem showed that
matter fields in the noncommutative Uð1Þ gauge theory
can only have �1 or 0 charges and for a generic non-
commutative Πn

i¼1UðNiÞ gauge theory, matter fields can be
charged under at most two of the UðNiÞ gauge group
factors. In Refs. [40–43], the authors argued that the
Seiberg-Witten map, which relates a noncommutative
gauge theory to an ordinary one, paves the way for
constructing the noncommutative version of gauge theories
based on generic Lie algebras with matter fields in generic
representations, thus circumventing the restrictions dis-
cussed in Ref. [39]. However, as shown in Ref. [44], the
Seiberg-Witten map can only be consistently defined and
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used for the gauge theories which respect the no-go
theorem.
To the first order, the Seiberg-Witten map reads

[34,45–47]

Âμ ¼ Aμ −
1

2
θγρAγð∂ρAμ þ FρμÞ

ψ̂ ¼ ψ −
1

2
θγρ∂ρψ : ð8Þ

Substitute Eq. (4) and the Seiberg-Witten map equation (8)
into the Lagrangian (6), then in the new Lagrangian the
gauge invariant is given manifestly, and it consists of
ordinary QED plus nonrenormalizable Lorentz-violating
corrections. It should be noted that noncommutative effects
vanish for neutral fermions. One will get the same results if
one use the Moyal star products [Eq. (4)] in the case of a
canonical commutator of the coordinates, Eq. (1), because
of such a property of the Moyal star productsZ

d4xfðxÞ⋆gðxÞ ¼
Z

d4xgðxÞ⋆fðxÞ ¼
Z

d4xfðxÞgðxÞ:

ð9Þ

In the no-go theorem, neutral fermions could be in
“adjoint” representation of noncommutative Uð1Þ gauge
theory. The neutral fermions field, although is not carrying
any Uð1Þ charge, similarly to noncommutative photons,
carries the corresponding dipole moment [39]. Considering
the above situation, in order to get other noncommutative
effects of neutral fermions, it seems to be a reasonable
consideration by generalizing its Lagrangian to noncom-
mutative phase space [depending on Eq. (5)], which is
equivalent to attach a constant background field. But we
will encounter some complex issues.
In this paper, in order to avoid these difficulties above,

we mainly pay attention to these cases with constant
electromagnetic background fields in noncommutative
fields, and try to generalize this model to new canonical
noncommutation relations. In the new noncommutativity,
we assume that all fermions be applied to these new
relations; then we investigate the neutrino Lagrangian
which involves a Lorentz violation term.
One can get the relation (6) when one considers non-

commutative QED under the canonical commutation rela-
tion, Eq. (1), and then substitutes the Seiberg-Witten map
[Eq. (8)] into the Lagrangian equation (6). The relation at the
leading order in noncommutative coefficients is given as

L ¼ 1

2
iψ̄γμD

↔

μψ −mψ̄ψ −
1

4
FμνFμν þ Θðθ2Þ

þ 1

8
θαβq½2mFαβψ̄ψ þ FαβFμνFμν − 4FαμFβνFμν�

þ 1

8
iθαβq½2Fαμψ̄γ

μD
↔

βψ − Fαβψ̄γ
μD
↔

μψ �; ð10Þ

where we have redefined Aμ → qAμ. If we make the
replacement

Fαβ → Fαβ þ fαβ; ð11Þ

where fαβ is a constant background field and Fαβ is
understood to be a small fluctuation, it yields the
Hermitian Lagrangian describing the leading-order effects
of noncommutativity in constant background fields

L ¼ 1

2
iψ̄γμD

↔νðgμν þ ημνÞψ −mψ̄ψ

−
1

4
ðgαμgβν þ καβμνÞFαβFμν þ Θðη2; κ2Þ; ð12Þ

where gμν is the metric tensor, dimensionless coefficients ημν
and καβμν are constant tensors associated with both the
constant electromagnetic fields and the coefficients of the
canonical commutator,

ημν ¼ −1=2qfμσθσν; ð13Þ

where q is replaced with a scaled effective value
q → ð1þ 1=4qfμσθμσÞq. If one removes the mass m, and
lets electromagnetic background fluctuation Fμν → 0, then
an effective Lagrangian is given

L ¼ 1

2
igμνψ̄γμ∂

↔ν
ψ þ 1

2
iγμημνψ̄ ∂↔ν

ψ : ð14Þ

Next, we generalize Eq. (14) to coupled field ψ i;j,

L ¼ 1

2
iψ̄ iγ

μ∂μ

↔
ψ i þ

1

2
iημνðijÞψ̄ iγ

μ∂ν
↔
ψ j; ð15Þ

where ημνðijÞ violate Lorentz invariance. Then we can
obtain the conjugate momentum and the canonical com-
mutation relations for the fermion field,

πi ¼ iðδij þ η00ðijÞÞψ†
j ¼ Λ−1

ij ψ
†
j

fψ iðxÞ;ψ†
jðyÞg ¼ Λijδðx − yÞ; ð16Þ

with the coefficient of the constant background field ημνðijÞ
diagonal in the spacetime indices, where the Lorentz
violation term deforms the conventional canonical com-
mutation relations.
Next, let us put aside the background field, and assume

that Eq. (16) applies to all fermion fields. In fact, for the
fermion field, Eq. (16) inspired us to build new non-
commutativity relations. We may assume a new noncom-
mutativity by deforming the commutator of fields in
analogy with the deformation commutator, such as
Eq. (16). If it preserves the locality in the new set of
canonical commutation relations, they become
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fπαðxÞ; πβðyÞg ¼ 0;

fψ iðxÞ;ψ†
jðyÞg ¼ Λijδðx − yÞ: ð17Þ

Now we can obtain an effective massless neutrino
Lagrangian which satisfies this deformation noncommuta-
tive condition, Eqs. (16) and (17),

L ¼ 1

2
iν̄αγμ∂μ

↔
να þ

1

2
iημνðαβÞν̄αγμ∂ν

↔
νβ ð18Þ

where α; β are flavor indices, μ; ν are spinor indices, and the
constant tensor ημνðαβÞ is related to the flavor and spinor
indices. There it contains renormalizable Lorentz-violating
corrections. On the basis, the Lagrangian may provide a
general rotation-invariant model of three active massless
neutrinos in noncommutative field theory.
The coefficients η on deformation noncommutation

relations violates Lorentz invariance but not CPT sym-
metry which is in agreement with Refs. [48,49]. A general
form for the quadratic sector of a renormalizable Lorentz
and CPT-violating Lagrangian that describes a single
massive spin-1

2
is given in Ref. [16]

L ¼ 1

2
iψ̄Γμ∂↔μψ − ψ̄Mψ ; ð19Þ

where

Γμ ≔ γμ þ cνμγν þ dνμγ5γν þ eμ þ ifμγ5 þ
1

2
gλνμσλν;

M ≔ mþ aμγμ þ bμγ5γμ þ
1

2
ρμνσμν: ð20Þ

Coefficients for Lorentz violation are all real, cμν and dμν
are traceless, gλμν antisymmetric in its first two indices,
and ρμν antisymmetric. Just as it is pointed out in Ref. [16]
that all the parameters violate Lorentz invariance,
aμ; bμ; eμ; fμ; gλμν also break CPT. Under the above
assumptions, these parameters about Lorentz and CPT
violation are given when they are applied to massless
neutrinos [50]. On this base, Ref. [50] discussed the general
equations of motion for the free propagation of neutrinos,
which can be written as a first-order differential operator
acting on the object νβ.
Now we go back to Eq. (18), where the constant tensor

ημν denotes the noncommutative effects, and it violates
Lorentz invariance but keeps CPT symmetry. For the
convenience of calculation, the Lagrangian can be trans-
formed into another form since divergence terms have no
contribution to the action

L ¼ 1

2
iν̄αγμ∂μνα þ

1

2
iημνðαβÞν̄αγμ∂ννβ; ð21Þ

and the Euler Lagrange equation of motion satisfies

iγ0∂0να þ iγi∂iνα þ iημνðαβÞγμ∂ννβ ¼ 0: ð22Þ

Comparing Eq. (22) with the conventional equations of
motion ðiδαβ∂0 −HαβÞνα ¼ 0, the Hamiltonian for neutri-
nos is given as

Hαβ ¼ −iγ0γi∂i − iημνðαβÞγ0γμ∂ν: ð23Þ

In this paper, there are four parameters: θ0μν in the
canonical commutator of the coordinates in the spacetime
manifold (1), θμν in the noncommutative field theory (6),
ημν in the new deformed canonical commutation relations
(18), and ημν in the Lorentz- and CPT-violating extension
of the Standard Model (19), respectively. As in the above
analysis, in the canonical commutator of the coordinates,
θ0μν is a real and antisymmetric (constant) tensor; in the
noncommutative field theory it meets this relationship
θμνθμν > 0 and θμν ~θμν ¼ 0. The new neutrino Lagrangian
and the new commutation relation (18) requiring
Hermiticity implies the noncommutative coefficients ημν

are Hermitian in generation space. Some features of this
model are similar to the conventional massive-neutrino
case; however, there is unusual energy dependence.
Moreover, for the single fermion extension model (19),
the dimensionless coefficients η00 > 0 and η00 < 0 (which
resembles the noncommutative coefficient ημν) imply that
instabilities and microcausality violation arise at the Planck
scale [16]. However, in Eq. (18), we do not need to consider
this condition. The restriction of rotation invariance pro-
vides an additional special limit of the theory equation (18),
which can significantly reduce the complexity of calcu-
lations. In addition, restricting Hamiltonian to rotation
invariant leaves two coefficients η00αβ and ηijαβ ¼ 1

3
ηkkαβδ

ij. It

may be assumed η00αβ − ηjjαβ ¼ 0 since the trace component
gμνημν is Lorentz invariant and can be absorbed into the
usual kinetic term (it is unobservable), so only one of two
matrices with noncommutative coefficients is independent,
and leaves only the matrices η00ðαβÞ.

III. THE ORDER OF THE NONCOMMUTATIVE
COEFFICIENT

From what has been discussed above, the Hamiltonian of
massless neutrino in deformation canonical commutation
relations space is given, and the restriction to the non-
commutative coefficients η is also discussed. In the
following sections, we will discuss the order of the non-
commutative coefficient by means of different methods
(more detail can be found in Refs. [50,51]).
With the relation (18), the Hamiltonian matrix for

neutrinos can be given, substituting it into the Euler-
Lagrange equation of motion, and the general dynamical
equation for neutrinos could be obtained as
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hαβ ¼ j~pjδαβ
�
1 0

0 1

�

þ 1

j~pj

 
−½ημνpμpν�αβ 0

0 −½ημνpμpν��αβ

!
: ð24Þ

The four-dimension momentum may be taken as pμ ¼
ðj~pj;−~pÞ at leading order.
For the convenience of the following discussions, we

first consider the conventional neutrino oscillation. In the
mechanism of the conventional oscillation of the massive-
neutrino, the simplest form of probability for oscillation
between two species of particles with a mixing angle i; j
and energy levels Ei; Ej is given as

Pi→i ¼ 1 − sin2ð2θÞsin2
�

1

4E
Δm2L

�
;

Pi→j ¼ sin2ð2θijÞsin2
�
1

2
ΔEijt

�

¼ sin2ð2θijÞsin2
�
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þmi

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þmj

q �
t

�

≈ sin2ð2θijÞsin2
�

1

4E
Δm2

ijL

�
: ð25Þ

Then we turn back to the deformation canonical non-
commutation relations (16) and the Hamiltonian density
(23); the dynamical equation can be written as

_να ¼ −Λαβðα · ∇νβÞ; ð26Þ

where α ¼ γ0~γ. Turning it into momentum space, the form
above can be written as

Eνα ¼ Λαβðα · ~pνβÞ: ð27Þ

For simplicity, we choose the Λmatrix and unitary matrix Γ
in two dimensions

Λ ¼
�

1 λ

λ� 1

�
; Γ ¼

�
τ 1=

ffiffiffi
2

p

−τ 1=
ffiffiffi
2

p
�
; ð28Þ

where Γ is diagonalized, and Λ, λ�=τ − τλ ¼ 0, and λ are
associated with ηαβ. Then the energy spectrum for the
neutrino is

E�
i;j ¼ �ð1þ εijjλjÞj~pj; ð29Þ

with εij the two-dimensional Levi-Civita symbol.
Taking ν1 and ν2 as the eigenstates of energy values in

Eq. (29), the energy eigenstates can be determined through
the diagonalized matrix Γ

�
ν1

ν2

�
¼ Γ ·

�
να

νβ

�
; ð30Þ

where ν1;2 and να;β represent different energy eigenstates
and the flavor eigenstates. The time evolution can be
determined by the energy spectrum as follows:

νi;jðtÞ ¼ e−iE
þ
i;jtþi~p·~xν1;2ð0Þ

¼ κ · ðεijτ · να þ νβÞ; ð31Þ

with coefficients κ relevant to unitary matrix coefficients τ.
The above equation can be parametrized as

ν1 ¼ cos θ12να þ sin θ12νβ;

ν2 ¼ − sin θ12να þ cos θ12νβ: ð32Þ

Depending on relations (30), the above relations can be
inverted, then the evolution of the flavor state να in time t
can be given as

ναðtÞ ¼ ½ðcos2θ12e−iEþ
1
t þ sin2θ12e−iE

þ
2
tÞÞναð0Þ

þ 1

2
sin 2θ12ðe−iEþ

1
t − e−iE

þ
2
tÞνβð0Þ�ei~p·~x: ð33Þ

Then the probability of finding the flavor state νβ at time t
can be given by

Pνα→νβ ¼ sin2ð2θ12Þsin2ðj~pjjλjtÞ
≈ sin2ð2θ12Þsin2ðEjλjLÞ: ð34Þ

The above probability relations can be inverted by taking
the fact that for jλj ≪ 1; E ∼ j~pj, and velocities close to
c; t → L (the path length traversed by the neutrino).
The analysis above for two neutrino flavors can be

extended to incorporate three flavors when generalizing the
deformation parameters and the mixing angles. Then the
probability for oscillation between neutrino flavors can be
given as follows:

Pνα→νβ ≈ sin2ð2θijÞsin2ðEjλijjLÞ; ð35Þ

where i; j ¼ 1; 2; 3. Comparing with the conventional
massive-neutrinos relations (25) and using the above
results from the solar neutrino and atmospheric neutrino
experiments with Δm2

ij and E, one can get relation
Δm2

ij=4E
2 ¼ jλijj. The solar and atmospheric neutrino

experimental data [52,53] were given as Δm2
12 ∼ 7.67 ×

10−5 eV2; E ∼ 1 MeV and Δm2
23 ∼ 2.32 × 10−3 eV2;

E ∼ 1.8 GeV; then the order of the deformation parameters
is given as follows:
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jλ12j ∼ 10−17; jλ23j ∼ 10−22: ð36Þ

Works above only involve the two-generation special
case; next, we turn to another useful parametrization of the
noncommutative coefficient by CKM-like mixing angles
and phases. Restricting hαβ to rotation-invariant models
leaves only coefficients η00αβ and ηijαβ ¼ 1

3
ηkkαβδ

ij. Since the
trace component gμνημν is Lorentz invariant and can be
absorbed into the usual kinetic term (it is unobservable), so
it may be assumed as zero for convenience; only one of
these matrices is independent. Taking into account the
frame dependent of the latter theory, one assumes rotation
invariance in the Sun-centered frame ðS; x; y; zÞ for defi-
niteness; then the effective Hamiltonian (24) reduces to the
block-diagonal form

ðhscÞαβ ¼ diag

	�
−
4

3
ηSSE

�
αβ

;

�
−
4

3
ηSSE

��

αβ



; ð37Þ

where the irrelevant kinetic term is dropped.
The features of the Hamiltonian above are similar to the

conventional massive-neutrino case. It provides a general
rotationally invariant model of three active neutrinos.
Similar to the analysis of conventional massive-neutrino
mixing procedures, the effective Hamiltonian can be
diagonalized with a unitary matrix Usc,

hsc ¼ U†
scEscUsc; ð38Þ

where Esc is a diagonal matrix.
The deformation noncommutative coefficient matrix can

be parametrized with three eigenvalues and a constant
unitary matrix A. For each coefficient ημν has

ημν ¼ ðAμνÞ†diagfημνð1Þ; ημνð2Þ; ημνð3ÞgAμν: ð39Þ

The unitary diagonalizing matrices Aμν are given so that the
Hamiltonian above takes the block diagonal form as

Usc ¼
�
A 0

0 A�

�
: ð40Þ

The above decomposition is frame dependent as we have
discussed; there is one restriction to this decomposition
to the standard Sun-centered celestial equatorial frame as
mentioned. In order to get a CKM-like decomposition of
the U matrices we take mixing angles and phases with ημν

by βμνð12Þ; β
μν
ð13Þ; β

μν
ð23Þ and δμν; γμν1 ; γμν2 . Then the U matrices

can be written explicitly. Here, we ignore the tedious steps,

Uμν ¼ ðCKM − likeÞ

0
B@

1 0 0

0 eiγ
μν
1 0

0 0 eiγ
μν
2

1
CA: ð41Þ

In addition, considering that the γ matrix of phases can be
absorbed into the amplitudes in the conventional massive-
neutrino analysis, so these γ phases can be neglected.
We replace ημν with ηSS since we have assumed rotation

invariance in the Sun-centered frame. To mimic the usual
massive-neutrino solution, there we consider only taking
vanishing phases, θSS13 and θSS23 ¼ π=4. This leaves three
degrees of freedom, two eigenvalue differences, and one
mixing angle θSS12 .
Using the time evolution operator Sαβ ¼ U†

sce−iEsctUsc,
then the probabilities for massless neutrino of νβ oscillating
into neutrino of να in time t can be written as
Pνβ→να ¼ jSνανβðtÞj2. The probabilities are given as

Pνe→νν ¼ Pνe→ντ ¼
1

2
sin 2θsin2ðλ · EL=2Þ

Pνe→νe ¼ 1 − sin 2θsin2ðλ · EL=2Þ; ð42Þ

where λ ¼ 4
3
½ηSSð2Þ − ηSSð1Þ�. Considering the LSND and

KamLAND results Pν̄e→ν̄e ¼ 61%; 1 Mev ≤ E ≤ 10 Mev
and L ¼ 138 ∼ 214 km, and Pν̄e→ν̄e ¼ 26%; E ∼ 45 Mev
and L ¼ 30 m, replacing Δm2=2E with λE as the previous
calculation methods, we get

λ ∼ 10−17: ð43Þ

In addition, considering from this relation (24), one just
studies the left-handed neutrino and ignores the right-
handed antineutrinos because the two terms have the
similar form; then one has the simplified Hamiltonian as

h ¼ j~pjδαβ þ ημνðαβÞ
pμpν

j~pj ; ð44Þ

where the minus sign has been incorporated into the
deformation noncommutative coefficients.
To reduce the deformation noncommutative coefficients,

we assume the neutrino Hamiltonian matrix can be sim-
plified and then diagonalized by unitary matrix Γ,

Γ†HΓ ¼ Γ

0
B@

E η00eμE 0

η00eμE Eþ η00μμE η00μτE

0 η00μτE E

1
CAΓ†

¼ E

0
B@

1 0 0

0 1þ A − B 0

0 0 1þ Aþ B

1
CA; ð45Þ

where η00eμ, η00μτ , and η00μμ are three nonzero noncommutative
parameters in the specific model, the other noncommutative
parameters are zero, and
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A ¼ η00μμ=2; B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðη00eμÞ2 þ ðη00μτÞ2 þ ðη00μμÞ2=4

q
: ð46Þ

Then the eigenstates can be the linear combination of flavor
eigenstates since the unitary matrix Γ.
Using the same method mentioned above, with the

unitary matrix Γ and the diagonal eigenenergy matrix,
finally the oscillation probabilities are given as

Pνe→νμ ¼
ðη00eμÞ2
B2

· sin2ðBELÞ;

Pνμ→ντ ¼
ðη00μτÞ2
B2

· sin2ðBELÞ;

Pνμ→νμ ¼ 1 −
ðη00eμÞ2 þ ðη00μτÞ2

B2
· sin2ðBELÞ: ð47Þ

Comparing the above equation with the analysis of the
oscillation on noncommutative space such as that men-
tioned in the previous content, then the order of non-
commutative parameters can be identified

jη00eμj ∼ 10−17; jη00μτ j ∼ 10−22: ð48Þ

Depending on the data above, the remaining coefficient
η00μμ can be chosen to match other experimental data, and the
order of the remaining noncommutative parameters can be
identified. Comparing in three relations, (36), (43), and
(48), it is easy to find that one can get the same order of
noncommutative coefficients by different methods which is
expected in advance. Just as shown in this paper, the
Lagrangian which involves the new deformation canonical
noncommutation relations may give a model of three active
massless neutrinos.

IV. SUMMARY

In order to get the oscillation of massless neutrinos, the
conventional scenario is depending on introducing the

Lorentz-violation extension of the Standard Model.
Different from the previous treatment, in this paper we
try to get oscillation of the massless neutrinos mainly by
introducing new canonical anticommutation relations.
Considering that all noncommutative effects vanish for
neutral fermions in noncommutative gauge theory, and the
generalization of Lagrangian to noncommutative phase
space will encounter some complex issues (such as the
Moyal star products can not apply to this case), we directly
introduce constant background fields into the noncommu-
tative gauge theory and obtain a Hermitian fermion
Lagrangian which involves a Lorentz violation term. The
Lorentz violation term deforms the conventional canonical
commutation relations. Then we try to generalize this
model to a new deformed canonical noncommutation
relations for the fermion field. On this basis of the new
deformed canonical noncommutation relations, we inves-
tigate the massless neutrino Lagrangian which satisfies the
deformed canonical relations. The coefficient η in the
massless neutrino Lagrangian violates Lorentz invariance
but keeps CPT symmetry; the restriction of the non-
commutative coefficients is also discussed. By comparing
with the existing experimental data of conventional neu-
trino oscillations, the order of noncommutative deformed
coefficients is given. From the discussion above, we
conclude that the Lagrangian which satisfies deformed
canonical noncommutation relations may give a model of
three active massless neutrinos.
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