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It is demonstrated that the complex Langevin method can simulate chiral random matrix theory at
nonzero chemical potential. The successful match with the analytic prediction for the chiral condensate is
established through a shift of matrix integration variables and choosing a polar representation for the new
matrix elements before complexification. Furthermore, we test the proposal to work with a Langevin-time-
dependent quark mass and find that it allows us to control the fluctuations of the phase of the fermion
determinant throughout the Langevin trajectory.
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I. INTRODUCTION

First principles nonperturbative simulations of full QCD
have been limited to the region with small ratio of the quark
chemical potential over temperature or heavy quark masses
because of the fermion sign problem; for reviews see [1–3].
Recently, however, complex Langevin simulations of full
QCD at nonzero chemical potential have been presented
[4–6]. While these initially are carried out in specific
parameter domains, the method holds the possibility to
provide first principles simulations for any value of the
chemical potential, even with low temperature and light
quark masses.
The introduction of chiral random matrix theory [7–9] at

nonzero chemical potential [10,11] has led to a number of
analytic insights into the nonperturbative dynamics of
dense strongly interacting matter and the effect of the sign
problem [10–14]. In [15], chiral random matrix theory was
used to emphasize the potential problem which the com-
plex Langevin faces in simulations of QCD at low temper-
ature and light quark masses.
In this paper we demonstrate that the complex Langevin

approach can solve the sign problem in chiral random
matrix theory. This is relevant for QCD at low temperature
and light quark masses since chiral random matrix theory
[7–11] and full QCD share a number of properties: The
integral formulation of the partition function in both cases
includes the determinant of a Dirac operator, and the flavor
symmetries and explicit breaking thereof are identical.
QCD and chiral random matrix theory, therefore, have
the same low-energy theory in the microscopic limit,
namely chiral perturbation theory at leading order in the
ϵ domain [7,16–18]. Moreover, the anti-Hermiticity of the
Dirac operators is in both cases broken by the chemical
potential. This is particularly relevant for the present study,

since it implies that the average of the phase factor of the
fermion determinant in QCD and chiral random matrix
theory have the same analytic form of the exponential
suppression in the limit of large volume/size of the matrix
[13]. In other words, the sign problem in QCD for light
quarks at low temperature and in chiral random matrix
theory is equally severe.
In the physical domain where chiral random matrix

theory and QCD share the same low-energy limit, both
partition functions are independent of the chemical poten-
tial μ. This is natural as the partition function is dominated
by pions which have zero quark charge. The measures in
the partition functions are, however, strongly μ dependent.
The numerical problem of realizing the μ independence in
both cases becomes particularly challenging once the
chemical potential exceeds half of the pion mass
(μ > mπ=2); see e.g. [13].
In this paper we show that the complex Langevin

provides a method to numerically simulate chiral random
matrix theory, even in the domain of μ > mπ=2. The
success compared to the first study [15] is established
through a shift of the matrix variables in the integrant as
well as by using a polar representation for the new matrix
elements.
The advantage of simulating chiral randommatrix theory

compared to full QCD is that we have exact analytical
solutions against which to test the numerics. Tests of this
kind are imperative since the complex Langevin is not
guaranteed to provide the correct solutions; see for example
[19,20]. One potential problem particularly relevant for
QCD is that the fermion determinant renders the action
nonholomorphic [15]; existing proofs of correct conver-
gence [21–23], therefore, do not apply directly.
As demonstrated in [15,24], the complex Langevin may

lead to the wrong results if the argument of the logarithm
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(the fermion determinant in QCD and in chiral random
matrix theory) frequently circles the origin. In [25] a
practical proposal was given in order to circumvent this
problem: By initially decreasing the quark mass with the
Langevin time, it was suggested that it might be possible to
reach the desired value of the quark mass without frequent
circulations of the origin by the fermion determinant. Here
we test this proposal and show that it is indeed the case
within chiral random matrix theory.
The results are presented as follows: In the next section

the chiral random matrix theory is defined and the relevant
analytic results are stated. Then in Sec. II A the para-
metrization of the matrix elements is chosen and we
explicitly compute the Langevin drift. Section II A presents
the numerical results obtained and the proposal to work
with an initially Langevin-time-dependent quark mass is
tested. We draw conclusions and provide an outlook
in Sec. IV.

II. CHIRAL RANDOM MATRIX THEORY

The chiral random matrix theory we will simulate with
the complex Langevin has the partition function [11,26]

Z
Nf

N ðmÞ ¼
Z

dΦ1dΦ2detNfðDμ þmÞe−2NTr½Φ†
1
Φ1þΦ†

2
Φ2�;

ð1Þ
where the random matrix analogue of the Dirac operator is

Dμ þm ¼
�

m eμΦ1 − e−μΦ†
2

−e−μΦ†
1 þ eμΦ2 m

�
: ð2Þ

The integration variables Φ1 and Φ†
2 are complex

N × ðN þ νÞ matrices, m and μ are the quark mass and
chemical potential parameters and Nf is the number of
quark fields which have been integrated out. The integer ν
is the topological index, i.e. the number of exact zero
eigenvalues of Dμ. In the microscopic limit where mN and
μ2N are fixed as N → ∞, this random matrix partition
function is equivalent to that of chiral perturbation theory in
the ϵ domain [11,17,18]. This limit also allow us to identify
the relation between the random matrix parameters N, m
and μ and the physical four volume, quark mass and
chemical potential, [11,27,28],

2mN↔mΣV and 2μ2N↔μ2F2
πV; ð3Þ

where Σ is the chiral condensate and Fπ is the pion decay
constant. In the quenched and the phase-quenched theories,
a phase transition takes place at μ ¼ mπ=2. Using the Gell-
Mann-Oakes-Renner relation, we can rewrite this as
μ2F2

πV ¼ mΣV=2, which in the chiral random matrix
variables translates to 2μ2 ¼ m.
For the numerical test of the complex Langevin below,

wewill naturally work with finiteN. It is, therefore, of great
practical value that the partition function (1) can be
computed analytically for all values of Nf and N [11,26],

Z
Nf

N ðmÞ ¼ 1

ð2mÞ1=2NfðNf−1Þ det
��

d
dm

�
a
LðνÞ
Nþbð−nm2Þ

�
a¼0;…;Nf−1;b¼0;…;Nf−1

; ð4Þ

where LðνÞ
k ðxÞ is the generalized Laguerre polynomial.

From this compact expression for the partition function,
we obtain the mass-dependent chiral condensate

ΣNf

N ðmÞ ¼ 1

Nf

1

N
1

Z
Nf

N ðmÞ
d
dm

Z
Nf

N ðmÞ: ð5Þ

Note that, as discussed in the Introduction, the partition
function is independent of the chemical potential even
though the weight in the integral representation (1) is
heavily μ dependent.

A. Complex Langevin dynamics

When the action is complex it is natural to generalize real
Langevin dynamics [29] by complexifying the fields and
define a complexified Langevin dynamics [30,31] through
the gradient of the action.
In order to set up the complex Langevin dynamics for the

chiral random matrix theory, we first express the partition
function (1)

Z
Nf

N ðmÞ ¼
Z

dΦ1dΦ2 exp ð−SÞ; ð6Þ

in terms of the action

S ¼ 2NTr½Φ†
1Φ1 þ Φ†

2Φ2� − NfTr½log ðm2 − XYÞ�; ð7Þ
where

X ≡ eμΦ1 − e−μΦ†
2

Y ≡ −e−μΦ†
1 þ eμΦ2: ð8Þ

Note the appearance of the logarithm of the fermion
determinant in the action.
Next we choose to parametrize the elements of the

complex N × ðN þ νÞ matrices Φ1 and Φ2 as

ðΦ1Þij ¼ r1;ijeiθ1;ij ðΦ2Þji ¼ r2;jieiθ2;ji ; ð9Þ

where i ¼ 1;…; N and j ¼ 1;…; N þ ν. In the complex
Langevin dynamics the 4NðN þ νÞ real variables r1;ij, θ1;ij,
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r2;ij, θ2;ij will be complexified. The motivation for the
choice of parametrization (9) is that the μ independence of
the partition function can be achieved if the Langevin
process, in effect, shifts the integration contour of the θ1;ij
and θ2;ij variables by iμ into the complex plane while the
radial variables r1;ij and r2;ij are attracted to the real axis.
In the parametrization (9), the Gaussian term is simply

Tr½Φ†
1Φ1 þ Φ†

2Φ2� ¼
X
ij

r21;ij þ r22;ji; ð10Þ

and the action is, thus,

S ¼ −
X
ij

logðr1;ijÞ þ logðr2;jiÞ − log detðm2 − XYÞ

þ 2N
X
ij

r21;ij þ r22;ji; ð11Þ

with

Xij ¼ eμþiθ1;ij r1;ij − e−μ−iθ2;ji r2;jiYij

¼ −e−μ−iθ1;ji r1;ji þ eμþiθ2;ij r2;ij: ð12Þ

The logðr1;ijÞ and logðr2;jiÞ terms are from the Jacobian for
the change to polar variables.

The Langevin dynamics is given by the equations

rðtþ1Þ
1;mn ¼ rðtÞ1;mn −

∂S
∂r1;mn

dtþ
ffiffiffiffiffi
dt

p
ηðtÞrðtþ1Þ

2;mn

¼ rðtÞ2;mn −
∂S

∂r2;mn
dtþ

ffiffiffiffiffi
dt

p
ηðtÞθðtþ1Þ

1;mn

¼ θðtÞ1;mn −
∂S

∂θ1;mn
dtþ

ffiffiffiffiffi
dt

p
ηðtÞθðtþ1Þ

2;mn

¼ θðtÞ2;mn −
∂S

∂θ2;mn
dtþ

ffiffiffiffiffi
dt

p
ηðtÞ; ð13Þ

where the derivatives are to be evaluated at Langevin time t,
and η is a real Gaussian white noise,

hηðtÞηðt0Þi ¼ 2δðt − t0Þ: ð14Þ

The next step is to compute the detailed form of the drift
terms which enters the Langevin equations. With the
notation

P−1 ≡ ðm2 − XYÞ−1; ð15Þ

we obtain

−
∂S

∂θ1;mn
¼ −Nf½ðP−1Þki∂θ1;mn

ðXijYjkÞ�

¼ −Nf½P−1
ki ðieμþiθ1;mnr1;mnδmiδnjYjk þ iXijδnjδmke−μ−iθ1;mnr1;mnÞ�

¼ −iNfðeμþiθ1;mnr1;mnP−1
kmYnk þ e−μ−iθ1;mnr1;mnP−1

miXinÞ
¼ −iNf½eμþiθ1;mnr1;mnððYP−1ÞTÞmn þ e−μ−iθ1;mnr1;mnðP−1XÞmn�; ð16Þ

while for the radial variable we have

−
∂S

∂r1;mn
¼ −4Nr1;mn þ 1=r1;mn − Nf½ðP−1Þki∂r1;mn

ðXijYjkÞ�

¼ −4Nr1;mn þ 1=r1;mn − Nf½P−1
ki ðeμþiθ1;mnδmiδnjYjk − Xijδnjδmke−μ−iθ1;mnÞ�

¼ −4Nr1;mn þ 1=r1;mn − Nfðeμþiθ1;mnP−1
kmYnk − e−μ−iθ1;mnP−1

miXinÞ
¼ −4Nr1;mn þ 1=r1;mn − Nf½eμþiθ1;mnððYP−1ÞTÞmn − e−μ−iθ1;mnðP−1XÞmn�: ð17Þ

Similarly, for the angular and radial variables from Φ2, we have

−
∂S

∂θ2;mn
¼ −Nf½ðP−1Þki∂θ2;mn

ðXijYjkÞ�

¼ −Nf½P−1
ki ðie−μ−iθ2;mnr2;mnδniδmjYjk þ iXijδmjδnkeμþiθ2;mnr2;mnÞ�

¼ −iNfðe−μ−iθ2;mnr2;mnP−1
kn Ymk þ eμþiθ2;mnr2;mnP−1

ni XimÞ
¼ −iNf½e−μ−iθ2;mnr2;mnðYP−1Þmn þ eμþiθ2;mnr2;mnððP−1XÞTÞmn� ð18Þ

and
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−
∂S

∂r2;mn
¼ −4Nr2;mn þ 1=r2;mn − Nf½ðP−1Þki∂r2;mn

ðXijYjkÞ�

¼ −4Nr2;mn þ 1=r2;mn − Nf½P−1
ki ð−e−μ−iθ2;mnδniδmjYjk þ Xijδmjδnkeμþiθ2;mnÞ�

¼ −4Nr2;mn þ 1=r2;mn − Nfð−e−μ−iθ2;mnP−1
kn Ymk þ eμþiθ2;mnP−1

ni XimÞ
¼ −4Nr2;mn þ 1=r2;mn − Nf½−e−μ−iθ2;mnðYP−1Þmn þ eμþiθ2;mnððP−1XÞTÞmn�: ð19Þ

Note that we have ignored the cut of the logarithm and
simply used the standard form for the derivative of the log
when the argument is real and positive. This has potential
consequences for the Langevin process [15] in particular if
the argument of the log frequently circles the origin of the
complex plane. We will return to this point in Sec. III A
below.
The Langevin dynamics presented above differs in two

ways from that used in [15]. First, the realization (1) of the
chiral random matrix theory partition function is related to
the partition function used in [15] (see Eq. (4.1) therein) by
a change of the matrices which enter as integration
variables (see also the Appendix of [26]). Second, the
parametrization of the matrix elements (9) used here is
different from that used in [15]. Both changes are necessary
for the success of the simulations presented below.

III. SIMULATIONS

In order to test the complex Langevin algorithm pre-
sented above, we have run a series of numerical simu-
lations. The central observable of interest is the chiral
condensate for which the analytic prediction is given in
Eq. (5). This observable is not only relevant for the
nonperturbative physics but also highly sensitive to the
sign problem, since the phase-quenched chiral condensate
takes a drastically different form in the region of m < 2μ2;
see e.g. [15] for plots thereof.
To compute the chiral condensate, we start the Langevin

process in a random configuration from the original (not
complexified) quenched ensemble. The Langevin process
is then run for a period, 2T, in time steps of dt, and on the
latter half of the trajectory we compute

ΣðmÞ ¼ 1

Nf

1

N
1

T

X2T
t¼Tþdt

ReTr
1

DðtÞ
μ þm

dt; ð20Þ

where DðtÞ
μ þm is the Dirac operator (2) evaluated for the

complexified fields generated in (16)–(19) at Langevin time
t. The first half, T, of the period allows the Langevin
process to react to the initial condition and cool towards
equilibrium.
With increasing size of the matrices, we have found it

convenient to implement adaptive step-size [19,32], since
the 1=r terms in the drift can lead to large excursions unless
dt is sufficiently small. Results for the chiral condensate for

N ¼ 20, μ ¼ 1, 2T ¼ 2000, ν ¼ 0 and adaptive step-size
are shown in Fig. 1. Displayed are the numerical results for
Nf ¼ 1, 2 and 3 as well as the analytic predictions. The
numerical code used is implemented within the PYTHON
framework where the NUMPY packages allow for fast exact
matrix inversion. We observe that the Langevin process is
able to reproduce the expected mass dependence through-
out the range of values for m with all three values of Nf.
Note that m < 2μ2 throughout the range displayed. The
convergence is equally good for larger values of m.
Next we have tested the Langevin dynamics for nonzero

topological index ν. In Fig. 2 the numerical results for
ν ¼ 0, 1 and 2 with adaptive step-size, Nf ¼ 2, N ¼ 20,
2T ¼ 2000, are plotted against the analytic curves. The
numerical data again follow the expected curves and
demonstrate that the topological zero modes create no
obstacles for the complex Langevin algorithm in chiral
random matrix theory.
In order to gain insights in the dynamics of these

successful simulations, we have monitored the values of
the variables throughout the Langevin process: The angular
variables θ1;ij and θ2;ij are effectively shifted by iμ into the
complex plane while the r1;ij and r2;ij are attracted toward
the real axis. This cancels the μ dependence of the chiral
condensate, as was indeed the motivation for the choice of

0 0.2 0.4 0.6 0.8 1
m

0

0.5

1

1.5

2

Σ
(m

)

N
f
=1

N
f
=2

N
f
=3

FIG. 1 (color online). The chiral condensate as a function of the
quark mass for one, two and three dynamical flavors. The full
lines are the exact analytic predictions, and the points are the
results of the complex Langevin dynamics with adaptive step-
size. The parameters chosen for the plot areN ¼ 20, μ ¼ 1, ν ¼ 0
and 2T ¼ 2000.
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parametrization (9). An example of the flow of the variable
is shown in Fig. 3. The band is the average of the imaginary
part of the elements in θ1 with the errors given by the square
root of the variance.
The flows of the variables manifest themselves also in

the distribution of the Dirac eigenvalues. In Fig. 4 the
eigenvalues of the Dirac operator on the initial 400
configurations are plotted in black along with the eigen-
values of the final 400 configurations out of 60000 adaptive
steps. The value of the quark mass, m ¼ 1, is well within
the initial eigevalue distribution; however, with Langevin

time the Dirac eigenvalues move inside the quark mass. As
this happens, the fluctuations of the phase of the fermion
determinant are damped; see Fig. 5.

A. Decreasing the quark mass with Langevin time

In large scale simulations it becomes exceedingly hard to
invert the Dirac operator if the quark mass is inside the
eigenvalue distribution. Moreover, in this case the fermion
determinant is likely to circulate the origin frequently

-3

-2

-1

0

1

2

3

Im
[z

]

-2 -1 0 1 2
Re[z]

first 400
last  400

FIG. 4 (color online). The eigenvalues of the Dirac operator in
the complex plane: black for the first 400 time steps and red for
the final 400 time steps. Parameters used are N ¼ 20, Nf ¼ 2,
μ ¼ 1, m ¼ 1, ν ¼ 0 and 60000 adaptive steps. Note that the
quark mass is initially well inside the eigenvalue distribution.

FIG. 5 (color online). The argument, ϕ, of the phase of the
fermion determinant as a function of Langevin time, for m ¼ 1,
μ ¼ 1, N ¼ 20, Nf ¼ 2 and ν ¼ 0. Initially the fermion deter-
minant frequently circles the origin but with the Langevin time
the Dirac eigenvalues flow inside the quark mass and the
fluctuations of the fermion determinant are damped. The fixed
value of the quark mass throughout the run is indicated bu the
horizontal red line.

0 0.2 0.4 0.6 0.8 1
m

0

0.5

1

1.5

2
Σ(

m
)

ν=0
ν=1
ν=2

FIG. 2 (color online). The chiral condensate as a function of
the quark mass for ν ¼ 0; 1; 2 with Nf ¼ 2, N ¼ 20, μ ¼ 1 and
ν ¼ 0. The data points are obtained with the complex
Langevin using an adaptive step-size and the full lines are the
predictions (5).

0 500 1000 1500 2000
t

0

0.2

0.4

0.6

0.8

1

Im[θ1]
Im[r

1
]

FIG. 3 (color online). The average of the imaginary part of
the angular variable θ1 and the average of the imaginary part of
the radial variable r1. As a function of the Langevin time t, the
angular variable flows towards μ ¼ 1, marked by the thin vertical
line, while the radial variable remains on the real axis within the
errors. The error bars are given by the square root of the variance.
The parameters in the simulation are ν ¼ 0, Nf ¼ 2, N ¼ 20,
μ ¼ 1, m ¼ 1 and ν ¼ 0.
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(when the quark mass is inside the Dirac eigenvalues the
phase of the fermion determinant is distributed according to
a Lorentzian distribution [33]) and, hence, ignoring the cut
of the logarithm is not necessarily justified [15]. In order to
circumvent these issues, it was proposed in [25] to allow
the quark mass to decrease with the Langevin time t. The
proposal is to start from an initial value of the quark mass
which is outside the Dirac eigenvalue distribution. With
Langevin time the quark mass is then slowly decreased
towards the desired value. In this way it is possible that the
quark mass remains outside the distribution of the eigen-
values of the Dirac operator and that the fermion determi-
nant does not circulate the origin at any given time
throughout the Langevin process. Once the desired quark
mass is reached, all previous configurations are discarded
from the measurement of the given observable.
Here we test this proposal within the Langevin process

for chiral random matrix theory. What we will show is that
with a Langevin-time-dependent quark mass, the fluctua-
tions of the phase of the random matrix fermion determi-
nant can be constrained for the entire Langevin trajectory.
We start the Langevin process on a random configuration
from the original quenched ensemble (not complexified)
and pick a value of the quark mass parameter which is
safely outside the Dirac eigenvalues, i.e. m > 2μ2. The
quark mass is reduced in steps proportional to the time step,
unless the angle of the determinant has been above 1.5
within the last 1000 time steps. In that case we keep the
quark mass constant to allow the Langevin dynamics to
dampen the fluctuations of the phase of the determinant.

This procedure is repeated until m reaches the desired
value, here 1; see Fig. 6. We observe that with Langevin
time it is possible to decrease the quark mass such that the
fermion determinant at no point during the Langevin
trajectory circulates the origin. The potential problems
with the log of the fermion determinant can therefore
safely be ignored.

IV. CONCLUSIONS

We have demonstrated that the complex Langevin can
simulate chiral random matrix theory at nonzero chemical
potential even in the range corresponding to μ > mπ=2. The
success of the complex Langevin method in chiral random
matrix theory was established by (1) a change of integration
matrices and (2) a polar parametrization of these variables
before complexification. This choice of variables was
inspired by taking the perspective of the eigenvalues of
the Dirac operator evaluated on the complexified configu-
rations. As shown in [25], the Dirac spectrum of complex
Langevin simulations must be vastly different from that
with real configurations. In the application of the complex
Langevin to chiral random matrix theory, the natural
solution is to realize an effective anti-Hermitization of
the Dirac operator through the complexification of the
matrix elements. The choice of matrix integration variables
and the polar parametrization of the elements herein were
handpicked to optimize the chance for the complex
Langevin to realize this effective anti-Hermitization.
Indeed, we have checked that the success of the complex
Langevin in chiral random matrix theory is established
through an effective shift into the complex plane of the
angular part of the matrix elements. This smoothly con-
nects the initial non-Hermitian random matrix Dirac
operator to an anti-Hermitian counterpart at large
Langevin time. For a discussion of the possibility to realize
a similar scenario in the context of full QCD, see [25].
As the chiral random matrix Dirac operator shares the

chiral symmetries of the QCD Dirac operator, it allows us
to address several properties directly relevant for QCD. In
particular, we have tested the proposal of [25] in which the
quark mass is initially Langevin time dependent: With an
adaptive step-size and a Langevin-time-dependent quark
mass, we have demonstrated that it is possible to simulate
the chiral random matrix theory at small mass (such that
mπ < 2μ) without the determinant frequently circulating
the origin. This minimizes the potential problems due to the
nonholomorphic nature of the action in the presence of a
fermion determinant. Furthermore, it ensures that inver-
sions of the Dirac operator only appear with the quark mass
outside the eigenvalues of the Dirac operator.
It would be most interesting to understand if the effect of

a Langevin-time-dependent quark mass in complex
Langevin simulations of full QCD is beneficial, in particu-
lar at low temperature and light quark mass. As an
intermediate step a Langevin-time-dependent quark mass

FIG. 6 (color online). The argument of the phase of the fermion
determinant along the Langevin trajectory. With the Langevin-
time-dependent quark mass (thin red curve), the fermion deter-
minant does not circle the origin during the Langvin process.
Here μ ¼ 1, N ¼ 20, Nf ¼ 2, ν ¼ 0 and the initial value of the
quark mass, 3, is outside the cloud of Dirac eigenvalues. As the
quark mass reaches the desired value m ¼ 1, it is kept fixed and
the measurement of the chiral condensate can be performed.
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could also be implemented for the Thirring model [34].
Another possible direction is to use the eigenvalue repre-
sentation of the chiral random matrix partition function as
the basis for the Langevin process. Such an approach has
already led to new insights for QCD in one dimension [35].
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