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In view of the first measurement of the branching fraction for J=ψ → π0eþe− by the BESIII
collaboration, we analyze what can be learned on the corresponding transition form factor using dispersion
theory. We show that light-quark degrees of freedom dominate the spectral function, in particular two-pion
intermediate states. Estimating the effects of multipion states as well as charmonium, we arrive at a
prediction for the complete form factor that should be scrutinized experimentally in the future.
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I. INTRODUCTION

The transition form factors of light vector mesons (ω and
ϕ in particular) have garnered increased interest in the last
few years due to their impact on the transition form factors
of the lightest pseudoscalars [1,2], and hence on hadronic
light-by-light scattering [3]. While e.g. the transition ϕ →
ηeþe− [4] seems compatible with a vector-meson domi-
nance picture [5], other experimental results, in particular
for ω → π0μþμ−, seem to indicate strong deviations [6,7],
which are hard to understand theoretically [8].
Recently the first measurements of the analogous tran-

sition form factors from charmonium into light pseudo-
scalars have been reported by the BESIII collaboration
[9], which has determined the branching fractions for
J=ψ → Peþe−, P ¼ π0; η; η0, and the transition form factor
for the η0 final state. The latter was parametrized in a simple
monopole form [10], with the scale found in the character-
istic charmonium mass region. On the other hand, in
Ref. [10], such monopole form factors were assumed for
all three final-state pseudoscalars, and the corresponding
branching fractions were estimated; interestingly enough,
experiment agrees well with these predictions for η and η0,
while there seems to be a tension for the π0: the exper-
imental determination arrives at BðJ=ψ → π0eþe−Þ ¼
ð7.56� 1.32� 0.50Þ × 10−7 [9], while the theory predic-
tion was BðJ=ψ → π0eþe−Þ ¼ ð3.89þ0.37−0.33Þ × 10−7 [10].
The assumption that the q2-dependence of the J=ψ →

π0γ� form factor should be determined by the charmonium
mass scale seems implausible, given that this would imply
an isospin-breaking transition, while the decay can proceed
in an isospin-conserving manner, with the (virtual) photon
being an isovector state, hence dominated by light-quark
degrees of freedom. Indeed, it was pointed out by Chen
et al. [11] very recently, in an effective-Lagrangian-based
analysis, that the contributions of light vector mesons ought
to be very sizable in this decay.

In this article, we consider the J=ψ → π0γ� transition
form factor, defined in Sec. II, in dispersion theory. Using
the formalism employed previously for the analogous
decays of the light isoscalar ω and ϕ mesons [12], we
show in Sec. III that it is dominated by the lightest, ππ,
intermediate state, although not quite to the extent this
dominance was found for ω and ϕ. We give rough estimates
of possible further light contributions beyond two pions,
as well as from charmonium states. While these induce a
sizable uncertainty in the form factor, our results in Sec. IV
show that the experimentally observable decay spectra for
J=ψ → π0lþl−, l ¼ e; μ, as well as the integrated branch-
ing fractions are rather stable, as they are dominated by the
low-energy region. We close with a summary.

II. DEFINITIONS, KINEMATICS

The J=ψ → π0γ� transition form factor is defined
according to

hψðpV; λÞjjμð0Þjπ0ðpÞi ¼ −iϵμναβϵν�ðpV; λÞpαqβfψπ0ðsÞ;
ð1Þ

where jμ denotes the electromagnetic current, λ the
polarization of the J=ψ with ϵνðpV; λÞ the corresponding
polarization vector, q ¼ pV − p, and s ¼ q2. The form
factor fψπ0ðsÞ defined in this way has dimension GeV−1.
Sometimes also the corresponding normalized form factor
is used, denoted by Fψπ0ðsÞ ¼ fψπ0ðsÞ=fψπ0ð0Þ. The differ-
ential cross section for the decay J=ψ → π0lþl−, normal-
ized to the real-photon width, is given by

dΓψ→π0lþl−

Γψ→π0γds
¼ 16α

3π

�
1þ 2m2

l

s

� qlðsÞq3ψπ0ðsÞ
ðM2

ψ −M2
π0
Þ3 jFψπ0ðsÞj2;

ð2Þ

where α is the fine-structure constant, the real-photon width
is determined by
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Γψ→π0γ ¼
αðM2

ψ −M2
π0
Þ3

24M3
ψ

jfψπ0ð0Þj2; ð3Þ

and the kinematical variables are

qlðsÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

l

q
; qABðsÞ ¼

λ1=2ðM2
A;M

2
B; sÞ

2
ffiffiffi
s

p ;

ð4Þ
where λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ acþ bcÞ is the
usual Källén function. The universal (QED) radiative
corrections to (2) have been calculated in Ref. [13].

III. DISPERSIVE ANALYSIS

Dispersion theory attempts to reconstruct form factors
from the corresponding discontinuity across the cut along
the positive real axis. In principle, one would expect an
unsubtracted dispersion relation to work for the J=ψ →
π0γ� form factor, i.e.

fψπ0ðsÞ ¼
1

2πi

Z
∞

4M2
π

dx
discfψπ0ðxÞ

x − s
; ð5Þ

where contributions to the discontinuity are given by
multiparticle intermediate states as well as single-particle
pole contributions. The lower limit of the integral is given
by the lightest possible intermediate state, πþπ−, that we
will discuss in the following section.

A. ππ intermediate states

The contribution of the two-pion intermediate state to the
discontinuity of the J=ψ → π0γ� transition form factor, see
Fig. 1, is given by [12,14]

discfππ
ψπ0

ðsÞ ¼ iq3ππðsÞ
6π

ffiffiffi
s

p FV�
π ðsÞf1ðsÞθðs − 4M2

πÞ; ð6Þ

where FV
π ðsÞ is the pion vector form factor. f1ðsÞ is

the projection of the J=ψ → 3π decay amplitude onto
the P partial wave: with the amplitude M3π ¼ Mðψ →
πþðpþÞπ−ðp−Þπ0ðp0ÞÞ decomposed according to

M3π ¼ iϵμναβϵ�μpνþpα−pβ
0F ðs; t; uÞ; ð7Þ

it is given by

f1ðsÞ ¼
3

4

Z
1

−1
dzð1 − z2ÞF ðs; t; uÞ; ð8Þ

where z ¼ ðt − uÞ=ð4qππðsÞqψπ0ðsÞÞ, and s ¼ ðpþ þ p−Þ2,
t ¼ ðp− þ p0Þ2, u ¼ ðpþ þ p0Þ2.
To describe the J=ψ → 3π amplitude, we rely on the

phenomenological observation that the Dalitz plot for this
decay is entirely dominated by πρ intermediate states, i.e.
by the lowest resonance in the ππ P wave; neither higher
resonances nor resonant higher partial waves are observed
[15]. We do not attempt to explain this suppression of
additional structures [16] but just take it as the starting point
for a generalized partial-wave decomposition that stops at
P-wave contributions only [17,18],

F ðs; t; uÞ ¼ F ðsÞ þ F ðtÞ þ F ðuÞ: ð9Þ

Final-state interactions between all three pions are imple-
mented in a Khuri–Treiman-type formalism [19], leading to
[18] (compare also Ref. [20])

F ðsÞ ¼ aΩðsÞ
�
1þ s

π

Z
∞

4M2
π

dx
x

sin δðxÞF̂ ðxÞ
jΩðxÞjðx − sÞ

�
;

F̂ ðsÞ ¼ 3hð1 − z2ÞF iðsÞ; ð10Þ

where δðsÞ ≐ δ11ðsÞ is the isospin 1 ππ P-wave phase shift
taken from Refs. [21,22] and h:i denotes angular averaging.
ΩðsÞ is the Omnès function calculated from the phase
shift δðsÞ,

ΩðsÞ ¼ exp

�
s
π

Z
∞

4M2
π

dx
δðxÞ

xðx − sÞ
�
: ð11Þ

The function F̂ denotes the partial-wave projection of
the crossed-channel contributions, which are fed into the
dispersive solution for F. The partial wave f1ðsÞ is related
to both by f1ðsÞ ¼ F ðsÞ þ F̂ ðsÞ. The single subtraction
constant a only affects the overall normalization of the
amplitude and can be fixed, up to a phase, from the total
J=ψ → 3π branching fraction. For the pion vector form
factor FV

π ðsÞ, we also employ a representation based on the
Omnès function (11); see Ref. [12] for details. This fully
determines (6).
In particular, we can calculate the two-pion contribution

to the real-photon transition J=ψ → π0γ in the form of a
sum rule [12]:

fππ
ψπ0

ð0Þ ¼ 1

12π2

Z
∞

4M2
π

dx
q3ππðxÞ
x3=2

FV�
π ðxÞf1ðxÞ: ð12Þ

FIG. 1. Two-pion contribution to the discontinuity of the
J=ψ → π0lþl− transition form factor. The gray circle denotes
the J=ψ → 3π P-wave amplitude, whereas the white circle
represents the pion vector form factor.
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As the partial wave f1ðsÞ depends on an unknown
overall normalization constant a, the cleanest prediction
following from (12) is in principle the ratio BðJ=ψ →
π0γÞ=BðJ=ψ → 3πÞ [12], which is determined by the phase
shift δðsÞ alone.
The experimental branching fraction for J=ψ → π0γ

[23], together with (3), leads to jfψπ0ð0Þj ¼ ð6.0� 0.3Þ×
10−4 GeV−1, whereas the sum rule (12) results in

jfππ
ψπ0

ð0Þj ¼ ð4.8� 0.2Þ × 10−4 GeV−1; ð13Þ

where the uncertainty is a combination of the exper-
imental uncertainties in BðJ=ψ → 3πÞ and the width
of the J=ψ , as well as the one in the dispersive integral.
We therefore conclude that the two-pion intermediate
state alone saturates the sum rule for the transition
form factor normalization to about 80%. Note that
this presents a very significant enhancement over a
simple vector-meson dominance estimate based on the
decay chain J=ψ → ρ0π0, ρ0 → γ (see e.g. Ref. [11]),
which would rather result in jfρ

ψπ0
ð0Þj ≈ 3.3×

10−4 GeV−1.
This result is to be compared to similar sum rules for

the decays ω → π0γ and ϕ → π0γ, which were observed
to be saturated to more than 90% accuracy [12]. The
difference looks rather plausible, as the branching fractions
of the J=ψ into more than three pions are actually
larger: BðJ=ψ→3πÞ¼ð2.11�0.07Þ%, BðJ=ψ → 5πÞ ¼
ð4.1� 0.5Þ%, BðJ=ψ → 7πÞ ¼ ð2.9� 0.6Þ% [23]. It
would therefore not come as a surprise if the inelastic
contributions to the J=ψ → π0γ� transition form factor,
coming from the discontinuities due to four and more
pions, played a much more significant role than e.g. for the
ω → π0γ� transition. However, the information on the
branching fractions alone does not lend itself easily to
an improvement of the radiative decay/the transition form
factor before more differential information in the form of
a partial-wave analysis becomes available. From data on
eþe− → ½hadrons�I¼1, the most important inelastic inter-
mediate state of isospin I ¼ 1 ought to be 4π, which
couples strongly to the ρ0ð1450Þ resonance. In a very
simplistic model approach, we therefore add a ρ0ð1450Þ
resonance to the J=ψ → π0γ� transition form factor as an
approximation to the possible effects of multipion inter-
mediate states, which we allow to contribute between 10%
and 30% of the dominant ππ channel to the sum rule for
fψπ0ð0Þ. Note that in a more complete/realistic description
the dispersive contributions from ππ and inelastic states
would have to be treated as coupled channels; see e.g.
Ref. [24] for a corresponding analysis of the pion vector
form factor. We reconstruct the ρ0ð1450Þ propagator dis-
persively from the imaginary part of an energy-dependent
Breit–Wigner function,

discfρ
0

ψπ0
ðsÞ ¼ 2i

ffiffiffi
s

p
M2

ρ0Γρ0 ðsÞ
ðM2

ρ0 − sÞ2 þ sΓ2
ρ0 ðsÞ

;

Γρ0 ðsÞ ¼
�M2

ρ0

s

�
2
�

s − 16M2
π

M2
ρ0 − 16M2

π

�
7=2

Γρ0 ðM2
ρ0 Þ

× θðs − 16M2
πÞ; ð14Þ

thus maintaining a reasonable analytic behavior. Γρ0 ðsÞ
reproduces the near-threshold behavior of four-pion phase
space [24]. With Mρ0 ¼ 1.6 GeV, ΓðM2

ρ0 Þ ¼ 0.6 GeV, the
dispersive integral over (14) results in a function of which
the peak position and width agree with the Particle Data
Group Breit–Wigner parameters [23].

B. Light isoscalar contributions to J=ψ → η;η0γ�

Given the strong impact of light-quark degrees of free-
dom on the J=ψ → π0γ� transition, to what extent may
something similar be true for the decays J=ψ → η; η0γ�? In
the limit of isospin conservation, here only the light
isoscalar vector mesons ω and ϕ can contribute, which
in the context of this study we consider as sufficiently
narrow that we can approximate their contribution to the
discontinuity by δ-functions,

discfVψPðsÞ ¼ 2πi
X
V¼ω;ϕ

cPVFVMVδðs −M2
VÞ; ð15Þ

where P ¼ η; η0. Here, FV denote the vector-meson decay
constants, determined from the corresponding electron-
positron decay rates by

ΓV→eþe− ¼ 4πα2

3

F2
V

MV
ð16Þ

(neglecting the mass of the electron), while the effective
coupling constants cPV are fixed from the decay rates
J=ψ → PV by

ΓJ=ψ→PV ¼ jcPV j2
96πM3

ψ
λ3=2ðM2

ψ ;M2
V;M

2
PÞ: ð17Þ

We do not attempt a symmetry-based analysis of the
couplings cPV here (compare Refs. [11,25,26] and refer-
ences therein) but just estimate them individually from
data; we note that SU(3) symmetry suggests constructive
interference of ω and ϕ contributions for the η final state but
destructive interference for the η0. Individually, the esti-
mated contributions of ω and ϕ to the transition form
factors at the real-photon point, given simply by fVψPð0Þ ¼
cPVFV=MV , amount to

jffω;ϕgψη ð0Þj ≈ f0.9; 0.8g × 10−4 GeV−1;

jffω;ϕgψη0 ð0Þj ≈ f0.3; 0.7g × 10−4 GeV−1; ð18Þ
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whereas the decay rates for J=ψ → η; η0γ [23] suggest
jfψηð0Þj ¼ ð35� 1Þ× 10−4 GeV−1, jfψη0 ð0Þj ¼ ð85� 3Þ×
10−4 GeV−1. We conclude, in accordance with Ref. [11],
that for the isoscalar transition form factors, light-quark
resonances contribute only at the percent level, so the
corresponding spectral functions are entirely dominated by
charmonium intermediate states, in the loose sense of
both cc̄ resonances and open charm-anticharm continuum
contributions.

C. Estimate of charmonium contributions

Given the vast dominance of charmonium in the tran-
sition form factors for η and η0, we may wonder if such
effects cannot also be sizable for J=ψ → π0γ�, even though
in that case they break isospin symmetry. Indeed, in the
same narrow-width approximation employed in the pre-
vious section, we can determine the contribution specifi-
cally of the ψð2SÞ, using experimental information on the
branching fractions for ψð2SÞ → J=ψπ0 and ψð2SÞ →
eþe− [23] and analogous relations to (16) and (17) to
determine the decay constant Fψð2SÞ and an effective
coupling cπ0ψð2SÞ. Surprisingly, one finds

jfψð2SÞ
ψπ0

ð0Þj ¼ ð5.3� 0.1Þ × 10−4 GeV−1; ð19Þ

which is larger than the two-pion contribution (13).
However, the comparison to the J=ψ → ηγ� transition form
factor demonstrates that this observation is too simplistic.
Here, branching fractions into J=ψη (and eþe−) are known
for the excited charmonium resonances ψð2SÞ, ψð3770Þ,
and ψð4040Þ, so we can determine their contributions to
the sum rule for fψηð0Þ. Their moduli turn out to be
ð117� 2Þ × 10−4 GeV−1, ð25� 6Þ × 10−4 GeV−1, and
ð70� 7Þ × 10−4 GeV−1, respectively, compared to the
total jfψηð0Þj ¼ ð35� 1Þ × 10−4 GeV−1. We conclude that
there need to be strong cancellation effects between differ-
ent charmonium resonances (as well as, probably, open-
charm continuum channels) in the J=ψ → ηγ� form factor
spectral function in order to explain the observed rate
for J=ψ → ηγ.
To estimate the total charmonium contribution to

J=ψ → π0γ, jfcc̄
ψπ0

ðsÞj, we therefore assume that the ratio

of ψð2SÞ contributions to the transitions into π0 and η gives
a useful indication of the ratio of overall cc̄ effects:

0.01≲ jfcc̄
ψπ0

ð0Þj
jfcc̄ψηð0Þj

≲ jfψð2SÞ
ψπ0

ð0Þj
jfψð2SÞψη ð0Þj

≈ 0.045: ð20Þ

We assume this to be an upper limit due to the observation
that the ψð2SÞ → J=ψπ0 decay rate is somewhat enhanced
relative to ψð2SÞ → J=ψη due to charmed-meson loop
effects [27]. The lower limit of 1% is the size of a typical,
nonenhanced isospin-breaking effect, which requires

cancellation of individual charmonium resonances by no
more than one order of magnitude. We therefore estimate
(with jfcc̄ψηð0Þj ≈ jfψηð0Þj)

0.3 × 10−4 GeV−1 ≲ jfcc̄
ψπ0

ð0Þj ≲ 1.6 × 10−4 GeV−1: ð21Þ

For the s-dependence of this contribution, we adopt the
simple monopole ansatz [10],

fcc̄
ψπ0

ðsÞ ¼
fcc̄
ψπ0

ð0Þ
1 − s=Λ2

; ð22Þ

and vary the effective scale Λ between the mass of the J=ψ
and the mass of the ψð2SÞ.

IV. RESULTS AND DISCUSSION

In Fig. 2, we show the modulus of our total form factor

fψπ0ðsÞ ¼ fππ
ψπ0

ðsÞ þ fρ
0

ψπ0
ðsÞ þ fcc̄

ψπ0
ðsÞ: ð23Þ

While fππ
ψπ0

ðsÞ is fixed within its (rather narrow) uncer-
tainty, we vary the effective ρ0 and charmonium contribu-
tions within the rather generous error bands discussed in
the previous sections, with unknown relative signs, but
subject to the constraint that the J=ψ → π0γ sum rule be
fulfilled within experimental uncertainties, jfψπ0ð0Þj ¼
ð6.0� 0.3Þ × 10−4 GeV−1. This variation in the normali-
zation determines the error band in the form factor at low
energies, while the theoretical variation within our rather
crude estimates of the ρ0 and cc̄ contributions dominates
the uncertainty above

ffiffiffi
s

p ≳ 1 GeV. While all the light-
quark resonance contributions drop like 1=s above their

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

FIG. 2. Modulus of the transition form factor jfψπ0ðsÞj. See the
main text for the discussion of the uncertainty band. The dashed
curve denotes the upper limit of the band in the case that the scale
Λ for the charmonium contribution is fixed to the ψð2SÞ mass.
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respective characteristic scales (the masses of ρ and ρ0),
fcc̄
ψπ0

ðsÞ rises close to the upper limit of the accessible

decay phase space and dominates the total form factor
there. In particular, if the characteristic scale Λ is set to
the J=ψ mass, fcc̄

ψπ0
ðsÞ is enhanced by roughly a factor

Mψ=ð2Mπ0Þ ≈ 11.5 at
ffiffiffi
s

p ¼ Mψ −Mπ0 . Figure 2 also
shows the upper form factor limit using Λ ¼ Mψð2SÞ only,
which limits the rise significantly.
In addition, Fig. 3 shows the resulting differential decay

rates for J=ψ → π0eþe− and J=ψ → π0μþμ−. For com-
parison, we also display the distributions obtained by
setting fψπ0ðsÞ≡ fψπ0ð0Þ. For both final states, the clear
enhancement due to the ρ resonance in the ππ intermediate
state is the dominating form factor feature, while
dΓψ→π0eþe−=ds rises strongly near

ffiffiffi
s

p ¼ 0. The sizable
form factor uncertainty at large energies occurs in a region
where phase space already suppresses the decay distribu-
tions strongly; in particular, a potential strong rise in the
form factor due to J=ψ pole contributions is probably not
experimentally observable.
Integrating over the respective spectra, we can calculate

the branching fractions for the two dilepton final states.
We find

BðJ=ψ → π0eþe−Þ ¼ ð5.5…6.4Þ × 10−7;
BðJ=ψ → π0μþμ−Þ ¼ ð2.7…3.3Þ × 10−7: ð24Þ

This can be compared to the numbers obtained from QED
spectra with a constant form factor, BðJ=ψ → π0eþe−Þ ¼
ð3.7� 0.4Þ × 10−7, BðJ=ψ → π0eþe−Þ ¼ ð0.9� 0.1Þ×
10−7. A monopole form factor as in (22), with the scale
given by the mass of the ψð2SÞ [10], magnifies these by a
few percent only. Our dispersive result therefore enhances
the branching fractions very considerably, almost by a

factor of 3 for the muon final state. Note that the dispersive
prediction (24) is remarkably stable due to the dominance
of the low-energy region in the integrated rate.
It is rather unclear how to compare (24) to the experimental

result BðJ=ψ → π0eþe−Þ ¼ ð7.56� 1.32� 0.50Þ × 10−7
[9], as this has purportedly been obtained subtracting the ρ
contribution to the form factor. Our analysis above demon-
strates that such an attempt does not make sense; there is no
theoretically sound way to separate the ρ resonance from the
nonresonant ππ background, and we have demonstrated that
theππ contribution to the formfactor normalization is actually
dominant. In particular also the energy region below the ρ
masswould have to be heavily affected by such a subtraction,
leading to a form factor normalization that is in stark contra-
diction with the J=ψ → π0γ decay rate. This is obviously
quantitatively different from removing the isoscalar ω and ϕ
resonances from J=ψ → η; η0γ� transition form factors due
to the overall smallness of their contribution.
It would be interesting and most desirable to experi-

mentally extract the full, unchanged, transition form factor
without any parts subtracted, given that it is precisely the
interplay between three energy regions of the J=ψ → π0γ�
form factor that is most challenging theoretically: low
energies below 1 GeV with the dominance of the ρ;
potentially sizable contributions of excited light ρ0 reso-
nances between 1 and 2 GeV; and the contribution from
charmonium in the spectral function most visible near the
upper limit of the decay region.

V. SUMMARY

To summarize, we have analyzed the J=ψ → π0γ�
transition form factor using dispersion theory. We have
shown that the corresponding spectral function is domi-
nated by the πþπ− intermediate state, of which the
contribution can be calculated using the J=ψ → 3π
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-14
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-12
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-11
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-10

FIG. 3. Differential decay rates dΓ=ds for J=ψ → π0eþe− (left) and J=ψ → π0μþμ− (right); the insert in the right panel displays the
same distribution on a logarithmic scale. The full gray bands correspond to our form factor prediction, while the dashed bands show the
QED distributions for comparison, i.e. with the form factor set to a constant.

ANALYSIS OF THE J=ψ → π0γ� … PHYSICAL REVIEW D 91, 036004 (2015)

036004-5



P-wave decay amplitude as well as the pion vector form
factor. A sum rule for the form factor normalization, which
determines the decay rate J=ψ → π0γ, is saturated to about
80% by the ππ contribution only, showing that this
transition form factor is dominated by light-quark dynam-
ics. We have given rough estimates for the contributions of
four pions, approximated by an effective ρ0ð1450Þ reso-
nance, and charmonium states, comparing to the latter’s
(dominant) effect on the J=ψ → η; η0γ� transitions.
For the differential decay rates J=ψ → π0lþl−, the ρ

resonance in the ππ spectrum is the dominating feature,
leading to very stable values for the integrated branching
fractions despite large form factor uncertainties at high
energies. An experimental confirmation of the decay
spectra predicted here, as well as a determination of the

branching fractions taking the full, unmodified form factor
into account, would be highly desirable.
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