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We study the enhancement of the di-Higgs production cross section resulting from the resonant decay
of a heavy Higgs boson at hadron colliders in a model with a Higgs singlet. This enhancement of the double
Higgs production rate is crucial in understanding the structure of the scalar potential and we determine the
maximum allowed enhancement such that the electroweak minimum is a global minimum. The di-Higgs
production enhancement can be as large as a factor of ∼ 18ð13Þ for the mass of the heavy Higgs around
270(420) GeV relative to the Standard Model rate at 14 TeV for parameters corresponding to a global
electroweak minimum.
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I. INTRODUCTION

After the discovery of the Higgs boson, the next task is to
determine its couplings to as many Standard Model (SM)
particles as possible. Only by doing so can the true nature
of electroweak symmetry breaking be determined. It is
particularly important to measure the parameters of the
scalar potential, which entails measuring double Higgs
production [1–3]. In the SM, this rate is small at the LHC
[4–9], but may be significantly enhanced in models with
new physics. One simple extension of the SM is to add a
scalar, S, which is a singlet under all the gauge symmetries
[10–13]. After electroweak symmetry breaking, S can mix
with the SM Higgs boson, leading to a modification of
Higgs couplings to SM particles and to the parameters of
the scalar potential. In such models, there can be an
enhancement of the di-Higgs rate due to the resonant
production of the new scalar [14–16].
Models with a Higgs singlet are highly motivated by

Higgs portal models [17–19]. In such models, S is the only
particle which couples to a dark matter sector. Couplings of
the dark matter to the known particles occur only through
the mixing of S with the SM Higgs boson. If the Higgs
singlet model possesses a Z2 symmetry, the scalar singlet
itself could be a dark matter candidate. Without a Z2

symmetry, cubic and linear self-coupling terms are allowed
in the scalar potential and a strong first order electroweak
phase transition is allowed. Motivated by the possibility of
explaining electroweak baryogenesis [20–22], we examine
enhanced double Higgs production in a model with a scalar
singlet and no Z2 symmetry. The requirement that the
electroweak minimum be a global minimum provides
stringent restrictions on the allowed parameter space.
Attempts to increase the di-Higgs production rate by

adding new particles which contribute to double Higgs
production from gluon fusion have generally not found
increases of more than a factor of 2–3 over the SM rate
[23–25]. More successful has been the study of resonant

enhancements, where increases up to a factor of ∼ 50
relative to the SM prediction for double Higgs production
have been found in 2 Higgs doublet models and the
MSSM [26–30]. We determine the maximum allowed
enhancement from resonant di-Higgs production in the
singlet model without a Z2 symmetry [31], such that the
parameters correspond to a global electroweak minimum
[21]. This case has a number of novel features in
comparison with the well studied Z2 symmetric singlet
model [10].
In Sec. II, we review the Higgs singlet model and the

minimization of the potential. Our results for the maximum
allowed enhancement of the di-Higgs cross section, subject
to the restriction that the electroweak minimum be a global
minimum, are in Sec. III. Experimental constraints and
theoretical restrictions on the parameters are given in
Sec. IV. We include 2 appendices: Appendix A has the
complete set of cubic and quartic Higgs self-couplings and
Appendix B includes a description of the vacuum
with v ¼ 0.

II. MODEL

We consider a model containing the SM Higgs doublet,
H, and an additional Higgs singlet, S. The most general
scalar potential is

VðH; SÞ ¼ VHðHÞ þ VHSðH; SÞ þ VSðSÞ; ð1Þ

with

VHðHÞ ¼ −μ2H†H þ λðH†HÞ2 ð2Þ

VHSðH; SÞ ¼ a1
2
H†HSþ a2

2
H†HS2 ð3Þ

VSðSÞ ¼ b1Sþ b2
2
S2 þ b3

3
S3 þ b4

4
S4: ð4Þ
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We do not assume a Z2 symmetry which would prohibit a1,
b1 and b3. The neutral component of the doublet H is
denoted by ϕ0 ¼ ðhþ vÞ= ffiffiffi

2
p

, where the vacuum expect-
ation value (vev) is hϕ0i ¼ vffiffi

2
p . Similarly, the vev of S is

defined as x.
The extrema of the potential are obtained by requiring

∂Vðv; xÞ=∂v ¼ 0 and ∂Vðv; xÞ=∂x ¼ 0,1

v
2
ð−2μ2 þ 2λv2 þ a1xþ a2x2Þ ¼ 0; ð5Þ

x

�
b2 þ b3xþ b4x2 þ

v2

2
a2

�
þ b1 þ

v2

4
a1 ¼ 0:

ð6Þ

Solving Eqs. (5) and (6) produce many possible extrema
of the potential. We require that one of these extrema
correspond to the electroweak symmetry breaking (EWSB)
minimum, v ¼ vEW ¼ 246 GeV. It is important to note that
a shift of the singlet field by S → Sþ ΔS is just a
redefinition of the parameters of Eq. (4) and does not
change the physics. Hence, we are free to choose our
EWSB minimum as ðv; xÞ≡ ðvEW; 0Þ, since changing x
would correspond to shifting the singlet field.
With this criteria, solving Eqs. (5) and (6) produces,

μ2 ¼ λv2EW; b1 ¼ −
v2EW
4

a1: ð7Þ

Using these solutions, the potential can be written in a more
suggestive form, in terms of the neutral component of the
Higgs field:

Vðϕ0; SÞ ¼ λ

�
ϕ2
0 −

v2EW
2

�
2

þ a1
2

�
ϕ2
0 −

v2EW
2

�
S

þ a2
2

�
ϕ2
0 −

v2EW
2

�
S2 þ 1

4
ð2b2 þ a2v2EWÞS2

þ b3
3
S3 þ b4

4
S4; ð8Þ

where an arbitrary constant factor has been dropped. Then
v ¼ vEW and x ¼ 0 is a minimum by construction.

A. Scalar masses and mixing

The scalar mass matrix is,

Vmass ¼
1

2
UM2UT; ð9Þ

where

U ¼ ð h S Þ; ð10Þ

M2 ≡
�
M2

11 M2
12

M2
12 M2

22

�
¼

�
3λv2 − μ2 þ xða1 þ a2xÞ=2 a1v=2þ a2vx

a1v=2þ a2vx b2 þ a2v2=2þ xð2b3 þ 3b4xÞ

�
: ð11Þ

The mass eigenstates are

�
h1
h2

�
¼

�
cos θ sin θ
− sin θ cos θ

��
h
S

�
: ð12Þ

The physical masses of h1 and h2 are m2
1 and m2

2,
respectively:

m2
1;2 ¼

1

2

�
M2

11 þM2
22∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

11 −M2
22Þ2 þ 4M4

12

q �
:

ð13Þ

Note that the range of the mixing angle is −π=4 < θ < π=4.
We take h1 to be the SM-like Higgs boson with
m1 ¼ 126 GeV.
As mentioned earlier, we are interested in the scenario

where ðv; xÞ ¼ ðvEW; 0Þ is the global minimum of the

potential. Hence, we require that the correct masses
and mixing of the Higgs bosons are reproduced at this
minimum:

detM2jv¼vEW
x¼0

¼ m2
1m

2
2;

TrM2jv¼vEW
x¼0

¼ m2
1 þm2

2; and

2M2
12

m2
1 −m2

2

����
v¼vEW
x¼0

¼ sin 2θ: ð14Þ

From inspection, using Eq. (7) and x ¼ 0, the mass
matrix only depends on three combinations of parameters.
These can be solved for2:

1The discussion in this section closely follows that of Ref. [21].

2There are two solutions. We choose this solution by using the
further constraint that λ obtains the SM value, λ ¼ m2

1=2v
2
EW, in

the limit θ → 0.
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a1 ¼
m2

1 −m2
2

vEW
sin 2θ;

b2 þ
a2
2
v2EW ¼ m2

1sin
2θ þm2

2cos
2θ;

λ ¼ m2
1cos

2θ þm2
2sin

2θ

2v2EW
: ð15Þ

Our free parameters are then:

m1 ¼ 126 GeV; m2; θ;

vEW ¼ 246 GeV;

x ¼ 0; a2; b3; b4: ð16Þ

Note that once we choose the masses, mixing, and vevs,
there is little choice in the free parameters. That is, all
parameters are fully determined except a2; b2; b3, and b4,
and there is a relation between b2 and a2.
Since the singlet Higgs does not couple to the SM

fermions and vector bosons, the couplings of h1 and h2 are
determined by those of the neutral component, h, of the
Higgs doublet. From Eq. (12), one can see that the coupling
of h1 to the SM fermions and vector bosons, normalized to
the SM values, is suppressed by a factor cos θ, while the
coupling of h2 is suppressed by − sin θ.
The self-interactions of the Higgs bosons in the basis of

mass eigenstates h1 and h2 are

Vself ⊃
λ111
3!

h31 þ
λ211
2!

h2h21 þ
λ221
2!

h22h1 þ
λ222
3!

h32

þ λ1111
4!

h41 þ
λ2111
3!

h2h31 þ
λ2211
4

h22h
2
1

þ λ2221
3!

h32h1 þ
λ2222
4!

h42: ð17Þ

The cubic and quartic couplings are listed in Appendix A.
The partial width of h2 → h1h1 is then

Γðh2 → h1h1Þ ¼
λ2211

32πm2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
1

m2
2

s
: ð18Þ

Since the coupling of h2 to other SM particles is suppressed
by sin θ we can write the total width3

Γðh2Þ ¼ sin2θΓSMjm2
þ Γðh2 → h1h1Þ; ð19Þ

where ΓSMjm2
is the SMHiggs total width evaluated at mass

m2. In future calculations we use the results in Ref. [32] to
calculate ΓSM.

B. Vacuum structure

Vacuum stability requires that the scalar potential must
be positive definite as ϕ0 and S become large. The behavior
of the potential at large values of the fields is governed by
the quartic interactions,

4λϕ4
0 þ 2a2ϕ2

0S
2 þ b4S4 > 0: ð20Þ

We know that λ and b4 must both be positive since the
potential needs to be stable along the axes S ¼ 0 or ϕ0 ¼ 0.
Also, for a2 > 0 the potential is clearly stable. For a2 < 0,
rewrite Eq. (20) as,

λ

�
2ϕ2

0 þ
a2
2λ

S2
�

2

þ
�
b4 −

a22
4λ

�
S4 > 0: ð21Þ

Since the first term is positive definite, we obtain the
stability bound

−2
ffiffiffiffiffiffiffi
λb4

p
≤ a2: ð22Þ

Following the methods of Ref. [21], the extrema of
Eq. (8) for which v ≠ 0 can be found:

ðv; xÞ ¼ ðvEW; 0Þ; and ðv; xÞ ¼ ðv�; x�Þ ð23Þ

where

x� ≡ vEWð3a1a2 − 8b3λÞ � 8
ffiffiffiffi
Δ

p

4vEWð4b4λ − a22Þ
v2� ≡ v2EW −

1

2λ
ða1x� þ a2x2�Þ;

Δ ¼ v2EW
64

ð8b3λ − 3a1a2Þ2 −
m2

1m
2
2

2
ð4b4λ − a22Þ: ð24Þ

For three real solutions to exist, we need Δ > 0 and
v2� > 0. There are also solutions for v ¼ 0, which we
include in the appendix.
First, we analyze the v2 ≠ 0 solutions. For the global

minimum to be v ¼ vEW and x ¼ 0, the potential of Eq. (8)
must satisfy

VðvEW; 0Þ < Vðv�; x�Þ: ð25Þ

It can be shown that this occurs for

vEW∣8λb3 − 3a1a2∣ < 6m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4λ − a22

q
; or

4b4λ < a22: ð26Þ

The vacuum structure of v2 ≠ 0 is shown in Fig. 1 with
m2 ¼ 370 GeV, cos θ ¼ ffiffiffiffiffiffiffiffiffi

0.88
p

, and b4 ¼ 1. The region
with a2 ≲ −1 does not satisfy the stability bound of Eq. (22).
The white region is where the ðv; xÞ ¼ ðvEW; 0Þ solution is

3We neglect the partial width h2 → h1h1h1 since this is
additionally suppressed by three body phase space.
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the lowest lying minimum with v2 ≠ 0, as given in Eq. (26).
The shaded areas show b3; a2 values where Vðv−; x−Þ <
VðvEW; 0Þ with v2− < 0 (red horizontal lines) and v2− > 0

(blue squares), and Vðvþ; xþÞ < VðvEW; 0Þ with v2þ < 0

(green vertical lines) and v2þ > 0 (maroon hatched lines).
All three solutions are never simultaneously minima.
It can be shown that ðvEW; 0Þ always corresponds to a

minimum. Hence, this exhausts the possibilities for v2 ≠ 0.
Since we require that the global minimum be real, we can
also reject solutions for which v2� < 0. Hence, v ¼ vEW
and x ¼ 0 is the lowest lying real minimum with v2 ≠ 0 in

the red-lined, green-lined, and white regions. However,
we must consider also the case v ¼ 0, which is discussed
in the appendix.
The final results for the allowed ðb3; a2Þ region with a

global minimum at ðv; xÞ ¼ ðvEW; 0Þ are shown in Fig. 2.
This includes the analysis of the v ¼ 0 minima. Inside
the contours ðv; xÞ ¼ ðvEW; 0Þ is the global minimum.
Figure 2(a) shows the dependence on the heavy scalar
mass m2, and Fig. 2(b) shows the dependence on b4.
Increasing b4 and m2 increases the upper bounds on
a2 slightly. The difference in allowed regions between
Figs. 1 and 2(a) corresponds to the case where the v ¼ 0
minimum is the global minimum.
In Fig. 2(a), there is an interesting point on the contours

that appears to be independent of m2. From Eq. (26), this
section of the contour arises from the inequality

bmin
3 ≡ 3

8λvEW

�
a1a2vEW − 2m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b4λ − a22

q �
< b3:

ð27Þ

The stationary points on this line can be found by solving
∂bmin

3 =∂m2 ¼ 0 for a2. Assuming sin θ > 0, one of these
solutions corresponds to

a2 ¼ −
ffiffiffiffiffiffiffi
2b4

p
cos θ

m1

vEW
; and b3 ¼ −

3

2

ffiffiffiffiffiffiffi
2b4

p
sin θm1;

ð28Þ

which is independent ofm2. This exactly corresponds to the
degenerate point on the contours in Fig. 2(a).
It is clear from these results that both a2 and b3 are

bounded for fixed masses, mixing, and b4. As wewill see in
Sec. IV, requiring perturbative unitarity bounds b4. Hence,
all parameters are either determined by the masses and
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FIG. 2 (color online). Constraints on the ðb3; a2Þ parameter space obtained by requiring that the global minimum is at
ðv; xÞ ¼ ðvEW ¼ 246 GeV; 0Þ. Regions enclosed by the lines are allowed. Figure 2(a) shows the allowed regions with various values
of m2 for b4 ¼ 1. The solid (red), dashed (blue), and dash-dotted (black) represent m2 ¼ 270, 370, and 500 GeV, respectively.
Figure 2(b) shows the allowed regions with b4 ¼ 1 (blue dashed) and b4 ¼ 3 (black solid) for m2 ¼ 370 GeV. The parameters used are
m1 ¼ 126 GeV and cos θ ¼ 0.94.
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FIG. 1 (color online). Structure of the v2 ≠ 0 vacua in the b3 vs
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p

. The
different regions are where the ðv; xÞ ¼ ðvEW; 0Þ minimum is the
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mixings of the Higgs sector or are bounded by theoretical
considerations. This will have a direct influence on the
phenomenology of the singlet model at the LHC.

III. RESONANT DI-HIGGS PRODUCTION

A. Results without a Z2 symmetry

We turn now to the results for di-Higgs production
obtained by imposing the parameter restrictions described
above to find the maximum enhancement possible in the
gg → h1h1 channel relative to the SM rate. Di-Higgs
production proceeds through the diagrams shown in
Fig. 3. For m2 ≳ 2m1, it is possible to have a large resonant
enhancement from the diagram of Fig. 3(c). Our numerical

results use CT12NLO PDFs with μ ¼ Mh1h1 . We normalize
many of our plots to the LO SM predictions, σðgg →
h1h1Þ∣SM ¼ 15 fb (0.6 pb) at

ffiffiffi
S

p ¼ 14 TeV (100 TeV).4

From the mass matrix in Eq. (11), we know that varying
b3 does not change m1, m2 and the mixing angle θ. In
contrast, one can observe that λ211 in Eq. (A1) is a function
of b3. In Fig. 4, we show the dependence on b3 of the
branching ratio of the heavier Higgs, h2, into the SM-like
Higgs, h1. For b3 small, the branching ratio has little
dependence on m2, while for large b3, the branching ratio
can be large and depends significantly on b3. The dotted
curves represent regions where the parameters do not
correspond to a global electroweak minimum. We see then
that for a given mass this constraint corresponds to an
upper limit on the branching ratio Brðh2 → h1h1Þ.
To understand the features of Fig. 4, use the solutions in

Eq. (15) to rewrite

λ211 ¼ sin θ

�
−
2m2

1 þm2
2

vEW
cos2θ

− a2vEWð1 − 3cos2θÞ þ b3 sinð2θÞ
	
: ð29Þ

From this we see that b3 sinð2θÞ and m2 make opposite
sign contributions to λ211. Hence, for b3 sinð2θÞ < 0, they
constructively contribute to λ211. The major feature of
this region in Fig. 4 is then understood by noting that the
partial widths of h2 into h1, Ws, and Zs scale like

Γðh2 → h1h1Þ ∝ sin2θm2; and

Γðh2 → WþW−=ZZÞ ∝ sin2θm3
2: ð30Þ

(a) (b)

(c)

FIG. 3. Representative diagrams for di-Higgs production corresponding to (a) box diagram, (b) triangle diagram exchanging the light
Higgs h1, and (c) triangle diagram exchanging the heavy Higgs h2. The solid lines stand for fermions, where top quark loops give the
dominant contributions.
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FIG. 4 (color online). The branching ratio of h2 → h1h1 as a
function of b3. The parameters used are m1 ¼ 126 GeV,
cos θ ¼ 0.94, a2 ¼ 0, vEW ¼ 246 GeV, and b4 ¼ 1. Lines from
top to bottom are m2 ¼ 270; 370; 420; 500, and 1000 GeV. The
solid (dashed) lines stand for regions that are allowed (excluded)
by the requirement of EW stability.

4Radiative corrections in the SM are large, typically a factor of
∼ 2 enhancement [7–9], and are not included here since they are
simply an overall normalization factor to the results we present.
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Hence, as the mass of h2 increases the partial widths into
Ws and Zs grow much more quickly than the partial width
into h1h1. The branching ratio Brðh2 → h1h1Þ therefore
decreases with mass.
The region for b3 sinð2θÞ > 0 is slightly more involved.

Using Eq. (29), the triple coupling λ211 goes to zero when

b3 sinð2θÞ ¼
2m2

1 þm2
2

vEW
cos2θ þ a2vEWð1 − 3cos2θÞ:

ð31Þ

We see that for smaller m2 the zero corresponds to smaller
b3 sinð2θÞ. As b3 sinð2θÞ goes from negative to positive,
the smaller m2 values turn over and approach zero more
quickly than the larger m2. This is the behavior we see in
Fig. 4. Note that for our representative parameters, we have
θ > 0, so the sign of b3 sinð2θÞ is the same as b3.
In Fig. 5, we plot the dependence of the ratio of the

di-Higgs production cross section in the singlet model
to that in the SM. In this type of model, the double Higgs
production cross section can reach up to Oð10Þ times
that of the SM with 58%≳ Brðh2 → h1h1Þ≳ 28%.
Interestingly, the enhancement does not grow as

ffiffiffi
S

p
is

increased from 14 TeV to 100 TeV, although of course the
total rate is increased. Both the SM and singlet rates are
dominated by gluon fusion production; hence, both rates
are similarly increased between 14 and 100 TeV.
The di-Higgs enhancement depends on the production

cross section of h2 and the branching ratio of h2 → h1h1.
Since the production cross section of lower mass states
is generically larger than that of high mass states,
m2 ¼ 270 GeV has the largest enhancement for b3 < 0.
For b3 > 0, it is possible for the branching ratio of
h2 → h1h1 to go to zero. The behavior of the enhancement
in this region closely follows the discussion of Fig. 4. For

ffiffiffi
S

p ¼ 100 TeV and b3 < 0 [Fig. 5(b)], the cross section
for m2 ¼ 270 GeV drops below that of m2 ¼ 370 GeV.
As to be discussed later, this is due to specific properties
of di-Higgs production.
In Fig. 6 we show the enhanced di-Higgs ratio as a

function of the h2 → h1h1 branching ratio. If the narrow
width approximation holds and the production cross
section h2 is sufficiently larger than the SM di-Higgs rate,
we have

σðpp → h1h1Þ ≈ σðpp → h2ÞBrðh2 → h1h1Þ: ð32Þ

Hence, we would expect this dependence to be a straight
line, as seen for m2 ¼ 270 and 420 GeV. However, we see
that this is not the case for m2 ¼ 1000 GeV. In Fig. 7 we
show the ratio of the total width of h2 and m2 as a function
of the branching ratio of h2 → h1h1. As can be seen for
m2 ¼ 1000 GeV, the width is always large and the narrow
width approximation is poor. This explains why the
m2 ¼ 1000 GeV line in Fig. 6 is not straight. Also, as
the branching ratio of h2 → h1h1 increases, the total width
become larger. This is due to the partial width h2 → h1h1
becoming large, since the partial widths into W and Z
boson is fixed by the mass m2 and mixing angle θ.
In Fig. 6, it is interesting to note that the enhancement

for m2 ¼ 420 GeV is larger than that for 270 GeV atffiffiffi
S

p ¼ 100 TeV. This can be understood from the parton
luminosity plot of Fig. 8(a), where we show the gluon-
gluon parton luminosity (normalized to that at 2mt). Theffiffiffi
S

p ¼ 14 TeV luminosity falls much more quickly as a
function of invariant mass than does the corresponding
luminosity at

ffiffiffi
S

p ¼ 100 TeV. We compare this with the
resonant production of gg → h2 in Fig. 8(b) and observe
that at

ffiffiffi
S

p ¼ 100 TeV the resonant enhancement at the tt̄
threshold is more important than at

ffiffiffi
S

p ¼ 14 TeV. Finally,
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FIG. 5 (color online). The ratio of the di-Higgs cross section in the singlet model to that in the SM at (a)
ffiffiffi
S

p ¼ 14 TeV and
(b)

ffiffiffi
S

p ¼ 100 TeV as a function of b3. The parameters used are m1 ¼ 126 GeV, cos θ ¼ 0.94, a2 ¼ 0, vEW ¼ 246 GeV, and b4 ¼ 1.
The solid (dashed) lines stand for regions that are allowed (excluded) by the requirement of EW stability.
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we show the dependence on m2 of the full cross section
for gg → h1h1 in Fig. 9. The resonant structure near 2mt
is clearly visible.

B. The Z2 limit

It may be necessary in certain models to impose a Z2

symmetry on the potential under which S is odd and H is
even. This may be motivated from a dark matter perspec-
tive, where S is a dark matter particle, or the point of
view of a complex hidden sector. The potential for this case
can be obtained in the limit a1; b1; b3 → 0. If the Z2

remains unbroken, there is no resonance enhancement in
di-Higgs production, since the S → hh decay breaks the Z2

symmetry and there is no mixing between S and h. We
ignore this case. However, the Z2 symmetry may be broken
by a vev of S. Unlike the case outlined above, the vev of S is
then physically meaningful and we cannot set hSi ¼ x ¼ 0
arbitrarily. The Z2 symmetric potential is

VðH; SÞ ¼ −μ2H†H þ λðH†HÞ2 þ a2
2
H†HS2

þ b2
2
S2 þ b4

4
S4: ð33Þ

We shift the fields in the usual manner to find the h2h1h1
coupling in the Z2 symmetric limit [10],

λZ2

211 ¼ a2½vsð2c2 − s2Þ − xcð2s2 − c2Þ�
− 6λvc2sþ 6b4xcs2: ð34Þ

In the limit x ¼ 0 and a1; b1, and b3 ¼ 0, Eq. (34) is in
agreement with Eq. (A1). We impose the conditions of
positivity of the potential, λ > 0, b4 > 0 and 4λb4 − a22 > 0

[Eq. (20)] and require the couplings to be perturbative,
a2; b4; λ < 4π.
The physical parameters are taken as

m1; m2; cos θ≡ c; vEW; x: ð35Þ

Using Eqs. (34) and (18), the branching ratio for h2 → h1h1
can be found and is shown in Fig. 10. Comparing with
Fig. 6, it is apparent that the branching ratios are similar
in the models with and without the Z2 symmetry for
large values of x=vEW, where the branching ratio asymp-
totes to around BRðh2 → h1h1Þ ∼ 0.3. The branching ratio
h2 → h1h1 appears to have little discriminating power
between the Z2 symmetric and nonsymmetric potentials.
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m2 vs the branching ratio h2 → h1h1. The parameters used
are m1 ¼ 126 GeV, cos θ ¼ 0.94, a2 ¼ 0, vEW ¼ 246 GeV,
and b4 ¼ 1. The masses are m2 ¼ 270 GeV (blue), 420 GeV
(red), and 1000 GeV (black).
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IV. EXPERIMENTAL AND THEORETICAL
CONSTRAINTS

There are a number of well-known experimental and
theoretical limits on the Higgs singlet model, which we
briefly review in this section.

A. Experimental limits

From the direct measurements of the Higgs coupling
strengths, ATLAS [33] places a constraint on the mixing
angle, θ, of the singlet model, where cos2 θ ≤ 0.88 has been
excluded at 95% CL. This limit assumes that there is no
branching ratio to invisible particles. Here we take the
upper limit of sin2 θ ≤ 0.12 as a representative point. Direct
searches for the heavy Higgs (h2) decaying intoWþW− and
ZZ from ATLAS and CMS [34,35] can also give bounds
on sin2 θ with sin2 θ ≲ 0.2 for m2 ∼ 200–400 GeV and
sin2 θ ≲ 0.4 form2 ∼ 600 GeV. However, these constraints

are not as strong as the ATLAS limit from the Higgs
coupling strengths.
The existence of a Higgs singlet which mixes with the

SM Higgs boson is also restricted by electroweak precision
observables. A fit to the oblique parameters, S and T (fixing
U to be 0), is shown in Fig. 11 [20,36]. We see that limits
from the oblique parameters are not competitive with the
ATLAS limit from the Higgs coupling strengths.
ATLAS and CMS have obtained upper bounds on the

cross section for the resonant production of SM Higgs
bosons pairs through the process pp → h�2 → h1h1 in the
γγbb̄ [37,38] and bb̄bb̄ [39] channels at a center-of-mass
energy of

ffiffiffi
S

p ¼ 8 TeV with an integrated luminosity of
20 fb−1 as summarized in Fig. 12. In the low mass region
the γγbb̄ channel gives a stronger bound as opposed to a
weaker bound obtained in the bb̄bb̄ channel due to the
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p ¼ 14 and 100 TeV as a function of invariant mass, M. (b) Resonant
contribution from gg → h2, evaluated at a scale, μ ¼ m2 with cos θ ¼ :94.
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large QCD background. However, the limit from the bb̄bb̄
channel becomes more constraining abovem2 ∼ 400 GeV.
We compare the experimental upper limits on the

production cross sections for resonant di-Higgs production
with m2 between 270 GeV and 1 TeV, normalized to the
leading order cross section predicted by the SM, with
the range of allowed cross sections consistent with the
requirement that the parameters correspond to a global
electroweak minimum. (The allowed region is between the
curves). Two sets of parameter points ðb4; a2Þ ¼ ð3; 0Þ and
ðb4; a2Þ ¼ ð1;−1Þ are considered. The former has a larger

value of b4 and hence the bound is less stringent as
illustrated in Fig. 2(b). The lower limit of the allowed
region on m2, which starts at m2 ∼ 370 GeV, for
ðb4; a2Þ ¼ ð1;−1Þ can be explained by Eq. (22) as due
to the vacuum stability constraint. Plugging in λ defined in
Eq. (15), one can obtain the lower limit for m2

2 for a given
b4 and negative a2,

m2
2 ≥

1

sin2θ

�
a22
2b4

v2EW −m2
1cos

2θ

�
: ð36Þ

Throughout the m2 < 1 TeV mass range, the constraints
derived from the global electroweak minimum requirement
are always stronger than those currently available from
the LHC experiments at

ffiffiffi
S

p ¼ 8 TeV. We make naive
projections for the expected constraints at the LHC atffiffiffi
S

p ¼ 14 TeV with an integrated luminosity of 300 fb−1
by rescaling the expected 95% CL upper limits at

ffiffiffi
S

p ¼
8 TeV with an integrated luminosity of 20 fb−1, using the
ratios of gluon-gluon luminosities (evaluated at the scale
2m1) given in Ref. [40]. As shown in Fig. 13, the projected
bounds from the CMS γγbb̄ channel can rule out the entire
parameter space where the electroweak minimum is a
global minimum for ðb4; a2Þ ¼ ð1;−1Þ and can exclude
much of the allowed region for ðb4; a2Þ ¼ ð3; 0Þ. Moreover,
the projected limits from the CMS bb̄bb̄ channel can
potentially exclude the entire parameter space allowed
by the electroweak minimum requirement for ðb4; a2Þ ¼
ð1;−1Þ and rule out two thirds of the allowed region in the
high mass range for ðb4; a2Þ ¼ ð3; 0Þ.
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FIG. 12 (color online). Observed 95% CL upper limits at
ffiffiffi
S

p ¼
8 TeV with an integrated luminosity of 20 fb−1 on the resonant
di-Higgs production cross section from ATLAS in the γγbb̄
channel (black solid), CMS in the γγbb̄ channel (blue dashed)
and CMS in the bb̄bb̄ channel (red dot-dashed), normalized
to the leading order cross section predicted by the SM, and the
regions allowed by the requirement that the electroweak
minimum be a global minimum for ðb4; a2Þ ¼ ð3; 0Þ (green
solid) and ðb4; a2Þ ¼ ð1;−1Þ (magenta solid).
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B. Unitarity

The coefficients of the potential cannot be too large or
perturbative unitarity will be violated in the hihj scattering
processes [41]. The simplest limit comes from the high
energy scattering of h2h2 → h2h2, where the J ¼ 0 partial
wave is

a0ðh2h2 → h2h2Þ→s≫m2
2

3b4
8π

: ð37Þ

Requiring ∣a0∣ < 1
2
yields ∣b4∣ ≤ 4.2. Limits from a coupled

channel analysis of hihj scattering show that for small sin θ,
multi-TeV scale masses are allowed for m2 [10].
Similarly, we can consider the h1h1 → h1h1 scattering to

find the J ¼ 0 partial wave.

a0ðh1h1 → h1h1Þ→s≫m2
1

3λ

8π
: ð38Þ

Then using Eq. (15) and ∣a0∣ < 1
2
, an upper limit on m2 can

be found:

m2
2 <

1

3sin2θ
ð8πv2EW − 3m2

1cos
2θÞ: ð39Þ

For cos2θ ¼ 0.88 and m1 ¼ 126 GeV, this limit is
m2≲2TeV.

V. DISCUSSION AND CONCLUSIONS

We studied resonance enhancement of di-Higgs produc-
tion in a generic singlet extended Standard Model. By
imposing conditions on the masses, mixing, and vacuum
expectation values of the bosons we were able to identify
the three parameters that are left free. These three param-
eters were then bounded by unitarity constraints and the
requirement that the electroweak symmetry breaking
minimum be the global minimum. With these constraints,
Brðh2 → h1h1Þ is bounded from above. Hence, we found
that theoretical considerations bound the di-Higgs produc-
tion in this model and that the theoretical constraints are
more stringent than the current limits from direct searches
for h1h1. We then provided predictions for the cross
sections and branching ratios for σðpp → h2 → h1h1Þ at
both the 14 TeV LHC and a 100 TeV collider. The di-Higgs
production enhancement can be as large as a factor of
∼ 18ð13Þ for m2 ¼ 270ð420Þ GeV relative to the SM rate
at 14 TeV for parameters corresponding to a global EW
minimum.
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APPENDIX A: CUBIC AND
QUARTIC COUPLINGS

The cubic and quartic couplings in Eq. (17) are listed
below,

λ111 ¼ 2s3b3 þ
3a1
2

sc2 þ 3a2s2cvþ 6c3λv;

λ211 ¼ 2s2cb3 þ
a1
2
cðc2 − 2s2Þ þ ð2c2 − s2Þsva2 − 6λsc2v

λ221 ¼ 2c2sb3 þ
a1
2
sðs2 − 2c2Þ− ð2s2 − c2Þcva2 þ 6λcs2v

λ222 ¼ 2c3b3 þ
3a1
2

cs2 − 3a2c2sv− 6s3λv;

λ1111 ¼ 6ðλc4 þ a2s2c2 þ b4s4Þ

λ2111 ¼ 6sc

�
b4s2 þ

a2
2
ð1− 2s2Þ− λc2

�
λ2211 ¼ 6s2c2ð−a2 þ b4 þ λÞ þ a2

λ2221 ¼ 6sc

�
b4c2 þ

a2
2
ð1− 2c2Þ− λs2

�
λ2222 ¼ 6ðs2c2a2 þ c4b4 þ λs4Þ; ðA1Þ

and we abbreviate s ¼ sin θ, c ¼ cos θ. We assume
sin θ > 0. Flipping the sign of sin θ is equivalent to reversing
the sign of b3, as is apparent in Eq. (A1). Note that several
couplings are related by a transformation c → −s and s → c.
To understand this, one can see that Eq. (12) is invariant
under c → −s; s → c; h1 → h2, and h2 → −h1. This implies
Eq. (17) is also invariant under such transformations. As a
result, the couplings λ111; λ221; λ1111, and λ2222 are trans-
formed into λ222; λ211; λ2222, and λ1111, respectively after the
replacement c → −s and s → c while λ2211 remains invari-
ant. Similarly, λ211; λ222; λ2111, and λ2221 are transformed into
λ221; λ111; λ2221, and λ2111, respectively under c → −s and
s → c up to a minus sign because they are associated with
odd numbers of h2. In the small angle limit, to Oðs2Þ,

λ111 → 6λvþ 3

2
a1sþ 3vs2ða2 − 3λÞ

λ211 →
a1
2
þ svð−6λþ 2a2Þ þ

s2

4
ð8b3 − 7a1Þ

λ221 → 2sb3 − a1sþ
�
1 −

7

2
s2
�
va2 þ 6λs2v

λ222 → ð2 − 3s2Þb3 þ
3a1
2

s2 − 3a2sv;

λ1111 → 6λ − 6s2ð2λ − a2Þ
λ2111 → 3sða2 − 2λÞ
λ2211 → a2 þ 6s2ð−a2 þ b4 þ λÞ
λ2221 → 3sð2b4 − a2Þ
λ2222 → 6b4 þ 6s2ða2 − 2b4Þ: ðA2Þ
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APPENDIX B: v ¼ 0 SOLUTIONS

We now evaluate the extrema of the potential with v ¼ 0.
These are found by evaluating the extrema of Eq. (8). The
solutions for hSi are

x01 ¼
ð2b3 − κ1=3Þ2 − 12b2b4

6b4κ1=3
þ b3
3b4

x02 ¼
ð2b3 − e2iπ=3κ1=3Þ2 − 12b2b4

6b4e2iπ=3κ1=3
þ b3
3b4

x03 ¼
ð2b3 − e4iπ=3κ1=3Þ2 − 12b2b4

6b4e4iπ=3κ1=3
þ b3
3b4

; ðB1Þ

where we have defined,

κ ¼ −4b3ð2b23 − 9b2b4Þ þ 27a1b24v
2
EW þ 3b4

ffiffiffiffiffiffiffiffi
3Δ0

p
Δ0 ¼ −16b22ðb23 − 4b2b4Þ − 8a1b3v2EWð2b23 − 9b2b4Þ

þ 27a21b
2
4vEW

4: ðB2Þ

In Fig. 14, we show the vacuum structure of the hϕ0i ¼ 0
minima compared to the ðv; xÞ ¼ ðvEW; 0Þ minima. The
white region corresponds to where the EWSB minima lies
below the v ¼ 0 minima, the red lined region to where
ðv; xÞ ¼ ð0; x01Þ lies below ðvEW; 0Þ, the blue squares to
where ð0; x02Þ lies below ðvEW; 0Þ, and the green hashed

region is where both ð0; x01Þ and ð0; x02Þ lie below ðvEW; 0Þ.
We do not find any region where Vð0; hSi ¼ x03Þ is below
the EWSBminima. Combining the results of Figs. 1 and 14
we can understand the contour in fig. 2.
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