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We compute, via numerical simulations, the nonperturbative Coulomb potential of pure SU(3) gauge
theory in Coulomb gauge. We find that the Coulomb potential scales nicely in accordance with asymptotic
freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about
four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string
tension can be lower than the Coulomb string tension by a factor of four.
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I. INTRODUCTION

In this article we will report on a lattice Monte Carlo
computation of the long-range instantaneous Coulomb
potential between static color sources in SU(3) pure
gauge theory. Note that by Coulomb potential we are
not referring to the perturbative 1=r expression, but rather
to the expectation value of the full nonlocal term in the
Coulomb-gauge Hamiltonian associated with Coulomb
energy. We will find that this potential is linear at large
separations, that the potential scales as expected with
lattice coupling, and that the Coulomb string tension σc is
about four times larger than the accepted value σ ¼
ð440 MeVÞ2 for the asymptotic string tension. Since
gluons cannot possibly screen a color source in the
fundamental representation, the obvious question is the
following: what mechanism can reduce the Coulomb
string tension by a factor of four, while retaining the
linearity of the potential? We try to answer this question
in the context of a model in which the QCD flux tube
is pictured as a superposition of states containing differ-
ent numbers of constituent gluons, held together by
Coulombic interactions, and arranged roughly in a chain
between the static sources.
Let us first be a little more explicit about what is meant

by the term Coulomb potential. It is really the interaction
energy of a particular physical state, which is simply
expressed in Coulomb gauge as a pair of static quark-
antiquark operators, separated by a spatial distance R,
operating on the (nonperturbative) vacuum state

j0iq̄q ¼ q̄†i ð0Þq†i ðRÞj0ivac; ð1Þ

where

Ψ0½A� ¼ hAj0ivac ð2Þ

is the true vacuum wave functional.1 The energy expect-
ation value of such a state is given by the logarithmic time
derivative

VðRÞ ¼ −lim
t→0

d
dt

logfq̄qh0je−Htj0iq̄qg; ð3Þ

where H ¼ Hglue þHcoul is the Coulomb gauge
Hamiltonian for a pair of static quark-antiquark sources,

Hglue ¼
1

2

Z
d3xðJ −1

2Etr;aJ · Etr;aJ −1
2 þ Ba · BaÞ;

Hcoul ¼
1

2

Z
d3xd3yJ −1

2ρaðxÞJKabðx; y;AÞρbðyÞJ −1
2;

ð4Þ
with

Kabðx; y;AÞ ¼ ½M−1ð−∇2ÞM−1�abxy ;
ρa ¼ ρaq þ ρaq̄ þ ρag ;

M ¼ −∇ ·DðAÞ; J ¼ det½M�: ð5Þ

Here ρaqðxÞ ¼ gq†i ðxÞTa
ijqjðxÞ, ρaq̄ðxÞ ¼ gq̄iðxÞTa

ijq̄
†
jðxÞ

and ρagðxÞ ¼ −gfabcAb
kðxÞEc

kðxÞ are the charge density of
quarks, antiquarks and gluons, respectively, and DkðAÞ is
the covariant derivative. Since we are taking the t → 0
limit, the contribution from connected diagrams to the
energy expectation value comes from the nonlocal
Coulomb term proportional to Kðx − y;AÞ, which contrib-
utes to both the quark self energies and to an R-dependent
Coulomb interaction. As Dirac indices and quark kinetic

1Ideas about the form of this wave functional go back a long
way, cf. [1] and references therein. Those ideas will not be
needed, however, in the present investigation.
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energies are not relevant to our study, it is sufficient to
compute, in a Euclidean action formulation, the logarithmic
time derivative of a correlator of short timelike Wilson lines

VðRÞ ¼ −lim
t→0

d
dt

loghTr½Ltð0ÞL†
t ðRÞ�i; ð6Þ

where

LtðxÞ≡ T exp

�
ig
Z

t

0

dtA0ðx; tÞ
�
: ð7Þ

Again it should be stressed that VðRÞ contains both an
R-dependent interaction, and an R-independent Coulomb
self energy. On the lattice, for SU(3) gauge theory, this
becomes a correlator of timelike link operators on time slice
t ¼ 0:

VðRÞ ¼ lim
β→∞

�
VLðRL; βÞ

aðβÞ
�
;

VLðR; βÞ ¼ − log
�
1

3
TrU0ð0; 0ÞU†

0ðR; 0Þ
�
; ð8Þ

where RL is the quark-antiquark separation in lattice units,
R ¼ RLaðβÞ, and aðβÞ is the lattice spacing (same in all
directions) at Wilson lattice coupling β. On a periodic
lattice one can average over different time slices.
This method for computing the instantaneous Coulomb

potential was first suggested in Ref. [2], and the calculation
was carried out for the SU(2) gauge group. There is another
possible approach, adopted in Ref. [3] for SU(2) and in
Ref. [4] for SU(3) gauge groups, which is to directly
compute the expectation value of the operator Kðx − y; AÞ,
Fourier transformed to momentum space. This involves
inverting the Faddeev-Popov operator M ¼ −∇ ·DðAÞ,
and looking for a plateau in k4VðkÞ.2 We prefer to use the
original approach of [2] which, we believe, provides better
evidence of the linearity of the Coulomb potential.

II. THE INSTANTANEOUS
COULOMB POTENTIAL

We have calculated the instantaneous Coulomb potential
by the method just described on a 244 hypercubic lattice in
SU(3) pure gauge theory with a standard Wilson action and
lattice coupling β in the range β ∈ ½5.9; 6.4�. The method of
Fourier acceleration is used for Coulomb gauge fixing [5].
An example of the data for VLðR; βÞ, at β ¼ 6.3, is shown
in Fig. 1, together with a best fit to the functional form

VLðRL; βÞ ¼ σLðβÞRL −
γðβÞ
RL

þ cðβÞ: ð9Þ

Note that the data includes off-axis separations. Only
the data point at RL ¼ 0 is excluded in fitting the data.
The constant c is the self energy and σL is the Coulomb
string tension, both in lattice units. The interaction energy
is obtained by subtracting the self energy cðβÞ from the
data, i.e. V int

L ðRL; βÞ ¼ VLðRL; βÞ − cðβÞ. To convert
everything to physical units we divide both sides by the
lattice spacing aðβÞ and multiply by a conversion factor
(0.197 Gev-fm ¼ 1) taking inverse fm to GeV,

V intðR; βÞ ¼ σcðβÞR − ð0.197 GeV-fmÞ γðβÞ
R

; ð10Þ

where V int is in GeV, R ¼ RLaðβÞ is in fm, and σc is the
Coulomb string tension in units of Gev=fm. As β → ∞, the
interaction energy in physical units (and consequently σc
and γ) should tend to a finite limit. For aðβÞ we use the
Necco-Sommer formula [6]

a ¼ r0 expð−1.6804 − 1.7331ðβ − 6Þ
þ 0.7849ðβ − 6Þ2 − 0.4428ðβ − 6Þ3Þ; ð11Þ

with r0 ¼ 0.5 fm, for every lattice spacing in the
range β ∈ ½5.9; 6.4�.
The result for the Coulomb potential in physical units

is shown in Fig. 2. With the self energy term cðβÞ=aðβÞ
removed, the data for V intðR; βÞ seem to converge nicely to
a limiting curve as β increases.
In Fig. 3 we show our data for the dimensionless

parameters γðβÞ and cðβÞ, plotted vs lattice spacing
aðβÞ. Both of them appear to be converging to a finite
limit as β → ∞; a → 0. What is curious, however, is that
the limit for γðβÞ might very well be consistent with the
coefficient of the Lüscher term, i.e.
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FIG. 1 (color online). The instantaneous Coulomb potential in
lattice units at β ¼ 6.3. These data include a Coulomb self energy
term for the static sources. The solid line is a fit to Eq. (9). Error
bars are comparable to but smaller than the symbol size.

2These authors find a Coulomb string tension which is 2.2 [3]
or 1.6 [4] times the asymptotic string tension. Our result, reported
in the next section, is substantially higher than those values.
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γ ¼ π

12
¼ 0.262: ð12Þ

It is hard to know whether or not this is a coincidence.
The Coulombic field of a qq̄ pair, while confining, is
nonetheless extended. There is no particular reason to
believe that it is collimated into a flux tube, or has stringlike
properties. At present we cannot explain why γ would have
this particular limit.
The Coulomb string tension determined at each β, vs

lattice spacing aðβÞ, is shown in Fig. 4. The value of the
string tension at the smallest lattice spacing is almost within
error bars of the next two data points, which suggests that the
data may have converged to the asymptotic value. From
the last data point at β ¼ 6.4, a ¼ 0.051 fm, we estimate
the Coulomb string tension to be σc ≈ 4.03ð8Þ GeV=fm,
or in other units σc ¼ ð891� 9 MeVÞ2, to be compared to
the accepted value of σ ¼ ð440 MeVÞ2 for the asymptotic
string tension. These values differ by more than a factor of

four, and a discrepancy of this size cries out for an
explanation. How can the asymptotic string tension be so
much smaller than the “natural” value obtained from the
instantaneous Coulomb potential?

III. GLUON CHAINS

The starting point is that since the instantaneous
Coulomb potential is the interaction potential of a certain
physical state, namely (1), and the energy of that state
(≈σcR) is far larger than σR for large q̄q separations, it must
be that (1) is not the minimal energy q̄q state. So, what is
the minimal energy state, and how can the string tension in
that state be so much lower than σc?
The original idea of the gluon chain model [7] was as

follows: Suppose that as a quark-antiquark pair separate,
the interaction energy eventually starts to rise at a rate faster
than linear in the separation. At some point, call it R ¼ Rc,
it becomes energetically favorable to insert a gluon between
the quark-antiquark pair to reduce the separation of color
charges to roughly Rc=2. As the quark and antiquark
continue to separate, eventually it becomes favorable to
insert a second gluon, and so on, so that no matter what the
separation of the quark and antiquark, the average sepa-
ration of color charges is no more than Rc. Let us suppose
that for very large quark separation R, the average distance
between gluons is Rav, so there will be approximately
N ¼ R=Rav gluons ordered in a chain between the quark
and antiquark. Let EðRavÞ denote the kinetic energy plus
the share of Coulomb interaction energy carried by each
gluon. Then the total energy of the chain is VðRÞ ¼
NEðRavÞ ¼ σR, where σ ¼ EðRavÞ=Rav.
Our numerical investigations, and prior studies [2–4],

show that this simple picture is untenable, because the
increase in Coulombic interaction energy with separation is
asymptotically linear. Inserting more gluons between
the quarks not only increases the energy of the state by
the kinetic energy of each gluon, but also increases the
Coulombic energy. If the gluons were arranged exactly
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FIG. 2 (color online). The instantaneous Coulomb potential
in physical units, for a range of lattice couplings β, with self
energies subtracted as explained in the text.
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FIG. 3 (color online). The self-energy term cðβÞ, and the
coefficient γðβÞ of the 1=RL term in the instantaneous Coulomb
potential, derived from a fit to (9), vs lattice spacing aðβÞ. The flat
line at π=12 indicates the value of the coefficient of the Lüscher
term. Error bars are smaller than the symbol size.
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along a line between the quarks, and the interaction energy
between neighboring gluons is σc times gluon separation,
then the total Coulomb interaction energy of the chain is
σcR, no matter how many gluons are in the chain. The
inevitable fluctuations in gluon position in directions
transverse to the line defined by the q̄q pair will only
increase this interaction energy. It would then appear that
the lowest energy state is the zero gluon state j0iq̄q, and we
have already seen that the string tension of this state is four
times larger than the asymptotic string tension.
However, this conclusion ignores the fact that a state

with n-constituent gluons is not an eigenstate of the
Coulomb gauge Hamiltonian. There will obviously be
matrix elements of the Hamiltonian connecting states with
different numbers of constituent gluons, and it is interesting
to consider, even at a very crude and qualitative level, what
the effect of those off-diagonal elements might be.3

Let us define the operator

~AiðxÞ ¼
Z

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞ

p
AiðkÞeik·x; ð13Þ

where AiðkÞ is the Fourier transform of the position-space
operator AiðxÞ ¼ Aa

i ðxÞTa, and ωðkÞ depends on the
transverse gluon propagator. For a free massless field,
ωðkÞ ¼ jkj. Then we define an n constituent-gluon state to
be a state of the form

jniq̄q ¼ q̄†i ð0Þψ ij
n ½A; f�q†jðRÞj0ivac; ð14Þ

where

ψ ij
n ½A; f� ¼

Z
d3x1d3x2…d3xnf

ðnÞ
k1k2…kn

ðx1; x2;…; xnÞ

× ½ ~Ak1ðx1Þ ~Ak2ðx2Þ… ~AknðxnÞ�ij: ð15Þ

Color matrix indices are contracted such that the n-gluon
state is invariant with respect to global color rotations,
which are consistent with the Coulomb-gauge condition.
We can suppose that the quark and the antiquark lie a
distance R apart along the z axis. If the function f is
such that it is large when the ordering of gluon fields along
the z axis corresponds to their color ordering, i.e. when
0 < z1 < z2 < … < R, and is strongly suppressed when
this ordering is violated, then we will refer to jniq̄q as a
gluon chain state. Moreover, for the reason mentioned
above, in order to bound the Coulomb energy the fluctua-
tions in gluon position transverse to the z axis should not be
too large, so that the n-gluon operators are contained in a
roughly cylindrical region of some kind. A simple example
of a function with these properties is

fðnÞk1k2…kn
ðx1; x2;…; xnÞ ¼ δk13δk23…δkn3θðz1Þθðz2 − z1Þ

× θðz3 − z2Þ…θðR − znÞ

× exp

�
−
1

8
a2

Xn
i¼1

ðx2i þ y2i Þ
�
:

ð16Þ

The constant a can be regarded as a variational parameter.
This is not necessarily the optimal choice for fðnÞ, and of
course one can consider other more complicated functions
containing many parameters. But it will serve to illustrate
what we have in mind.
Having settled on some choice for the fðnÞ, we can in

principle orthogonalize and normalize a finite set of N
states fjniq̄q; n ¼ 0;…; Ng by, e.g., the Gram-Schmidt
procedure. Let us denote the resulting set of states
fj ~ni; n ¼ 0; 1…; Ng, with Hamiltonian matrix elements

Hnm ¼ h ~njHj ~mi: ð17Þ

The prescription is then to diagonalize this finite matrix.
The lowest eigenvalue provides us with an estimate of the
energy of the q̄q state. The Hamiltonian matrix elements
can be determined from the finite-time amplitude

TnmðtÞ ¼ q̄qhnje−Htjmiq̄q; ð18Þ

or, stripping away irrelevant Dirac indices, the correlator

TnmðtÞ ¼ hTr½Ltð0Þψn½Aðx; 0Þ; f�L†
t ðRÞψ†

m½Aðx; tÞ; f��i:
ð19Þ

Tnmð0Þ gives us the information required to construct a set
of normalized, orthogonal states

j ~ni ¼
XN
m¼0

Cnmjmiq̄q; ð20Þ

while the time derivative

−lim
t→0

d
dt

TnmðtÞ ¼ q̄qhnjHjmiq̄q ð21Þ

contains the rest of the information required to construct
Hnm, i.e.

Hnm ¼
X
j

X
k

C�
nj

	
−lim

t→0

d
dt

TjkðtÞ


Cmk: ð22Þ

For the sake of simplicity, let us imagine that the n-gluon
constituent states are already a set of orthonormal states, i.e.
j ~ni ¼ jniq̄q. The diagrams contributing to TnnðtÞ which are
responsible for the kinetic and Coulombic contributions to
Hnn are sketched in Figs. 5(a) and 5(b). Here the wavy lines

3For some earlier discussions of how constituent gluons might
lower the Coulomb string tension, see [8–9].
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are transverse gluon propagators. The blob is the Coulomb
propagator, i.e. the vacuum expectation value (VEV) of the
K operator. At each end of this propagator one can attach
either the fermion charge operator ρaq=q̄ðxÞ (which in turn
attaches to an external heavy quark or Wilson line), or the
gluonic charge operator ρagðxÞ whose field operators con-
nect to constituent gluons in the initial and final states, as
indicated in the figure.
The kinetic energy of the n-gluon state derives from

the time derivative of the diagram in Fig. 5(a). A rough
estimate of this energy, for a wave function of the type
shown in (16), goes as follows: The uncertainty in position
of the gluon along the z axis is approximately R=n, while
the uncertainty in the transverse directions is

ffiffiffi
2

p
=a. For a

massless gluon, ignoring modifications that might arise
from the Gribov form of the propagator, the total kinetic
energy is

Ekin ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

R2
þ a2

r
: ð23Þ

In the appendix we explain the relationship between this
estimate and n-particle state defined in (14)–(16).
The Coulomb energy due to interactions between n

nearest-neighbor gluons is proportional to their average
separation, and originates from diagrams of the type shown
in Fig. 5(b). For n-constituent gluons the average separa-
tion (ignoring transverse fluctuations) is roughly R=ðnþ1Þ,
so the Coulomb energy for a nearest-neighbor pair is
about σcR=ðnþ 1Þ. There are nþ 1 diagrams of the type
in Fig. 5(b) (counting interactions with the external lines),
so summing all intergluon separations we have ECoul≈
σcR. Then we can estimate the diagonal matrix element as

Hnn ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

R2
þ a2

r
þ σcR: ð24Þ

We do not know much about the off-diagonal elements,
except that, counting interactions with the external sources,
there are nþ 1 diagrams of the form shown in Fig. 5(c)
which contribute to Hn;nþ1. However, each of these dia-
grams is a function of the average gluon separation, and
assuming some simple power dependence on average
separation we would have, adding up all nþ 1 diagrams,

Hn;nþ1 ¼ Hnþ1;n ¼ ðnþ 1Þα
�

R
nþ 1

�
p
; ð25Þ

where α is some dimensionful constant, and p is an
unknown (positive or negative) power. We will neglect
for now all other off-diagonal elements. It will be
convenient, for display purposes, to adopt units such
that σc ¼ 1 in addition to the usual choice of ℏ ¼ c ¼ 1.
We can now truncate the basis and, for some choice of
α; a; p, extract the lowest eigenvalue of Hmn. This is the
potential VðRÞ of the lowest energy state available in the
truncated basis.
In Fig. 6 we show the potential VðRÞ which is obtained

for a choice of parameters a ¼ 0.3; α ¼ 0.7, and a variety
of powers −0.5 ≤ p ≤ 0.7. In this figure the top line, which
has a slope ¼ 1, is the nonperturbative Coulomb potential
VðRÞ ¼ σcR in units σc ¼ 1. What is striking in this plot is
that the potential for the lowest energy state is linear in R,
regardless of the power p, and even regardless of the overall
sign of the off-diagonal element. In addition, the string
tension in each case is lower than σc by factors ranging
from 1.6 to 6.7. The string tension for any p can be adjusted
by adjusting the parameters, but the point here is that the
gluon chain result is robust: the linearity of the static quark
potential, and the fact that the string tension can be much
lower than the Coulomb string tension, seems to be generic
in this setup, for a large range of power behavior in the off-
diagonal term Hn;nþ1. For the data in the figure we have
chosen to cut off the basis at n ¼ Ncut ¼ 100, but in fact

(a) (b) (c)

FIG. 5. Diagrams which, after a time derivative, contribute to Hamiltonian matrix elements. (a) The graph which determines the
kinetic energy of constituent gluons, contributing to Hnn. (b) One of the graphs determining the Coulomb energy of the n-gluon
state, also contributing to Hnn. The blob labeled “K” is the instantaneous gluon propagator hKi. (c) Schematic of a graph
contributing to an off-diagonal element Hn;nþ1. Here one of the A-field operators in the Coulomb operator KðAÞ contracts with a
gluon in the final state.
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this is not necessary. At the smaller values of R a cutoff at
much smaller n will not change the results, and in general
one can choose a cutoff which grows linearly with R. This
is illustrated in Fig. 7, where we plot, at R ¼ 30 and
p ¼ 0.5, the lowest energy eigenvalue of the truncated
Hamiltonian matrix, VðRÞ, as a function of the truncation at
n ¼ Ncut in the number of basis vectors jniq̄q.
Of course there is no guarantee that further off-diagonal

terms, i.e.. Hn;nþm for m ≥ 2, are negligible, and it is not
clear how such terms would change the picture. Ultimately
it will be necessary to estimate such terms, and we hope to
return to this issue in a later publication. But, at a minimum,
we have seen that it is not difficult to understand how the
asymptotic string tension could be several times smaller
than the Coulomb string tension. In fact, in the context of
the simple model presented above, this effect seems to be
natural.

IV. CONCLUSIONS

We have shown that for SU(3) lattice pure-gauge theory
the Coulomb potential in Coulomb gauge has the long-
distance behavior (R in fm)

VcðRÞ ¼ σcR − ð0.197 GeV-fmÞ γ
R
; ð26Þ

where

σc ¼ 4.03ð8Þ Gev=fm ¼ ð891ð9ÞMeVÞ2; ð27Þ

which is a little more than four times the accepted value
of ð440 MeVÞ2 for the asymptotic string tension. Our
value for σc is taken from the data point at β ¼ 6.4;
a ¼ 0.051 fm, where the data appear, from Fig. 4, to have
converged to the a → 0 limit. The dimensionless constant γ
seems consistent, for unknown reasons, with the coefficient
π
12
of the Lüscher term. We have also shown, in the context

of a very simple model based on the gluon chain picture,
how the string tension of the lowest energy state with static
q̄q sources, which we take to be the asymptotic string
tension, can be so much smaller than the Coulomb string
tension.
It would be interesting to attempt a more quantitative

treatment of flux tube formation and, perhaps, heavy
meson physics, using Coulomb, ghost, and gluon propa-
gators taken from Monte Carlo simulations to estimate
Hamiltonian matrix elements in a finite basis. We hope to
report on work along these lines at a later time.
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APPENDIX KINETIC ENERGY IN THE
GLUON CHAIN

In this appendix we explain the relationship between a
gluon chain state (14)–(16) and the rough estimate for
gluon kinetic energy (23). It will simplify the discussion to
ignore vector and color indices as well as interactions, so let
us consider a free massive scalar field with many flavors,
with flavor 1 associated with position x1, flavor 2 asso-
ciated with position x2, and so on, and define the N-particle
state

jNi ¼ ψN ½ϕ; f�j0ivac; ðA1Þ

where
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simplemodel outlined in the text, for fixed parameters α ¼ 0.7; a ¼
0.3 and various powers p in the off-diagonal Hamiltonian matrix
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Coulomb potential, which has slope ¼ 1 in these units.

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30  35  40  45  50

V
(R

=
20

)

Nmax

FIG. 7 (color online). Dependence of the static potential on
number of n-gluon basis states in the model calculation. Here
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ψN ½ϕ; f� ¼
Z

d3x1d3x2…d3xnfðx1; x2;…; xNÞ

× ~ϕ1ðx1Þ ~ϕ2ðx2Þ… ~ϕNðxnÞ; ðA2Þ

and where the subscripts denote flavors. We assume the
function f is normalized, i.e.

Z �YN
n¼1

d3xn

�
f�ðx1; x2;…; xNÞfðx1; x2;…; xNÞ ¼ 1:

ðA3Þ

The scalar field operators are ϕnðxÞ, or ϕnðkÞ in momentum
space, and

~ϕnðxÞ≡
Z

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffi
2ωk

p
ϕnðkÞ ðA4Þ

with ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. Propagators are

Dijðx − y; tÞ ¼ hϕiðx; tÞϕjðy; 0Þi ¼ δijDðx − yÞ

¼ δij

Z
d3k
ð2πÞ3

eik·ðx−yÞe−ωkt

2ωk
ðA5Þ

and

~Dijðx − y; tÞ ¼ h ~ϕiðx; tÞ ~ϕjðy; 0Þi

¼ δij

Z
d3k
ð2πÞ3 e

ik·ðx−yÞe−ωkt: ðA6Þ

If fðNÞ is normalized, then so is jNi:

hNjNi ¼
Z 	YN

n¼1

d3x0nd3xn



f�ðx01;…; x0NÞfðx1;…; xNÞ

× h ~ϕ1ðx01; 0Þ ~ϕ2ðx02; 0Þ… ~ϕNðx0N; 0Þ ~ϕ1ðx1; 0Þ ~ϕ2ðx2; 0Þ… ~ϕNðxN; 0Þi

¼
Z 	YN

n¼1

d3x0nd3xn



f�ðx01;…; x0NÞfðx1;…; xNÞ ~Dðx01 − x1; 0Þ ~Dðx02 − x2; 0Þ… ~Dðx0N − xN; 0Þ

¼
Z 	YN

n¼1

d3xn



f�ðx1;…; xNÞfðx1;…; xNÞ

¼ 1: ðA7Þ

Then, to compute the energy expectation value

hNjHjNi ¼ −lim
t→0

d
dt

hNje−HtjNi

¼ −lim
t→0

d
dt

Z 	YN
n¼1

d3x0nd3xn



f�ðx01;…; x0NÞfðx1;…; xNÞh ~ϕ1ðx01; tÞ ~ϕ2ðx02; tÞ… ~ϕNðx0N; tÞ ~ϕ1ðx1; 0Þ

× ~ϕ2ðx2; 0Þ… ~ϕNðxN; 0Þi

¼ −lim
t→0

d
dt

Z 	YN
n¼1

d3x0nd3xn



f�ðx01;…; x0NÞfðx1;…; xNÞ ~Dðx01 − x1; tÞ ~Dðx02 − x2; tÞ… ~Dðx0N − xN; tÞ

¼
Z �YN

i¼1

d3ki
ð2πÞ3

��X
n

ωkn

�
F�ðk1;…; kNÞFðk1;…; kNÞ

¼
XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2nx þ k2ny þ k2nz þm2

q* +* +
ðA8Þ

where Fðk1…kNÞ is the Fourier transform of fðx1…xNÞ, and the …h ih i symbol indicates an ordinary quantum mechanics
expectation value in the N-particle wave function specified by f.
A first approximation is to take the expectation values inside the square root
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hNjHjNi ≈
XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhk2nxii þ hhk2nyii þ hhk2nzii þm2

q

¼
XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δk2nx þ Δk2ny þ Δk2nz þm2

q
: ðA9Þ

Applying the approximate relation Δknx ≈ 1=Δxn, where
Δxn is the positional uncertainty of the nth particle in wave
function f, we can estimate that

hNjHjNi ≈
XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Δx2n
þ 1

Δy2n
þ 1

Δz2n
þm2

s
: ðA10Þ

Finally, if f represents a chain state analogous to (16), then
transverse fluctuations Δxn ¼ Δyn ¼ ρ are approximately
the same for each of the N constituent particles, and
Δzn ≈ R=N. Then we have

hNjHjNi ≈ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

R2
þ 2

ρ2
þm2

s
: ðA11Þ

For a massless particle, this is the kinetic energy estimate
given in (23).
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