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The propagators of the elementary degrees of freedom of (minimal-)Landau-gauge Yang-Mills theory
have been a useful tool in various investigations. However, in lattice calculations they show severe
dependencies on lattice artifacts. This problem has been addressed for various subsets of lattice artifacts and
various subsets of propagators over time. Here, an extended study of all propagators in momentum space,
and for the gluon also in position space, as well as derived quantities like the running coupling, is provided
simultaneously for two, three, and four dimensions over one or more orders of magnitude in both physical
volume and lattice spacing, in lower dimensions also over more than 2 orders of magnitude for the gauge
group SU(2). Most of the known qualitative results are confirmed, but two quantities also indicate a slight,
but possibly interesting deviation.
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I. INTRODUCTION

The propagators of the elementary degrees of freedom of
(minimal-Landau-gauge) Yang-Mills theory, the gluon
propagator and the ghost propagator, have been a subject
of intense study over the past 15 years, see [1–6] for
reviews. The reason for this interest is that the propagators
hold themselves interesting information on the structure of
the theory and are also building blocks, e.g. in functional
methods, to determine experimentally accessible quantities.
Lattice calculations have been one of the main methods to
study them, ever since the pioneering works of [7,8].
Unfortunately, it turns out that these propagators are

quite sensitive to lattice artifacts, especially in terms of
volume, but also in terms of the discretization. This has
been established in a long series of investigations
[1,5,9–29]. The result of these investigations was that
the gluon propagator is infrared finite in three and four
dimensions, but vanishing in two dimensions. At the same
time, the ghost propagator is in three and four dimensions
close to the one of a free particle, while it is stronger
enhanced in two dimensions. These results are reviewed in
[1–6], including also the wealth of results from continuum
methods, which will not be detailed here. This result
applies to the case of minimal Landau gauge [1]. A
different way of choosing Gribov copies may lead to
different results, but since any alternative is much more
expensive in terms of computational time, results have not
yet been available for as large a range of lattice parameters
as for the minimal Landau gauge. This will also not be the
subject of the present investigation, but will be treated in an
upcoming separate one [30].
Most of these investigations have concentrated on the

gluon propagator in momentum space. Compared to the
gluon propagator, lattice artifacts for the ghost propagator
and the gluon Schwinger function have been much less
studied. As a consequence, also the running coupling,

which can be determined from the propagators, has not yet
been explored in as great a detail, except at rather large
momenta on (comparatively) small lattices.
While it is not expected that there is still any qualitative

change to be found, this situation is not satisfactory from
the point of view of applications. Especially the running
coupling is of prime importance when coupling to quarks
[2–4]. Precision information is therefore highly valuable,
e.g. to constrain quantitatively truncations in functional
methods.
To provide such a systematic study is therefore the aim of

the present paper. The lattice setups and methods will be
presented in Sec. II, with renormalization treated in Sec. III.
Two particular kinds of derived lattice artifacts are then
highlighted in Secs. IV and V, before the gluon and ghost
propagator results are discussed in detail in Secs. VI and
VII. The running coupling, and in four dimensions also the
β-function, are finally analyzed in Sec. VIII.
The reason for choosing the gauge group SU(2) for this

study is primarily its cheapness in simulations. For larger
groups such an extensive study would not have been
possible with the available resources. Moreover, so far
no significant qualitative difference has been found in
comparison to other gauge groups for the quantities studied
here [1,15,17,19,24,31–33]. The reason for studying two,
three, and four dimensions is different. On the one hand, it
is possible to study a much larger parameter range in lower
dimensions due to reduced numerical costs. Second, both
lower dimensional theories have properties which make
them uniquely different from four dimensions. Two dimen-
sions appear to show a qualitatively different infrared
behavior [1,14,17,19], which will also be confirmed here.
The natural question is, whether this introduces a different
dependency on lattice artifacts. Three dimensions show a
behavior quite similar to four dimensions [1,17,19].
However, no renormalization is necessary in three dimen-
sions, as all correlation functions are finite. It is therefore

PHYSICAL REVIEW D 91, 034502 (2015)

1550-7998=2015=91(3)=034502(30) 034502-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.034502
http://dx.doi.org/10.1103/PhysRevD.91.034502
http://dx.doi.org/10.1103/PhysRevD.91.034502
http://dx.doi.org/10.1103/PhysRevD.91.034502


possible to study whether the lattice artifacts show a
different behavior in the presence of renormalization.
The answer appears to be mostly no, as will be discussed
in detail below.

II. SETUP

The lattice simulations have been performed in two,
three, and four dimensions using the standard SU(2)
Wilson action,1 using the methods described in [35] with
a combination of over-relaxation and heat-bath sweeps. A
lattice-volume-dependent and dimension-dependent num-
ber of updates have been discarded for thermalization and
decorrelation. Unfortunately, gauge fixing prevents a reli-
able determination of autocorrelation time for gauge-fixed
quantities, as two differing Gribov copies do not have
necessarily the same correlation for gauge-dependent
quantities. Therefore, the numbers have been chosen rather
large, Oð100Þ between measurements and Oð1000Þ for
thermalization. Furthermore, all results have been obtained
from Oð10–100Þ independent runs to further reduce auto-
correlation artifacts. Where possible, enough statistics was
created to obtain less than 10% statistical error for the
effective ghost infrared exponent determined with the
methods described in [14], and defined below in (10).
In a discussion of lattice artifacts it is also necessary to

mention that lattice algorithms tend to get stuck towards the
continuum limit in a sector of fixed topological (net)charge
[36]. This could potentially affect the propagators, but there
is evidence that they do not depend on the topological
charge [1,30,37]. Therefore, no measures will be taken here
to avoid this problem, except for making many independent
runs with long decorrelation times for each lattice setup.
To determine the lattice spacing a, interpolations of the

results for the string tension for four dimensions from [38]
and for three dimensions from [39] have been used. In two
dimensions the exact (infinite-volume) formula from [40]
has been used. The employed value of the string tension is
σ ¼ ð440 MeVÞ2 in all dimensions. This gives the follow-
ing formulas for the lattice spacing:

a2dðβÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ln I2ðβÞ

I1ðβÞ
σ

s
;

a3dðβÞ ¼
1 GeV
σβ

�
1.337þ 0.95

β
þ 1.1

β2

�
;

a4dðβÞ ¼
1 GeV
σβ

�
31.85 −

237.1
β

þ 574.4
β

−
444.3
β3

�
;

where the formula in three dimensions is from [39] and Ii
are the ith Bessel functions. These captured for the
employed range of β, 6.75–27000 in two dimensions,
3.48–46.9 in three dimensions, and 2.19–2.861 in four

dimensions, the quantity aðβÞ sufficiently well. This was
monitored by the dependence of the plaquette on a, which
showed a smooth behavior.2 This range of β corresponds to
lattice spacings starting always with 0.22 fm down to
0.0033 fm in two dimensions, 0.013 fm in three dimen-
sions, and 0.029 fm in four dimensions, spanning therefore
between 1 and 2 orders of magnitude.
The set of physical parameters for all dimensions d

employed for the present investigation are displayed in
Fig. 1. The symmetric lattice volumes Nd range between
10–406 in two dimensions, 8–88 in three dimensions, and
6–34 in four dimensions. This corresponds to physical
volumes V ¼ Ld ¼ ðaNÞd ranging between always
ð0.9 fmÞd to ð53 fmÞ2 in two dimensions, ð15 fmÞ3 in
three dimensions, and a rather small ð6 fmÞ4 in four
dimensions. Thus, compared to the large volume results
on coarse lattices of [15–17,19,42], the present investiga-
tion is somewhat restricted, especially in four dimensions.
Once the configurations had been obtained, they were

fixed to the minimal Landau gauge [1] using self-adjusting
stochastic over-relaxation [35]. This gauge-fixing pro-
cedure shows in itself an interesting behavior, as the
efficiency is highly configuration dependent. In fact, the
maximum number of gauge-fixing sweeps is usually 1 to 2
orders of magnitude larger than the average, while the
minimum number is usually at least a factor of 2 or more
smaller than the average one. Also, it turns out that the
optimal tuning parameter is highly configuration, and
probably Gribov copy, dependent. Given that the gauge
fixing itself is usually one of the most expensive operations
in investigations of gauge-fixed correlation functions, it
would therefore be likely a worthwhile endeavor to develop
an algorithm which adapts to a configuration. However, it
would then have to be ensured that this does not alter the
way Gribov copies are selected, as this would alter the
nonperturbative completion of Landau gauge, at least on
any finite lattice [1].
The average performance of the gauge-fixing algorithms

in general, and of the one used here in particular, has long
been known to show critical slowing down at fixed
discretization [43]. This has been investigated here for
the much larger set of different lattice settings. The result
for the average number of gauge-fixing sweeps is shown in
Fig. 2. It is seen that after some initial stage at small
volumes and coarse discretizations the average number
indeed behaves like a power law, in both volume and
discretization. The results are somewhat noisy, and there-
fore no attempt has been made to extract a critical exponent.
Finally, the gluon propagator and the ghost propagator in

both position and momentum space were determined using

1See [34] for similar calculations using an improved action.

2There are indications that a lattice bulk transition exists in the
lower-dimensional cases in these regions of β [41]. The results
here did not show any impact due to the possible presence of such
a transition, except in the form of larger statistical fluctuations in
this range of β values.
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FIG. 1. The lattice settings employed, in physical units, for two dimensions (top panel), three dimensions (middle panel), and four
dimensions (bottom panel).
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the methods of [35]. This implies that the standard
definition of the gluon fields

Aa
μ ¼

ffiffiffi
β

p
4ia

trτaðUμ − Uþ
μ Þ þOða2Þ ð1Þ

from the links Uμ has been used, where τa are the Pauli
matrices. The ghost propagator has been determined using
a conjugate gradient inversion on a point source of the
Faddeev-Popov operator [44]. Thus, quantitatively, the
results found here strictly speaking only apply to precisely
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FIG. 2. The average number of gauge-fixing sweeps against lattice extension and lattice spacing, for two dimensions (top panel), three
dimensions (middle panel), and four dimensions (bottom panel).
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these definitions of the propagators. However, in the
continuum limit and for infinite statistics, these should
yield the same results as any other procedure.
Throughout, since the propagators appear to be color

diagonal3 [31], only the color-averaged results will be
presented. For the gluon also the trivial Landau-gauge
Lorentz tensor structure will be removed, such that only a
scalar function remains. Finally, the negative ghost propa-
gator [1,8] will be multiplied by −1 to make it positive.
This leaves the two positive, scalar propagators D and DG

for the gluon and the ghost, respectively.

III. RENORMALIZATION

In four dimensions, the propagators are formally diver-
gent for all momenta because of the (with the cutoff
logarithmically) divergent wave-function renormalization
constant. Hence, it is necessary to renormalize them. This
can be achieved by a multiplicative factor. For the sole
purpose of displaying the individual propagators, the two
renormalization constants Z3 and ~Z3 of the gluon and ghost,
respectively, can be chosen independently. But they are not
independent, and related by the condition

Z3
~Z2
3 ¼ 1; ð2Þ

if the finite ghost-gluon vertex renormalization constant is
chosen to be one, the so-called miniMOM scheme [45,46].
From this follows that the running coupling is a renorm-
alization-group-invariant in the continuum [45]. In princi-
ple, it would therefore be expected that using this relation
would correctly renormalize both propagators when choos-
ing an arbitrary renormalization point μ. However, because
both propagators are affected in a different way by lattice
artifacts, particularly finite volume effects, this is no longer
true on a finite lattice.
To address this constructively, the propagators will be

renormalized independently at some given μ in the sections
where they are discussed separately, i.e. Secs. VI and VII.
For the purpose of the running coupling in Sec. VIII, the
validity of the constraint (2) will not be enforced, and
renormalization is performed such that lattice artifacts are
minimized.
In two and three dimensions, the wave-function renorm-

alization constants in Landau gauge are finite. Hence,
in lower dimensions no renormalization is necessary.
However, a multiplicative tadpole correction can be used
to improve the approach to the continuum limit for the
propagators [12,47]: By multiplying the propagators with a
particular power of the plaquette expectation value hPi,
−1=2 for the gluon and 1=4 for the ghost, respectively, this
reduces discretization errors. In four dimensions, this effect
is absorbed in the renormalization, but it is relevant for the

lower dimensions, especially when considering Dð0Þ in
Sec. VI. The typical size of these corrections at a lattice
spacing of Oð0.1 fmÞ is of the order of 5%–10%, depend-
ing on the dimensionality. This effect therefore substan-
tially influences the (logarithmic) running of the
renormalization constants in four dimensions.
Note that these factors cancel out, as a consequence

of (2), for the running coupling in any dimension.

IV. CENTER DEPENDENCE

It has been remarked early on [9,48] that the definition of
the gluon field (1) is not blind to the center charge, i.e. the
values of the Polyakov loops of a configuration. If (1) is
regarded as an expansion around a unit link in powers of the
lattice spacing a, this expression cannot be true for all links
if a configuration is not in the trivial center sector, i.e. with
all Polyakov loops being real and positive.
This is most evident in a maximum tree gauge [49] in a

given direction with nontrivial Polyakov loop: Then, all but
one link can be transformed into unity, and hence the gauge-
invariant value of the Polyakov loop in the corresponding
direction has to reside on this link. Hence, for this link the
expansion (1) necessarily fails, if the Polyakov loop is not
trivial. At the same time, this implies that this effect should
become irrelevant at large extensions, as the boundary
should then no longer influence the bulk. Note that this is
thus a lattice artifact: The proper continuum gluon field, and
thus all its finite correlation functions, is a genuine algebra
element, and therefore cannot depend on anything connected
to the center. Note that being in the trivial sector is thus a
necessary, but not a sufficient condition, for (1) to work on
all links. Even in the trivial center sector, some links can still
fluctuate far away from unity. A genuine resolution of this
problem would require to isolate the algebra element
directly, rather only up to lattice artifacts, e.g. using stereo-
graphic projection or a logarithmic definition [50,51].
However, in Landau gauge no such simple argument can
be made, and hence it is unclear whether possible artifacts
arise due to the use of (1), rather than such a more
sophisticated determination of the gauge fields.
Nonetheless, this subtlety is usually ignored in finite-

volume calculations and/or assumed to be irrelevant, using
(1) indiscriminately. If this assumption would not be
correct, this would represent an additional systematic error.
Here, this assumption will be tested. This will be done with
the following procedure: Measure the (gauge-invariant) d
Polyakov loops in all directions [49]. Then fix to Landau
gauge, and determine the propagators for either all
Polyakov loops positive, all negative, or without selection.4

3This has been checked once more explicitly in the present
work for all lattice settings.

4In fact, the correct gauge group in the full standard model is
SðUð3Þ × Uð2ÞÞ ∼ SUð3Þ=Z3 × SUð2Þ=Z2 × Uð1Þ, and all center
factors have to be divided out [52]. Thus, in the standard-model
case such a sorting is trivial, and always yields the sector with all
Polyakov loops positive.
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Since this does not take into account the distribution of the
local center phase over the configuration on a per-link
basis, this can at best give a lower limit of the effect.
The result is shown in Fig. 3. Especially the gluon

propagator differs, depending on whether all directions are
in the positive, mixed, or negative sectors. It is also visible
that the center dependence not only becomes irrelevant at
large physical volumes, as expected, but also at large
momenta, and that the effect on the ghost propagator is
almost negligible. Investigating the volume dependence, in
two dimensions, the effect became, within statistical
accuracy, irrelevant for volumes larger than ð5 fmÞ2, in
three dimensions for volumes larger than ð4 fmÞ3, and in
four dimensions for volumes larger than ð2.5 fmÞ4. At
smaller volumes even very fine discretizations do not
remove the effect, increasing (decreasing) the gluon propa-
gator in the negative (positive) center sectors substantially
at low momenta. It is also seen that the propagator in the
positive center sector is, as expected, closest to the one into
which the propagators in the different sectors merge for
sufficiently large volumes.

This also implies that at finite temperature along the
compactified direction, care is necessary. As a conse-
quence, there always the propagator in the positive sector
is calculated, as there the links are, at least on the average,
closest to one [48]. In fact, above the phase transition,
clusters of the same local center phase fill up essentially the
whole space above the phase transition [53,54].
At zero temperature, this may hence be considered an

esoteric and irrelevant effect. However, heat-bath algo-
rithms are not very efficient in changing center sectors, if
the volume is small. Thus, if the statistics is too small, or
results are only from one or few runs, a considerable bias
may exist, which could alter the results, as seen in Fig. 3. In
the present investigation, simulations at small volumes
have been started from a cold configuration, such that the
majority of configurations is in the trivial center sector.
However, in general it has to be ensured that no artifacts
due to this problem arise in small-volume simulations.
Note that the observation has been made that the

propagators also depend on the center aspects, if during
gauge-fixing nonperiodic gauge transformations are

p [GeV]
0 0.5 1 1.5 2

]
-2

D
(p

) 
[G

eV

0

1

2

3

4

5

6

7

8
, a=0.034 fm3Without center selection, V=(1.8 fm)

, a=0.034 fm3All positive sector, V=(1.8 fm)

, a=0.034 fm3All negative sector, V=(1.8 fm)

, a=0.18 fm3Without center selection, V=(7.9 fm)

,  a=0.18 fm3All positive sector, V=(7.9 fm)

, , a=0.18 fm3All negative sector V=(7.9 fm)

Gluon propagator: Center dependence

p [GeV]
0 0.5 1 1.5 2

(p
)

G
D2 p

1

1.5

2

2.5

3

3.5

4

Ghost dressing function: Center dependence

FIG. 3 (color online). The impact of the selection of various center sectors on the gluon propagator (top panel) and the ghost dressing
function (bottom panel). All momenta are along the x-axis. 1σ-error bars here and hereafter are always shown, but may be smaller than
the symbols. Results are from three dimensions.
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included, which essentially are an algebra-valued gauge
transformation in combination with a center transforma-
tion, locking both independent [52] symmetries [9,55].
Since the gauge fixing is performed for the links, rather
than for the algebra fields itself, this will change the gauge
conditions on the level of Gribov copies, though not at
the level of the perturbative Landau-gauge condition
∂μAa

μ ¼ 0, by construction [9,55]. Since this is a boundary
effect, it would naively be expected that this effect should
diminish with increasing volume. However, this is a
question beyond the scope of this investigation.

V. ROTATIONAL SYMMETRY

One of the trade-offs made for performing lattice
simulations is to give up rotational symmetry at finite
lattice spacing. As a consequence, momenta in different
directions are not necessarily equivalent anymore. Naively,
it would be expected that this only affects the large

momenta behavior, as this is most felt when probing
distances where the lattice spacing is becoming of similar
sizes as the employed energies. However, because the
Landau gauge condition is equivalent to minimizing the
per-configuration momentum integral of the gluon propa-
gator [56], gauge fixing can potentially mix infrared,
intermediate, and ultraviolet degrees of freedom, and
therefore also an effect at low momenta cannot be excluded.
In fact, throughout the rest of the paper this will be seen
repeatedly. Such effects have been been investigated in the
past, see e.g. [9,12,14,35,46,57,58], and are found to be
most pronounced when investigating the dressing functions
ZðpÞ ¼ p2DðpÞ and GðpÞ ¼ p2DGðpÞ.
In a sense, the most extreme differing cases are those

where the momenta are either along an axis, which will be
chosen here to be conventionally the x-axis, or along the
space-time diagonal. The impact of choosing these different
momenta are shown for some example lattice setups in
Figs. 4–6. Comparing also space or area diagonals, for
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FIG. 4 (color online). The impact of the violation of rotational symmetry in two dimensions. The top panel shows the gluon dressing
function, and the bottom panel the ghost dressing function. Closed symbols are along the x-axis, and open symbols are along the xy-axis.
Note that for better visibility the results for different lattice spacings have been rescaled by constant factors.
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dimensionalities were this is possible, indeed confirms that
the largest difference is for the two axes chosen.
The results show that for the gluon propagator the

consequences of violation of rotational invariance are
strong, and become stronger the higher the momenta.
Only above a−1 ⪆ 3 GeV, or a⪅ 0.06 fm, the effects
become so small as that rotational symmetry is effectively
restored. It is, to some extent, expected that the effects
become stronger the higher the dimension, as the effective
length of the largest diagonal of an elementary lattice cube
increases, and thus the distance over which the lattice
substructure can be felt becomes larger.
The effects for the ghost propagator are less severe,

probably because it is a scalar particle. However, some of
the remaining effects may be due to the choice of a point
source, and may differ for a plain wave source [35].
Nonetheless, again at large momenta the diagonal direction

gives the best continuum prediction, but here already a
lattice spacing of ð2 GeVÞ−1=0.1 fm seems to be sufficient
to restore effectively rotational symmetry.
The finer the discretization, the more the result along the

x-axis tends to the one along the diagonal. Therefore,
investigations at large momenta should use the diagonal
momentum direction. At small momenta, however, no
distinct difference is found, as expected. Thus there
momenta along the x-axis, which permit to go to smaller
momenta, are preferable. In the following, high and low
momentum behavior will therefore be discussed separately,
using the momentum direction more appropriate.
Of course, an alternative is to select only momenta which

are least affected by the violation of rotational symmetry,
e.g. by a cylinder cut [59] or more advanced methods
[28,60,61]. Selecting instead those momentum directions
which are least affected, however, increases the effective
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FIG. 5 (color online). The impact of the violation of rotational symmetry in three dimensions. The top panel shows the gluon dressing
function, and the bottom panel the ghost dressing function. Closed symbols are along the x-axis, and open symbols are along the
xyz-axis. Note that for better visibility the results for different lattice spacings have been rescaled by constant factors.

AXEL MAAS PHYSICAL REVIEW D 91, 034502 (2015)

034502-8



range of momenta accessible on a given lattice, and
therefore makes more use of the available computing
power to analyze the extremes of momenta.

VI. GLUON PROPAGATOR

A. Ultraviolet

The ultraviolet behavior of the gluon dressing function is
expected to be dominated by perturbation theory. This does
not imply that there are no nonperturbative contributions.
However, they are expected to be polynomially suppressed
compared to the (leading) perturbative contribution. This
leading perturbative contribution is given [for the present
SU(2) case] to leading resummed order by [1]

p−2D2dðpÞ−1 ¼ 1þ cg2

p2
; ð3Þ

p−2D3dðpÞ−1 ¼ 1 −
22g2

64p
; ð4Þ

p−2D4dðpÞ−1 ¼
�

33g2

208π2
log

�
p2

μ2

�
þ 1

�13
22

; ð5Þ

where g is the coupling constant, dimensionful in two and
three dimensions. The value of g is, in principle, the one
independent external parameter of the theory. Since per-
turbation theory fails in two dimensions due to infrared
singularities, the constant of proportionality c cannot be
determined. In a sense, it is strictly nonperturbative, and the
behavior follows just from dimensional analysis and
asymptotic freedom. In three dimensions, such incurable
infrared singularities appear only at higher order [62].
Thus, when they would start to mix with the
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FIG. 6 (color online). The impact of the violation of rotational symmetry in four dimensions. The top panel shows the gluon dressing
function, and the bottom panel the ghost dressing function. Closed symbols are along the x-axis, and open symbols are along the xyzt-
axis. Note that for better visibility the results for different lattice spacings have been rescaled by constant factors, and the results have
been renormalized at 2 GeV.
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FIG. 7 (color online). The dependence of the gluon asymptotics, as isolated from (3)–(5), for the smallest volume and the different
discretizations, in two (top panel), three (middle panel), and four (bottom panel) dimensions.
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nonperturbative contributions, they are strictly speaking
already nonexistent.
In addition, it is also here where the largest impact of

discretization artifacts is expected. This is investigated in
Fig. 7. What is shown are the ultraviolet asymptotics, i.e.
the leading order nontrivial contributions. In two and three
dimensions, these are the polynomial second terms of (3)
and (4), which are left after subtracting the tree-level 1. In
four dimensions, the leading logarithm is isolated, which
will give only the linear behavior seen, if the propagator has
already assumed its one-loop resumed behavior.

Surprisingly, the discretization effect in theses asymp-
totics is very small in two and three dimensions, while it is
more substantial in four dimensions. This may be due to the
absence of renormalization and the trivial manifestation of
asymptotic freedom in the lower dimensions. In any case,
the effects are small, already at discretizations of the order
of 2–3 GeV.
The results for the propagators are shown in

Figs. 8–10 for momenta along the space-time diagonal.
In all cases, the behavior is approaching the leading-order
perturbative one already at 1.5–3 GeV of momenta, for
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FIG. 8 (color online). The gluon dressing function in two dimensions at large momenta along the space-time diagonal, compared to the
leading-order behavior (3) for cg2 ¼ −0.6040−25. On the right-hand side, the leading asymptotic has been isolated.
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FIG. 9 (color online). The gluon dressing function in three dimensions at large momenta along the space-time diagonal, compared to
the leading-order behavior (4) for g2 ¼ 2.05ð5Þ. On the right-hand side, the leading asymptotic has been isolated.
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cg2 ¼ −0.60þ40
−25 GeV2 in two dimensions, g2 ¼

2.05ð5Þ GeV in three dimensions, and gðμÞ ¼ 4.8ð1Þ
(α ¼ g2=ð4πÞ ¼ 1.8ð1Þ) in four dimensions.5 The error
bands are, to some extent, arbitrary, as the deviation could
also stem from high-order or nonperturbative contributions.
Hence, these values are really rather illustrative, to show for
which range of parameters the results are, more or less,
compatible with leading-order behavior at the given level of
statistics. In three and four dimensions, the perturbative
curve uses the same value of g2 as for the ghost case below.
In three dimensions, if one permits different values for the
gluon and the ghost, the coincidence with the data could be
improved. This either indicates significant subleading
corrections or polynomial nonperturbative corrections of
the same order g2=p, though older continuum studies do
not show strong indications of such a behavior [63].
This implies that essentially all nonperturbative infor-

mation is contained in the behavior below 2 GeV, which
will be exclusively investigated below. The resummation
effects in four dimensions, in comparison to lower dimen-
sions, and the presence of an anomalous exponent are also
very clearly visible.
As is visible in Figs. 8–10, there is almost no impact of

the different physical volumes. The discretization errors at
large momenta are mainly dominated by the violation of
rotational symmetry, where the variation between different
momentum axes give an estimate for the systematic
uncertainties. However, in the case of the space-time-
diagonal, there is almost no variation with discretization,
at least within the available statistics. This can again be

seen in Fig. 7, where for the smallest volume the different
discretizations for the leading ultraviolet behavior
are shown.

B. Infrared

The behavior of the gluon propagator and dressing
function below 2 GeV for different volumes are shown
in Figs. 11–13. The results are in agreement with previous
investigations, see e.g. [1] for a list, i.e. the propagator is
infrared vanishing like a power law in two dimensions, and
infrared finite in higher dimensions. It is very visible that
even for rather large volumes [above ð6 fmÞd] substantial
finite volume effects still remain, especially in two dimen-
sions. Nonetheless, in two and three dimensions clearly a
maximum of the gluon propagator arises, while there is no
statistically convincing hint of a maximum in four
dimensions.
To assess better the development, two quantities are of

particular interest. One is the gluon propagator at zero
momentum, the other is the volume-dependent effective
exponent [18], determined in the same way as in [14] from
the ansatz

DðpÞ ∼p≪ΛYMp2t: ð6Þ

The formal prescription to fit the effective exponent is to
discard the two points at the lowest nonvanishing momen-
tum. Then the next five momentum values were used to fit a
power law. To obtain errors, the steepest and shallowest
curve consistent with a 1σ-confidence interval was deter-
mined as well. In three and four dimensions, this exponent
appears to approach zero for sufficiently large volumes,
while it is often expected to approach a value of 0.4 in two
dimensions, based on the arguments in [64,65].
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Gluon dressing function in four dimensions

, a=0.029 fm4 V=(0.86 fm) , a=0.053 fm4 V=(1.7 fm) , a=0.082 fm4 V=(2.6 fm) , a=0.11 fm4 V=(3.5 fm)

, a=0.13 fm4 V=(4.3 fm) , a=0.16 fm4 V=(5.2 fm) , a=0.18 fm3 V=(6.0 fm) , a=0.22 fm3 V=(6.5 fm)

FIG. 10 (color online). The gluon dressing function in four dimensions at large momenta along all the space diagonals for all possible
energy values, compared to the leading-order behavior (5) for g ¼ 4.8ð1Þ. On the right-hand side, the leading asymptotic has been
isolated. The dressing function was renormalized at μ ¼ 3 GeV.

5Note that the coupling constants are not really independent.
By fixing aðβÞ, it is in principle possible to determine the scheme-
dependent value of g. However, in practice this is too complicated
for the present illustrative purpose, and therefore skipped.
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The gluon propagator at zero momentum, including in
lower dimensions the tadpole correction [12,47], is shown
in Fig. 14, while the effective exponent is shown in Fig. 15.
For the gluon propagator at zero momentum, the

behavior is rather smooth, and, when including tadpole
corrections, mostly insensitive to the discretization. This
also implies that without tadpole correction discretization
effects have a sizable impact. It is visible how the value in
two dimensions decays at sufficiently large volume like a
power law [14,18], while it moves towards a constant in
higher dimensions, i.e. how it decays much slower. In all
cases, the infinite-volume limit has not yet been reached.
The rather strong fluctuations in four dimensions is mostly
due to systematic errors, like the breaking of rotational
invariance, which affects the determination of the renorm-
alization constant. There is also the quite interesting result
that in four dimensions the gluon propagator at zero

momentum first increases with volume, before it decreases.
It is this effect which lead to the conjecture of an infrared
divergent gluon propagator in very early lattice studies of
the gluon propagator, when only very small volumes were
available [7].
Concerning the effective exponent, the behavior in four

dimensions is the one expected from previous studies: It
approaches zero for large volumes. It does so from below,
due to the absence of a distinct maximum. Except for some
fluctuations, which come from discretization artifacts when
identifying the points to extract the effective exponent [14],
the exponent in four dimensions is essentially independent
of the lattice spacing. The situation in three dimensions is
somewhat different. Due to the presence of the maximum, it
overshoots the eventual value of zero, and then approaches
it from above. There is a small dependence on the lattice
spacing, which decreases the effective exponent further
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Gluon propagator in two dimensions

p [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2
D

(p
)p

0

0.2

0.4

0.6

0.8

1

1.2

Gluon dressing function in two dimensions

FIG. 11 (color online). The gluon dressing function (top panel) and propagator (bottom panel) at small momenta along the x-axis in
two dimensions. The symbols have the same meaning as in Fig. 8. The function shown is 4.5p2.8 and 4.5p0.8 for the dressing function
and propagator, respectively.
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towards zero when approaching the continuum limit.
Finally, in two dimensions, the exponent appears to be
nonzero. There appears to be only little dependence on the
volume at large volumes, though essentially none on the
discretization. It does not appear to become zero at very
large volumes, as investigations on extremely large lattices
[66] and continuum arguments [42,67] suggest. However,
neither does it appear to reach the expected value of 0.4,
and stays just a little bit smaller. To emphasize this effect,
and a corresponding one for the ghost propagator, see also
below Fig. 22 in Sec. VII B.
This will have some consequences to be seen below in

Sec. VIII. This is a curious result, and somewhat unex-
pected. In previous extractions [14,66] of this quantity, the
statistical and systematic uncertainties were too large to see
this effect, and it can, of course, not be excluded that at
much larger volumes and finer discretizations the exponent
once more rises towards the expected value.

C. Schwinger function

The analytic structure of the gluon propagator has
been a subject of much interest, as it should explain
why gluons cannot be observed as free particles
[1,6,68,69]. To find its full spectral function a solution
in real time would be necessary, a task which has so far
seriously only been approached with continuum methods
[70]. There are indirect possibilities to obtain the spectral
function also from the lattice data [71–73], but those
require either a statistical or systematic precision currently
not available.
However, it is possible to infer such information also

indirectly. One possibility is, of course, to fit it with
functions of known analytic structure, see e.g. [66].
However, this requires a prejudice on the analytic structure,
and because with a finite number of points no unique
statement for a fit can be made, there are always substantial
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FIG. 12 (color online). The gluon dressing function (top panel) and propagator (bottom panel) at small momenta along the x-axis in
three dimensions. The symbols have the same meaning as in Fig. 9.
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systematic errors involved. An alternative is the Schwinger
function [1,68]

ΔðtÞ ¼ 1

π

Z
∞

0

dp0 cosðtp0ÞDðp2
0Þ

¼ 1

aπ
1

Nt

XNt−1

P0¼0

cos

�
2πtP0

Nt

�
DðP2

0Þ;

where the first expression is the continuum one and the
second one the lattice version. This function can be
determined directly. However, it is still not possible to
uniquely determine the analytic structure of the gluon
propagator with it. But it permits to infer general properties.
For example, positivity violation of the Schwinger function
directly translates into a positivity violation of the corre-
sponding spectral function [1,68,69], and therefore bans a
particle from the physical spectrum. Furthermore, requiring
that a fit works well for both the original propagator and the
Schwinger function is a nontrivial constraint [1], and

therefore provides additional valuable information.
However, as it will be found below, the Schwinger function
has an exponentially decaying envelope for the gluon, and
therefore statistical noise seriously limits its usefulness.
The Schwinger function for various lattice discretiza-

tions is shown in Fig. 16 and for different volumes in
Fig. 17. First of all, for all practical purposes no depend-
ence on the lattice spacing are observed. This leaves only
the volume dependence. In two and three dimensions a
positivity violation is clearly seen for volumes larger than
ð5–6 fmÞd, which moves from about 1 fm to smaller times
with increasing volumes, and saturates at a scale of roughly
half a Fermi. In four dimensions, due to the rather small
volumes, the zero crossing at about 1 fm is just so observed,
though it has been clearly established in studies on larger
volumes [74].
In two dimensions no second zero crossing is observed

for at least 4–4.5 fm, which is 8–9 times the scale of the first
zero crossing. In three dimensions, this is also true up to at
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FIG. 13 (color online). The gluon dressing function (top panel) and propagator (bottom panel) at small momenta along the x-axis in
four dimensions. The symbols have the same meaning as in Fig. 10. The renormalization was done as in Fig. 10.

SOME MORE DETAILS OF MINIMAL-LANDAU-GAUGE … PHYSICAL REVIEW D 91, 034502 (2015)

034502-15



a [fm]
0 0.05 0.1 0.15 0.2 0.25

]
-2

D
(0

) 
[G

eV

-110×2

-110×3

-110×4

-110×5

1

2

3

4

5
6

D(0) in two dimensions

L [fm]

10
20

30
40

50
60

70
a [fm]0.05

0.1
0.15

0.2

]
-2

D
(0

) 
[G

eV

-110×2

-110×3

1

2

3
4

D(0) in two dimensions

a [fm]
0 0.05 0.1 0.15 0.2 0.25

]
-2

D
(0

) 
[G

eV

3

4

5

6

7

8
D(0) in three dimensions

L [fm]

2
4

6
8

10
12

14
16

18 a [fm]0.05
0.1

0.15
0.2

]
-2

D
(0

) 
[G

eV

0

1

2

3

4

5

6

7

8

D(0) in three dimensions

a [fm]
0 0.05 0.1 0.15 0.2 0.25

]
-2

D
(0

) 
[G

eV

3

4

5

6

7

8

9

10
D(0) in four dimensions

L [fm]

1
2

3
4

5
6

a [fm]0.05
0.1

0.15
0.2

]
-2

D
(0

) 
[G

eV

0

2

4

6

8

10

D(0) in four dimensions

FIG. 14 (color online). The dependence of the gluon propagator at zero momentum as a function of lattice spacing and extension in
two (top panel), three (middle panel), and four (bottom panel) dimensions. The results in two and three dimensions have been tadpole
corrected [12,47], and in four dimensions a renormalization with μ ¼ 3 GeV has been performed. The symbols indicate the same
volumes as in Figs. 8–10.
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FIG. 15 (color online). The dependence of the effective gluon exponent (6) as a function of lattice spacing and extension in two (top
panel), three (middle panel), and four (bottom panel) dimensions. The line in two dimensions is the expected value of t ¼ 0.4. Note the
inverted scale in four dimensions for better visibility. The symbols indicate the same volumes as in Figs. 8–10.
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FIG. 16 (color online). The dependence on the lattice spacing of the absolute value of the gluon Schwinger functions, normalized to its
value at time zero. The top panel shows a fixed volume of ð9.6 fmÞ2 in two dimensions, the middle panel a fixed volume of ð7.5 fmÞ3 in
three dimensions, and the bottom panel a fixed volume of ð4.3 fmÞ4 in four dimensions. Points with a relative statistical error larger than
100% have been omitted.
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FIG. 17 (color online). The absolute value of the gluon Schwinger functions for different volumes, normalized to its value at time zero.
The top panel shows the results in two dimensions, the middle panel in three dimensions, and the bottom panel in four dimensions.
Points with a relative statistical error larger than 100% have been omitted. Symbols have the same meaning as in Figs. 8–10.
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least 3.5 fm. After this, statistical uncertainties become too
large for a statement. The absence of a second zero crossing
severely restricts the possibility of a double pole structure,
and is much more in line with the one expected for a cut
structure along the real axis [1], which would also agree
with results from functional methods [68,70]. However, it
cannot be excluded that the parameters of a double-pole
structure conspire, and move further zero crossings beyond
the range accessible in the present calculations, see e.g.
[75]. Nonetheless, even if this is the case, this is a major
restriction for any fits with double poles.
Of course, in four dimensions, where the first zero

crossing is just so observed, any further speculations are
pointless.
For the ghost the determination of the Schwinger

function requires a regulator due to the infrared divergence.
Since this regulator dependence can affect both the long-
time and positivity properties of the ghost spectral function,
it is not quite clear how to extract the corresponding
properties indirectly, instead of the direct approach as in
[70]. Thus, this will not be investigated further here. Some
results6 for a particular regularization can be found in [1],
which indicate that the ghost violates both, positivity and
cluster decomposition. The latter is in agreement with the
expectations for a confining theory [2].
In principle, it is possible to determine a Schwinger

function also for the running coupling. However, since
formally the running coupling is just a three-point function
in a special kinematic configuration, it is not at all clear
what the physical interpretation of any structure is. Its
determination will therefore be skipped here, see [1] for an
exploratory study.

VII. GHOST PROPAGATOR

A. Ultraviolet

In a very similar way as for the gluon the leading
ultraviolet behavior of the ghost propagator is determined by

p−2DG2dðpÞ−1 ¼ 1þ fg2

p2
; ð7Þ

p−2DG3dðpÞ−1 ¼ 1 −
g2

8p
; ð8Þ

p−2DG4dðpÞ−1 ¼
�

33g2

208π2
log

�
p2

μ2

�
þ 1

� 9
44

; ð9Þ

where the value of g must coincide with the one determined
from the gluon propagator, though the parameter f in two
dimensions is, of course, independent. The results are shown
in Fig. 18. The value of fg2 is found to be fg2 ¼ −0.32þ13

−17 .
In four dimensions, the same value of g2 has again been

used, showing again a very good agreement to the leading-
order perturbative result. The result in three dimensions is
satisfactory, though not very good, for the reasons discussed
before in Sec. VI A.
To investigate to which extent this result is affected by

discretization artifacts, the corresponding plot from the
gluon propagator in Fig. 7 for the ghost propagator is
shown in Fig. 19. Similar to the gluon case, the importance
of discretization artifacts increases with dimension, and is
somewhat larger than for the gluon. Especially, essentially
no discretization artifacts are seen in two dimensions, while
even for the finest lattices still a systematic trend is visible
in three, and in particular four dimensions. The aforemen-
tioned discrepancies in three dimensions between leading-
order behavior and observed behavior may therefore also
be partly due to this effect.

B. Infrared

The ghost propagator is throughout essentially domi-
nated by the trivial 1=p2 factor. Therefore, to study the low-
momentum behavior, in Fig. 20 only the ghost dressing
function is shown. A significant enhancement is seen,
though studies on much larger volumes [15–17,19] reveal
that the dressing function is finite in three and four
dimensions. It appears to remain divergent in two dimen-
sions, in agreement with previous studies [14,19].
To better characterize this behavior, a fit with an effective

exponent can be performed, in the same way as for the
gluon [14,18], using the ansatz

p2DGðpÞ ∼p≪ΛYMp2κ: ð10Þ

In two dimensions the exponent κ is expected to be 0.2
[64,65]. The results are shown in Fig. 21. The rather
strongly fluctuating results are a consequence of the larger
statistical fluctuations due to the here employed point-
source method. Nonetheless, the trends are clearly visible.
In two dimensions, and to some extent in three dimensions,
the exponent is, within errors, insensitive to the lattice
spacing. In three dimensions, it slowly decreases with
volume. In two dimensions, it appears to stabilize at a
nonzero value, though as in the case of the gluon at a value
which is not precisely coinciding with the expected one, but
somewhat smaller. To emphasize this, the volume depend-
ence of both the gluon and the ghost exponent are shown in
Fig. 22. Though the effect is small, at most at the few σ-
level, there is a consistent trend in both cases for the
exponents to be below the expected ones at large volumes.
In four dimensions, the exponent decreases both with
lattice spacing and volume. This is also visible in the
ghost dressing function directly: A close inspection shows
that the value for the dressing function at the smallest
nonzero momentum slowly decreases towards a saturation
value with decreasing lattice spacing.6See [76] for similar considerations in Coulomb gauge.
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FIG. 18 (color online). The ghost dressing function at large momenta along the space-time-diagonal (in four dimensions all possible
space diagonals are shown), compared to the leading-order behavior (7)–(9). The values for the parameter bands are fg2 ¼ −0.32þ13

−17 ,
g2 ¼ 2.05ð5Þ, and g ¼ 4.8ð1Þ in two, three, and four dimensions, respectively. On the right-hand side, the leading asymptotic has been
isolated. The symbols have the same meaning as in Figs. 8–10. Note the different scales on the right-hand side. In four dimensions the
dressing function was renormalized at μ ¼ 3 GeV. Top panels are two dimensions, middle panels three dimensions, and bottom panels
four dimensions.
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FIG. 19 (color online). The dependence of the ghost asymptotics, as isolated from (7)–(9) in two (top panel), three (middle panel), and
four (bottom panel) dimensions. See Fig. 18 for details. The symbols have the same meaning as in Figs. 8–10.
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FIG. 20 (color online). The ghost dressing function at small momenta along the x-axis. Symbols are as in Figs. 8–10. In four dimensions
the dressing function was renormalized with the same renormalization factors as in Fig. 18. The top panel shows two dimensions, the
middle panel three dimensions, and the bottom panel four dimensions. The function shown for two dimensions is 1.1p0.4.

SOME MORE DETAILS OF MINIMAL-LANDAU-GAUGE … PHYSICAL REVIEW D 91, 034502 (2015)

034502-23



0 0.05 0.1 0.15 0.2 0.25

0 0.05 0.1 0.15 0.2 0.25

0 0.05 0.1 0.15 0.2 0.25
a [fm]

κ

0

0.1

0.2

0.3

0.4

Effective ghost exponent in two dimensions

L [fm]

10
20

30
40

50
60

70 a [fm]0.05
0.1

0.15
0.2

κ

0

0.1

0.2

0.3

0.4

Effective ghost exponent in two dimensions

a [fm]

κ

0

0.1

0.2

0.3

0.4

Effective ghost exponent in three dimensions

L [fm]

2
4

6
8

10
12

14
16

18 a [fm]0.05
0.1

0.15
0.2

κ

0

0.1

0.2

0.3

0.4

Effective ghost exponent in three dimensions

a [fm]

κ

0

0.2

0.4

0.6

Effective ghost exponent in four dimensions

L [fm]

1
2

3
4

5
6 a [fm]0.05

0.1
0.15

0.2

κ

0

0.2

0.4

0.6

Effective ghost exponent in four dimensions

FIG. 21 (color online). The dependence of the effective ghost exponent (10) as a function of lattice spacing and extension in two (top
panel), three (middle panel), and four (bottom panel) dimensions. The symbols denote the same volumes as in Figs. 8–10.
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VIII. RUNNING COUPLING

A particular convenient feature of Landau gauge is that
the running coupling αðp2Þ, defined from the ghost-gluon
vertex, can already be calculated by only using the
propagators as [45]

αðpÞ ¼ αðμÞp6DGðp; μÞ2Dðp; μÞ; ð11Þ

as long as the propagators are renormalized as
μ6DGðμ2; μ2Þ2Dðμ2; μ2Þ ¼ 1. This has been repeatedly
used in the literature to determine the characteristic scale
Λ in the presently employed minimal momentum subtrac-
tion scheme [46], see e.g. [57,58]. In lower dimensions, α
has a mass dimension. To obtain a dimensionless quantity,
it can be divided by p4−d. The such defined quantity is
expected to have an infrared finite value in two dimensions,
due to the relation 2t − κ ¼ 0 between the gluon exponent
(6) and the ghost exponent (10) [64,65].
The expected leading perturbative running immediately

follows from (3)–(5) and (7)–(9),

α2dðpÞ ¼
g2

4π

�
1 −

ðcþ fÞg2
p2

�
; ð12Þ

α3dðpÞ ¼
g2

4π

�
1þ 19g2

32p

�
; ð13Þ

α4dðpÞ ¼
αðμÞ

1þ 33αðμÞ
52π ln p2

μ2

≈
52π

33 ln p2

μ2

; ð14Þ

exhibiting clearly the character of a power series in the
coupling g, and being uniquely determined once this value
is set.
The results are shown in Figs. 23–25. In all cases the

perturbative behavior is observed in a way as expected from
how the perturbative behavior manifested itself in the
propagators.
In four dimensions the dimensionless coupling is both

infrared and ultraviolet vanishing, with a maximum in
between. Of course, it is always possible to redefine the
coupling by a scheme transformation [1], such that it
adheres to the expected behavior, i.e. infrared nonvanishing
and ultraviolet vanishing, see [77,78]. Also shown is its
corresponding β-function, implicitly defined as

βðgðpÞÞ ¼ p
∂gðpÞ
∂p : ð15Þ

Due to the maximum, this β-function has, besides the
Gaussian ultraviolet fixed point, a second zero, and then
tends from above towards the infrared Gaussian fixed point
in this scheme. Note that in three and two dimensions the
statistical accuracy was insufficient to perform the neces-
sary numerical differentiations to obtain a meaningful
result, so only the case of four dimensions is presented here.
The three-dimensional case is as expected from the

propagators. The running coupling vanishes at small
momenta. At the same time it becomes nonzero and
constant at large momenta, which is ironically the conse-
quence of asymptotic freedom: Because both propagators
become constant and nonzero at large momenta, so must
the running coupling determined from (11). Only after
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FIG. 22. The volume dependence of the effective exponents for the ghost (left panel) and the gluon (right panel) in two dimensions for
the respective finest discretization for every volume.
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dividing out a power of momentum, the running coupling
tends polynomial to zero at both large and small momenta.
The situation in two dimensions is the only one offering

a slight surprise.7 In previous investigations, with their
smaller statistical reliability [14], the coupling appeared to
become infrared finite without any maximum. Here, a
maximum is seen. This could have been anticipated from
Figs. 15 and 21, as the exponents of the gluon and ghost
propagator do not fulfill the necessary relation 2κ − t ¼ 0
[64,65] to obtain an infrared finite running coupling
according to the definition (11). At the current statistics
and for the presently available volumes, the results do not

indicate any flattening out that would indicate that there is a
maximum, but still a finite running coupling at zero
momentum. On the other hand, the statistical accuracy
forbids to exclude the opposite. It remains therefore an
interesting open question, what its behavior is at zero
momentum, especially as continuum studies favor an
infrared finite coupling [42,67].
Though this cannot be answered with the present limited

set of volumes here, a speculation can be offered. It has
been argued [77] that in four dimensions the realization of
an infrared finite running coupling in this scheme is tied to
a globally well defined, and thus nonperturbative, Becchi-
Rouet-Stora-Tyutin (BRST) with the same algebra as the
perturbative one. Arguments have been provided that such
a global BRST is only possible when averaging over all
Gribov copies, especially also over all Gribov copies
outside the first Gribov region [51,79–82]. In this
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FIG. 23 (color online). The running coupling in two dimensions is shown in the top panel. The bottom panel shows the running
coupling divided by p2, to obtain a dimensionless quantity. All momenta are along the x-axis. The band is the perturbative result (12).
Points with relative errors larger than 10% have been suppressed. Symbols have the same meaning as in Fig. 8.

7Note that the lowest momentum point is severely affected by
lattice artifacts, and therefore dropped for every volume [14].
This is partly a finite lattice spacing effect, but even at the present
lattice spacing still severe.
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construction, there is no restriction evident to four dimen-
sions, and it appears therefore plausible that this is also
correct in two dimensions.8 One can then speculate further
that also in two dimensions the running coupling in this
scheme can only be infrared finite when performing this
average. At the same time, the propagators, especially the
gluon propagator, cannot show the same behavior as in
higher dimensions, due to the infrared singularities [42].
Therefore, an integer-power-like vanishing running cou-
pling would not be possible, and thus the present non-
integer-power-law-like behavior emerges. Again, this is
only a speculation, and it may well be that (again) results
from larger volumes will show an infrared constant running
coupling. It would then be a very interesting question why
the BRST arguments from higher dimensions do not apply
in two dimensions.

IX. SUMMARY

Herein a comprehensive analysis of the two-point func-
tions of minimal-Landau-gauge Yang-Mills theory in two,
three, and four dimensions has been presented. The results
show that quantitatively discretization effects start to die out
at around an inverse lattice spacing of 2–3 GeV, and are in all
cases rather small. Furthermore, except for the running
coupling in two dimensions and the Schwinger function,
the present results otherwise confirm the qualitative behavior
known from other investigations [1]. However, the behavior
of the Schwinger function shows further interesting con-
straints for the analytic structure, which must be taken into
account in future investigations. Second, the running cou-
pling in two dimensions shows an unexpected behavior.
With the present resources, it was not possible to ultimately
clarify whether this is a lattice artifact. In either case, its
behavior will ultimately give an interesting hint for our
understanding of the global properties of the Landau gauge.
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FIG. 24 (color online). The running coupling in three dimensions is shown in the top panel. The bottom panel shows the running
coupling divided by p, to obtain a dimensionless quantity. All momenta are along the x-axis. The band is the perturbative result (13).
Symbols have the same meaning as in Fig. 9.

8But note the differences to two-dimensional Coulomb gauge
[83].
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