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We discuss the properties of hadronic systems containing one heavy quark in the heavy quark limit. The
heavy quark symmetry guarantees the mass degeneracy of the states with total spin and parity ðj − 1=2ÞP
and ðjþ 1=2ÞP with j ≥ 1=2, because the heavy quark spin is decoupled from the total spin j of the light
components called brown muck. We apply this idea to heavy multihadron systems and formulate the
general framework to analyze their properties. We demonstrate explicitly the spin degeneracy and the
decomposition of the wave functions in exotic heavy hadron systems generated by the one-boson-exchange
potential. The masses of the brown muck can be extracted from theoretical and experimental hadron
spectra, leading to the color nonsinglet spectroscopy.
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I. INTRODUCTION

The study of the exotic hadrons provides us with unique
opportunities to explore fundamental properties of the low
energy QCD, such as color confinement, the chiral
symmetry breaking, etc. Recently, in the heavy flavor
(charm and bottom) sectors, experimental evidences for
new candidates of exotic hadrons, such as X, Y, Z, have
been reported, and these states are extensively investi-
gated in theoretical works [1,2]. Although there have been
many theoretical studies based on various pictures such as
multiquarks, hybrids of quarks and gluons, multihadrons,
and so on, we have not yet understood the essential
features of exotic heavy hadrons. In the present article, we
approach the structure of the hadronic molecules with a
heavy quark from the point of view of the heavy quark
symmetry (HQS) [3–9], namely, the symmetry of the
heavy quark spin, as the fundamental property of heavy
hadrons.
In general, for hadrons with a single heavy quark, the

HQS leads to the mass degeneracy of two states with
different total spin in the heavy quark limit. This is
because the spin of the heavy quark is decoupled from
the total spin of the other components made of light
quarks and gluons. The latter component is called the
brown muck, which is everything but the heavy quark. It is
important to note that the brown muck has the conserved
total spin j, although the brown muck is a nonperturbative
object which is dressed by many quarks and gluons like
qn þ qnqq̄þ qngþ… with a net quark number n. For

j ≠ 0, the spin degeneracy in the heavy hadrons is realized
by the pair states with the total angular momenta, J ¼
j − 1=2 and jþ 1=2. We call those two states the “HQS
doublet.” For j ¼ 0, there is only one state with J ¼ 1=2.
We call this state the “HQS singlet.”
The HQS is seen in the mass spectrum of the charm and

bottom hadrons. For example, the mass splitting between D̄
ðJ ¼ 0Þ and D̄� ðJ ¼ 1Þ mesons is 140 MeV, and that
between B and B� mesons is 45 MeV [10]. Those mass
splittings are smaller than the ones between π and ρ
(∼600 MeV) and that between K and K� (∼400 MeV).
Therefore, D̄ and D̄� (B and B�) mesons are approximately
regarded as the HQS doublet states. In those cases, the
brown muck is a light quark q, which is dressed by quark-
antiquark pairs and gluons, with spin and parity 1=2þ
in total.
Similar mass degeneracy of HQS doublets is also seen in

the baryonic sector. The mass splitting between Σc
ðJ ¼ 1=2Þ and Σ�

c ðJ ¼ 3=2Þ (Σb and Σ�
b) baryons is

65 MeV (20 MeV), which is smaller than 192 MeV
between Σ and Σ�. Λc and Λb with J ¼ 1=2 in the ground
state are regarded as the HQS singlet states because there is
no nearby J ¼ 3=2 partner. Recently, two excited bottom
baryons Λ�

b have been observed at LHCb [11]. Although
the quantum numbers are not settled yet, assigning 1=2−

(3=2−) for the state with the lower (higher) mass, we see
that the mass splitting between Λ�

cð1=2−Þ and Λ�
cð3=2−Þ is

33 MeV and that between Λ�
bð1=2−Þ and Λ�

bð3=2−Þ is only
8 MeV. Those mass splittings can be compared with
115 MeV between Λ�ð1=2−Þ and Λ�ð3=2−Þ.
The brown muck in a heavy baryon with one heavy

quark and two light quarks has the same quantum number*yasuis@th.phys.titech.ac.jp
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as a pair of two quarks qq. The cluster of two quarks is
called a diquark in the constituent picture of the quark
model. Because two quarks can have many possible
quantum numbers, such as isospin, total angular momen-
tum and parity IðJPÞ, we can investigate a variety of
properties of diquarks in the heavy baryons. The diquark in
Λc (Λb) has IðJPÞ ¼ 0ð0þÞ. The diquark in Σc ðJ ¼ 1=2Þ
and Σ�

c ðJ ¼ 3=2Þ (Σb and Σ�
b) has 1ð1þÞ. The diquark in

Λ�
cð1=2−Þ and Λ�

cð3=2−Þ [Λ�
bð1=2−Þ and Λ�

bð3=2−Þ] has
0ð1−Þ. The analysis of the brown muck in heavy hadrons
will also be useful to understand the role of diquarks, not
only in the confinement phase but also in the deconfine-
ment phase, e.g., the quark-gluon plasma [12–15] and the
color superconductivity [16,17]. The HQS has also been
successfully applied to several excited hadrons with charm
and bottom flavors [18]. It is also relevant to understand the
properties of exotic hadrons with hidden charm or bottom
quarks [19–22].
We have pointed out in Ref. [23] that the HQS is seen

also in multihadron systems with a heavy quark. Let us
consider a hadronic molecule (or hadron composite), where
a heavy hadron is surrounded by light hadrons to form
bound and/or scattering states including resonances. When
the HQS holds, we can use spin degrees of freedom to
classify states; the total spin of the hadronic molecule is
decomposed into the heavy quark spin and the total spin of
the brown muck [23]. The latter has three contributions,
namely, a sum of (i) the spins of the light quarks and gluons
in the heavy hadron, (ii) the spins of the light hadrons
surrounding the heavy hadron and (iii) the relative angular
momenta between the heavy hadron and the light hadrons.
This particular form of the brown muck is called the light
spin-complex (or spin-complex in short) because it is a
composite object of light quarks, gluons and light hadrons
having the total spin as a conserved quantum number. It is
important to note that the quark-gluon degrees of freedom
(i) coexist with the hadronic degrees of freedom (ii)
and (iii).
Let us show examples for the spin-complex. First we

consider a P̄ð�ÞN bound state composed of a heavy meson
P̄ð�Þ ∼ ðQ̄qÞspin 0ð1Þ and a nucleon N, where Q̄ is a heavy

antiquark and q is a light component in P̄ð�Þ [23]. Note
that q is not simply a single light quark but rather a
composite of light quarks and gluons with appropriate
quantum numbers in total. Then, the spin-complex for the
P̄ð�ÞN is denoted by ½Nq�, which is a composite object
of the light component q, the nucleon N and the relative
angular momentum between P̄ð�Þ and N. The P̄ð�Þ mol-
ecule has also been considered for the dibaryons of
P̄ð�ÞNN, where the spin-complex is identified with
½NNq� [24]. Yet another example is the P̄ð�Þ meson
embedded in nuclear matter [23]. The spin-complex there
is identified with a sum of q in P̄ð�Þ and many pairs of the

particle (nucleon) N and the hole N−1 generated around
the Fermi surface.
The spin-complex provides a new picture for a certain

class of brown muck, which is useful, in particular, for the
analysis of hadronic molecules. It is regarded as a colored
effective degree of freedom inside hadrons, just as the
constituent quarks and diquarks are. It should be noted,
however, that there is a subtle issue for a criterion about
how to separate the spin-complex from other components
of the brown muck. The problem is essentially the same as
the difficulty to define the structure of hadrons, such as
compact multiquarks and/or extended hadronic molecules,
in a model-independent manner [25]. Therefore, the spin-
complex is unambiguously defined only when the model
space is specified. Nevertheless, in this paper, we will show
that the spin-complex is a powerful tool to classify the
structure of hadrons.
Before closing the Introduction, we mention the mass

spectrum of the brown muck [26,27]. The brown muck is a
colored object, which is a (anti)fundamental representa-
tion of the color symmetry. Nevertheless, it is a well-
defined object characterized by its spin-parity and light
flavor quantum numbers in the heavy quark limit. We
expect that the brown muck exhibits a rich pattern in the
mass spectrum because of its internal structure. For
example, the brown muck in the excited hadrons is heavier
than that in the ground-state hadrons. The mass of the
brown muck can be defined in the heavy quark limit with
the help of the hadron mass formula in the heavy quark
effective theory. In this paper, we will show that the mass
of the brown muck can be extracted from the HQS
multiplets both in the charm and bottom sectors. Thus,
with the heavy hadron spectrum, we can perform the
spectroscopy of the color nonsinglet object. The study of
spin-complexes will be useful to interpret the spectrum of
the brown muck in hadronic molecules with a heavy
hadron.
The article is organized as follows. In Sec. II, we briefly

review the HQS and introduce the idea of the spin-
complex, and give a general discussion for the wave
function of the brown muck. In Sec. III, we show that the
spin-complex can be used to classify the structure of
hadrons, with the example of the exotic baryons with a
heavy antiquark in a potential model. The present dis-
cussion includes the part of the results in our previous
work in Ref. [23]. In Sec. IV, we discuss the mass
spectrum of the brown muck extracted from the exper-
imental data as well as from the predictions in a quark
model. Summary and perspectives are given in the last
section.

II. GENERAL PROPERTIES OF HADRONS
WITH A HEAVY QUARK

In this section, we introduce the spin-complex as a
convenient tool to express the brown muck, starting from
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the HQS in QCD. We show that a heavy hadron with the
total spin J ≥ 1=2may have two components with different
spin-complex of spin j ¼ J � 1=2. They can be mixed for a
finite heavy quark mass, but are decoupled in the heavy
quark limit. The spin-complex basis is then related to the
particle basis, from which the wave functions of the
pair states in the HQS doublet are analyzed in terms
of the hadronic degrees of freedom. Explicit examples of
these components will be given for the P̄ð�ÞN system in
Sec. III.
The HQS leads to the systematic expansion of the

hadron mass in the inverse powers of the heavy quark
mass. This expansion enables us to define the mass of the
brown muck, and hence that of the spin-complex, in the
heavy quark limit. We present the basic formula which
will be used, in Sec. IV, to extract the spectrum of the
brown muck from the experimental data and theoretical
predictions with a finite heavy quark mass.
We consider that the heavy quark mass mQ is much

larger than a typical energy scale of low energy QCD. In
this case, an effective field theory with the 1=mQ expansion
is useful to study the hadrons containing a single heavy
quark [8,9]. Denoting the four-velocity of the heavy quark

as vμ (v2 ¼ 1), we introduce the effective field QvðxÞ ¼
eimQv·x 1þv

2
QðxÞ by projecting out the positive energy

component of the heavy quark field QðxÞ. The effective
Lagrangian in the heavy quark effective theory (HQET)
[3–9] is given by

LHQET ¼ Q̄vv · iDQv þ Q̄v
ðiD⊥Þ2
2mQ

Qv

− cðμÞgsQ̄v
σμνGμν

4mQ
Qv þOð1=m2

QÞ; ð1Þ

with the covariant derivative Dμ, Dμ
⊥ ¼ Dμ − vμv ·D,

Gμν ¼ ½Dμ; Dν�=igs, and σμν ¼ i½γμ; γν�=2. Here cðμÞ is
the Wilson coefficient for the matching with QCD at the
energy scale μ. In the heavy quark mass limit mQ → ∞,
only the first term of Eq. (1) remains and the spin-flip terms
involved in σμνGμν are suppressed by 1=mQ. This indicates
that the spin of the heavy quark is a conserved quantity,
which is known as the HQS. We will see that the 1=mQ

expansion and the HQS are essential also for heavy
hadrons.

A. Spin-complex

We now consider the consequences of the HQS in
hadronic systems. We are interested in hadrons either with
a single heavy quark ðQÞ or with a single heavy antiquark
ðQ̄Þ, and with arbitrary baryon number B. In QCD, such a
state may be expressed by a superposition of various
components with light quarks (q) and gluons (g) as

jHQi ¼ jqnQi⊕jqnqq̄Qi⊕jqngQi⊕…; ð2Þ

jHQ̄i ¼ jqmQ̄i⊕jqmqq̄ Q̄i⊕jqmgQ̄i⊕…; ð3Þ

where n ¼ 3B − 1 and m ¼ 3Bþ 1 (negative n represents
the number of antiquarks, q−n ≡ q̄n). We then decompose

the total spin of this hadron ~J into the spin ~S of the heavy

(anti)quark and the spin ~j of the rest which contains only
light degrees of freedom:

~J ¼ ~Sþ ~j: ð4Þ

As shown in the previous subsection, the heavy quark spin
~S is conserved in the heavy quark limit. Since the total ~J is

conserved, the total spin ~j of the light system is also
conserved in the heavy quark limit.
For a single hadron system jHi, the object which carries

the total spin ~j is called “brown muck,” which is everything
but the heavy quark [8]. In the present discussion, we
introduce the notation

½α�f;jP ¼ qn þ qnqq̄þ qngþ…; ð5Þ

to express the state of the brown muck α with total n
quarks, whose quantum numbers are given by the structure
of light flavor f and the total spin-parity jP. For example,
when the light flavor SUðNfÞ symmetry is a good sym-
metry, f denotes the representation of the SUðNfÞ sym-
metry. In Eq. (5), the weight of each component depends
on α. We note that, as indicated in Eqs. (2) and (3), the
brown muck is a highly nonperturbative object made of
light quarks and gluons.
The brown muck belongs to the color (anti)triplet, so

the strong interaction is at work between the heavy
(anti)quark and the brown muck. Nevertheless, the total

spin ~j of the brown muck is well defined through
Eq. (4) and conserved in the heavy quark limit. In other

words, all the interactions which flip ~j (and hence flip

the spin of the heavy quark ~S) are suppressed in the
heavy quark limit, while the interaction which does not
flip the spin, such as color electric force, is still active.

In this way, the conservation of ~j of the brown muck is
realized. In addition, the light flavor quantum numbers
(isospin and strangeness) of the brown muck are
identical to those of the heavy hadron because the
heavy quark does not carry them. Thus, the brown
muck is a well-defined object in the heavy quark limit,
characterized by its spin-parity and light flavors. We
emphasize that this viewpoint is useful, not only for
theoretical research but also for experimental research in
realistic situations with finite heavy quark mass, as we
will discuss later.
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For normal hadrons like Q̄q mesons and Qqq baryons,
the brown muck is composed of quarks and gluons.
However, this situation may change for exotic hadrons.
It has been pointed out that, in the heavy sector, there can
be hadronic states as ensembles of multiple color singlet
objects. For instance, hadronic molecules which are
loosely bound systems of hadrons can be generated by
interhadron forces, even in the exotic sector [21,22,28–
31]. In addition, there are investigations on nuclei with
heavy hadrons [32–34] which consist of a heavy hadron
and several nucleons. In these cases, “everything but the
heavy quark” contains hadronic components in addition
to the quark-gluon components. In Ref. [23], we proposed
to call this the “light spin-complex” (or “spin-complex”
in short) to express the composite system of quarks,
gluons and hadrons. Before discussing the structure
of the spin-complex, however, we will first discuss the
general property of the brown muck in the next
subsection.

B. Brown-muck component basis

Let us describe a heavy hadron of spin-parity JP in
terms of a heavy (anti)quark Q (Q̄) and a brown muck
½α�f;jP as

j½α�f;jPQiJP ; j½α�f;jP Q̄iJP : ð6Þ

The content of ½α�f;jP was given in Eq. (5). For instance,
the brown muck of the ground state Λc with JP ¼ 1=2þ
may contain the scalar diquark ½ud�I¼0;0þ which repre-
sents the system of u and d quarks combined into spin
zero. Also, the brown muck of a D̄N bound state with

I ¼ 0 can have the spin-complex ½Nq�ð1;SÞI¼0;0þ . This stands
for the system made of a nucleon N and and a quark q,
with total spin triplet in the relative S-wave configuration,
denoted by ð1; SÞ in the superscript.
In general, several different components ½α� can

contribute to each brown muck because f and jP are
the only well-defined quantum numbers. For practical
analysis the brown muck can be expanded by a suitable
basis, for instance, by the diquark basis for heavy
baryons and by the spin-complex basis for hadronic
molecules. We introduce the term “brown-muck com-
ponent (BMC)” to indicate the component concretely
given by particular objects like diquarks and/or spin-
complexes. Various examples are displayed in Sec. III
and in Appendix C.
Note that the brown muck is not necessarily a compact

cluster. The concept of the brown muck also includes
extended objects like in hadronic molecules. It should be
noted that the “relative angular momentum” between the
heavy quark and the brown muck is included in the total
spin j. The parity of the spin-complex is therefore
uniquely determined as P ¼ P for heavy quark Q and

P ¼ −P for heavy antiquark Q̄. In the following, when f
and P are not relevant to the discussion, we sometimes
omit f and P for simplicity.
Now we discuss wave functions in more detail. As a

simple case, we first consider the case of a single BMC.
A heavy hadron jHiJ with spin J ≥ 1=2 can have, in
general, two components ½α�J−1=2Q and ½β�Jþ1=2Q contain-
ing the brown muck α and β with total spin j ¼ J ∓ 1=2,
respectively, as

jHiJ ¼
�Cαj½α�J−1=2Qi

J

Cβj½β�Jþ1=2Qi
J

�
; ð7Þ

with coefficients Cα and Cβ which satisfy the normalization
condition jCαj2 þ jCβj2 ¼ 1. We suppress the irrelevant
parity and flavor indices. Let us consider the heavy quark
limit. In this case, j ¼ J ∓ 1=2 is a good quantum number,
as shown in the previous subsection, so the two compo-
nents in H should be realized as independent degrees of
freedom:

jJ − 1=2iJ ¼
� j½α�J−1=2Qi

J

0

�
; ð8Þ

jJ þ 1=2iJ ¼
�

0

j½β�Jþ1=2Qi
J

�
; ð9Þ

where we introduce new notations jJ ∓ 1=2iJ to indicate
the state containing the brown muck with the total spin
J ∓ 1=2 [this should not be confused with the symbol H
in Eq. (7)]. The transition from the jJ − 1=2iJ sector to the
jJ þ 1=2iJ sector is suppressed by 1=mQ, and the
Hamiltonian of this system is diagonalized by the two
basis states (8) and (9) in the heavy quark limit. The
separation of two independent states for J ≥ 1=2 is the
first consequence of the HQS.
Next we consider the other heavy hadron with spin

J þ 1. Following the same discussion above, jJ þ 1=2iJþ1

and jJ þ 3=2iJþ1 are separated in the heavy quark limit,
and we can diagonalize the Hamiltonian. The jJþ
1=2iJþ1 and jJ þ 3=2iJþ1 components are written in the
brown mucks β and γ with total spin J þ 1=2 and J þ 3=2,
respectively, as [35]

jJ þ 1=2iJþ1 ¼
� j½β�Jþ1=2Qi

Jþ1

0

�
; ð10Þ

jJ þ 3=2iJþ1 ¼
�

0

j½γ�Jþ3=2Qi
Jþ1

�
: ð11Þ

Importantly, the brown muck ½β�Jþ1=2 of jJ þ 1=2iJþ1 is
identical to that in Eq. (9). The only difference is the
direction of the heavy quark spin. Because the heavy
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quark spin does not affect the structure of the brown
muck, we conclude that the jJ þ 1=2iJ and jJ þ 1=2iJþ1

states containing the common β are degenerate in the
heavy quark limit. This is the second consequence of
the HQS. In the same way, jJ þ 3=2iJþ1 will be a HQS
doublet with jJ þ 3=2iJþ2. We note that the brown
mucks α, β and γ can all be different in general. We
remark also that, in Eq. (8), jJ − 1=2iJ will form a HQS
doublet with jJ − 1=2iJ−1 for J ≥ 1, while it does not
have a counterpart for J ¼ 1=2. We call the latter state a
HQS singlet. The J ¼ 0 state has only one component
j1=2i0 which forms a HQS doublet with j1=2i1.
In this way, the HQS indicates the existence of a series of

HQS doublet states

fjJ þ 1=2iJ; jJ þ 1=2iJþ1g; ð12Þ

with J ≥ 0, and a HQS singlet state

j0i1=2: ð13Þ

In other words, a HQS doublet is formed for j ≥ 1=2, while
only a HQS singlet is formed for j ¼ 0.
So far we have considered only one state ½α� for BMC.

Let us consider the case with a multiple number of states
½α1�; ½α2�;… for BMC. The heavy hadron can be expanded
by the BMC basis set given by ½α1�J−1=2; ½α2�J−1=2;… for
the brown muck αi with J − 1=2, and ½β1�J−1=2;
½β2�J−1=2;… for the brown muck βi with J þ 1=2, which
are coupled to the heavy quark spin 1=2 to form the total
spin J. This is expressed as

jHiJ ¼

0
BBBBBBBBBBBB@

Cα1 j½α1�J−1=2Qi
J

Cα2 j½α2�J−1=2Qi
J

..

.

Cβ1 j½β1�Jþ1=2Qi
J

Cβ2 j½β2�Jþ1=2Qi
J

..

.

1
CCCCCCCCCCCCA
; ð14Þ

with coefficients Cαi and Cβi for weights of each
component αi and βi under the normalization conditionP

iðjCαi j2 þ jCβi j2Þ ¼ 1. In the heavy quark limit, the
interaction Hamiltonian is independent of the heavy
quark spin, and hence it is block-diagonalized into the
J − 1=2 sector and the J þ 1=2 sector of the brown
muck. Therefore, we obtain two independent states as

jJ − 1=2iJ ¼

0
BBBBBBBBBBBBB@

C̄α1 j½α1�J−1=2Qi
J

C̄α2 j½α2�J−1=2Qi
J

..

.

0

0

..

.

1
CCCCCCCCCCCCCA
;

jJ þ 1=2iJ ¼

0
BBBBBBBBBBBBB@

0

0

..

.

C̄β1 j½β1�Jþ1=2Qi
J

C̄β2 j½β2�Jþ1=2Qi
J

..

.

1
CCCCCCCCCCCCCA
; ð15Þ

where C̄αi (C̄βi) represents the relative weight andP
ijC̄αi j2 ¼

P
ijC̄βi j2 ¼ 1. These weight factors are not

determined simply by the HQS, and they depend on the
dynamics of the light quark sector. The J þ 1 state in
the same model space can have a state

jJ þ 1=2iJþ1 ¼

0
BBBBBBBBBBBBB@

C̄β1 j½β1�Jþ1=2Qi
Jþ1

C̄β2 j½β2�Jþ1=2Qi
Jþ1

..

.

0

0

..

.

1
CCCCCCCCCCCCCA
;

jJ þ 3=2iJþ1 ¼

0
BBBBBBBBBBBBB@

0

0

..

.

C̄γ1 j½γ1�Jþ3=2Qi
Jþ1

C̄γ2 j½γ2�Jþ3=2Qi
Jþ1

..

.

1
CCCCCCCCCCCCCA
; ð16Þ

with a similar notation. We therefore conclude that the
structure of the HQS multiplets in Eqs. (12) and (13)
should hold when the brown muck is expanded by
several components. Moreover, because the HQS dou-
blet is formed by the same brown muck, the coefficients
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C̄βi in Eq. (15) should be the same as those in Eq. (16).
This means that the wave functions of the HQS doublet
are highly correlated with each other.
It should be noted that for a given J, it is not necessary

that both jJ þ 1=2iJ and jJ − 1=2iJ form a hadronic state
because they are made of different brown muck, and it is
not necessary that both of them are stable. On the other
hand, if a hadron with spin J exists in the jJ þ 1=2iJ
(jJ − 1=2iJ) channel, there must be a partner jJ þ 1=2iJþ1

(jJ − 1=2iJ−1) with the different total spin J þ 1 (J − 1).
The existence of the HQS doublet in the heavy quark limit
leads to an important phenomenological consequence; if
we observe a hadron with spin J, there can be a spin partner
with spin J � 1 with a similar mass, except for the HQS
singlet of J ¼ 1=2. In general, the observed hadron with
spin J can be either jJ þ 1=2iJ or jJ − 1=2iJ, but the
difference of jJ þ 1=2iJ and jJ − 1=2iJ is seen in the wave
function. Such a difference should be reflected in the
production and decay properties.
In the present discussion, the structure of the brown

muck is not specified at all, meaning that the spin
degeneracy occurs in the heavy quark limit irrespective
of the structure of the brown muck. Thanks to this
generality, the discussions in this section can be applied
not only to conventional hadrons but also to exotic hadrons,
multihadron states, and their mixtures.

C. Relations between brown-muck component basis
and particle basis

In many discussions of hadronic composites, the wave
functions are expressed by the particle basis, namely, the
relative wave functions between hadrons. In this subsection
we show a transformation of hadronic states written in
terms of brown muck and a heavy quark to those of a
physical particle basis.
Let us start with an expansion of a hadron state jHiJ in

terms of a physical particle basis. For example, a heavy
baryon state with minimal quark configuration qqQ can be
expanded as

jHiJ ¼ jðqqQÞJi⊕
X
S;L

jðq̄QÞsMðqqqÞsBð2Sþ1LJÞi

⊕
X
S;L

jðq̄qÞsMðqqQÞsBð2Sþ1LJÞi⊕…

≡ jBQ;Ji⊕
X
S;L

jMQBð2Sþ1LJÞi

⊕
X
S;L

jMBQð2Sþ1LJÞi⊕…; ð17Þ

where the first term corresponds to the “bare” heavy baryon
state with spin J. The bare state does not include the meson-
cloud effect, which is represented by the two-body chan-
nels in the second (third) term, a heavy meson MQ and a
light baryon B (a light meson M and a heavy baryon BQ)

with relative spin and angular momentum S and L. The
expansion may also include several MQB and MBQ

channels, as well as many-hadron channels.
The physical hadron including all the virtual states can

also be decomposed into the spin-complex basis (14).
Then, we can relate the particle basis (17) with the spin-
complex basis by a unitary matrix U as

0
BBBBBBBBB@

jBQ;Ji
jMQBð2Sþ1LJÞi

..

.

jMBQð2Sþ1LJÞi
..
.

1
CCCCCCCCCA

¼ U

0
BBBBBBBBBBBB@

j½α1�J−1=2Qi
J

j½α2�J−1=2Qi
J

..

.

j½β1�Jþ1=2Qi
J

j½β2�Jþ1=2Qi
J

..

.

1
CCCCCCCCCCCCA
: ð18Þ

Each element of the matrix U can be obtained by the
rearrangement of the quark structure. Note that the trans-
formation matrix U is determined, only when the model
space is explicitly specified. In Sec. III, we will show the
examples of the basis transformations of an exotic hadron
with a Q̄q heavy meson for MQ and a nucleon N for B.
The consequences of the HQS become clear by this basis

transformation. Let us suppose that the Hamiltonian HJ of
the system with total spin J is defined in the particle basis.
Using the transformation matrix U, we then obtain the
Hamiltonian in the BMC basis HBMC

J as

HBMC
J ¼ U−1HJU: ð19Þ

In order to realize the separation of j� ¼ J � 1=2 compo-
nents in Eq. (15), the Hamiltonian in the BMC basis should
be block-diagonalized in the heavy quark limit

HBMC
J ¼

0
BBBBBB@

HBMCðj−Þ
J;α1

… 0 0

..

. . .
.

0 0

0 0 HBMCðjþÞ
J;β1

…

0 0 ..
. . .

.

1
CCCCCCA

≡
 
HBMCðj−Þ

J 0

0 HBMCðjþÞ
J

!
: ð20Þ

As we will see below, the block-diagonalization of the
Hamiltonian is indeed possible, as long as the Hamiltonian
HJ is constructed in accordance with the HQS. Note that

the off-diagonal terms within each HBMCðj�Þ
J are not con-

strained by the HQS, and it is this term that determines the
coefficients C̄βi in the bound-state wave function (15).
The relation to jHiJþ1 is also seen in the BMC basis. The

Hamiltonian with spin J þ 1 in the heavy quark limit can be
block-diagonalized into
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HBMC
Jþ1 ¼

 
HBMCðjþÞ

Jþ1 0

0 HBMCðjþþÞ
Jþ1

!
; ð21Þ

with jþ ¼ J þ 1=2 and jþþ ¼ J þ 3=2. The degeneracy of
jHiJ and jHiJþ1 requires

HBMCðjþÞ
J ¼ HBMCðjþÞ

Jþ1 : ð22Þ

Strictly speaking, it is sufficient for us that eigenvalues in
the two Hamiltonians are the same. To express this, we
introduce ≈ as

HBMCðjþÞ
J ≈HBMCðjþÞ

Jþ1 ; ð23Þ

in the sense that the eigenvalues of HBMCðjþÞ
J are the same

as those of HBMCðjþÞ
Jþ1 . For instance, the signs of the off-

diagonal components are irrelevant for the eigenvalues. We
will see that this happens in the case of the exotic hadron in
Sec. III. Thus, the diagonalization in Eqs. (20) and (21) and
the coincidence of the Hamiltonian in Eq. (23) are the
consequence of the HQS of the Hamiltonian in the
BMC basis.
The particle basis is also useful to analyze the wave

function of the eigenstates. For instance, the state
jJ þ 1=2iJ given by the brown muck in Eq. (15) is
expressed by the particle basis as

UjJ þ 1=2iJ ¼

0
BBBBBBBBBBBB@

DBQ
jBQ;Ji

DMQBjMQBð2Sþ1LJÞi
..
.

DMBQ
jMBQð2Sþ1LJÞi

..

.

1
CCCCCCCCCCCCA
; ð24Þ

with

DX ¼
X
β

UX;βC̄β: ð25Þ

The weights jDXj2 (X ¼ BQ;MQB;M0
QB

0;…;MBQ;
M0B0

Q;…) represent the probability of finding the state
jXi in the eigenstate wave function. Because the trans-
formation matrix U is determined only by the symmetry
argument, the structure of the eigenstate is specified once
the wave function is determined in terms of the brown
muck jJ þ 1=2iJ.

D. Mass spectrum of brown muck

So far we have discussed the symmetry aspects of heavy
hadrons. At the end of this section, we discuss some

dynamical aspects and evaluate the mass of the brown
muck, which is also useful to study the spin-complex in the
heavy quark limit.
In order to define the mass of the brown muck, we

decompose the mass of the heavy hadron in terms of 1=mQ.
Based on the effective Lagrangian (1), we can expand the
mass of the hadron H containing a heavy quark Q as [9]

MH ¼ mQ þ Λ̄ −
λ1
2mQ

þ 4~S · ~j
λ2ðμÞ
2mQ

þOð1=m2
QÞ; ð26Þ

where we define, in the rest frame with vr ¼ ð1; ~0Þ,

Λ̄ ¼ 1

2
hHvr jH0jHvri; ð27Þ

λ1 ¼
1

2
hHvr jQ̄vrðiD⊥Þ2Qvr jHvri; ð28Þ

8~S · ~jλ2ðμÞ ¼
1

2
cðμÞhHvr jQ̄vrgsσαβG

αβQvr jHvri; ð29Þ

denoting the hadron state by jHvri. The factor 1=2 is
multiplied due to the normalization of the wave function
hHv0 ðk0ÞjHvðkÞi ¼ 2v0δvv0 ð2πÞ3δ3ðk − k0Þ. Here H0 is the
Hamiltonian obtained from the leading (first) term inLHQET

(1) and the light degrees of freedom. In Eq. (29), ~S and ~j are
the operators for the spin of the heavy quark Q and the total
spin of the brown muck [8,9], respectively. The dependence
of μ on λ2ðμÞ originates from the Wilson coefficient cðμÞ
because the matching with QCD is done at the energy scale
μ≃mQ [9]. We consider λ2ðmcÞ and λ2ðmbÞ for charm and
bottom, respectively.
The expansion (26) is useful to analyze the QCD

properties in heavy hadrons. In fact, Λ̄, λ1 and λ2ðmQÞ
are concerned with the scale anomaly in QCD [36,37], the
chromoelectric gluons [38] (see also [37]) and the chro-
momagnetic gluons, respectively. There are discussions to
utilize the heavy hadrons to probe the gluon dynamics in
the (multi)hadron systems and nuclear systems with a
heavy hadron [39].
Now we consider the heavy quark limit where the mass

of the hadron H is given bymQ þ Λ̄. We notice that there is
no spin dependence, as required by the HQS. In addition,
we have defined the brown muck as everything except for
the heavy quark, and the mixing with other j components
vanishes in the heavy quark limit. Thus, we shall identify Λ̄
as the mass of the brown muck. We will discuss the way to
extract Λ̄ from the experimental spectrum, as well as from
the prediction of theoretical models of heavy hadrons,
in Sec. IV.
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III. MULTIHADRONS WITH A HEAVY
ANTIQUARK

For the formalism given in the previous section, we will
give concrete examples of spin-complexes. We consider
exotic baryons with a heavy antiquark with the minimal
quark configuration Q̄qqqq, and we discuss the two-body
states whose model space is supplied by a heavy meson and
a nucleon. This state is exotic because it cannot be reduced
to the normal baryons with three quarks as a minimal
valence component. In Sec. III A, we will analytically
decompose the meson-baryon basis into the spin-complex
basis, and show that the HQS doublets/singlets appear. In
Sec. III B, we will discuss results by the one-pion exchange
potential from the heavy meson effective theory in ana-
lytical and numerical calculations, including the 1=mQ

corrections.

A. Wave function of spin-complex

We discuss the spin structures of exotic baryons with
Q̄qqqq. In the current discussion, we assume that there
exist exotic baryons which are composed of a heavy meson
P̄ ∼ ðQ̄qÞspin0 or P̄� ∼ ðQ̄qÞspin1 and a nucleon N. Here P̄ð�Þ

stands for P̄ or P̄� [40]. Since the P̄ and P̄� belong to the
same HQS doublet, we consider the coupled-channel
problem of P̄N and P̄�N and denote their superposition
as P̄ð�ÞN. We do not include three- or many-hadron
channels, higher energy excited channels, or possible
compact five-quark states. The exotic baryon is then
considered to have a hadronic molecule structure, and
the corresponding brown muck is identified as a spin-
complex of a quark q and a nucleon N.
The P̄ð�ÞN states are classified by the quantum numbers:

total spin J, parity P and isospin I ¼ 0, 1. The relevant
channels for given quantum numbers JP up to J ¼ 7=2 are
summarized in Table I. As emphasized in Refs. [28–30], the
state mixing between P̄N and P̄�N is important due to the
mass degeneracy of P̄N and P̄�N in the heavy quark limit.
Moreover, the states with angular momenta L and L� 2
can also be mixed by the tensor force. In what follows, we

discuss the transformation of the particle basis to the spin-
complex basis (the BMC basis spanned exclusively by the
spin-complex channels). The isospin indices will be sup-
pressed, which does not affect the basis transformation.

1. Negative-parity channels

Let us discuss negative-parity states. First we demon-
strate concretely the transformation of the basis for 1=2−.
From Table I, the channels for 1=2− in the particle basis are

P̄Nð2S1=2Þ; P̄�Nð2S1=2Þ; P̄�Nð4D1=2Þ: ð30Þ

In view of the HQS, the wave function is decomposed into
the product of a heavy antiquark Q̄ and a spin-complex
which is composed of the light quarks and gluons in P̄� and
the nucleon N. We denote the spin-complex ½α� by ½Nq�,
where q stands for the light components in the P̄ð�Þ meson
with spin 1=2. It should be stressed that q is not the
constituent quark but the brown muck of the P̄ð�Þ meson.
The q includes all possible components not involving the
heavy quark such as the arbitrary number of qq̄ pairs and
gluons as shown in Eq. (5). In order to specify the structure
and the quantum numbers of the spin-complex, we intro-
duce a notation for the state,

½Nq�ðsl;LÞ
jP

; ð31Þ

with sl being the sum of the spins of N and q, L the relative
angular momentum between N and q, and jP the total spin
and parity of the spin-complex. Using this notation, we
describe the wave function of the P̄ð�ÞN system in the spin-
complex basis as

j½Nq�ðsl;LÞ
jP

Q̄i
JP
: ð32Þ

The explicit wave functions of the 1=2− state in the spin-
complex basis are given as

j½Nq�ð0;SÞ
0þ Q̄i

1=2− ; j½Nq�ð1;SÞ
1þ Q̄i

1=2− ; j½Nq�ð1;DÞ
1þ Q̄i

1=2− :

ð33Þ

We find that there are two kinds of components with jP ¼
0þ and 1þ in the JP ¼ 1=2− channel. The particle basis in
Eq. (30) is decomposed to the spin-complex basis in
Eq. (33) by utilizing the standard spin-recoupling formula.
With the fact that the angular momentum and the spin of the

nucleon should be included in the spin-complex ½Nq�ðsl;LÞ
jP

,

the transformation from the particle basis jP̄Nð2Sþ1LJÞi to
the spin-complex basis j½Nq�ðsl;LÞ

jP
Q̄i

JP
is generally written

with the 9-j symbol as follows,

TABLE I. Relevant coupled channels of P̄ð�ÞN systems for a
given quantum number JP.

JP channels

1=2− P̄Nð2S1=2Þ P̄�Nð2S1=2Þ P̄�Nð4D1=2Þ
3=2− P̄Nð2D3=2Þ P̄�Nð4S3=2Þ P̄�Nð4D3=2Þ P̄�Nð2D3=2Þ
5=2− P̄Nð2D5=2Þ P̄�Nð2D5=2Þ P̄�Nð4D5=2Þ P̄�Nð4G5=2Þ
7=2− P̄Nð2G7=2Þ P̄�Nð4D7=2Þ P̄�Nð2G7=2Þ P̄�Nð4G7=2Þ
1=2þ P̄Nð2P1=2Þ P̄�Nð2P1=2Þ P̄�Nð4P1=2Þ
3=2þ P̄Nð2P3=2Þ P̄�Nð2P3=2Þ P̄�Nð4P3=2Þ P̄�Nð4F3=2Þ
5=2þ P̄Nð2F5=2Þ P̄�Nð4P5=2Þ P̄�Nð2F5=2Þ P̄�Nð4F5=2Þ
7=2þ P̄Nð2F7=2Þ P̄�Nð2F7=2Þ P̄�Nð4F7=2Þ P̄�Nð4H7=2Þ
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jP̄N2Sþ1LJÞi
¼ ½½½SQ̄ ⊗ Sq�J

P̄ð�Þ
⊗ ½0 ⊗ SN �SN �S ⊗ ½0 ⊗ L�L�J

¼
X
sl

X
j

ĴP̄ð�Þ ŜNŜ
2
Q̄Ŝ L̂ ŝl ĵ

8>><
>>:

SQ̄ Sq JP̄ð�Þ

0 SN SN
SQ̄ sl S

9>>=
>>;

×

8>><
>>:

SQ̄ sl S

0 L L

SQ̄ j J

9>>=
>>;j½Nq�ðsl;LÞ

jP
Q̄i

JP
; ð34Þ

where ŝ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ 1

p
. SQ̄ is the heavy quark spin, Sq is the

total spin of the brown muck in the P̄ð�Þ meson, JP̄ð�Þ is
the total angular momentum of the P̄ð�Þ meson and SN is the
spin of the nucleon. In the P̄ð�ÞN systems, we take
SQ̄ ¼ Sq ¼ 1=2, JP̄ð�Þ ¼ 0, 1 and SN ¼ 1=2. For example,
in terms of Eq. (34), we derive the wave function of
jP̄Nð2S1=2Þi in the particle basis as follows,

jP̄Nð2S1=2Þi ¼ −
1

2
j½Nq�ð0;SÞ

0þ Q̄i
1=2− þ

ffiffiffi
3

p

2
j½Nq�ð1;SÞ

1þ Q̄i
1=2− :

ð35Þ

In the same way, we can obtain the wave functions in the
spin-complex basis for each channel. We use the unitary
matrix UJP to denote the transformations from the particle
basis to the spin-complex basis as

0
BB@

jP̄Nð2S1=2Þi
jP̄�Nð2S1=2Þi
jP̄�Nð4D1=2Þi

1
CA ¼ U1=2−

0
BBB@

j½Nq�ð0;SÞ
0þ Q̄i

1=2−

j½Nq�ð1;SÞ
1þ Q̄i

1=2−

j½Nq�ð1;DÞ
1þ Q̄i

1=2−

1
CCCA; ð36Þ

where the explicit form is given by

U1=2− ¼

0
BB@

− 1
2

ffiffi
3

p
2

0ffiffi
3

p
2

1
2

0

0 0 −1

1
CCA: ð37Þ

The particle and spin-complex bases for JP ¼ 3=2− can
be obtained in the same way.

0
BBBBB@

jP̄Nð2D3=2Þi
jP̄�Nð4S3=2Þi
jP̄�Nð4D3=2Þi
jP̄�Nð2D3=2Þi

1
CCCCCA ¼ U3=2−

0
BBBBBB@

j½Nq�ð1;SÞ
1þ Q̄i

3=2−

j½Nq�ð1;DÞ
1þ Q̄i

3=2−

j½Nq�ð0;DÞ
2þ Q̄i

3=2−

j½Nq�ð1;DÞ
2þ Q̄i

3=2−

1
CCCCCCA
; ð38Þ

with

U3=2− ¼

0
BBBBB@

0
ffiffi
6

p
4

1
2

ffiffi
6

p
4

1 0 0 0

0 1ffiffi
2

p 0 − 1ffiffi
2

p

0 1

2
ffiffi
2

p −
ffiffi
3

p
2

1

2
ffiffi
2

p

1
CCCCCA; ð39Þ

for 3=2−. Each J channel contains the channels with
j ¼ J � 1=2. We summarize the transformations for other
spin and parity states in A.

2. Decomposition of wave functions

The spin-complex basis gives useful information to
investigate properties of the wave function in the particle
basis. As discussed in Sec. II, in the heavy quark limit, there
are HQS singlets and doublets. For the negative-parity
sector, the HQS singlet state has JP ¼ 1=2− with the spin-
complex of jP ¼ 0þ:

j0þi1=2− ¼ j½Nq�ð0;SÞ
0þ Q̄i

1=2− : ð40Þ

We also consider the HQS doublet states with 1=2− and
3=2− containing the spin-complex with 1þ, which are given
by superpositions of two components ½Nq�ð1;SÞ

1þ and

½Nq�ð1;DÞ
1þ :

j1þi1=2− ¼ sin θj½Nq�ð1;SÞ
1þ Q̄i

1=2− þ cos θj½Nq�ð1;DÞ
1þ Q̄i

1=2− ;

ð41Þ

j1þi3=2− ¼ sin θj½Nq�ð1;SÞ
1þ Q̄i

3=2− þ cos θj½Nq�ð1;DÞ
1þ Q̄i

3=2− :

ð42Þ

The mixing angle θ determines C̄αi in Eq. (15), which
depends on the dynamics in the light components. Using
Eqs. (36) and (37), we obtain

j½Nq�ð0;SÞ
0þ Q̄i

1=2− ¼ −
1

2
jP̄Nð2S1=2Þi þ

ffiffiffi
3

p

2
jP̄�Nð2S1=2Þi;

ð43Þ

and

j½Nq�ð1;SÞ
1þ Q̄i

1=2− ¼
ffiffiffi
3

p

2
jP̄Nð2S1=2Þi þ

1

2
jP̄�Nð2S1=2Þi;

ð44Þ

j½Nq�ð1;DÞ
1þ Q̄i

1=2− ¼ −jP̄�Nð4D1=2Þi; ð45Þ

for 1=2− from Eq. (36) and

j½Nq�ð1;SÞ
1þ Q̄i

3=2− ¼ jP̄�Nð4S3=2Þi; ð46Þ
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j½Nq�ð1;DÞ
1þ Q̄i

3=2− ¼
ffiffiffi
6

p

4
jP̄Nð2D3=2Þi þ

ffiffiffi
2

p

4
jP̄�Nð2D3=2Þi

þ
ffiffiffi
2

p

2
jP̄�Nð4D3=2Þi; ð47Þ

for 3=2− from Eq. (38). Therefore, in the particle basis, the
HQS singlet state with 1=2− and the HQS doublet states
with 1=2− and 3=2− are expressed as

j0þi1=2− ¼ −
1

2
jP̄Nð2S1=2Þi þ

ffiffiffi
3

p

2
jP̄�Nð2S1=2Þi; ð48Þ

and

j1þi1=2− ¼ sin θ

� ffiffiffi
3

p

2
jP̄Nð2S1=2Þi þ

1

2
jP̄�Nð2S1=2Þi

�
− cos θjP̄�Nð4D1=2Þi; ð49Þ

j1þi3=2− ¼ sin θjP̄�Nð4S3=2Þi þ cos θ

� ffiffiffi
6

p

4
jP̄Nð2D3=2Þi

þ
ffiffiffi
2

p

4
jP̄�Nð2D3=2Þi þ

ffiffiffi
2

p

2
jP̄�Nð4D3=2Þi

�
:

ð50Þ

It is important that the ratios of the particle content in
the heavy quark limit are uniquely determined from the
symmetry argument.
Now, let us consider the HQS singlet state in Eq. (40).

From the coefficients in Eq. (48), the ratio of the compo-
nents in the particle basis is

fðP̄Nð2S1=2ÞÞ∶fðP̄�Nð2S1=2ÞÞ ¼ 1∶3: ð51Þ

Next, we consider the HQS doublet states in Eqs. (41) and
(42). The ratios of the components in the particle basis are

fðP̄Nð2S1=2ÞÞ∶fðP̄�Nð2S1=2ÞÞ ¼ 3∶1 ð52Þ

for JP ¼ 1=2− from Eq. (49) and

fðP̄Nð2D3=2ÞÞ∶fðP̄�Nð2D3=2Þ∶fðP̄�Nð4D3=2ÞÞ ¼ 3∶1∶4

ð53Þ

for JP ¼ 3=2− from Eq. (50). Those fractions are inde-
pendent of the mixing angle θ because they are derived
directly from the HQS, and hence they are model-inde-
pendent results. The mixing angle θ is not determined from
the HQS but should be determined by light flavor dynamics
as discussed in the next subsection. Similar discussions will
be applied to the other JP states.
In this way, the spin-complex basis is closely related to

the internal structure of heavy hadrons. The relation

between the spin-complex basis and the particle basis is
also useful to specify the HQS multiplet. Suppose that we
observe a hadron state with JP ¼ 1=2−. This state belongs
either to the HQS singlet containing the jP ¼ 0þ spin-
complex or to the HQS doublet containing the 1þ spin-
complex. Equations (51) and (52) tell us that if the state is
in the HQS singlet or doublet, the fraction of P̄N=P̄�N is
1=3 or 3, respectively. In this way, the HQS constrains the
property of the wave functions depending on the HQS
multiplet to which the state belongs. This may be reflected,
for instance, in the production and the decay patterns of the
heavy hadron.

B. Analysis with one-pion-exchange potential

1. One-pion-exchange potential from heavy meson
effective theory

Let us discuss the dynamics of the P̄ð�ÞN systems in the
heavy quark limit. We consider the one-pion-exchange
potential (OPEP) as a long range force. To determine the
interaction of the heavy meson and the pion, we employ the
heavy meson effective Lagrangians satisfying the HQS and
chiral symmetry [9,41]. In the heavy meson effective
theory, the interaction Lagrangian of the Pð�Þ ∼Qq̄ meson
and the pion π is given by

LπHH ¼ igπTr½Hbγμγ5A
μ
baH̄a�; ð54Þ

where the heavy meson field Ha is given by the heavy
pseudoscalar and vector mesons, P and P�, as

Ha ¼
1þ v
2

½P�
aμγ

μ − Paγ5�; ð55Þ

H̄a ¼ γ0H
†
aγ0: ð56Þ

Here vμ is the four-velocity of the heavy meson, and the
subscripts a, b represent the isospin. The axial current Aμ

ba
by pions is given as

Aμ ¼ 1

2
ðξ†∂μξ − ξ∂μξ†Þ; ð57Þ

where ξ ¼ expðiπ̂=fπÞ with the pion decay constant
fπ ¼ 132 MeV, and the pion field is defined by

π̂ ¼
 π0ffiffi

2
p πþ

π− − π0ffiffi
2

p

!
: ð58Þ

The coupling constant gπ ¼ 0.59 is determined from the
decay width of D� → Dπ observed in experiments [10].
From Eq. (54), we obtain the pion and heavy meson

vertices in the static limit vμ ¼ ð1; ~0Þ. As a matter of fact,
Lagrangian (54) is invariant under the spin transformation
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for the heavy quark, Ha → SHa with S ∈ SUð2Þspin. The
interaction Lagrangian for the P̄ð�Þ and the pion, which
will be used to construct the P̄ð�ÞN potential, is obtained
by changing the overall sign due to the G-parity
transformation.
The interaction Lagrangian of the pion and the nucleon is

given by the pseudovector form,

LπNN ¼ gπNNffiffiffi
2

p
mN

N̄γ5γ
μN∂μπ̂; ð59Þ

where N ¼ ðp; nÞT is the nucleon field. The coupling
constant for the nucleon is given as g2πNN=4π ¼ 13.6 from
the phenomenological nuclear potential in Ref. [42] (see
also Ref. [43]). Details are found in Refs. [28–30]. The
coupling is rewritten by the Golberger-Treiman relation
[44,45] as gπNN=

ffiffiffi
2

p
mN ¼ gA=fπ , where gA ¼ 1.25 is the

axial coupling in the matrix element of the neutron
beta decay.
We may consider the short range interaction supplied

by the vector mesons ω and ρ. The vector meson
exchange potentials can also be constructed from the
vertices of P̄ð�Þ and the vector mesons by keeping the
HQS as demonstrated in our previous papers [28–30].
The results of the spin degeneracy are not modified by
the inclusion of the vector meson exchange, as long
as the HQS is maintained.
With the above vertices, we construct the OPEP between

the P̄ð�Þ meson and the nucleon N [28–30]. The OPEPs for
P̄N-P̄�N and P̄�N-P̄�N are given as

VP̄N−P̄�NðrÞ ¼ −
gπgπNNffiffiffi
2

p
mNfπ

1

3
½~ε† · ~σCðrÞ þ Sεðr̂ÞTðrÞ�~τP̄ · ~τN;

ð60Þ

VP̄�N−P̄�NðrÞ ¼
gπgπNNffiffiffi
2

p
mNfπ

1

3
½~T · ~σCðrÞ þ STðr̂ÞTðrÞ�~τP̄ · ~τN;

ð61Þ

respectively, by a sum of the central and tensor forces.
In Eqs. (60) and (61), ~ε (~ε†) is the polarization vector of
the incoming (outgoing) P̄�, ~T is the spin-one operator

of P̄�, and Sεðr̂Þ [STðr̂Þ] is the tensor operator SOðr̂Þ ¼
3ð ~O · r̂Þð~σ · r̂Þ − ~O · ~σ with r̂ ¼ ~r=r and r ¼ j~rj for ~O ¼
~ε (~T), where ~r is the relative position vector between
P̄ð�Þ and N. ~σ are the Pauli matrices acting on the
nucleon spin. ~τP̄ (~τN) are isospin operators for P̄ð�Þ (N).
The functions CðrÞ and TðrÞ for the central and tensor
parts are

CðrÞ ¼
Z

d3~q
ð2πÞ3

m2
π

~q2 þm2
π
ei~q·~rFð~qÞ; ð62Þ

SOðr̂ÞTðrÞ ¼
Z

d3~q
ð2πÞ3

−~q2

~q2 þm2
π
SOðq̂Þei~q·~rFð~qÞ; ð63Þ

with q̂ ¼ ~q=j~qj, where the dipole-type form factor Fð~qÞ¼
ðΛ2

N−m2
πÞðΛ2

P̄−m2
πÞ=ðΛ2

Nþj~qj2ÞðΛ2
P̄þj~qj2Þ with cutoff

parameters ΛN and ΛP̄ is introduced to account for the
spatial sizes of hadrons as discussed in Refs. [28–30].
We note that the OPEP for P̄N-P̄N does not exist

because the P̄ P̄ π vertex is forbidden by parity conserva-
tion. Instead, the P̄N-P̄N interaction is effectively supplied
from the mixing of P̄N and P̄�N (P̄N → P̄�N → P̄N), as
emphasized in Refs. [28–30].

2. Negative-parity channels

Let us discuss concretely the channels with JP ¼ 1=2−

and 3=2−, whose particle bases are given by Eqs. (36)
and (38), respectively. From Eqs. (60) and (61), the
Hamiltonians in the particle basis are given by

H1=2− ¼

0
B@

K0

ffiffiffi
3

p
C −

ffiffiffi
6

p
Tffiffiffi

3
p

C K0 − 2C −
ffiffiffi
2

p
T

−
ffiffiffi
6

p
T −

ffiffiffi
2

p
T K2 þ ðC − 2TÞ

1
CA; ð64Þ

H3=2− ¼

0
BBB@

K2

ffiffiffi
3

p
T −

ffiffiffi
3

p
T

ffiffiffi
3

p
Cffiffiffi

3
p

T K0 þ C 2T T

−
ffiffiffi
3

p
T 2T K2 þ C −Tffiffiffi

3
p

C T −T K2 − 2C

1
CCCA;

ð65Þ

for 1=2− and 3=2−, respectively. Here the kinetic terms are

KL ¼ −
1

2μ

� ∂2

∂r2 þ
2

r
∂
∂r −

LðLþ 1Þ
r2

�
; ð66Þ

for angular momentum L with the reduced mass μ ¼ mN in
the heavy quark limit, and we have defined

C ¼ κCðrÞ; T ¼ κTðrÞ; ð67Þ

with κ ¼ ðgπgπNN=
ffiffiffi
2

p
mNfπÞð~τP̄ · ~τN=3Þ. We emphasize

again that the P̄N and P̄�N states can be mixed, and
accordingly, the states with different angular momenta
can also be mixed by the off-diagonal components of
the tensor force. The tensor force induces the strong
attractions, as known in the nucleon-nucleon interaction
in nuclear physics. Thus, the mixing effects of P̄N and P̄�N
are essentially important to switch on the strong tensor
force in the OPEP.
Now, let us rewrite the Hamiltonians H1=2− and H3=2− in

the spin-complex basis by using the unitary matrices U1=2−

and U3=2− in Eqs. (37) and (39). The results are given as
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HSC
1=2− ¼ U−1

1=2−H1=2−U1=2−

¼

0
BB@

K0 − 3C 0 0

0 K0 þ C −2
ffiffiffi
2

p
T

0 −2
ffiffiffi
2

p
T K2 þ ðC − 2TÞ

1
CCA

≡
�
HSCð0þÞ

1=2− 0

0 HSCð1þÞ
1=2−

�
; ð68Þ

HSC
3=2− ¼ U−1

3=2−H3=2−U3=2−

¼

0
BBBBB@

K0 þ C 2
ffiffiffi
2

p
T 0 0

2
ffiffiffi
2

p
T K2 þ ðC − 2TÞ 0 0

0 0 K2 − 3C 0

0 0 0 K2 þ ðCþ 2TÞ

1
CCCCCA

≡
�
HSCð1þÞ

3=2− 0

0 HSCð2þÞ
3=2−

�
: ð69Þ

As in the previous section, we introduce the notation

HSCðjPÞ
JP for the Hamiltonian for the JP state containing

the spin-complex with jP . To denote the spin-complex
basis, we use the superscript “SC” instead of “BMC.” Thus,
with the spin-complex basis, we obtain the block-diagonal
forms. From the results, we find that the terms with the 1þ
spin-complex in the 1=2− and 3=2− channels are identical,
except for the signs of the off-diagonal components which
are irrelevant for the eigenvalues:

HSCð1þÞ
1=2− ≈HSCð1þÞ

3=2− ; ð70Þ

where ≈ stands for the equality of the eigenvalues as
introduced in the previous section. This means that the
eigenstates with 1=2− and 3=2− containing the spin-
complex with 1þ form the HQS doublet whose masses
are completely degenerate. Similarly, we will obtain

HSCð2þÞ
3=2− ≈HSCð2þÞ

5=2− , suggesting that the 3=2− and 5=2−

states containing the spin-complex with 2þ belong to the
HQS doublet, as shown below. On the other hand, there is

no corresponding component to HSCð0þÞ
1=2− . Therefore, the

1=2− state containing the spin-complex with 0þ belongs to
the HQS singlet. This is exactly what we have discussed in
the previous section. The spin degeneracy is shown gen-
erally in the heavy quark effective theory in Eq. (1), where
fundamental degrees of freedom are quarks and gluons.
Interestingly, the spin degeneracy is shown also for
hadronic molecules whose eigenstates are induced from
the heavy meson effective theory with the hadronic degrees
of freedom.
For completeness, we present the results with JP ¼ 5=2−

and 7=2− in the negative-parity sector. In the particle basis,
the Hamiltonians are given as

H5=2− ¼

0
BBBBBBBBB@

K2

ffiffiffi
3

p
C

ffiffi
6
7

q
T − 6ffiffi

7
p Tffiffiffi

3
p

C K2 − 2C
ffiffi
2
7

q
T −2

ffiffi
3
7

q
Tffiffi

6
7

q
T

ffiffi
2
7

q
T K2 þ

�
Cþ 10

7
T
�

4
7

ffiffiffi
6

p
T

− 6ffiffi
7

p T −2
ffiffi
3
7

q
T 4

7

ffiffiffi
6

p
T K4 þ

�
C − 10

7
T
�

1
CCCCCCCCCA

ð71Þ

for 5=2− and
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H7=2− ¼

0
BBBBBBBBB@

K4 3
ffiffi
3
7

q
T

ffiffiffi
3

p
C −

ffiffiffiffi
15
7

q
T

3
ffiffi
3
7

q
T K2 þ

�
C − 4

7
T
�

3ffiffi
7

p T 6
7

ffiffiffi
5

p
T

ffiffiffi
3

p
C 3ffiffi

7
p T K4 − 2C −

ffiffi
5
7

q
T

−
ffiffiffiffi
15
7

q
T 6

7

ffiffiffi
5

p
T −

ffiffi
5
7

q
T K4 þ

�
Cþ 4

7
T
�

1
CCCCCCCCCA

ð72Þ

for 7=2−. Using Eqs. (A1) and (A3), we obtain the Hamiltonian in the spin-complex basis as

HSC
5=2− ¼ U−1

5=2−H5=2−U5=2−

¼

0
BBBBBB@

K2 − 3C 0 0 0

0 K2 þ ðCþ 2TÞ 0 0

0 0 K2 þ ðC − 4
7
TÞ 12

ffiffi
3

p
7

T
0 0 12

ffiffi
3

p
7

T K4 þ ðC − 10
7
TÞ

1
CCCCCCA

≡
�
HSCð2þÞ

5=2− 0

0 HSCð3þÞ
5=2−

�
ð73Þ

for 5=2− and

HSC
7=2− ¼ U−1

7=2−H7=2−U7=2−

¼

0
BBBBBB@

K2 þ ðC − 4
7
TÞ 12

ffiffi
3

p
7

T 0 0
12
ffiffi
3

p
7

T K4 þ ðC − 10
7
TÞ 0 0

0 0 K4 − 3C 0

0 0 0 K4 þ ðCþ 2TÞ

1
CCCCCCA

≡
�
HSCð3þÞ

7=2− 0

0 HSCð4þÞ
7=2−

�
ð74Þ

for 7=2−. Therefore, we confirm the equivalence of the
eigenvalues

HSCð2þÞ
3=2− ≈HSCð2þÞ

5=2− ð75Þ

and

HSCð3þÞ
5=2− ≈HSCð3þÞ

7=2− ; ð76Þ

which indicate that the 3=2− and 5=2− states containing the
spin-complex with 2þ belong to the HQS doublet, and the
5=2− and 7=2− states containing the spin-complex with 3þ
also belong to the HQS doublet. A partner of the remaining

HSCð4þÞ
7=2− is considered to be in the JP ¼ 9=2− channel.

3. Positive-parity channels

Similarly, we consider the positive-parity channels with
JP ¼ 1=2þ, 3=2þ, 5=2þ and 7=2þ. In the particle basis, the
Hamiltonians are

H1=2þ ¼

0
B@

K1

ffiffiffi
3

p
C −

ffiffiffi
6

p
Tffiffiffi

3
p

C K1 − 2C −
ffiffiffi
2

p
T

−
ffiffiffi
6

p
T −

ffiffiffi
2

p
T K1 þ ðC − 2TÞ

1
CA ð77Þ

for 1=2þ,
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H3=2þ ¼

0
BBBBBBBB@

K1

ffiffiffi
3

p
C

ffiffi
3
5

q
T −3

ffiffi
3
5

q
Tffiffiffi

3
p

C K1 − 2C 1ffiffi
5

p T − 3ffiffi
5

p Tffiffi
3
5

q
T 1ffiffi

5
p T K1 þ

�
Cþ 8

5
T
�

6
5
T

−3
ffiffi
3
5

q
T − 3ffiffi

5
p T 6

5
T K3 þ ðC − 8

5
TÞ

1
CCCCCCCCA

ð78Þ

for 3=2þ,

H5=2þ ¼

0
BBBBBBBBB@

K3
3
5

ffiffiffiffiffi
10

p
T

ffiffiffi
3

p
C −2

ffiffi
3
5

q
T

3
5

ffiffiffiffiffi
10

p
T K1 þ

�
C − 2

5
T
� ffiffi

6
5

q
T 4

5

ffiffiffi
6

p
T

ffiffiffi
3

p
C

ffiffi
6
5

q
T K3 − 2C − 2ffiffi

5
p T

−2
ffiffi
3
5

q
T 4

5

ffiffiffi
6

p
T − 2ffiffi

5
p T K3 þ ðCþ 2

5
TÞ

1
CCCCCCCCCA

ð79Þ

for 5=2þ, and

H7=2þ ¼

0
BBBBBBBB@

K3

ffiffiffi
3

p
C T −

ffiffiffi
5

p
Tffiffiffi

3
p

C K3 − 2C 1ffiffi
3

p T −
ffiffi
5
3

q
T

T 1ffiffi
3

p T K3 þ
�
Cþ 4

3
T
�

2
3

ffiffiffi
5

p
T

−
ffiffiffi
5

p
T −

ffiffi
5
3

q
T 2

3

ffiffiffi
5

p
T K5 þ ðC − 4

3
TÞ

1
CCCCCCCCA

ð80Þ

for 7=2þ. In the spin-complex basis, the Hamiltonians are obtained as

HSC
1=2þ ¼ U−1

1=2þH1=2þU1=2þ

¼

0
B@

K1 þ ðC − 4TÞ 0 0

0 K1 − 3C 0

0 0 K1 þ ðCþ 2TÞ

1
CA

≡
�
HSCð0−Þ

1=2þ 0

0 HSCð1−Þ
1=2þ

�
ð81Þ

for 1=2þ,

HSC
3=2þ ¼ U−1

3=2þH3=2þU3=2þ

¼

0
BBBBBB@

K1 − 3C 0 0 0

0 K1 þ ðCþ 2TÞ 0 0

0 0 K1 þ ðC − 2
5
TÞ 6

ffiffi
6

p
5
T

0 0 6
ffiffi
6

p
5
T K3 þ ðC − 8

5
TÞ

1
CCCCCCA

≡
�
HSCð1−Þ

3=2þ 0

0 HSCð2−Þ
3=2þ

�
ð82Þ
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for 3=2þ,

HSC
5=2þ ¼ U−1

5=2þH5=2þU5=2þ

¼

0
BBBBBB@

K1 þ
�
C − 2

5
T
�

6
ffiffi
6

p
5
T 0 0

6
ffiffi
6

p
5
T K3 þ ðC − 8

5
TÞ 0 0

0 0 K3 − 3C 0

0 0 0 K3 þ ðCþ 2TÞ

1
CCCCCCA

≡
�
HSCð2−Þ

5=2þ 0

0 HSCð3−Þ
5=2þ

�
ð83Þ

for 5=2þ, and

HSC
7=2þ ¼ U−1

7=2þH7=2þU7=2þ

¼

0
BBBBBB@

K3 − 3C 0 0 0

0 K3 þ ðCþ 2TÞ 0 0

0 0 K3 þ ðC − 2
3
TÞ 4

ffiffi
5

p
3
T

0 0 4
ffiffi
5

p
3
T K5 þ ðC − 4

3
TÞ

1
CCCCCCA

≡
�
HSCð3−Þ

7=2þ 0

0 HSCð4−Þ
7=2þ

�
ð84Þ

for 7=2þ. Therefore, we find that the Hamiltonian

HSCð0−Þ
1=2þ ð85Þ

has no partner in any other diagonal components, and hence
the 1=2þ state containing the spin-complex with 0− is
classified as the HQS singlet. On the other hand, we find
the relations

HSCð1−Þ
1=2þ ≈HSCð1−Þ

3=2þ ; ð86Þ

HSCð2−Þ
3=2þ ≈HSCð2−Þ

5=2þ ; ð87Þ

HSCð3−Þ
5=2þ ≈HSCð3−Þ

7=2þ ; ð88Þ

indicating that the 1=2þ and 3=2þ (3=2þ and 5=2þ or 5=2þ
and 7=2þ) states containing the spin-complex with 1− (2−

or 3−) belong to the HQS doublet. It is naturally expected
that the state with JP ¼ 7=2þ and jP ¼ 3− has a partner in
the JP ¼ 9=2þ channel.

4. Spin degeneracy for general JP

From the analysis above, we find a general relation for
j ≥ 1,

HSCðjPÞ
j−1=2P ≈HSCðjPÞ

jþ1=2P ; ð89Þ

with P ¼ −P. This means that the j� 1=2P states con-
taining the spin-complex with jP belong to the HQS
doublet. The 1=2P state containing the spin-complex with
0P belongs to the HQS singlet. Those results are consistent
with what is expected from the HQS.
Comments are in order. First, the off-diagonal compo-

nents in Hamiltonian HSCðjPÞ
JP with the spin-complex basis

are responsible for the mixing among the components with
the same jP , which determine the mixing angle in Eqs. (41)
and (42). The strength of the off-diagonal components is
not constrained by the HQS, and it depends on the chosen
potential. In fact, the inclusion of the vector meson
exchange potential modifies the strength of the off-diagonal
components, as shown in Appendix B. In addition,
although some of the off-diagonal components in

HSCðjPÞ
JP vanish in the present potential, they can be finite

with general interactions. Nevertheless, the mass degen-
eracy of the HQS doublet and the fraction of the compo-
nents such as Eqs. (51), (52), and (53) are always
guaranteed, thanks to the relation (89).
Second, to realize these properties, we should include all

possible channels which are related by the HQS. If some
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channels are missing, Eq. (89) does not hold. In fact, if we
switch off the mixing between P̄N and P̄�N, the mass
degeneracy does not occur because the P̄ and P̄� are in the
HQS doublet. In the same way, the use of the single
coupling constant gπ for the P̄P̄�π and P̄�P̄�π vertices is
also necessary, as it is required by the HQS. We remark that
the coupling to different angular momentum states is not
always necessary. Indeed, as shown in Appendix C, the
relation (89) is still valid with only the S-wave states. The
mixing of angular momentum is necessary for switching on
the strong tensor force.
Third, in the present analysis, we have considered the

spin-complex basis with the Nq configuration. Even
when other components such as Δq and Nπq are
considered, the Hamiltonian can be block-diagonalized
in the spin-complex basis, as long as we respect the
HQS to construct the interaction potential. In this way,
the spin-complex basis is useful to grasp the model-
independent property of heavy hadrons in the frame-
work of effective models.

5. Numerical results

In this section, let us show the numerical results of the
properties of the P̄ð�ÞN system. In addition to the π
exchange potential, we also examine the ρ and ω exchange
potentials shown in Appendix B. In the present discus-
sion, we use finite masses mP̄ and mP̄� ¼ mP̄ þ Δm for
heavy mesons P̄ and P̄�, respectively, by introducing the
mass difference Δm, in order to control the breaking of the
HQS. Accordingly, different reduced masses μ are used in
the P̄N and P̄�N channels, and Δm is added in the
diagonal terms in the P̄�N channels. The mass difference
is parametrized as Δm=mP� ¼ ð0.617 GeV=mP� Þ2.25 so as
to fit empirically the experimental data in the strange,
charm, and bottom sectors [29]. We denote the mesons in

the heavy quark limit mP̄ ¼ mP̄� → ∞ as P̄ð�Þ
Q . The cutoff

parameter of the form factor is chosen to be ΛN ¼
830 MeV (ΛN ¼ 846 MeV) for the π (πρω) potential,
and we use ΛP̄Q

¼ 1.12ΛN as estimated in the heavy quark
limit [29].
In the present study, the coupling constant of the heavy

meson P̄ð�Þ and the pion in Eq. (54) is fixed as gπ ¼ 0.59
which is determined by the D� → Dπ decay. However, gπ
will depend on the heavy quark mass, and the coupling
constant in the heavy quark limit can be different. Indeed,
as summarized in Ref. [46], the values of gπ in the finite and
infinite heavy quark masses have been estimated by various
approaches. However, the conclusive value is not deter-
mined yet. In this article, we employ gπ ¼ 0.59which is not
far from the estimated values in Ref. [46]. Therefore, the
qualitative feature of our results is not changed by the
uncertainty of gπ . In any case, the Hamiltonians of the
P̄ð�ÞN systems can be block-diagonalized in the heavy
quark limit, although the value of gπ has uncertainty.

To begin with, we consider the P̄ð�Þ
Q N state in the heavy

quark limit. By solving the coupled-channel Schrödinger
equations numerically, we obtain bound states with
ðI; JPÞ ¼ ð0; 1=2�Þ and ð0; 3=2�Þ as displayed in Fig. 1.
We find the mass degeneracy in the JP ¼ 1=2− and 3=2−

channels, and also in the JP ¼ 1=2þ and 3=2þ channels.
The lowest energy states are of 1=2− and 3=2−, which have
the same binging energy 34.1 MeV with the π potential and
37.4 MeV with the πρω potential. These states are
considered to form a HQS doublet with the spin-complex
jP ¼ 1þ. This becomes clear when the wave functions are
decomposed in the following. Since the π exchange
potential predominates in the P̄ð�ÞN states as discussed
in Refs. [28–30], the results with the πρω potential are not
very far from those with the π potential. The second bound
states are found in the 1=2þ and 3=2þ channels with a
binding energy 11.8 MeV for the π potential and 12.8 MeV
for the πρω potential. Therefore, the degenerate states seem
to belong to the HQS doublet with jP ¼ 1− from the
viewpoint of the analytical argument given in Sec. III B 2.
The properties of the HQS doublets, in particular those

of the spin-complex, are reflected in the fractions in the

FIG. 1. Energy levels of the bound P̄ð�Þ
Q N states with I ¼ 0 and

JP ¼ 1=2� and 3=2� in the heavy quark limit when the πρω
potential is used.

TABLE II. Mixing ratios of the P̄ð�Þ
Q N channels in the bound

states with I ¼ 0 in the heavy quark limit.

JP ¼ 1=2− P̄Nð2S1=2Þ P̄�Nð2S1=2Þ P̄�Nð4D1=2Þ � � �
π 63.6% 21.2% 15.2% � � �
πρω 64.0% 21.3% 14.7% � � �
JP ¼ 3=2− P̄Nð2D3=2Þ P̄�Nð4S3=2Þ P̄�Nð4D3=2Þ P̄�Nð2D3=2Þ
π 5.7% 84.8% 7.6% 1.9%
πρω 5.5% 85.3% 7.4% 1.8%
JP ¼ 1=2þ P̄Nð2P1=2Þ P̄�Nð2P1=2Þ P̄�Nð4P1=2Þ � � �
π 50.0% 16.7% 33.3% � � �
πρω 50.0% 16.7% 33.3% � � �
JP ¼ 3=2þ P̄Nð2P3=2Þ P̄�Nð2P3=2Þ P̄�Nð4P3=2Þ P̄�Nð4F3=2Þ
π 12.5% 4.2% 83.3% 0.0%
πρω 12.5% 4.2% 83.4% 0.0%
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particle basis. We obtain the mixing ratios of the wave
functions of the bound states in Table II. For the bound state
for JP ¼ 1=2− with the πρω potential, the mixing ratios of
the S-wave states are 64.0% for the P̄Nð2S1=2Þ channel and
21.3% for the P̄�Nð2S1=2Þ channel, and hence the fraction
of the wave functions is fðP̄Nð2S1=2ÞÞ∶fðP̄�Nð2S1=2ÞÞ ¼
3∶1. This result is consistent with the fraction in Eq. (52)
and shows that the state is made of the spin-complex with
jP ¼ 1þ. Similarly, we obtain the fraction for the JP ¼
3=2− as fðP̄Nð2D3=2ÞÞ∶fðP̄�Nð2D3=2ÞÞ∶fðP̄�Nð4D3=2ÞÞ ¼
3∶1∶4, which coincides with the fractions in Eq. (53).
Therefore, it is confirmed that the wave functions of the
1=2− and 3=2− states are equivalent in the spin-complex
basis, and they are made of the 1þ spin-complex. The
mixing ratios of P̄�Nð4D1=2Þ for 1=2− [P̄�Nð4S3=2Þ for
3=2−] are different because of the off-diagonal components
in the spin-complex basis. This effect is characterized by
the mixing angle θ in Eqs. (49) and (50). For comparison,
the mixing ratios of the D̄N and BN channels with the finite
heavy quark masses are summarized in Table III. In the
charm and bottom flavor sectors, the P̄N bound states are
found only for JP ¼ 1=2− with I ¼ 0, while the states for
JP ¼ 1=2þ and 3=2� are resonances as discussed in
Refs. [28–30]. As shown in Table III, the mixing ratios
of the D̄ð�ÞN and Bð�ÞN channels do not conform to the
result in Eq. (52), i.e. fðD̄Nð2S1=2ÞÞ∶fðD̄�Nð2S1=2ÞÞ ¼
47.5∶1 and fðBNð2S1=2ÞÞ∶fðB�Nð2S1=2ÞÞ ¼ 6.7∶1 when
the πρω potential is used. In the charm (bottom) sector,
the Hamiltonian H1=2− is no longer block-diagonalized by
the wave function in the spin-complex basis because the
kinetic terms of the P̄N and P̄�N channels in Eq. (64) are
different due to the nonzero mass difference Δm [47].
When we compare the D̄ð�ÞN and Bð�ÞN states, the
fraction of the Bð�ÞN wave functions closes with that
of the P̄ð�ÞN states in the heavy quark limit. Since the
HQS recovers as the quark mass increases, it works well
in the bottom sector rather than in the charm one. We
note the proximity of the D̄ð�ÞN bound state to the s-
wave D̄N threshold, which also enhances the D̄Nð2S1=2Þ

component [48,49] in addition to the breaking of the
heavy quark symmetry.
It is also the case in the positive-parity sector; the mixing

ratios of the 1=2þ and 3=2þ states follow the fractions
derived in the spin-complex basis. Because of the absence

of the off-diagonal components in HSCð1−Þ
1=2þ and HSCð1−Þ

3=2þ in
Eqs. (81) and (82) or in Eqs. (B34) and (B36) in the π or
πρω model, we obtain identical mixing ratios in the two
potentials. In the positive-parity sector, the model depend-
ence lies only in the diagonal components, which results in
the difference of the binding energies.

We evaluate the spatial sizes of P̄ð�Þ
Q N from the relative

distance, namely, the expectation value of the distance r

between P̄ð�Þ
Q and N, which can be expressed in the particle

basis

ffiffiffiffiffiffiffiffi
hr2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

hðP̄ð�ÞNÞijr2jðP̄ð�ÞNÞii
r

; ð90Þ

with i being 2Sþ1LJ of P̄
ð�Þ
Q N. Interestingly, we find

ffiffiffiffiffiffiffiffi
hr2i

p
of 1=2− and 3=2− are the same values, 1.2 fm for the π
potential and 1.1 fm for the πρω potential, respectively. We
also obtain the same sizes of the 1=2þ and 3=2þ states,
1.6 fm for the π and πρω potentials. Those results are
consistent with the fact that the spin-complex in the 1=2−

(1=2þ) state is exactly the same as that in the 3=2− (3=2þ)
state. Although the mixing ratios in the particle basis are
quite different in the 1=2� and 3=2� states, the sum of all
the channels gives the same results, thanks to the equiv-
alence of the wave functions in the spin-complex basis. In
this sense, the spin-complex basis is more appropriate to
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FIG. 2 (color online). Energies of the JP ¼ 1=2� and 3=2�

states with I ¼ 0measured from the P̄N threshold as functions of
heavy vector meson mass mP� , when the πρω potential is used.
The thick solid (thick dashed) line shows the 1=2− (3=2−) state,
and the thin solid (thin dashed) line shows the 1=2þ (3=2þ) state.
The horizontal axis sets the logarithmic scale.

TABLE III. Mixing ratios of the D̄ð�ÞN, Bð�ÞN and Pð�ÞN
channels in the bound states with JP ¼ 1=2− and I ¼ 0.

JP ¼ 1=2− D̄Nð2S1=2Þ D̄�Nð2S1=2Þ D̄�Nð4D1=2Þ
π 95.9% 1.1% 3.0%
πρω 94.9% 2.0% 3.1%

BNð2S1=2Þ B�Nð2S1=2Þ B�Nð4D1=2Þ
π 79.6% 9.5% 10.9%
πρω 77.7% 11.6% 10.7%

P̄Nð2S1=2Þ P̄�Nð2S1=2Þ P̄�Nð4D1=2Þ
π 63.6% 21.2% 15.2%
πρω 64.0% 21.3% 14.7%
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express the structure of the hadrons in the heavy
quark limit.
With the finite masses of the heavy mesons as the terms

breaking the HQS, we calculate the energies of the 1=2�

and 3=2� states as functions of heavy vector meson mass
mP� (Fig. 2). The negative (positive) energy corresponds to
a binding (resonance) energy. For the resonance energy, we
plot the real parts of the complex energies extracted from
the phase shift. In Fig. 2, we observe that the energy
difference between the states with 1=2� and 3=2�
decreases as the heavy vector meson mass mP� increases,
and the energies finally reach −37.4 MeV for JP ¼ 1=2−,
3=2− and −12.8 MeV for JP ¼ 1=2þ, 3=2þ in the heavy
quark limit. This result is quite interesting. Namely, two
states of 1=2− and 3=2− (1=2þ and 3=2þ) in the charm and
bottom sectors stem from the same origin in the heavy
quark limit.
In the bound states of D̄ð�ÞN and Bð�ÞN, the spin-

complex components with j ¼ 0 and j ¼ 1 are mixed
due to the breaking of the HQS, while these components
are decoupled in the heavy quark limit. We estimate the
ratios of the spin-complex components for the bound states
of D̄ð�ÞN, Bð�ÞN and P̄ð�ÞN as shown in Table IV. The
results of the π potential are almost the same as those of the
πρω potential. For the D̄ð�ÞN bound state, the mixing ratios
with the πρω potential are 83.3% for j ¼ 1 and 16.7% for
j ¼ 0. The j ¼ 1 component dominates in the bound state,
while the j ¼ 0 component emerges due to the breaking of
the HQS. Compared to this, the Bð�ÞN state consists mainly
of the j ¼ 1 component: 97.3% for j ¼ 1 and just 2.7% for
j ¼ 0 with the πρω potential. When the mass of the heavy
quark increases, the ratio of the j ¼ 0 component
decreases. Finally, in the heavy quark limit, the bound
states corresponding to the HQS doublet are composed
only of the j ¼ 1 component.
We comment on the nonexotic Pð�ÞN channel, whose

quark configuration is given byQq̄qqq. The present boson-
exchange potential can be applied to these systems by
changing the sign of the vertices according to the G-parity.
Hence, the Hamiltonian in the spin-complex basis for the
Pð�ÞN states is the same as that for the P̄ð�ÞN states except
for the sign of the coupling constants. In the nonexotic
channels, there can be mixing effects with the hadronic
states Pð�ÞN and the compact three-quark statesQqq due to

the light quark-antiquark annihilation processes. However,
the discussion including the channel mixings is difficult in
our formalism. Nevertheless, the emergence of the HQS
doublet or singlet states in the heavy quark limit is always
guaranteed as long as the HQS is taken into account.
The discussion based on the Weinberg-Tomozawa inter-

action with SU(8) flavor-spin symmetry is presented in
Appendix C. We can also see that the HQS singlet and
doublet are present in this model.

IV. MASS SPECTRUM AND STRUCTURE OF
BROWN MUCK

So far we have discussed the brown muck and spin-
complex as useful objects to understand the structures of
multihadrons with a heavy quark. Because there exist
internal degrees of freedom (light quarks and gluons, light
hadrons and the relative angular momentum), the brown
muck not only has the ground state but also several excited
states. In this section, we discuss the mass spectrum of the
brown muck in relation to its internal structure in excited
heavy hadrons.

A. Extraction of mass of brown muck

As discussed in Sec. II D, we identify the mass of the
brown muck as Λ̄ defined in Eq. (27). This is the
contribution of the light components to the hadron mass
in the heavy quark limit. In reality, we need to extract Λ̄
from the experimental information with finite charm and
bottom quark masses. This is possible by using the heavy
hadron mass formula (26) together with the knowledge of
the masses of the charm hadrons Hc with spin j� 1=2 and
the bottom hadrons Hb with j� 1=2 which have common
isospin and parity. Then, we use the following relations
from Eq. (26):

MHcðjþ1=2Þ ¼ mc þ Λ̄ −
λ1
2mc

þ 2j
λ2ðμÞ
2mc

þOð1=m2
cÞ; ð91Þ

MHcðj−1=2Þ ¼ mc þ Λ̄ −
λ1
2mc

− 2ðjþ 1Þ λ2ðμÞ
2mc

þOð1=m2
cÞ;

ð92Þ

MHbðjþ1=2Þ ¼ mb þ Λ̄ −
λ1
2mb

þ 2j
λ2ðμÞ
2mb

þOð1=m2
bÞ; ð93Þ

MHbðj−1=2Þ ¼ mb þ Λ̄ −
λ1
2mb

− 2ðjþ 1Þ λ2ðμÞ
2mb

þOð1=m2
bÞ;

ð94Þ

for j ≠ 0 (HQS doublet). We use μ ¼ mc (mb) for charm in
Eqs. (91) and (92) [for bottom in Eqs. (93) and (94)]. For
givenMHcðjþ1=2Þ,MHcðj−1=2Þ,MHbðjþ1=2Þ andMHbðj−1=2Þ, we
obtain the matrix elements Λ̄, λ1, λ2ðmcÞ and λ2ðmbÞ up to

TABLE IV. Mixing ratios of the spin-complex components
with j ¼ 0 and j ¼ 1 in the bound states for ðI; JPÞ ¼ ð0; 1=2−Þ.
The results with the π and πρω potentials are shown.

D̄N BN P̄N

j ¼ 1 π 81.7% 96.2% 100.0%
πρω 83.3% 97.3% 100.0%

j ¼ 0 π 18.3% 3.8% 0.0%
πρω 16.7% 2.7% 0.0%
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Oð1=m2
cÞ andOð1=m2

bÞ. We usemc ¼ 1.30 GeV andmb ¼
4.71 GeV following Ref. [8]. For j ¼ 0 (HQS singlet), we
use

MHcð1=2Þ ¼ mc þ Λ̄ −
λ1
2mc

þOð1=m2
cÞ; ð95Þ

MHbð1=2Þ ¼ mb þ Λ̄ −
λ1
2mb

þOð1=m2
bÞ; ð96Þ

to determine Λ̄ and λ1 from MHcð1=2Þ and MHbð1=2Þ. Those
formulas should hold in any (multi)hadrons with a heavy
quark. The information of the specific configurations of the
brown muck is reflected in the values of the parameters,
such as Λ̄, λ1, λ2ðmcÞ and λ2ðmbÞ, which are defined as the
matrix elements of the HQET operators with hadronic
states. We will apply this scheme to obtain Λ̄, λ1, λ2ðmcÞ
and λ2ðmbÞ using the experimental mass spectrum of heavy
baryons. We also examine the predictions of the constituent
quark model and the hadronic molecule model, where the
former represents the diquark structure of the brown muck
and the latter expresses the spin-complex structure of the
brown muck.
We note that the matrix elements Λ̄, λ1, and λ2ðmQÞ are

related to the mQ dependence of the heavy hadron mass
MHðmQÞ. For instance, Λ̄ can be expressed as

Λ̄ ¼ d
dð1=mQÞ

�
MH

mQ

�����
mQ→∞

¼ −m2
Q

d
dmQ

�
MH

mQ

�����
mQ→∞

:

ð97Þ

In the sameway, λ1 and λ2ðmQÞ can be related to the second
derivative of the masses of the spin partners

d2

dð1=mQÞ2
�
MHðj�1=2Þ

mQ

�����
mQ→∞

¼
�−λ1 þ 2jλ2ð∞Þ
−λ1 − 2ðjþ 1Þλ2ð∞Þ:

ð98Þ

Because the heavy quark mass mQ can be arbitrarily
adjusted in the lattice QCD simulation, it is, in principle,
possible to extract the matrix elements from the mQ

dependence. For instance, using almost the same formula
for the light quark sector, the pion-nucleon sigma term has
been extracted from the light quark mass dependence of the
ground-state hadron masses [50]. By calculating the heavy
hadron masses with several mQ, we can perform a similar
analysis to extract the information of Eqs. (97) and (98).
There is no fundamental problem, because in Ref. [51], the
interquark potential has been studied with various heavy
quark masses.

B. Spectroscopy of brown muck by experimental data

In experiments, several charm and bottom baryons have
been reported to exist so far [10]. In the antitriplet sector of
SU(3) flavor, there are Λc (Λb) with 1=2þ for the ground
state, andΛ�

c (Λ�
b) with 1=2

− and 3=2− for the excited states,
for the nonstrangeness (S ¼ 0) sector. Two Λ�

b states have
been observed recently in LHCb [11]. Although their JP

quantum numbers have not yet been determined in exper-
imental observation, it is natural to assign 1=2− (3=2−) for
the states with lower (higher) mass. In the strangeness S ¼
−1 sector, there are Ξc (Ξb) with 1=2þ.
In the sextet sector, Σð�Þ

c (Σð�Þ
b ) with 1=2þ and 3=2þ exist

for S ¼ 0. The experimental data on other baryons are not
sufficient to complete the flavor partners and/or the spin
partners. Such states are not considered in the present
discussion.
Based on the existence of the nearby spin states, we

assign the ground states of Λc and Ξc (Λb and Ξb) as HQS

singlets, and the excited states Λ�
c and Σð�Þ

c (Λ�
b and Σð�Þ

b ) as
HQS doublets. From those charm and bottom baryons, by
using Eqs. (91), (92), (93) and (94), we obtain the matrix
elements Λ̄, λ1, λ2ðmcÞ and λ2ðmbÞ as summarized in
Table V. The ground states Λc and Λb contain the brown
muck with S; IðjPÞ ¼ 0; 0ð0þÞ whose mass is given as
Λ̄ ¼ 0.88 GeV. The excited states of the brown muck are
also calculated from the mass of the excited baryons. We
find that the mass of the brown muck Λ̄ is of the order of
1 GeV in the heavy baryons, which is comparable with the
mass of the light hadrons. The small numbers of λ1 and
λ2ðmQÞ, together with the 1=2mQ factor in the mass
formula, indicate that these corrections are indeed small

TABLE V. The matrix elements Λ̄, λ1, λ2ðmcÞ and λ2ðmbÞ of charm and bottom baryons observed in experiments. The brown muck is
characterized by its strangeness S, isospin I and the total spin and parity jP. Λ̄ and δΛ̄ are given in units of GeV, and λ1, λ2ðmcÞ and
λ2ðmbÞ are in units of GeV2. In the last row, we show the corresponding diquarks in the constituent quark model, which are denoted by
½q1q2�jP for the triplet in light flavor SU(3) symmetry and ðq1q2ÞjP for the sextet (q1, q2 = u, d, s; n ¼ u, d) (see also Sec. IV C).

S; IðjPÞ Baryons (JP) Λ̄ δΛ̄ λ1 λ2ðmcÞ, λ2ðmbÞ Diquark

0; 0ð0þÞ Λc, Λb (1=2þ) 0.88 0 −0.28 � � � ½ud�0þ
0; 0ð1−Þ Λ�

c , Λ�
b (1=2−, 3=2−) 1.17 0.29 −0.39 0.014, 0.012 ½ud�1−

−1; 1=2ð0þÞ Ξc, Ξb (1=2þ) 1.04 0.16 −0.32 � � � ½ns�0þ
0; 1ð1þÞ Σð�Þ

c , Σð�Þ
b (1=2þ, 3=2þ) 1.09 0.21 −0.29 0.028, 0.032 ðnnÞ1þ
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(about 10% or less to Λ̄), and the large amount of the heavy
baryon mass originates in Λ̄.
The mass splittings between states are important quan-

tities in hadron mass spectroscopy. This is also the case for
the brown muck. In Table V, the excitation energies of the
brown muck are denoted by δΛ̄, which are measured from
the mass of the ground state with S; IðjPÞ ¼ 0; 0ð0þÞ in Λc
and Λb (1=2þ). We plot the obtained mass spectrum of the
brown muck in the right panel in Fig. 3. The excited state
with S; IðjPÞ ¼ 0; 0ð1−Þ in Λ�

c and Λ�
b (1=2

−, 3=2−) has an
excitation energy of δΛ̄ ¼ 290 MeV. We also observe that
the brown muck with −1; 1=2ð0þÞ in Ξc and Ξb (1=2þ) has
the excitation energy δΛ̄ ¼ 160 MeV measured from the
mass of the brown muck in Λc and Λb (1=2þ). In the flavor
sextet sector, the brown muck with 0; 1ð1þÞ in Σð�Þ

b and Σð�Þ
c

(1=2þ, 3=2þ) has the excitation energy δΛ̄ ¼ 210 MeV.

C. Brown muck spectroscopy by theoretical studies

In the previous subsection, we obtained the mass
spectrum of the brown muck based on the experimental
information. However, the number of observed charm and

bottom baryons is not yet sufficient to perform the
systematic spectroscopy of the brown muck. In particular,
much information is lacking about further excited states.
Theoretically, it is predicted that there exist higher excited
states forming flavor partners and spin partners in the
constituent quark model, as recently studied in detail by
Roberts and Pervin in Ref. [52]. In the hadronic molecule
models, the existence of exotic baryons is also predicted,
for instance, by the potential model as discussed in Sec. III
(see also Refs. [28–31]). These theoretical calculations
enable us to extract the masses of the higher excited states
of the brown muck with different quantum numbers.
Moreover, the structure of the brown muck in these
predictions is related to the model space, for instance,
the diquark qq in the constituent quark model and the spin-
complex withNq structure in the hadronic molecule model.
For the study of internal structure, from now on, we make
use of the theoretical predictions of the heavy hadron
spectrum.

1. Constituent quark model

In the literature, there have been many discussions about
the masses of heavy baryons in the quark model calcu-
lations [53,54]. As one of the recent works, we consider the
model by Roberts and Pervin [52] where the baryons are
classified in terms of the HQS. We summarize their results
in Figs. 4 and 5 for charm and bottom sectors, respectively,
in comparison with experimental data. In their analysis,
some spin partners (HQS doublet/singlet) were identified,
when the wave functions of the light quarks were similar to
each other.
It was shown that Λc (Λb) in the ground state is identified

as the HQS singlet state which contains the brown muck
with S; IðjPÞ ¼ 0; 0ð0þÞ. Their excited states, Λ�

c (Λ�
b) with

JP ¼ 1=2− and 3=2−, are identified as the HQS doublet
states which contain the brown muck with 0; 0ð1−Þ.
Similarly, Ξc (Ξb) with JP ¼ 1=2þ is the HQS singlet state
containing the brown muck with −1; 1=2ð0þÞ. In the sextet
sector, Σð�Þ

c (Σð�Þ
b ) with 1=2þ and 3=2þ are the HQS doublet

states containing the brown muck with 0; 1ð1þÞ. Those
assignments are consistent with the result from the spec-
trum observed in experiments. In addition, many other
states, which will be explored in future experiments, were
predicted in Ref. [52]. Some of them are identified as the
HQS doublets/singlets.
For those excited baryons, we calculate the matrix

elements Λ̄, λ1, λ2ðmcÞ and λ2ðmbÞ by applying
Eqs. (91), (92), (93) and (94). The results are shown in
Tables VI and VII for the strangeness S ¼ 0 and S ¼ −1 in
the flavor antitriplet sector, and in Tables VIII, IX and X for
S ¼ 0, S ¼ −1 and S ¼ −2 states in the sextet sector. In
those tables, jP is the spin and parity of the brown muck,
and JP ¼ j� 1=2P (P ¼ P) is the total angular momenta
and parity of the baryons containing the common brown

FIG. 3. The mass spectrum of the brown muck extrapolated
from the experimental data of the charm and bottom baryons.
The masses are measured from the ground state with S; IðjPÞ ¼
0; 0ð0þÞ. See also Table V.
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muck (j ≥ 1). For j ¼ 0, there is no spin partner. Because
this model is based on the three-quark configuration, the
brown muck in the predicted heavy baryons is considered
to be a diquark state. We denote it by the valence quark
component as ½qq� and ðqqÞ, where the square (round)
bracket stands for the antisymmetric (symmetric)

combination corresponding to the triplet (sextet) in light
flavor SU(3) symmetry.
Let us see the details of the obtained matrix elements. We

find that the value of Λ̄ for the ground states Λc and Λb
ð1=2þÞ is in good agreement with those extracted from the
experimental spectrum in Table V. It is also the case for the

FIG. 4. Comparison of the mass spectrum of the charm baryons in the constituent quark model (CQM) [52] (left) and the experimental
data [10] (right). The masses are given in units of MeV. JP with half-integer J is the total spin and parity of the baryon in Ref. [52], and
jP (P ¼ P) with integer j is the total spin and parity of the brown muck identified in Ref. [52]. We use the square and round brackets as
½jP � and ðjPÞ to indicate the flavor antitriplet and sextet states, respectively.

FIG. 5. Comparison of the mass spectrum of the bottom baryons in the constituent quark model (CQM) [52] (left) and the
experimental data [10] (right). The conventions are the same as Fig. 4.
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excited state Λ�
c and Λ�

b ð1=2−; 3=2−Þ, Ξc and Ξb ð1=2þÞ,
and Σð�Þ

c and Σð�Þ
b ð1=2þ; 3=2þÞ. This is of course a

consequence of the success of the quark model prediction
for the experimental data of these states in Ref. [52]. It also
indicates that the brown muck of these low-lying baryons is
dominated by the diquark structure. We note that the values
of λ1, λ2ðmcÞ and λ2ðmbÞ together with the factors 1=2mc

and 1=2mb are smaller than that of Λ̄, and hence the 1=mQ

expansion works well.
In addition to the observed states, the quark model

predicts several excited states [52]. From this information,
we can construct the mass spectrum of the brown muck.
One of the most important quantities in the mass spectrum
is the excitation energy from the ground state. We define
the excitation energy δΛ̄ measured from the lowest energy

TABLE VIII. The matrix elements for Σc and Σb based on the result of Ref. [52]. The contained brown muck is ðnnÞ. The conventions
are the same as in Table VI.

jP JP MΣc
, MΣb Λ̄ δΛ̄ λ1 λ2ðmcÞ λ2ðmbÞ

0þ 1=2þ 3.062, 6.397 1.658 0.540 −0.269 � � � � � �
1þ ð1=2þ; 3=2þÞ (2.455, 2.519), (5.833, 5.858) 1.118 0 −0.208 0.027 0.039

(2.958, 2.995), (6.294, 6.326) 1.577 0.459 −0.278 0.016 0.050
(3.115, 3.116), (6.447, 6.447) 1.701 0.583 −0.283 0.0 0.0

� � � � � � � � � � � � � � � � � �
2þ ð3=2þ; 5=2þÞ (3.095, 3.108), (6.426, 6.429) 1.685 0.567 −0.305 0.003 0.003
3þ ð5=2þ; 7=2þÞ (3.003, 3.015), (6.325, 6.333) 1.585 0.467 −0.324 0.002 0.005
1− ð1=2−; 3=2−Þ (2.848, 2.860), (6.200, 6.202) 1.467 0.349 −0.232 0.005 0.003
2− ð3=2−; 5=2−Þ (2.763, 2.790), (6.101, 6.172) 1.416 0.290 −0.164 0.007 0.067

TABLE VI. The matrix elements Λ̄, λ1, λ2ðmcÞ and λ2ðmbÞ from Eq. (26) for Λc and Λb baryons with massesMΛc
andMΛb

obtained in
the constituent quark model [52]. jP is the total spin and parity of the brown muck ½ud�, and JP is the total spin and parity of the heavy
baryon belonging to the HQS multiplet. δΛ̄ is the excitation energy from the ground state (0.877 GeV for jP ¼ 1=2þ in this sector). Λ̄
and δΛ̄ are given in units of GeV, and λ1, λ2ðmcÞ and λ2ðmbÞ are in units of GeV2.

jP JP MΛc
, MΛb Λ̄ δΛ̄ λ1 λ2ðmcÞ λ2ðmbÞ

0þ 1=2þ
2.268, 5.612 0.877 0 −0.237 � � � � � �
2.791, 6.107 1.361 0.484 −0.338 � � � � � �
2.983, 6.338 1.607 0.730 −0.198 � � � � � �
3.154, 6.499 1.764 0.887 −0.233 � � � � � �

2þ ð3=2þ; 5=2þÞ
(2.887, 2.887), (6.181, 6.183) 1.429 0.552 −0.412 0.0 0.003
(3.120, 3.125), (6.431, 6.434) 1.685 0.808 −0.360 0.002 0.005
(3.194, 3.194), (6.449, 6.450) 1.681 0.804 −0.554 0.0 0.001

3þ ð5=2þ; 7=2þÞ (3.092, 3.128), (6.422, 6.433) 1.682 0.805 −0.339 0.007 0.007
1− ð1=2−; 3=2−Þ (2.625, 2.636), (5.930, 5.941) 1.187 0.310 −0.378 0.005 0.017
2− ð3=2−; 5=2−Þ (2.830, 2.872), (6.191, 6.206) 1.465 0.588 −0.234 0.011 0.014

TABLE VII. The matrix elements for Ξc and Ξb based on the result of Ref. [52]. The contained brown muck is ½ns� with n ¼ u or d.
The conventions are the same as in Table VI.

jP JP MΞc
, MΞb Λ̄ δΛ̄ λ1 λ2ðmcÞ λ2ðmbÞ

0þ 1=2þ
2.466, 5.806 1.069 0 −0.251
2.924, 6.230 1.480 0.411 −0.373 � � � � � �
3.183, 6.547 1.819 0.750 −0.165 � � � � � �

� � � � � � � � � � � � � � � � � �

2þ ð3=2þ; 5=2þÞ
(3.012, 3.004), (6.311, 6.300) 1.551 0.482 −0.405 −0.002 −0.010

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

3þ ð5=2þ; 7=2þÞ � � � � � � � � � � � � � � � � � �
1− ð1=2−; 3=2−Þ (2.773, 2.783), (6.090, 6.093) 1.345 0.276 −0.351 0.004 0.005
2− ð3=2−; 5=2−Þ � � � � � � � � � � � � � � � � � �
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state with given flavor quantum numbers. In the antitriplet
sector, the ground state is jP ¼ 0þ for both ðS; IÞ ¼ ð0; 0Þ
and ð−1; 1=2Þ. In contrast, in the sextet sector, the ground
state is jP ¼ 1þ for all channels with ðS; IÞ ¼ ð0; 1Þ,
ð−1; 1=2Þ and ð−2; 0Þ. Moreover, the mass splitting of
the ground states in the sextet is almost equal spacing
(mðqsÞ −mðudÞ ¼ 124 MeV≃mðssÞ −mðqsÞ ¼ 116 MeV),
which indicates that the Gell-Mann–Okubo formula works
well also for the brown muck. In this way, the structure of
the brown muck in the constituent quark model follows the
flavor SU(3) symmetry.
From the analyses above, we obtain the mass spectrum

of the brown muck, as summarized in Fig. 6. Some lower
states are comparable with the ones in Fig. 3, and many
higher states are predicted. In any case, the theoretical
results suggest rich structures in the excited spectrum of the
brown muck in the diquark picture. When the experimental
measurements of the charm and bottom baryons are further
performed in the future, we will be able to understand more
about the structure of the brown muck.

2. Hadronic molecule model

In Sec. III, we have discussed the spin-complex in the
exotic baryon composed of P̄ð�ÞN. Because this model is
based on the hadronic molecule picture, we have obtained
the brown muck with the spin-complex structure of

½Nq�0ð1þÞ for the HQS doublet ð1=2−; 3=2−Þ and
½Nq�0ð1−Þ for ð1=2þ; 3=2þÞ, where we explicitly denote
the isospin I (the strangeness is S ¼ 0). The mass spectrum
of the D̄ð�ÞN and Bð�ÞN states with finite charm and bottom
quark masses are obtained and the results are summarized
in Table XI.
In order to extract Λ̄ and other matrix elements [λ1,

λ2ðmcÞ and λ2ðmbÞ] for P̄ð�ÞN, we apply the mass formulas
(91)–(94) for those D̄ð�ÞN and Bð�ÞN states. Consequently,
we obtain Λ̄, λ1, λ2ðmcÞ and λ2ðmbÞ as summarized in
Table XII. The mass of the spin-complex ½Nq�0ð1þÞ is

Λ̄ ¼ 1.476 GeV, and the mass of ½Nq�0ð1−Þ is Λ̄ ¼
1.500 GeV. Thus, there is the mass difference δΛ̄ ¼
0.024 GeV between ½Nq�0ð1þÞ and ½Nq�0ð1−Þ. We note again
that the 1=mQ expansion works well due to the small values
of λ1, λ2ðmcÞ and λ2ðmbÞ together with the factors 1=2mc

and 1=2mb. In Fig. 6, we show the obtained mass spectrum
of the spin-complex ½Nq�0ðjPÞ. Their masses are about
600 MeV heavier than the lowest energy state of the
diquark ½ud�0þ .
The spin-complex with ½Nq̄� structure may exist as

another component of the brown muck around this energy
region, when Pð�ÞN components are considered. In fact,
the meson-exchange interaction for Pð�ÞN may be

TABLE X. The matrix elements forΩc andΩb based on the result of Ref. [52]. The contained brown muck is ðssÞ. The conventions are
the same as in Table VI.

jP JP MΩc
, MΩb Λ̄ δΛ̄ λ1 λ2ðmcÞ λ2ðmbÞ

0þ 1=2þ 3.234, 6.511 1.801 0.443 −0.334 � � � � � �
1þ ð1=2þ; 3=2þÞ (2.718, 2.776), (6.081, 6.102) 1.358 0 −0.257 0.025 0.033

(3.152, 3.190), (6.472, 6.478) 1.723 0.365 −0.400 0.016 0.009
(3.275, 3.280), (6.593, 6.593) 1.847 0.489 −0.342 0.002 0.0
(3.299, 3.321), (6.648, 6.654) 1.915 0.557 −0.257 0.010 0.009

2þ ð3=2þ; 5=2þÞ (3.262, 3.273), (6.576, 6.578) 1.829 0.471 −0.364 0.003 0.002
3þ ð5=2þ; 7=2þÞ � � � � � � � � � � � � � � � � � �
1− ð1=2−; 3=2−Þ (3.046, 3.056), (6.388, 6.390) 1.651 0.293 −0.263 0.004 0.003
2− ð3=2−; 5=2−Þ (2.986, 3.014), (6.304, 6.311) 1.558 0.200 −0.375 0.007 0.007

TABLE IX. The matrix elements for Ξ0
c and Ξ0

b based on the result of Ref. [52]. The contained brown muck is ðnsÞ with n ¼ u or d.
The conventions are the same as in Table VI.

jP JP MΞ0
c
, MΞ0

b
Λ̄ δΛ̄ λ1 λ2ðmcÞ λ2ðmbÞ

0þ 1=2þ � � � � � � � � � � � � � � � � � �
1þ ð1=2þ; 3=2þÞ (2.594, 2.649), (5.970, 5.980) 1.242 0 −0.230 0.024 0.016

(3.136, 3.075), (6.493, 6.376) 1.671 0.429 −0.324 −0.026 −0.184
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

2þ ð3=2þ; 5=2þÞ � � � � � � � � � � � � � � � � � �
3þ ð5=2þ; 7=2þÞ � � � � � � � � � � � � � � � � � �
1− ð1=2−; 3=2−Þ � � � � � � � � � � � � � � � � � �
2− ð3=2−; 5=2−Þ (2.866, 2.895), (6.190, 6.201) 1.450 0.208 −0.348 0.008 0.103
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obtained from that in P̄ð�ÞN by the G-parity transforma-
tion. If this is the case, the spectrum of the brown muck
with the ½ud� configuration will be affected by the mixing
with the ½Nq̄� spin-complex, especially around 600 MeV

above the ground state. It is therefore interesting to
compare Pð�ÞN and P̄ð�ÞN states and to complete the
experimental measurements of the heavy baryons in this
energy region, which will provide the information on the
structure of the brown muck through the comparison with
the spectrum of the brown muck in the diquark picture
in Fig. 6.

V. SUMMARY

We have discussed the decoupling of the heavy quark
spin from the total spin of the light components in the
multihadrons composed of a heavy hadron and surrounding
light hadrons in the heavy quark limit. In those systems, the
HQS plays an important role for the classification of the
spectrum and the structure of the heavy multihadrons. We
have introduced the spin-complex for the state composed of
the light quarks and gluons together with the light hadrons
in a heavy hadron. The spin-complex is one of the
configurations of the brown muck which is defined as
everything except for the heavy quark spin in the multi-
hadrons. The decoupling of the heavy quark spin and the
total spin j of the spin-complex induces the HQS doublet
ðj − 1=2; jþ 1=2Þ for j ≠ 0 with degenerate masses and
the HQS singlet for j ¼ 0.
We have studied the consequences of this general

statement by examining the exotic baryon system made
of a heavy meson and a nucleon. Various meson-baryon
states are classified in terms of the spin-complex basis, by
which the structure of the hadrons in the heavy quark limit
is investigated. Employing a meson-exchange potential
for the interaction of the heavy meson and the nucleon, we
have found that the Hamiltonian of the system is block-
diagonalized in the spin-complex basis and the eigenval-
ues become the same for the j� 1=2 sectors containing
the same spin-complex. Thus, the spin degeneracy indeed
occurs, when the interaction is constructed by respecting
the HQS. Moreover, the wave function of the bound state
exhibits the mixing ratios of the meson-baryon compo-
nents obtained from the group theoretical argument. From
these results, we conclude that the HQS is a useful guiding
principle to study the structure of the multihadron
systems.
We have also studied the excitations of the brown muck.

The mass of the brown muck is defined as the leading order
contribution of the mass formula of the heavy hadrons
in the 1=mQ expansion. This can be evaluated from the

FIG. 6. The mass spectrum of the brown muck extrapolated
from the prediction of the constituent quark model [52] and the
boson exchange potential model [28–30]. The numbers on the left
of the bars are the excitation energy measured from the ground
state of each flavor. The numbers in the dashed arrows are the
mass difference of the ground states in each quantum number
from the lowest ½ud� brown muck in 0þ.

TABLE XI. Masses of HQS doublets ð1=2−; 3=2−Þ and
ð1=2þ; 3=2þÞ for D̄ð�ÞN and Bð�ÞN with the πρω potential from
Ref. [30]. The values are given in GeV.

D̄ð�ÞN Bð�ÞN

ð1=2−; 3=2−Þ (2.805, 2.920) (6.196, 6.226)
ð1=2þ; 3=2þÞ (2.834, 2.955) (6.225, 6.251)

TABLE XII. The matrix elements Λ̄, λ1, λ2ðmcÞ and λ2ðmbÞ of exotic baryons which contain the spin-complex (SC) ½Nq�IðjPÞ
with isospin I, total spin and parity jP. The πρω potential is used. δΛ̄ is the difference of Λ̄ from the ground state ½Nq�0ð1þÞ. Λ̄ and
δΛ̄ are given in units of GeV, and λ1, λ2ðmcÞ and λ2ðmbÞ are in units of GeV2.

SC Baryons (JP) Λ̄ δΛ̄ λ1 λ2ðmcÞ, λ2ðmbÞ
½Nq�0ð1þÞ P̄ð�ÞN (1=2−, 3=2−) 1.476 0 −0.272 0.0500, 0.0469
½Nq�0ð1−Þ P̄ð�ÞN (1=2þ, 3=2þ) 1.500 0.024 −0.296 0.0526, 0.0408
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masses of the charm and bottom hadrons in the same
HQS multiplet. We use the experimental spectrum of the
heavy baryons and obtain the masses of the brown muck
in several channels. Theoretical predictions in the con-
stituent quark model and the hadronic molecule model
are also used to calculate the excitation spectrum of the
brown muck. It is found that the ground states of the
brown muck are dominated by the diquark configuration
for ordinary baryons with three valence quarks, while the
mixing with the spin-complex component may become
important in the excited states. The spectroscopy of
excited baryons in future experiments will be helpful
to pin down the structure of the brown muck, through the
comparison with the brown muck spectrum in the
quark model.
The spectroscopy of the brown muck is intimately

related with the diquarks in the heavy baryons. The
spin-complex will also be an interesting object in the
quark-gluon plasma and the quark matter in the decon-
finement phase, when there exist several color non-
singlet structures. In fact, there have been discussions
that light diquarks may survive around the critical
temperature in the quark-gluon plasma [12–15], and
diquarks may also exist in the color superconductivity
[16,17]. Those studies will be performed in J-PARC and
GSI-FIAR as well as in the BNL-RHIC and CERN-
LHC and so on.
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APPENDIX A: WAVE FUNCTION
OF SPIN-COMPLEX FOR

OTHER STATES

In this appendix, we summarize the transformation of the
particle basis to the spin-complex basis for the higher spin
states up to J ¼ 7=2.

1. Negative-parity channels

The transformations for the higher spin states ðJ ¼
5=2; 7=2Þ are given in the same manner as shown in
Sec. III A. The particle basis and the spin-complex basis
are related as follows:

0
BBBBB@

jP̄Nð2D5=2Þi
jP̄�Nð2D5=2Þi
jP̄�Nð4D5=2Þi
jP̄�Nð4G5=2Þi

1
CCCCCA ¼ U5=2−

0
BBBBBB@

j½Nq�ð0;DÞ
2þ Q̄i

5=2−

j½Nq�ð1;DÞ
2þ Q̄i
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3þ Q̄i
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3þ Q̄i

5=2−

1
CCCCCCA
; ðA1Þ
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U5=2− ¼

0
BBBBB@
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1ffiffi
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p
ffiffiffiffi
21

p
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0ffiffi
3

p
2

1

3
ffiffi
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ffiffi
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p
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0

0
ffiffi
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ffiffi
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0 0 0 −1
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CCCCCA ðA2Þ

for 5=2−, and

0
BBBBB@

jP̄Nð2G7=2Þi
jP̄�Nð4D7=2Þi
jP̄�Nð2G7=2Þi
jP̄�Nð4G7=2Þi

1
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0
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7=2−
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1
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for 7=2−. Each J channel contains the channels with
j ¼ J � 1=2. For higher J, the decomposition will be
given similarly.

2. Positive parity channels

The states with positive parity can be analyzed in the
same way. The wave functions are transformed from the
particle basis into the spin-complex basis by a unitary
matrix UJP as

0
BB@

jP̄Nð2P1=2Þi
jP̄�Nð2P1=2Þi
jP̄�Nð4P1=2Þi

1
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BBB@
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1
CCCA; ðA5Þ

with
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U1=2þ ¼
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for 1=2þ,
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for 5=2þ, and
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for 7=2þ. Generalization to higher J is straightforward.

APPENDIX B: THE πρω EXCHANGE
POTENTIAL

We consider the potential model including π; ρ, and ω
exchanges to demonstrate that the spin degeneracy occurs
in the exotic hadrons. Here we consider the P̄ð�ÞN systems
with several JP.
The interaction Lagrangian of heavy mesons and light

vector mesons v (v ¼ ρ;ω) respecting HQS is given at the
leading order by

LvHH ¼ −iβTr½HbvμðρμÞbaH̄a�
þ iλTr½Hbσ

μνðFμνðρÞÞbaH̄a�: ðB1Þ

The vector meson field is defined by ρμ ¼ igV ρ̂μ=
ffiffiffi
2

p
, and

ρ̂μ is given as

ρ̂μ ¼
 ρ0ffiffi

2
p þ ωffiffi

2
p ρþ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p

!
μ

; ðB2Þ

where gV ≃ 5.8 is the universal vector meson coupling. The
vector meson field tensor is given by FμνðρÞ ¼ ∂μρν−
∂νρμ þ ½ρμ; ρν�. The coupling constants are given as
β ¼ 0.9, λ ¼ 0.56 following Ref. [41]. We use the vNN
vertex from the Lagrangian

LvNN ¼ gωNN

	
N̄γμω

μN þ κω
2mN

N̄σμνN∂νωμ




þ gρNN

	
N̄γμ~τN · ~ρμN þ κρ

2mN
N̄σμν~τNN · ∂ν~ρμ



ðB3Þ

where g2ρNN=4π ¼ 0.84, g2ωNN=4π ¼ 20.0, κρ ¼ 6.1 and
κω ¼ 0.0 [42] (see also Ref. [43]).
The one-boson-exchange potentials derived from the

vertices of the effective Lagrangians are given as
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p
Tv 2

ffiffiffi
3

p
Cv

−
ffiffiffi
3

p
Tv C0

v þ 2Cv −2Tv −Tvffiffiffi
3

p
Tv −2Tv C0

v þ 2Cv Tv

2
ffiffiffi
3

p
Cv −Tv Tv C0

v − 4Cv

1
CCCA;

ðB5Þ

for the 1=2− and 3=2− states, where C0
v, Cv and Tv are

defined as

C0
ρ ¼

gVgρNNβffiffiffi
2

p
m2

ρ

Cðr;mρÞ~τP · ~τN; ðB6Þ

Cρ ¼
gVgρNNλð1þ κρÞffiffiffi

2
p

mN

1

3
Cðr;mρÞ~τP · ~τN; ðB7Þ

Tρ ¼
gVgρNNλð1þ κρÞffiffiffi

2
p

mN

1

3
Tðr;mρÞ~τP · ~τN; ðB8Þ

C0
ω ¼ gVgωNNβffiffiffi

2
p

m2
ω

Cðr;mωÞ; ðB9Þ

Cω ¼ gVgωNNλð1þ κωÞffiffiffi
2

p
mN

1

3
Cðr;mωÞ; ðB10Þ

Tω ¼ gVgωNNλð1þ κωÞffiffiffi
2

p
mN

1

3
Tðr;mωÞ: ðB11Þ

The total Hamiltonian for the P̄ð�ÞN states is given by
combining with the kinetic term and the pion exchange
potential as

HJP ¼ KJP þ Vπ
JP þ

X
v¼ρ;ω

Vv
JP : ðB12Þ

The particle basis and the spin-complex basis are related by
unitary matrix UJP in Eqs. (36) and (38). Then, the
Hamiltonians HJP are transformed as

HSC
1=2− ¼ U−1

1=2−H1=2−U1=2−

¼
 
HSCð0þÞ

1=2− 0

0 HSCð1þÞ
1=2−

!
ðB13Þ

with

HSCð0þÞ
1=2− ¼ K0 − 3C̄þ C0

v; ðB14Þ

HSCð1þÞ
1=2− ¼

�
K0 þ C̄þ C0

v − 2T̄ −2
ffiffiffi
2

p
T̄

−2
ffiffiffi
2

p
T̄ K2 þ C̄þ C0

v − 2T̄

�
;

ðB15Þ

for 1=2−, where we define

C̄ ¼ Cþ 2Cv; T̄ ¼ T − Tv: ðB16Þ

In the same way, the 3=2− channel is decomposed as

HSC
3=2− ¼ U−1

3=2−H3=2−U3=2−

¼
 
HSCð1þÞ

3=2− 0

0 HSCð2þÞ
3=2−

!
; ðB17Þ

with

HSCð1þÞ
3=2− ¼

�
K0 þ C̄þ C0

v 2
ffiffiffi
2

p
T̄

2
ffiffiffi
2

p
T̄ K2 þ C̄þ C0

v − 2T̄

�
; ðB18Þ

HSCð2þÞ
3=2− ¼

�
K2 − 3C̄þ C0

v 0

0 K2 þ C̄þ C0
v þ 2T̄

�
:

ðB19Þ

Thus we obtain the block-diagonal forms with the spin-
complex basis in the same way with the one-pion-exchange
potential.
Similarly, the block-diagonal forms for various quantum

numbers are derived. The one vector meson exchange
potentials are as follows:

Vv
5=2− ¼

0
BBBBBBBB@

C0
v 2

ffiffiffi
3

p
Cv −

ffiffi
6
7

q
Tv

6ffiffi
7

p Tv

2
ffiffiffi
3

p
Cv C0

v − 4Cv −
ffiffi
2
7

q
Tv 2

ffiffi
3
7

q
Tv

−
ffiffi
6
7

q
Tv −

ffiffi
2
7

q
Tv C0

v þ
�
2Cv − 10

7
Tv

�
− 4

7

ffiffiffi
6

p
Tv

6ffiffi
7

p Tv 2
ffiffi
3
7

q
Tv − 4

7

ffiffiffi
6

p
Tv C0

v þ
�
2Cv þ 10

7
Tv

�

1
CCCCCCCCA
; ðB20Þ
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Vv
7=2− ¼

0
BBBBBBBBB@

C0
v −3

ffiffi
3
7

q
Tv 2

ffiffiffi
3

p
Cv

ffiffiffiffi
15
7

q
Tv

−3
ffiffi
3
7

q
Tv C0

v þ
�
2Cv þ 4

7
Tv

�
− 3ffiffi

7
p Tv − 6

7

ffiffiffi
5

p
Tv

2
ffiffiffi
3

p
Cv − 3ffiffi

7
p Tv C0

v − 4Cv

ffiffi
5
7

q
Tvffiffiffiffi

15
7

q
Tv − 6

7

ffiffiffi
5

p
Tv

ffiffi
5
7

q
Tv C0

v þ ð2Cv − 4
7
TvÞ

1
CCCCCCCCA
; ðB21Þ

Vv
1=2þ ¼

0
B@

C0
v 2

ffiffiffi
3

p
Cv

ffiffiffi
6

p
Tv

2
ffiffiffi
3

p
Cv C0

v − 4CV

ffiffiffi
2

p
Tvffiffiffi

6
p

Tv

ffiffiffi
2

p
Tv C0

v þ ð2Cv þ 2TvÞ

1
CA; ðB22Þ

Vv
3=2þ ¼

0
BBBBBBBB@

C0
v 2

ffiffiffi
3

p
Cv −

ffiffi
3
5

q
Tv 3

ffiffi
3
5

q
Tv

2
ffiffiffi
3

p
Cv C0

v − 4Cv − 1ffiffi
5

p Tv
3ffiffi
5

p Tv

−
ffiffi
3
5

q
Tv − 1ffiffi

5
p Tv C0

v þ ð2Cv − 8
5
TvÞ − 6

5
Tv

3
ffiffi
3
5

q
Tv

3ffiffi
5

p Tv − 6
5
Tv C0

v þ ð2Cv þ 8
5
TvÞ

1
CCCCCCCCA
; ðB23Þ

Vv
5=2þ ¼

0
BBBBBBBB@

C0
v − 3

5

ffiffiffiffiffi
10

p
Tv 2

ffiffiffi
3

p
Cv 2

ffiffi
3
5

q
Tv

− 3
5

ffiffiffiffiffi
10

p
Tv C0

v þ ð2Cv þ 2
5
TvÞ −

ffiffi
6
5

q
Tv − 4

5

ffiffiffi
6

p
Tv

2
ffiffiffi
3

p
Cv −

ffiffi
6
5

q
Tv C0

v − 4Cv
2ffiffi
5

p Tv

2
ffiffi
3
5

q
Tv − 4

5

ffiffiffi
6

p
Tv

2ffiffi
5

p Tv C0
v þ ð2Cv − 2

5
TvÞ

1
CCCCCCCCA
; ðB24Þ

Vv
7=2þ ¼

0
BBBBBBBB@

C0
v 2

ffiffiffi
3

p
Cv −Tv

ffiffiffi
5

p
Tv

2
ffiffiffi
3

p
Cv C0

v − 4Cv − 1ffiffi
3

p Tv

ffiffi
5
3

q
Tv

−Tv − 1ffiffi
3

p Tv C0
v þ ð2Cv − 4

3
TvÞ − 2

3

ffiffiffi
5

p
Tvffiffiffi

5
p

Tv

ffiffi
5
3

q
Tv − 2

3

ffiffiffi
5

p
Tv C0

v þ ð2Cv þ 4
3
TvÞ

1
CCCCCCCCA
: ðB25Þ

Utilizing the unitary matrixUJP in Eqs. (A1), (A3), (A5),
(A7), (A9) and (A11), we obtain the Hamiltonians of the
πρω potential in the spin-complex basis. The results for
negative parity are

HSC
5=2− ¼ U−1

5=2−H5=2−U5=2−

¼
�HSCð2þÞ

5=2− 0

0 HSCð3þÞ
5=2−

�
; ðB26Þ

with

HSCð2þÞ
5=2− ¼

�
K2 − 3C̄þ C0

v 0

0 K2 þ C̄þ 2T̄ þ C0
v

�
;

ðB27Þ

HSCð3þÞ
5=2− ¼

�
K2 þ C̄ − 4

7
T̄ þ C0

v
12
ffiffi
3

p
7

T̄

12
ffiffi
3

p
7

T̄ K4 þ C̄ − 10
7
T̄ þ C0

v

�

ðB28Þ

for 5=2þ and

HSC
7=2− ¼ U−1

7=2−H7=2−U7=2−

¼
�HSCð3þÞ

7=2− 0

0 HSCð4þÞ
7=2−

�
; ðB29Þ

with
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HSCð3þÞ
7=2− ¼

�
K2 þ C̄ − 4

7
T̄ þ C0

v
12
ffiffi
3

p
7

T̄

12
ffiffi
3

p
7

T̄ K4 þ C̄ − 10
7
T̄ þ C0

v

�
;

ðB30Þ

HSCð4þÞ
7=2− ¼

�
K4 − 3C̄þ C0

v 0

0 K4 þ C̄þ 2T̄ þ C0
v

�

ðB31Þ

for 7=2−. The results for positive parity are

HSC
1=2þ ¼ U−1

1=2þH1=2þU1=2þ

¼
�HSCð0−Þ

1=2þ 0

0 HSCð1−Þ
1=2þ

�
; ðB32Þ

with

HSCð0−Þ
1=2þ ¼ K1 þ C̄ − 4T̄ þ C0

v; ðB33Þ

HSCð1−Þ
1=2þ ¼

�
K1 − 3C̄þ C0

v 0

0 K1 þ C̄þ 2T̄ þ C0
v

�

ðB34Þ

for 1=2þ,

HSC
3=2þ ¼ U−1

3=2þH3=2þU3=2þ

¼
�HSCð1−Þ

3=2þ 0

0 HSCð2−Þ
3=2þ

�
; ðB35Þ

with

HSCð1−Þ
3=2þ ¼

�
K1 − 3C̄þ C0

v 0

0 K1 þ C̄þ 2T̄ þ C0
v

�
;

ðB36Þ

HSCð2−Þ
3=2þ ¼

�
K1 þ C̄ − 2

5
T̄ þ C0

v
6
ffiffi
6

p
5
T̄

6
ffiffi
6

p
5
T̄ K3 þ C̄ − 8

5
T̄ þ C0

v

�

ðB37Þ

for 3=2þ,

HSC
5=2þ ¼ U−1

5=2þH5=2þU5=2þ

¼
�HSCð2−Þ

5=2þ 0

0 HSCð3−Þ
5=2þ

�
; ðB38Þ

with

HSCð2−Þ
5=2þ ¼

�K1 þ C̄ − 2
5
T̄ þ C0

v
6
ffiffi
6

p
5
T̄

6
ffiffi
6

p
5
T̄ K3 þ C̄ − 8

5
T̄ þ C0

v

�
;

ðB39Þ

HSCð3−Þ
5=2þ ¼

�
K3 − 3C̄þ C0

v 0

0 K3 þ C̄þ 2T̄ þ C0
v

�

ðB40Þ

for 5=2þ, and

HSC
7=2þ ¼ U−1

7=2þH7=2þU7=2þ

¼
�HSCð3−Þ

7=2þ 0

0 HSCð4−Þ
7=2þ

�
; ðB41Þ

with

HSCð3−Þ
7=2þ ¼

�
K3 − 3C̄þ C0

v 0

0 K3 þ C̄þ 2T̄ þ C0
v

�
;

ðB42Þ

HSCð4−Þ
7=2þ ¼

�
K3 þ C̄ − 2

3
T̄ þ C0

v
4
ffiffi
5

p
3
T̄

4
ffiffi
5

p
3
T̄ K5 þ C̄ − 4

3
T̄ þ C0

v

�

ðB43Þ

for 7=2þ. In these potentials, C̄, T̄, and C0
v represent the

modification by the vector meson exchange potential,
which appear in many components. Nevertheless, the
relation (89) still holds.

APPENDIX C: SU(8) WEINBERG-TOMOZAWA
INTERACTION

Here we study the results of the SU(8) Weinberg-
Tomozawa model for the Pð�ÞN and P̄ð�ÞN channels in
Refs. [55–57] from the viewpoint of the spin-complex
basis. The coupled-channel s-wave meson-baryon scatter-
ing amplitude has been studied in the charmed baryon
sector [55], in the exotic charmed baryon sector [56], and in
the bottom sector [57]. In the hadronic molecule picture,
the dynamically generated states in these calculations
should contain the spin-complex with ½Nq̄� and ½Nq�
configurations. Because this model encodes the HQS as
a part of SU(8), it is illustrative to see how the spin
symmetry emerges in the results of the charm and bottom
sectors.
The model describes the scattering amplitude TJ for spin

J as

TJð
ffiffiffi
s

p Þ ¼ ½1 − VJð
ffiffiffi
s

p ÞGJð
ffiffiffi
s

p Þ�−1VJð
ffiffiffi
s

p Þ; ðC1Þ
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where GJð
ffiffiffi
s

p Þ is the two-body loop function and ffiffiffi
s

p
is the

total energy of the system. The interaction kernel VJð
ffiffiffi
s

p Þ is
given by

VJ;abð
ffiffiffi
s

p Þ ¼ DJ;ab
2
ffiffiffi
s

p
−Ma −Mb

4fafb

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ea þMa

2Ma

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb þMb

2Mb

s
; ðC2Þ

where Ma, Ea, fa are the baryon mass, the energy of the
baryon, and the meson decay constant in channel a,
respectively, and we have suppressed the flavor indices.
The coupling strength DJ;ab is determined by the group
theoretical argument, and explicit numbers are tabulated in
Refs. [55,56].
Let us consider this model for the Pð�ÞN (nonexotic)

system and the P̄ð�ÞN (exotic) system in the heavy quark
limit. In the exotic sector, the P̄ð�ÞN channels are the lowest
energy channels, while the Pð�ÞN system in the nonexotic
sector has, in general, open channels at lower energy, such
as πΣQ and πΛQ. However, the transition to these open
channels requires the heavy flavor exchange, which is
suppressed by 1=mQ in comparison with the light flavor
exchange processes. Thus, the Pð�ÞN and P̄ð�ÞN systems
can be regarded as isolated systems in the heavy quark
limit. In this case, the baryon in the scattering is always the
nucleon and the HQS requires fP ¼ fP� ≡ f in the present
convention, so Eq. (C2) reduces to

VJ;abð
ffiffiffi
s

p Þ ¼ DJ;ab

ffiffiffi
s

p
−MN

2f2
EN þMN

2MN
≡DJ;abαð

ffiffiffi
s

p Þ:

ðC3Þ

This shows that the dependence on the spin and channel is
included in DJ;ab exclusively, which is decoupled from the
energy dependence of the interaction in αð ffiffiffi

s
p Þ. In the

heavy quark limit, the loop functions for PN and P�N are
identical and do not depend on the spin, namely, G1=2 ¼
diagðG;GÞ and G3=2 ¼ G.
In the following, we concentrate on the isoscalar

channel. The explicit forms of the DJ;ab matrices for the
nonexotic Pð�ÞN channel are [55]

DPð�ÞN
1=2 ¼

�
−3 −

ffiffiffiffiffi
27

p

−
ffiffiffiffiffi
27

p
−9

�
; ðC4Þ

DPð�ÞN
3=2 ¼ 0; ðC5Þ

where the J ¼ 3=2 channel only has the P�N component.
Corresponding couplings for the exotic P̄ð�ÞN sector are
[56]

DP̄ð�ÞN
1=2 ¼

�
0 −

ffiffiffiffiffi
12

p

−
ffiffiffiffiffi
12

p
4

�
; ðC6Þ

DP̄ð�ÞN
3=2 ¼ − 2: ðC7Þ

We now introduce the spin-complex basis for this system.
Noting that the basis for the nonexotic channels is given by
jNQq̄i, we obtain the basis transformation matrix for the
nonexotic system as

� jPNð2S1=2Þi
jP�Nð2S1=2Þi

�
¼ UPð�ÞN

1=2

 j½Nq̄�ð0;SÞ0− Qi1=2−
j½Nq̄�ð1;SÞ1− Qi1=2−

!
;

UPð�ÞN
1=2 ¼

 
1
2

ffiffi
3

p
2ffiffi

3
p
2

− 1
2

!
: ðC8Þ

The transformation matrix for the exotic system is identical
to the s-wave part of Eq. (37):

� jP̄Nð2S1=2Þi
jP̄�Nð2S1=2Þi

�
¼ UP̄ð�ÞN

1=2

 j½Nq�ð0;SÞ
0þ Q̄i

1=2−

j½Nq�ð0;SÞ
1þ Q̄i

1=2−

!
;

UP̄ð�ÞN
1=2 ¼

 
− 1

2

ffiffi
3

p
2ffiffi

3
p
2

1
2

!
: ðC9Þ

Using these matrices, we have the interaction kernel in the
spin-complex basis as

VPð�ÞN;SC
1=2 ¼ ðUPð�ÞN

1=2 Þ−1
�

−3α −
ffiffiffiffiffi
27

p
α

−
ffiffiffiffiffi
27

p
α −9α

�

UPð�ÞN
1=2 ¼

�−12α 0

0 0

�
; ðC10Þ

VPð�ÞN;SC
3=2 ¼ 0; ðC11Þ

for the nonexotic system and

VP̄ð�ÞN;SC
1=2 ¼ ðUP̄ð�ÞN

1=2 Þ−1
�

0 −
ffiffiffiffiffi
12

p
α

−
ffiffiffiffiffi
12

p
α 4α

�

UP̄ð�ÞN
1=2 ¼

�
6α 0

0 −2α

�
; ðC12Þ

VP̄ð�ÞN;SC
3=2 ¼ − 2α; ðC13Þ

for the exotic system. In the spin-complex basis, the
interaction kernel is diagonalized. Because the loop func-
tion is proportional to the unit matrix, the original coupled-
channel problem reduces to the product of single-channel
problems in the spin-complex basis with mQ → ∞.
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A possible bound or resonance state is expressed by the
pole of the scattering amplitude. The pole condition is
given by 1 − VG ¼ 0. Because the positive (negative) sign
of V represents the repulsive (attractive) interaction, the
pole conditions are summarized as

1þ 12αG ¼ 0 ð1=2−; Pð�ÞNÞ; ðC14Þ

1þ 2αG ¼ 0 ð1=2−; P̄ð�ÞNÞ; ðC15Þ

1þ 2αG ¼ 0 ð3=2−; P̄ð�ÞNÞ: ðC16Þ

The existence of the bound state depends on the finite part
of the loop function G, but it is shown that one bound state
exists for the attractive interaction in the limit of large
meson mass [58,59] under the natural renormalization
scheme [60]. The above equations indicate that the ground
state is the HQS singlet in the nonexotic channel

(j½Nq̄�ð0;SÞ0− Qi) and the HQS doublet state in the exotic

channel (j½Nq�ð0;SÞ
1þ Q̄i

1=2− ; j½Nq�ð0;SÞ
1þ Q̄i

3=2−).
Using the wave function of the spin-complex basis, we

can extract the ratio of the PN=P�N component as in
Sec. III A 2. The wave function of the HQS singlet in the
nonexotic sector is

j0−i1=2− ¼ 1

2
jPNi þ

ffiffiffi
3

p

2
jP�Ni ðC17Þ

and the 1=2− part of the HQS doublet is

j1þi1=2− ¼
ffiffiffi
3

p

2
jPNi þ 1

2
jP�Ni: ðC18Þ

The mixing ratio of the wave function is reflected in the
coupling strength ga obtained from the residue of the pole.
The HQS implies that the ratios of the coupling strengths
should be

���� gPNgP�N

���� ¼ 1ffiffiffi
3

p ð1=2−; Pð�ÞNÞ; ðC19Þ

���� gP̄NgP̄�N

���� ¼ ffiffiffi
3

p
ð1=2−; P̄ð�ÞNÞ ðC20Þ

in the heavy quark limit. In Table XIII we show the ratios of
the coupling strengths of the ground states in Refs. [55–57]
together with the values in the heavy quark limit. We see
that the actual coupled-channel calculation with finite mQ

provides the coupling strengths similar to the values
indicated by the HQS. In addition, the ratio of the coupling
constants approaches the value in the heavy quark limit as
the quark mass is increased from charm to bottom. In this
way, the spin-complex basis provides a new insight into the
calculations in the charm and bottom sectors.

[1] E. S. Swanson, Phys. Rep. 429, 243 (2006).
[2] N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt, G. T.

Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer et al., Eur.
Phys. J. C 71, 1534 (2011).

[3] N. Isgur and M. B. Wise, Phys. Lett. B 232, 113 (1989).
[4] N. Isgur and M. B. Wise, Phys. Lett. B 237, 527 (1990).
[5] N. Isgur and M. B. Wise, Phys. Rev. Lett. 66, 1130

(1991).
[6] J. L. Rosner, Comments Nucl. Part. Phys. 16, 109 (1986).
[7] E. J. Eichten, C. T. Hill, and C. Quigg, Phys. Rev. Lett. 71,

4116 (1993).

[8] M. Neubert, Phys. Rep. 245, 259 (1994).
[9] A. V. Manohar and M. B. Wise, Heavy Quark Physics

(Cambridge University Press, Cambridge, 2000).
[10] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86,

010001 (2012).
[11] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 109,

172003 (2012).
[12] E. V. Shuryak and I. Zahed, Phys. Rev. C 70, 021901

(2004).
[13] E. V. Shuryak and I. Zahed, Phys. Rev. D 70, 054507

(2004).

TABLE XIII. Ratios of the coupling strengths of the ground states found in Refs. [55–57] in comparison with the values in the heavy
quark limit.

Nonexotic system Exotic system

Sector State jgPN=gP�N j State jgP̄N=gP̄�N j
mQ → ∞ 1=2−, singlet 1=

ffiffiffi
3

p
∼ 0.58 1=2−, doublet

ffiffiffi
3

p
∼ 1.73

Bottom [57] 5797.6 MeV 4.9=8.3 ∼ 0.59
Charm [55,56] 2595.4 MeV 3.69=5.70 ∼ 0.65 2805.0 MeV 1.5=1.4 ∼ 1.07

HEAVY QUARK SYMMETRY IN MULTIHADRON SYSTEMS PHYSICAL REVIEW D 91, 034034 (2015)

034034-31

http://dx.doi.org/10.1016/j.physrep.2006.04.003
http://dx.doi.org/10.1140/epjc/s10052-010-1534-9
http://dx.doi.org/10.1140/epjc/s10052-010-1534-9
http://dx.doi.org/10.1016/0370-2693(89)90566-2
http://dx.doi.org/10.1016/0370-2693(90)91219-2
http://dx.doi.org/10.1103/PhysRevLett.66.1130
http://dx.doi.org/10.1103/PhysRevLett.66.1130
http://dx.doi.org/10.1103/PhysRevLett.71.4116
http://dx.doi.org/10.1103/PhysRevLett.71.4116
http://dx.doi.org/10.1016/0370-1573(94)90091-4
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevLett.109.172003
http://dx.doi.org/10.1103/PhysRevLett.109.172003
http://dx.doi.org/10.1103/PhysRevC.70.021901
http://dx.doi.org/10.1103/PhysRevC.70.021901
http://dx.doi.org/10.1103/PhysRevD.70.054507
http://dx.doi.org/10.1103/PhysRevD.70.054507


[14] S. H. Lee, K. Ohnishi, S. Yasui, I.-K. Yoo, and C.-M. Ko,
Phys. Rev. Lett. 100, 222301 (2008).

[15] Y. Oh, C. M. Ko, S. H. Lee, and S. Yasui, Phys. Rev. C 79,
044905 (2009).

[16] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer,
Rev. Mod. Phys. 80, 1455 (2008).

[17] K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74, 014001
(2011).

[18] W. A. Bardeen, E. J. Eichten, and C. T. Hill, Phys. Rev. D
68, 054024 (2003).

[19] A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, and
M. B. Voloshin, Phys. Rev. D 84, 054010 (2011).

[20] M. B. Voloshin, Phys. Rev. D 84, 031502 (2011).
[21] S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A.

Hosaka, Phys. Rev. D 86, 014004 (2012).
[22] S. Ohkoda, Y. Yamaguchi, S. Yasui, and A. Hosaka, Phys.

Rev. D 86, 117502 (2012).
[23] S. Yasui, K. Sudoh, Y. Yamaguchi, S. Ohkoda, A. Hosaka,

and T. Hyodo, Phys. Lett. B 727, 185 (2013).
[24] Y. Yamaguchi, S. Yasui, and A. Hosaka, Nucl. Phys. A927,

110 (2014).
[25] T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013).
[26] H. J. Lipkin, Phys. Lett. B 195, 484 (1987).
[27] R. Jaffe, Phys. Rev. D 72, 074508 (2005).
[28] S. Yasui and K. Sudoh, Phys. Rev. D 80, 034008 (2009).
[29] Y. Yamaguchi, S. Ohkoda, S. Yasui, and A. Hosaka, Phys.

Rev. D 84, 014032 (2011).
[30] Y. Yamaguchi, S. Ohkoda, S. Yasui, and A. Hosaka, Phys.

Rev. D 85, 054003 (2012).
[31] Y. Yamaguchi, S. Ohkoda, S. Yasui, and A. Hosaka, Phys.

Rev. D 87, 074019 (2013).
[32] T. Mizutani and A. Ramos, Phys. Rev. C 74, 065201 (2006).
[33] S. Yasui and K. Sudoh, Phys. Rev. C 87, 015202 (2013).
[34] S. Yasui and K. Sudoh, Phys. Rev. C 88, 015201 (2013).
[35] We consider the same model space with Eqs. (8) and (9)
[36] I. I. Y. Bigi, M. A. Shifman, N. G. Uraltsev, and A. I.

Vainshtein, Phys. Rev. D 52, 196 (1995).
[37] I. I. Y. Bigi, M. A. Shifman, and N. Uraltsev, Annu. Rev.

Nucl. Part. Sci. 47, 591 (1997).
[38] M. Neubert, Phys. Lett. B 322, 419 (1994).
[39] S. Yasui and K. Sudoh, Phys. Rev. C 89, 015201 (2014).

[40] Note that this notation is different from our previous paper
[23], where Pð�Þ was used to mean Q̄q.

[41] R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto,
F. Feruglio, and G. Nardulli, Phys. Rep. 281, 145 (1997).

[42] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
[43] R. Machleidt, K. Holinde, and C. Elster, Phys. Rep. 149, 1

(1987).
[44] M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178

(1958).
[45] A. Hosaka and H. Toki, Quarks, Baryons and Chiral

Symmetry, (World Scientific, Singapore, 2001).
[46] W. Detmold, C. J. D. Lin, and S. Meinel, Phys. Rev. D 85,

114508 (2012).
[47] The potential terms of the P̄N and P̄�N channels in Eq. (64)

also differ in the finite heavy quark mass. However, we
ignore the 1=mQ corrections in the potentials for simplicity
in the present calculation.

[48] T. Hyodo, Phys. Rev. C 90, 055208 (2014).
[49] C. Hanhart, J. R. Pelaez, and G. Rios, arXiv:1407.7452.
[50] X. L. Ren, L. S. Geng, and J. Meng, arXiv:1404.4799.
[51] T. Kawanai and S. Sasaki, Phys. Rev. D 89, 054507

(2014).
[52] W. Roberts and M. Pervin, Int. J. Mod. Phys. A 23, 2817

(2008).
[53] L. A. Copley, N. Isgur, and G. Karl, Phys. Rev. D 20, 768

(1979); 23, 817(E) (1981).
[54] S. Capstick and N. Isgur, Phys. Rev. D 34, 2809

(1986).
[55] C. Garcia-Recio, V. K. Magas, T. Mizutani, J. Nieves, A.

Ramos, L. L. Salcedo, and L. Tolos, Phys. Rev. D 79,
054004 (2009).

[56] D. Gamermann, C. Garcia-Recio, J. Nieves, L. L. Salcedo,
and L. Tolos, Phys. Rev. D 81, 094016 (2010).

[57] C. Garcia-Recio, J. Nieves, O. Romanets, L. L. Salcedo, and
L. Tolos, Phys. Rev. D 87, 034032 (2013).

[58] T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. Lett. 97,
192002 (2006).

[59] T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. D 75, 034002
(2007).

[60] T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. C 78, 025203
(2008).

YAMAGUCHI et al. PHYSICAL REVIEW D 91, 034034 (2015)

034034-32

http://dx.doi.org/10.1103/PhysRevLett.100.222301
http://dx.doi.org/10.1103/PhysRevC.79.044905
http://dx.doi.org/10.1103/PhysRevC.79.044905
http://dx.doi.org/10.1103/RevModPhys.80.1455
http://dx.doi.org/10.1088/0034-4885/74/1/014001
http://dx.doi.org/10.1088/0034-4885/74/1/014001
http://dx.doi.org/10.1103/PhysRevD.68.054024
http://dx.doi.org/10.1103/PhysRevD.68.054024
http://dx.doi.org/10.1103/PhysRevD.84.054010
http://dx.doi.org/10.1103/PhysRevD.84.031502
http://dx.doi.org/10.1103/PhysRevD.86.014004
http://dx.doi.org/10.1103/PhysRevD.86.117502
http://dx.doi.org/10.1103/PhysRevD.86.117502
http://dx.doi.org/10.1016/j.physletb.2013.10.019
http://dx.doi.org/10.1016/j.nuclphysa.2014.04.002
http://dx.doi.org/10.1016/j.nuclphysa.2014.04.002
http://dx.doi.org/10.1142/S0217751X13300457
http://dx.doi.org/10.1016/0370-2693(87)90055-4
http://dx.doi.org/10.1103/PhysRevD.72.074508
http://dx.doi.org/10.1103/PhysRevD.80.034008
http://dx.doi.org/10.1103/PhysRevD.84.014032
http://dx.doi.org/10.1103/PhysRevD.84.014032
http://dx.doi.org/10.1103/PhysRevD.85.054003
http://dx.doi.org/10.1103/PhysRevD.85.054003
http://dx.doi.org/10.1103/PhysRevD.87.074019
http://dx.doi.org/10.1103/PhysRevD.87.074019
http://dx.doi.org/10.1103/PhysRevC.74.065201
http://dx.doi.org/10.1103/PhysRevC.87.015202
http://dx.doi.org/10.1103/PhysRevC.88.015201
http://dx.doi.org/10.1103/PhysRevD.52.196
http://dx.doi.org/10.1146/annurev.nucl.47.1.591
http://dx.doi.org/10.1146/annurev.nucl.47.1.591
http://dx.doi.org/10.1016/0370-2693(94)91174-6
http://dx.doi.org/10.1103/PhysRevC.89.015201
http://dx.doi.org/10.1016/S0370-1573(96)00027-0
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1103/PhysRev.110.1178
http://dx.doi.org/10.1103/PhysRev.110.1178
http://dx.doi.org/10.1103/PhysRevD.85.114508
http://dx.doi.org/10.1103/PhysRevD.85.114508
http://dx.doi.org/10.1103/PhysRevC.90.055208
http://arXiv.org/abs/1407.7452
http://arXiv.org/abs/1404.4799
http://dx.doi.org/10.1103/PhysRevD.89.054507
http://dx.doi.org/10.1103/PhysRevD.89.054507
http://dx.doi.org/10.1142/S0217751X08041219
http://dx.doi.org/10.1142/S0217751X08041219
http://dx.doi.org/10.1103/PhysRevD.20.768
http://dx.doi.org/10.1103/PhysRevD.20.768
http://dx.doi.org/10.1103/PhysRevD.23.817.3
http://dx.doi.org/10.1103/PhysRevD.34.2809
http://dx.doi.org/10.1103/PhysRevD.34.2809
http://dx.doi.org/10.1103/PhysRevD.79.054004
http://dx.doi.org/10.1103/PhysRevD.79.054004
http://dx.doi.org/10.1103/PhysRevD.81.094016
http://dx.doi.org/10.1103/PhysRevD.87.034032
http://dx.doi.org/10.1103/PhysRevLett.97.192002
http://dx.doi.org/10.1103/PhysRevLett.97.192002
http://dx.doi.org/10.1103/PhysRevD.75.034002
http://dx.doi.org/10.1103/PhysRevD.75.034002
http://dx.doi.org/10.1103/PhysRevC.78.025203
http://dx.doi.org/10.1103/PhysRevC.78.025203

