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We calculate the next-to-leading order (NLO) quantum chromodynamics (QCD) corrections to the
inclusive process of Z0 → B�

c þ c̄þ b under the nonrelativistic QCD (NRQCD) factorization scheme.
Technical details about contributions from vector and axial-vector currents in a dimensional regularization
scheme are discussed. Numerical calculation shows that the NLO correction enhances the leading-order
decay width by about 50%, and the dependence on renormalization scale μ is reduced. The uncertainties
induced by quark masses and the renormalization scale μ are also analyzed.
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I. INTRODUCTION

Due to its unique nature in the family of mesons, the Bc
system attracts wide attention in experiments and theory.
The study of Bc mesons may deepen our understanding of
the Standard Model (SM) and the effective theory, non-
relativistic quantum chromodynamics (NRQCD) [1]. The
Bc meson was first discovered at the Fermilab TEVATRON
[2], and its excited state Bcð2SÞ [3] was recently observed
by the ATLAS Collaboration.
For Bc meson direct production, various investigations

had been carried out. The authors of Refs. [4–7] studied in
detail the Bc hadroproduction, in which the P-wave [5] and
color-octet [6] contributions, as well as the “intrinsic heavy
quark mechanism” [7], were taken into account. The authors
of Refs. [8,9] discussed the Bc production through the
fragmentation scheme, and a Monte Carlo simulation pro-
gram [10] for the Bc hadroproduction was also produced.
Apart from the direct production, Bc meson indirect

production is also interesting, which may inform us not
only about the nature of the Bc meson, but also the
characters of its parent particles. The authors of
Refs. [11,12] discussed Bc production through the top
quark decays, those of Ref. [13] calculated production
through W� decays, and those of Refs. [9,14,15] analyzed
production through Z0 decays. In the work of Ref. [16],
the NLO QCD corrections to the Z0 → Bcð1S0Þ þ c̄þ b
process was calculated.
At the LHC and International Linear Collider (ILC) [17],

or other forms of Z factories, the Z0 boson is and will be
copiously produced. The Z0 production cross section at the
LHC is about 34 nb [18], and at the ILC, e.g., the cross
section will be about 30 nb while the collider runs at the
Z0 pole energy [19]. Given the colliders’ luminosity to
be 1034 cm−2 s−1 ≈ 108 nb−1=year, there will be ∼109 Z0

events being produced per year at the LHC and ILC.
Therefore, studying the Bc production in Z0 decays is
worthwhile and meaningful. Also, for this aim, since the B�

c
will almost completely decay to scalar Bc and the NLO
QCD correction in the heavy quarkonium energy region is
large, in some cases even huge, in this work we calculate
the NLO QCD corrections for the Z0 → B�

cð3S1Þ þ c̄þ b
process.
The rest of the paper is organized as follows. In Sec. II

we recalculate the Z0 to B�
c process at the Born level. In

Sec. III, the NLO virtual and real QCD corrections to the
leading order result are evaluated. Section IV presents some
technical details of the calculation. In Sec. V, the numerical
evaluation for the concerned decay process is performed
at NLO accuracy. The last section is for summary and
conclusions.

II. LEADING ORDER CONTRIBUTION

The Z0ðkÞ → B�
cðp0Þ þ c̄ðp5Þ þ bðp6Þ process starts

from α2s order, the Born level, and the corresponding four
independent Feynman diagrams are shown in Fig. 1. The
decay width may be expressed in a standard form, i.e.,

dΓBorn ¼
1

2mZ

1

3

X
jMBornj2dPS3: ð1Þ

Here,
P

means summing over the polarizations and colors
of final particles, 1=3 comes from the spin average of the
initial state, and dPS3 stands for the three-body phase space
of final states, which can be explicitly expressed as

dPS3 ¼
1

27π3m2
Z
ds2ds1; ð2Þ

where s1¼ðp0þp5Þ2¼ðk−p6Þ2 and s2 ¼ ðp5 þ p6Þ2 ¼
ðk − p0Þ2. The upper and lower bounds for s1 and s2 can be
found in our previous work [16], or any standard textbook
of particle physics.
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The amplitude MBorn ¼ Ma þMb þMc þMd can be readily obtained from Fig. 1 according to Feynman rules:

Ma ¼ C × ūðp6Þγμ
vðp4Þūðp3Þ
ðp4 þ p6Þ2

ϵðkÞðTc − γ5Þ ð−p4 − p5 − p6Þ þmc

ð−p4 − p5 − p6Þ2 −m2
c
γμvðp5Þ;

Mb ¼ C × ūðp6Þγμ
ðp3 þ p5 þ p6Þ þmb

ðp3 þ p5 þ p6Þ2 −m2
b

ϵðkÞðγ5 − TbÞ
vðp4Þūðp3Þ
ðp3 þ p5Þ2

γμvðp5Þ;

Mc ¼ C × ūðp6Þγμ
vðp4Þūðp3Þ
ðp4 þ p6Þ2

γμ
ðp3 þ p4 þ p6Þ þmc

ðp3 þ p4 þ p6Þ2 −m2
c
ϵðkÞðTc − γ5Þvðp5Þ;

Md ¼ C × ūðp6ÞϵðkÞðγ5 − TbÞ
ð−p3 − p4 − p5Þ þmb

ð−p3 − p4 − p5Þ2 −m2
b

γμ
vðp4Þūðp3Þ
ðp3 þ p5Þ2

γμvðp5Þ: ð3Þ

Here, the constant C ¼ παsgCF
cos θW

with θW being the Weinberg
angle, ϵðkÞ is the polarization vector of Z0 boson,
Tc ¼ ð1 − 8

3
sin2θWÞ, and Tb ¼ ð1 − 4

3
sin2θWÞ. For c and

b̄ constituent quarks hadronization to B�
c meson, the

following projection operator is employed [20]:

vðp4Þūðp3Þ→
Ψ3S1ð0Þ
2
ffiffiffiffiffiffiffiffimB�

c

p ϵ�ðp0Þðp0þmB�
c
Þ⊗
�

1cffiffiffiffiffiffi
Nc

p
�
; ð4Þ

where ϵ�ðp0Þ is the polarization vector of B�
c meson with

p0 ¼ p3 þ p4, mB�
c
¼ mc þmb, 1c stands for the unit

color matrix, and Ψ3S1ð0Þ, a nonperturbative parameter,
is the Schrödinger wave function at the origin of the B�

c
meson.

III. NEXT-TO-LEADING ORDER CORRECTIONS

The NLO QCD corrections to the Z0ðkÞ → B�
cðp0Þ þ

c̄ðp5Þ þ bðp6Þ process contain virtual and real corrections,
i.e., ΓVirtual and ΓReal, respectively, which are both at the
order of α3s . Typical Feynman diagrams which are attributed

to the virtual correction are presented in Figs. 2–5, while
those for the real correction are shown in Fig. 6. Note that in
Figs. 3–6 only those diagrams with Z → c̄c vertex have
been displayed; the remaining half can easily be obtained
by exchanging the c and b quark lines.

A. The virtual correction

With virtual correction, the decay width can be formu-
lated as

dΓVirtual ¼
1

2mZ

1

3

X
2ReðMVirtualM�

BornÞdPS3: ð5Þ

In ReðMVirtualM�
BornÞ, both ultraviolet (UV) and infrared

(IR) divergences exist. The conventional dimensional
regularization scheme with D ¼ 4 − 2ϵ is adopted to
regularize them. There are also Coulomb divergences,
which in this work are factorized out through the threshold
expansion technique [21] and then attributed to the bound
state wave function. In the calculation, the NRQCD short
distance coefficients are obtained by matching to the full

(a) (b) (c) (d)

FIG. 1. The leading order Feynman diagrams for B�
c production in Z0 decays.

FIG. 2. The typical counterterm Feynman diagrams corresponding to Fig. 1(a).
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QCD result stemming solely from the hard interaction
region, and other regions give no contribution.
According to the power counting rule, the UV diver-

gences exist merely in self-energy and triangle diagrams,
which are canceled by counterterms (CT). Figure 2 con-
tains 5 typical CT diagrams corresponding to Fig. 1(a), and
hence there should be other 15 CT diagrams not shown. Of
the 20 CTs, the renormalization constants include Z2, Z3,
Zm, and Zg, corresponding to the renormalizations of quark
field, gluon field, quark mass, and strong coupling constant
αs, respectively. In practice, the terms related to Z3 vanish;
e.g., those that contribute to Z3 in Fig. 2, the (a3) (a4) and
(a5) cancel with one another. In the calculation, Zg is
defined in the modified-minimal-subtraction (M̄S) scheme,
while for Z2 and Zm we take the on shell (OS). At the end of
the day we have

δZOS
2 ¼ −CF

αs
4π

�
1

ϵ0UV
þ 2

ϵ0IR
− 3 lnðm2Þ þ 4

�
þOðα2sÞ;

δZOS
m ¼ −3CF

αs
4π

�
1

ϵ0UV
− lnðm2Þ þ 4

3

�
þOðα2sÞ;

δZMS
g ¼ −

β0
2

αs
4π

�
1

ϵ0UV
− lnðμ2Þ

�
þOðα2sÞ: ð6Þ

Here, 1=ϵ0UVðIRÞ ¼ 1=ϵ − γE þ lnð4πμ2Þ, μ is the renorm-

alization scale, and the massm in δZOS
2 and δZOS

m stands for
mc andmb accordingly, β0 ¼ ð11=3ÞCA − ð4=3ÞTfnf is the
one-loop coefficient of the QCD beta function with nf ¼ 5,
the number of active quarks in our calculation. Eventually,
the UV divergences appearing in CTs eliminate all UV
divergences in self-energy and triangle diagrams, leading to

FIG. 3. Half of the self-energy diagrams in the virtual correction.

FIG. 4. Half of the triangle diagrams in the virtual correction.
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a UV-free result. The remaining IR divergences in CTs have
the following form:

dΓIR
CT ¼ −

2CFαs
πϵ0IR

dΓBorn: ð7Þ

In one-loop Feynman diagrams, the IR divergences
involve triangle, box and pentagon diagrams. Of the
triangle diagrams in Fig. 4, only two have IR divergences,
i.e., Triangle N9 and Triangle N10. Of the diagrams in
Fig. 5, Box N7 has no IR divergences, Box N1 and
Pentagon N1 have both Coulomb singularities and IR
divergences, and the remaining other diagrams have only
the IR divergences. We find that the cancellation of IR
divergences in Figs. 4 and 5 goes as follows:

(i) Combinations of Triangle N9 þ Box N2, Box N5 þ
Box N6 are IR finite;

(ii) Combinations of Triangle N10 þ Box N3 þ
Pentagon N2 are IR finite;

(iii) The remaining IR divergences lie in Box N1,
Box N4, and Pentagon N1;

(iv) Diagrams with the Z → b̄b vertex have the same
cancellation pattern as above.

B. The real correction

For the real correction of the concerned process, in which
the IR divergences exist, there are 24 Feynman diagrams
and half of them are shown in Fig. 6. To regularize the IR

singularities, the “two cutoff phase space slicing method”
has been employed [22]. For diagrams contain IR diver-
gences, we enforce a cut δ on the energy of the emitting
gluon, the p0

7. The gluon with energy p0
7 < δ is considered

to be soft, while p0
7 > δ is treated as hard. Then, the decay

width can be written as

dΓReal ¼ dΓReal∣IR þ dΓReal∣IR−free;
dΓReal∣IR ¼ dΓIR−soft

Real ∣p0
7
<δ þ dΓIR−hard

Real ∣p0
7
>δ: ð8Þ

In Fig. 6, we find that
(i) The first 4 diagrams, the Real N1;2;3;4, are IR free;
(ii) The combination of Real N5 þ Real N6, Real N7 þ

Real N8 has no IR singularity;
(iii) The remaining 4 diagrams, i.e., Real N9;10;11;12, have

IR divergences;
(iv) The diagrams with Z → b̄b vertex behave the same

as above.
Then the decay width in the soft sector dΓIR−soft

Real ∣p0
7
<δ can be

written as

dΓIR−soft
Real ∣p0

7
<δ ¼

1

2mZ

1

3

X
jMIR−soft

Real j2 × dPS4∣soft: ð9Þ

In the eikonal approximation, the squared amplitude
jMIR−soft

Real j2 reads

FIG. 5. Half of the box and pentagon diagrams in the virtual correction.
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jMIR−soft
Real j2 ¼ −ðCF4παsÞjMBornj2 ×

 
p2
5

ðp5 · p7Þ2
− 2

p5 · p6

ðp5 · p7Þðp6 · p7Þ
þ p2

6

ðp6 · p7Þ2
!
; ð10Þ

which contains all the IR singularities in the real correction, i.e., Real N9;10;11;12 and the other 4 diagrams with a Z0 → b̄b
vertex. The four-body phase space in the soft sector possesses the form

dPS4∣soft ¼ dPS3
d3p7

ð2πÞ32p0
7

∣p0
7
<δ: ð11Þ

Finally in the small δ limit, the dΓIR−soft
Real ∣p0

7
<δ can be expressed as

dΓIR−soft
Real ∣p0

7
<δ ¼ dΓBorn

CFαs
π

�
1

ϵ0IR
− lnðδ2Þ

��
1 −

ln 1þxs
1−xs
2xs

�
þ finite terms ð12Þ

with xs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4mb2mc2

ðs2−mb2−mc2Þ2
q

. Here, those 1=ϵ0IR involved

terms in (12) will cancel the IR singularities in CTs, i.e.,
(7), and those remaining ones in the one-loop Feynman
diagrams. Note that the lnðδ2Þ involved terms will be
canceled by the δ-dependent terms in the hard sector. In
the end, the final result will be IR finite.

In the case of hard gluons, the decay width reads

dΓIR−hard
Real ∣p7

0>δ ¼
1

2mZ

1

3

X
jMIR−hard

Real j2dPS4∣hard: ð13Þ

Here in jMIR−hard
Real j2, the radiation gluon is considered to be

hard, and the phase space dPS4∣hard can be expressed as

Z
dPS4∣hard ¼ 2

ð4πÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsy −m2

c −m2
bÞ2 − 4m2

cm2
b

q
y

Z ffiffi
s

p
2

mB�c

dp0
0

Z
1

−1
d cos θc

Z
2π

0

dϕc

×

�Z
p7

0
−

δ
dp7

0

Z
yþ

y−

dyþ
Z

p7
0
þ

p7
0
−

dp7
0

Z
yþ

ðmB�c Þ
2

s

dy

�
; ð14Þ

FIG. 6. Half of the Feynman diagrams in the real correction.
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with

p7
0þ ¼ s − 2

ffiffiffi
s

p
p0

0

2ð ffiffiffi
s

p
− p0

0 − jp0j
	!Þ

;

p7
0
− ¼ s − 2

ffiffiffi
s

p
p0

0

2ð ffiffiffi
s

p
− p0

0 þ j ~p0jÞ
;

yþ ¼ 1

s
½ð ffiffiffi

s
p

− p0
0 − p7

0Þ2 − j ~p0j2 − ðp7
0Þ2 þ 2j ~p0jp7

0�;

y− ¼ 1

s
½ð ffiffiffi

s
p

− p0
0 − p7

0Þ2 − j ~p0j2 − ðp7
0Þ2 − 2j ~p0jp7

0�:
ð15Þ

Here, y is a dimensionless parameter defined as

y ¼ ðk − p0 − p7Þ2=s, j ~p0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0

0Þ2 − ðmB�
c
Þ2

q
, andffiffiffi

s
p ¼ mZ.
The IR-free decay width with real correction can be

formulated as

dΓReal∣IR−free ¼ 1

2mZ

1

3

X
jMIR−free

Real j2dPS4; ð16Þ

where jMIR−free
Real j2 is the amplitudes squared without IR

singularities, and dPS4 has exactly the same form of
dPS4∣hard while δ ¼ 0. Finally, the sum of the soft and
hard sectors, i.e., (12) and (13), together with the IR-free
part (16), gives the full real correction.
In the end, with real and virtual corrections, one can

readily obtain the total decay width for the inclusive
process Z0ðkÞ → B�

cðp0Þ þ c̄ðp5Þ þ bðp6Þ at the NLO
accuracy of QCD,

Γtotal ¼ ΓBorn þ ΓVirtual þ ΓReal þOðα4sÞ: ð17Þ

In (17), the decay width Γtotal is UV and IR finite, and the
technical cut δ is independent as expected.

IV. SOME TECHNICAL DETAILS
IN THE CALCULATION

In the conventional dimensional regularization scheme,
the γ5 problem needs to be handled carefully, especially in
the process which contains the axial-vector current. In this
work, we adopt the scheme given in Ref. [23], where the
following rules are followed:

(I) The anticommutation relations, i.e., fγμ; γ5g ¼ 0
and fγμ; γνg ¼ 2gμν.

(II) The cyclicity is forbidden in traces involving odd
number of γ5. When several diagrams contribute to
one process, one should write down the amplitudes
starting from the same vertex, named the reading
point.

(III) As a special case of rule II, in the anomalous axial-
vector current situation, the reading point must be
the axial-vector vertex in order to guarantee the
conservation of the vector current.

When applying these rules to our process
Z0ðkÞ → B�

cðp0Þ þ c̄ðp5Þ þ bðp6Þ, some conclusions are
obtained. That is, in the virtual correction, the amplitudes
squared have the following two structures, schematically
shown in Fig. 7:
Structure 1: The two Z0 − q̄q vertexes lie in one fermion
trace.
Structure 2: There are two fermion traces, each with a Z0 −
q̄q vertex and one involving a triangle anomalous diagram,
e.g., Triangle N11 and Triangle N12 in Fig. 4.
For those whose amplitude squared belongs to

Structure 1, since the amplitude can be separated into
the vector part and the axial-vector part, amplitudes squared
can be written as

Trace½MLoopM
†
Tree� ¼ Tr½ðMvector

Loop þMaxial−vector
Loop ÞðMvector

Tree þMaxial−vector
Tree Þ†�

¼ Tr½Mvector
Loop M

vector
Tree

†� þ Tr½Maxial−vector
Loop Maxial−vector

Tree
†�

þ Tr½Mvector
Loop M

axial−vector
Tree

†� þ Tr½Maxial−vector
Loop Mvector

Tree
†�: ð18Þ

FIG. 7. Typical structures of the amplitudes squared of virtual correction.
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In the last equation, though the first trace has no γ5 and the
second trace has two γ5’s, we can move them together by an
anticommutation relation and contract them to unit 1; for
the other two terms each has one γ5, and they will be
canceled by their own complex conjugate terms. As a

result, there is no need to evaluate the last two traces in
(18), and the calculation is hence greatly simplified.
For the triangle anomalous diagrams case, or amplitudes

squared in Structure 2, as shown in Fig. 7, the amplitude
squared reads

MAnomalousM
†
Born ¼ Trace½MTriangle�Trace½Mnon−Triangle�

¼ Tr½Mvector
Triangle þMaxial−vector

Triangle �Tr½Mvector
non−Triangle þMaxial−vector

non−Triangle�
¼ Tr½Mvector

Triangle�Tr½Mvector
non−Triangle� þ Tr½Mvector

Triangle�Tr½Maxial−vector
non−Triangle�

þ Tr½Maxial−vector
Triangle �Tr½Mvector

non−Triangle� þ Tr½Maxial−vector
Triangle �Tr½Maxial−vector

non−Triangle�: ð19Þ

Here in the last equation, the first term will be canceled by
the one whose triangle fermion loop is reversed; i.e., the
vector currents of Triangle N11 and Triangle N12 cancel
with each other. The second and third terms will be
canceled by their complex conjugate terms. The last term
survives, and it is the only one we need to trace and
contains one γ5. In the final numerical calculation, the
contribution coming from triangle anomalous diagrams
turns out to be numerically insignificant.
In the case of real correction, since all the amplitudes

squared have the same structure as Structure 1, one only
needs to handle the Dirac traces without γ5 or with two γ5’s.
In our calculation, the Mathematica package FeynArts

[24] is used to generate the Feynman diagrams; FeynCalc

[25] and FeynCalcFormLink [26] are used to handle the
algebraic trace manipulation; $Apart [27] and FIRE [28],
together with codes written by ourselves, are employed to
reduce all the one-loop integrals into master integrals
ðA0; B0; C0; D0Þ; and the LoopTools [29] is employed to
calculate the master integrals numerically. The numerical
integrations of the three- and four-body phase spaces are
performed by VEGAS [30].

V. NUMERICAL RESULTS

For the numerical calculation, the following input
parameters are used [31]:

mc ¼ 1.5� 0.1 GeV; mb ¼ 4.9� 0.2 GeV; mZ ¼ 91.1876 GeV; mW ¼ 80.399 GeV;

sin2θW ¼ 0.2312; g ¼ 2
ffiffiffi
2

p
mW

ffiffiffiffiffiffiffi
GFffiffiffi
2

p
s

¼ 0.6531; ΨB�
c
ð0Þ ¼ Rð0Þffiffiffiffiffiffi

4π
p ¼ 0.3615 GeV

3
2: ð20Þ

NLO

LO(4.6, 132.6)

10 20 30 40
GeV

60

80

100

120

140

160

keV

NLO

LO

(2mb, 1.0)

10 20 30 40
GeV

0.6

0.8

1.0

1.2

1.4

2mb

FIG. 8. The decay width ΓðμÞ and the ratio ΓðμÞ=Γð2mbÞ versus renormalization scale μ for μ running from 2mc to mZ=2.
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Here, GF is the Fermi constant in weak interaction and
Rð0Þ is the B�

c meson’s radial wave function at the origin,
whose value is estimated via a potential model [32]. The
two-loop strong coupling of

αsðμÞ
4π

¼ 1

β0L
−
β1 lnL
β30L

2
ð21Þ

is employed in the calculation, in which L ¼ lnðμ2=Λ2
QCDÞ

with ΛQCD being 214 MeV, and β1 ¼ ð34=3ÞC2
A −

4CFTFnf − ð20=3ÞCATFnf is the two-loop coefficient of
the QCD beta function.
In Fig. 8, the decay width ΓðμÞ and the ratio

ΓðμÞ=Γð2mbÞ versus renormalization scale μ are presented.
The NLO corrections enhance the LO contribution to Z0 →
B�
c þ c̄þ b when μ > 4.6 GeV. We can see from Fig. 8

that the renormalization scale dependence of the decay
width is reduced evidently.
We adopt three typical renormalization scales in evalu-

ation, and the corresponding values of the running coupling
constant are αsðμ ¼ 2mbÞ ¼ 0.1768, αsðμ ¼ 28 GeVÞ ¼
0.1423, and αsðμ ¼ mZ=2Þ ¼ 0.1306; the decay widths are
as presented in Table I, where the first errors are induced by
mc ¼ 1.5� 0.1 GeV and the second ones are induced by
mb ¼ 4.9� 0.2 GeV. Here, the K-factor is defined as ΓNLO

ΓLO
.

In the calculation, when we estimate the uncertainties
induced by varying the mc, the mb is fixed and vice versa.
The results of Table I indicate that
(i) The correction of NLO is significant, and the

K-factor grows with the renormalization scale μ
increase, yet it grows slower at the high scale region;

(ii) When renormalization scale μ increases, the decay
widths for both LO and NLO decrease, yet both
decrease slower at the high scale region;

(iii) The uncertainties caused by varying mc are much
larger than those induced by mb.

To show the above results more clearly, in Fig. 9 we exhibit
the LO (left) and NLO (right) decay widths with different
quark masses versus running renormalization scale μ. It is
obvious that the decay widths are much more sensitive to
mc than mb; the three lines of mb ¼ 4.9ð�0.2Þ are very
close to one another at both LO and NLO.
According to Ref. [16] and the above calculation, the Bc

and Bð�Þ
c production rates in Z0 decays are readily obtained

in LO and NLO, at scale μ ¼ 2mb for illustration. That is,

BrLOðZ0 → Bc þ c̄bÞ ¼ ΓLOðBcÞ
ΓZ

¼ 2.9 × 10−5;

BrNLOðZ0 → Bc þ c̄bÞ ¼ ΓNLOðBcÞ
ΓZ

¼ 3.1 × 10−5;

BrLOðZ0 → B�
c þ c̄bÞ ¼ ΓLOðB�

cÞ
ΓZ

¼ 3.6 × 10−5;

BrNLOðZ0 → B�
c þ c̄bÞ ¼ ΓNLOðB�

cÞ
ΓZ

¼ 4.8 × 10−5; ð22Þ

where ΓZ ¼ 2.5 GeV is the total decay width of Z0 boson.
Because the spin-triplet state B�

c decays to the ground state
Bc with an almost 100% rate, we obtain the total production
rates for Bc production in Z0 decay,

TABLE I. Decay widths ΓðμÞ (keV) of Z0 → B�
c þ c̄þ b at

leading order and next-to-leading order. The first errors are
caused by mc ¼ 1.5� 0.1 GeV and the second ones by mb ¼
4.9� 0.2 GeV at μ ¼ 2mb, 28 GeV, mZ=2.

ΓðμÞ (keV) LO NLO K-factor

μ ¼ 2mb 89.56−17.10þ0.71
þ22.85−0.71 118.77−23.11þ0.37

þ31.53þ0.07 1.33−0.01−0.01þ0.01þ0.01

μ ¼ 28 58.02−11.08þ0.46
þ14.80−0.46 94.40−18.25þ0.45

þ24.73−0.22 1.63−0.00−0.01þ0.01þ0.01

μ ¼ mZ=2 48.87−9.33þ0.39
þ12.47−0.39 84.60−16.33þ0.44

þ22.08−0.26 1.73−0.00−0.00þ0.01þ0.01
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mc 1.6 GeV

mb 4.9 GeV

mc 1.5 GeV

mb 4.9 0.2 GeV

10 20 30 40
GeV

60

80

100

120

140

keV
LO

mc 1.4 GeV

mb 4.9 GeV

mc 1.6 GeV

mb 4.9 GeV

mc 1.5 GeV

mb 4.9 0.2 GeV

10 20 30 40
GeV

60

80

100

120

140

160

keV
NLO

FIG. 9. The decay widths of LO (left) and NLO (right) with different quark masses versus running renormalization scale μ, from 2mc
to mZ=2.
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BrLOðZ0 → Bc þ XÞ ¼ 6.5 × 10−5;

BrNLOðZ0 → Bc þ XÞ ¼ 7.9 × 10−5: ð23Þ

Given about 109 or more Z0 events being produced per year
in future colliders, there would be sizable Bc’s being
produced. Also, the effects of the NLO corrections might
be captured in experimental observation. It is worth noting
that the LO contributions from the P-wave/color-octet
are an order of magnitude smaller than those from the
S-wave [15], which only enhance the total production rates
slightly.

VI. SUMMARY AND CONCLUSIONS

In this work we calculated the decay width of the Z0 →
B�
c þ c̄þ b inclusive process at the NLO accuracy in the

framework of NRQCD. The calculation procedures for
both LO and NLO corrections were presented. Our analy-
ses for the vector and axial-vector current contributions
were performed in a dimensional regularization scheme.
The decay width and its uncertainties caused by varying
quark masses, as well as the dependence on renormaliza-
tion scale μ, were presented numerically. Supposing that
there will be copious Z0 produced in future colliders, our

calculation together with previous work [16] would be
helpful for the precise study of Bc physics, and might also
tell how well the perturbative calculation and nonrelativ-
istic quark model work for the Bc system.
According to the calculation, the NLO QCD correction

to the inclusive process Z0 → B�
c þ c̄þ b is significant. We

found that the renormalization scale μ dependence of the
decay width is depressed while the NLO correction is taken
into account. When the scale μ runs from 2mb to mZ=2,
both values of ΓLO and ΓNLO decrease, yet the ratio
ΓNLO=ΓLO grows from 1.33 to 1.73, and the increasing
trend slows down at high μ region. Moreover, the input
parameter of quark mass mc has a quite large influence on
the decay width, for both ΓLO and ΓNLO, at both low and
high μ regions as well. In contrast to mc, the uncertainties
induced by mb are negligible.
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