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We investigate chiral symmetry breaking and strong charge parity (CP) violation effects on the phase
diagram of strongly interacting matter in the presence of a constant magnetic field. The effects of a
magnetic field and strong CP violating term on the phase structure at finite temperature and density are
studied within a three flavor Nambu-Jona-Lasinio model including the Kobayashi-Maskawa-t’Hooft
determinant term. This is investigated using an explicit variational ansatz for ground state with quark-
antiquark pairs leading to condensates both in scalar and pseudoscalar channels. A magnetic field enhances
the condensate in both the channels. Inverse magnetic catalysis for CP transition at finite chemical potential
is seen for zero temperature and for small magnetic fields. The CP transition becomes first order at finite
baryon chemical potential and could be relevant for generating CP-odd metastable domains in heavy ion
collision experiments.

DOI: 10.1103/PhysRevD.91.034031 PACS numbers: 12.38.Mh, 12.39.-x, 11.30.Rd, 11.30.Er

I. INTRODUCTION

The study of charge parity (CP) violation in strong
interaction is of immense importance in the context of the
early universe scenario [1,2] as well as heavy ion collision
experiments [3–5]. It is well known that the existence of
instanton configurations of the gauge fields and their
intimate connection with axial anomaly allow a CP
violating topological term in the QCD Lagrangian given
as Lθ ¼ θ

64π2
g2Fa

μν
~Faμν, θ being the QCD vacuum angle.

However, so far experiments indicate that in nature θ
parameter is vanishingly small for QCD vacuum [6]. For
vanishing θ, the QCD Lagrangian is CP invariant and, in
such a case, it has been proved that spontaneous parity
violation cannot arise [7]. On the other hand, for the case of
θ ¼ π, although the QCD Lagrangian is CP conserving,
spontaneous CP violation can occur through the Dashen
phenomenon [8].
Even if CP is not violated for QCD vacuum, it is

conceivable that it can be violated for QCD matter at finite
temperature and/or density. Indeed, it has been argued that
the hot matter produced in heavy ion collision experiments
can give rise to domains of metastable states that violateCP
locally [3] through sphaleron activated processes. These
states with an effective nonvanishing value of θ can decay

through CP-odd processes [9]. Further, apart from pro-
ducing high temperature, colliding nuclei also produce
transient strong magnetic fields for noncentral collisions. A
nonzero θ leads to a deviation of left- and right-hand
helicity quarks. As a consequence an electromagnetic
current is generated along the magnetic field. Such a
mechanism, known as the chiral magnetic effect [4],
may explain the charge separation in the recent STAR
results [5]. On the other hand, in the context of cold and
dense matter, compact stars can be strongly magnetized.
The magnetars, which are strongly magnetized neutron
stars, may have strong magnetic fields of the order of
1015–1016 gauss [10–16], which is of relevance for the
physics of the dense matter in the core of such compact
objects.
The presence of a nonzero θ leads to a very rich vacuum

structure with the possibility of having quark condensates
in the pseudoscalar channel and generates a more complex
phase structure for the phase diagram of strong interaction.
Because of the nonperturbative structure of the θ term , it is
very difficult to study spontaneous CP violation in full
QCD for arbitrary values of θ. Therefore, CP violation
effects in strong interactions have been studied extensively
using low energy effective theories like the chiral pertur-
bation theory [17] as well as in specific models like the
Nambu-Jona-Lasinio (NJL) model [18] and the linear
sigma model coupled to quarks [19].
In the present work, we intend to investigate how chiral

transition is affected when the CP-odd effects and a strong
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magnetic background are present for hot and dense matter.
This is, therefore, of relevance also for the heavy ion
collision experiments that explore the nonzero baryon
density region of the QCD phase diagram. For this purpose,
we adopt the three flavor Nambu-Jona-Lasinio model as an
effective theory for chiral transitions. The effect of axial
anomaly and the strong CP violation here is included
through the Kobayashi-Maskawa-t’Hooft (KMT) determi-
nant term that mimics the effects of nontrivial gauge field
configuration. This term is also a function of θ and is
responsible for CP violation for nonvanishing values of θ.
Such a term has been extensively studied earlier for NJL
models with two flavors in Refs. [18,20,21] for studying
the effects of nonzero θ on the chiral transition. This has
been further extended to the two flavor NJL model
including Polyakov loop potential [22,23]. We had earlier
considered the effects of strong CP violation on chiral
symmetry breaking for the realistic case of 2þ 1 flavor
using the NJL model [24]. This was further extended in
Ref. [23] to include the effects of Polyakov loop potential.
In all these investigations the effects of the magnetic field
were not included. It is this question that we investi-
gate here.
The modification of the ground state of QCD for θ ¼ 0

in connection with chiral symmetry breaking in the
presence of a magnetic field has been investigated in
different effective models, e.g., the chiral perturbation
theory [25], the NJL model [26–29], as well as different
quark models of hadrons. In various models it was seen that
while a magnetic field acts as a catalyser of chiral symmetry
breaking, it was observed that medium effects can lead to
inverse magnetic catalysis for the same, particularly at
finite chemical potentials. The effects of a magnetic field as
well as nonzero values for θ have been considered in
Ref. [19] within the chiral sigma model at finite temper-
atures. It was shown here that for zero baryon density and at
finite temperature, the chiral transition becomes a weak first
order one from a crossover in the presence of magnetic
fields. In the present work, we also look into the finite
density effects on chiral transition in the presence of CP
violation and strong constant magnetic fields.
In the present work, we further look into the effects of the

mass of the strange quarks on the quark-antiquark con-
densates both in scalar and pseudoscalar channels. The
main property that distinguishes the strange quark from the
u and d quarks is its mass, which is more than an order of
magnitude larger. The KMT interaction term that mixes the
flavors along with the θ dependence is therefore expected to
have a significant effect on the condensate structure. Let us
note that spontaneous CP violation at θ ¼ π depends both
on the strength of the determinant interaction and on the
current quark masses. For the three flavors it was shown in
Ref. [30] that a region exists in the plane of light quark
masses where CP is violated spontaneously depending
upon the mass of the strange quark for θ ¼ π. In this

context, we had earlier observed that spontaneous CP
violation occurs at θ ¼ π for the phenomenologically
consistent current quark masses as well as the determinant
coupling within the framework of the 2þ 1 flavor NJL
model [24]. In the present work we explore how the
condensate structure in various channels depends on the
current quark mass of the strange quark.
We organize the paper as follows. In Sec. II, we consider

the three flavor NJL model along with the CP violating θ
dependent six fermion determinant interaction term that
also breaks axial symmetry. Here, we spell out the
variational ground state with quark-antiquark pairs that
is related to chiral symmetry breaking. The ansatz is taken
to be general enough to include both scalar as well as
pseudoscalar condensates. These condensate functions are
determined through an extremization of thermodynamic
potential as in Ref. [24,27]. The pseudoscalar condensate
takes nonvanishing values for finite values of θ. In Sec. III,
we discuss the resulting phase diagram at finite temperature
as well as finite density for different strengths of magnetic
field and for various values of θ. Finally, in Sec. IV, we
summarize the results and conclusions with a possible
outlook.

II. NJL MODEL WITH CP VIOLATION AND AN
ANSATZ FOR THE GROUND STATE

To describe the chiral phase structure of strong inter-
actions including the CP violating effects and external
magnetic field, we use the three flavor NJL model along
with the flavor mixing determinant term. The Lagrangian is
given by [24]

L ¼ ψ̄ðiD −mÞψ þGs

X8
A¼0

½ðψ̄λAψÞ2 þ ðψ̄iγ5λAψÞ2�

− K½eiθdetfψ̄ð1þ γ5Þψg þ e−iθdetfψ̄ð1 − γ5Þψg�;
ð1Þ

where ψ i;a denotes a quark field with color a ða ¼ r; g; bÞ
and flavor i ði ¼ u; d; sÞ. Dμ ¼ ∂μ − iqAμ is the covariant
derivative in the presence of the external magnetic field B,
which we assume to be constant and in the z direction.
Further, we choose the gauge such that the corresponding
electromagnetic potential is given as Aμ ¼ ð0; 0; Bx; 0Þ.
The matrix of current quark masses is given by m̂ ¼ diagf
ðmu;md;msÞ in the flavor space. We shall assume isospin
symmetry with mu ¼ md in the present investigation.
Strictly speaking, when the electromagnetic effects are
taken into account, the current quark masses of the up and
down quarks should be different. However, due to the
smallness of the electromagnetic coupling, we ignore such
a tiny difference and continue to take the current quark
masses to be the same for up and down quarks. The second
term is the four Fermi contact interaction and, for three
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flavor case, λA with A ¼ 0 � � � 8 are generators of Uð3Þ with
λ0 ¼ ffiffiffiffiffiffiffiffi

2=3
p

× 1 and λA being the standard SU(3) Gell-
Mann matrices for 1 ≤ A ≤ 8. The third term is the ’t-Hooft
determinant interaction that depends upon the QCD vac-
uum angle θ. By taking divergence of the flavor singlet
axial current Jμ5 ¼ ψ̄γμγ5ψ , one can show that the effect of
the topological Chern-Simons term in terms of gluon fields
can be simulated by the imaginary part of the determinant
term of the quark sector. Such a term can lead to formation
of condensates in the pseudoscalar channel for nonvanish-
ing θ as we investigate in the following.
A comment regarding the three flavor NJL Lagrangian

given by Eq. (1) may be relevant here. The determinant
interaction here leads to a six fermion point interaction.
From the point of view of 1=Nc expansion, one can also
have eight quark interactions having the same Nc order as
the KMT determinant term [31,32]. The corresponding
coupling, however, is suppressed by 1

Λ3 compared to the

determinant term. The effect of such a term for thermo-
dynamics in the Polyakov loop NJL model has been
investigated regarding the critical point in the phase
diagram that moves toward a lower chemical potential
and higher temperature [32]. We expect that the inclusion
of such an eight fermion interaction will not have any
qualitative difference regarding the features of CP violation
that we consider here and continue with the calculations
using the Lagrangian given by Eq. (1).
To explore the vacuum structure of the model in the

presence of finite θ and B, we next consider an ansatz for
the ground state with quark-antiquark pairs as

jΩi ¼ UIIUIjvaci; ð2Þ

where UI and UII are unitary operators described in terms
of the creation and annihilation operators of the quarks and
antiquarks. Explicitly, these are given as

UI ¼ exp

�X∞
n¼0

Z
dpxqir†ðn; pxÞair;sðn; pzÞfiðn; pxÞ ~qisðn;−pxÞ − H:c:

�
: ð3Þ

In the above, qir†ðn; pxÞ, ~qirðn; pxÞ, are two component quark creation and antiquark creation operators, respectively, defined
through the Fourier expansion of the quark field ψ i in the presence of a magnetic field. The index n denotes the Landau level
and px ¼ ðpy; pzÞ. We have here used the notation of Ref. [27]. Further, in the above equation, the spin dependent structure
air;s is given by [27]

air;s ¼
1

jpij
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqijB

q
δr;s − ipzδr;−s

�
ð4Þ

with jpij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqijB

p
denoting the magnitude of the three momentum of the quark/antiquark of ith flavor (with

electric charge qi) in the presence of a magnetic field. This ansatz forUI is the same as considered in Ref. [27] in the context
of chiral symmetry breaking to include the effects of a magnetic field.
Next, to include the effects of CP violation leading to pseudoscalar condensates, the unitary operator UII is given as

UII ¼ exp

�X∞
n¼0

Z
dpxqir†ðn; pxÞrgiðn; pxÞ ~qisðn;−pxÞ − H:c:

�
: ð5Þ

The above construct of Eq. (2) is a generalization of the
ground state structure in the presence of a CP violating
term as in Ref. [24] to include the effects of a nonvanishing
constant magnetic field. Clearly, in Eq. (2) the ansatz for the
ground state has two arbitrary functions fi and gi that are
related to the condensates in the scalar and pseudoscalar
channel, respectively, to be determined through a minimi-
zation of thermodynamic potential. The above ansatz in
Eq. (2) is a variational state for the vacuum case. The effects
of temperature and density can be included within the
framework of thermofield dynamics again in a variational
manner [33,34] by performing another unitary transforma-
tion on Eq. (2) to obtain the “thermal vacuum” such that the
thermal average of any operator becomes an expectation

over the thermal vacuum. The ansatz functions in this
thermal state are determined by minimization of the
thermodynamic potential and ultimately get related to
the thermal distribution functions. The nicety of the
approach lies in the fact that the distribution functions
here get determined through a minimization principle
including the interaction. We here take the ansatz for the
thermal vacuum exactly in the same way as in Ref. [27].
Realizing the fact that the unitary transformation of the
vacuum as in Eq. (2) corresponds to successive Bogoliubov
transformations, one can calculate the Hamiltonian expect-
ation values corresponding to the Lagrangian given in
Eq. (1) with respect to the state of Eq. (2) to obtain the
energy density as well as the thermodynamic potential.
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The procedure is identical to that done in Ref. [27]. The
functions in the variational states in Eqs. (3) and (5) can
then be determined by minimizing the thermodynamical
potential. Since the procedure for determining these ansatz
functions is identical as performed in Refs. [24] and [27],
we do not repeat the details here and refer to these
references for the interested reader.
The resulting thermodynamic potentialΩðβ; μ; BÞ is then

given as

Ω¼ −
Nc

4π2
X∞
n¼0

αn
X
i

jqiBj
Z

dpzω
i
n

−
Nc

4π2β

Xnmax

n¼0

X
i

jqiBj

×
Z

dpz½lnf1þ e−βðωi
n−μÞg þ lnf1þ e−βðωi

nþμiÞg�

þ 2Gs

X
i

½Iis2 þ Iip2� þ 4K

�
cosθ

Y3
i¼1

Iis þ sinθ
Y3
i¼1

Iip

�

− 2Kjϵijkj½cosθIipIjpIks þ sinθIisi
j
sIkp�: ð6Þ

In the above, ωi;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi2 þ p2

z þ 2njqijBÞ
p

is the
excitation energy of the nth Landau level with the

constituent quark massMi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi

s
2 þMi

p
2

q
,Mi

s,Mi
p being

the dynamical masses arising from scalar and pseudo-
scalar condensates, respectively, which satisfy the gap
equations

Mi
s ¼ mi þ 4GIis þ Kjϵijkjfcos θðIjsIks − IjpIkpÞ

− sin θðIjsIkp þ IjpIksÞg; ð7Þ

Mi
p ¼ 4GIip − Kjϵijkjfcos θðIjsIkp þ IjpIksÞ

− sin θðIjpIkp − IjsIksÞg: ð8Þ

In Eqs. (6)–(8), Iis ¼ −hψ̄ iψ ii and Iip ¼ −hψ̄ iiγ5ψ ii (i not
summed) are the condensates in the scalar and pseudoscalar
channels, respectively, for the ith flavor and are given as

Iis
Mi

s
¼ Iip

Mi
p
≡ Ii

¼
X∞
n¼0

NcjqijBαn
ð2πÞ2

Z
dpz

�
1

ωi;n

�
ð1 − sin2θi− − sin2θiþÞ;

ð9Þ

where sin2θ∓ ¼ 1=ðexpðβðωi;n ∓ μiÞÞ þ 1Þ are the particle
and antiparticle distribution functions. Thus, the gap
equations, Eqs. (7)–(8), are actually self-consistent equa-
tions forMi

s andMi
p since Iis and Iip again are given in terms

of Mi
s and Mi

p as can be seen from Eqs. (9).

In Eq. (6), the first term is the zero temperature and zero
density term in the presence of a constant magnetic field.
The second term is the thermodynamic potential of quarks
and antiquarks with a medium dependent mass while the
last two terms are the remaining interaction terms of the
Lagrangian. For the CP violating parameter θ → 0, and
the pseudoscalar density Iip → 0, the thermodynamic
potential reduces to the same as in Ref. [27]. The first
term in Eq. (6) is ultraviolet divergent, which is also
transmitted to the gap equations, Eqs. (7)–(8), through
the integrals Iis and Iip in Eqs. (9) and need to be regularized
to get any meaningful result. There have been different
regularization schemes to tackle this divergence, e.g., the
Schwinger proper time method [35,36] or using a smooth
cutoff [37]. We perform the regularization as in Ref. [27] by
adding and subtracting a zero field (vacuum) contribution
that is also divergent. This puts the first term of Eq. (6) in a
rather appealing form of separating the zero field vacuum
contribution that is divergent and a field dependent con-
tribution that is finite. The divergent zero field vacuum
contribution is then evaluated with a finite cutoff in the
three momentum Λ as is usually done in the NJL model
without a magnetic field. This way the regularized thermo-
dynamic potential can be written as

Ω¼Ωvac þΩfield þΩmed

þ 2Gs

X
i

½Iis2 þ Iip2� þ 4K

�
cosθ

Y3
i¼1

Iis þ sinθ
Y3
i¼1

Iip

�

− 2Kjϵijkj½cosθIipIjpIks þ sinθIisi
j
sIkp�: ð10Þ

In the above, the vacuum (T ¼ 0 ¼ μ, B ¼ 0) energy
density Ωvac, evaluated with a three momentum cutoff Λ, is
given by [27]

Ωvac ¼ −
NcΛ
8π2

X
i

�
ðΛ2 þMi2Þ1=2ð2Λ2 þMi2Þ

−Mi4 log
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þMi2

p

Mi

�
: ð11Þ

Ωfield is the field contribution to Ω and is given by, with
xi ¼ Mi2

2jqijB,

Ωfield¼−
Nc

2π2
X
i

jqiBj2
�
ζ0ð−1;xiÞ−1

2
ðxi2−xiÞ lnxiþxi2

4

�
;

ð12Þ

where the derivative of the Riemann-Hurwitz zeta function
ζðz; xÞ at z ¼ −1 is given by [38]
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ζ0ð−1; xÞ ¼ −
1

2
x log x −

1

4
x2 þ 1

2
x2 log xþ 1

12
log x

þ x2
Z

∞

0

2tan−1yþ y logð1þ y2Þ
expð2πxyÞ − 1

dy:

ð13Þ
Finally, the medium contribution Ωmed towards the thermo-
dynamic potential is given by

Ωmed ¼ −
X
n;i

NcαnjqiBj
ð2πÞ2β

Z
dpz½ln f1þ e−βðωi

n−μÞg

þ ln f1þ e−βðωi
nþμÞg�: ð14Þ

Similarly, the condensate Iis=Mi
s ¼ Iip=Mi

p ≡ Ii of
Eq. (9) can be regularized and is given as

Ii ¼ Iivac þ Iifield þ Iimed; ð15Þ
where,

Iivac ¼
Nc

2π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þMi2

p
−Mi2 log

�
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þMi2

p

Mi

��
;

ð16Þ

Iifield ¼
NcjqiBj
ð2πÞ2

�
xið1 − ln xiÞ þ lnΓðxiÞ þ 1

2
ln

xi

2π

�
;

ð17Þ
and

Iimed ¼
Xnmax

n¼0

NcjqijBαn
ð2πÞ2

Z
dpz

Mi
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mi2 þ p2
z þ 2njqiBj

p
× ðsin2θi− þ sin2θiþÞ ð18Þ

are, respectively, the contributions from the vacuum, from
the field and from the medium, to the condensates [27]. In
the presence of a magnetic field, jpj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqiBj

p
, a

finite three momentum cutoff Λ results in a maximum value
of the Landau level nmax ¼ Int½ Λ2

2jqiBj�. Further, in Eq. (18),

this condition also leads to a cutoff for jpzj as Λ0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − 2njqijB

p
for a given value of the Landau level n.

The coupled mass gap equations given by Eqs. (7)–(8)
and the thermodynamic potential given by Eq. (10) con-
stitute the basis for our numerical results for various
physical situations, which we shall discuss in the following
section.

III. RESULTS AND DISCUSSIONS

The three flavor NJL model that we investigate here has
five parameters in total, namely, the current quark masses
for the nonstrange and strange quarks, mq and ms, the two

couplings Gs, K, Λ ¼ 0.6023 GeV, GsΛ2 ¼ 1.835,
KΛ5 ¼ 12.36, mq ≡mu ¼ md ¼ 5.5 MeV, and ms ¼
140.7 MeV as has been used in Ref. [39]. After choosing
mq the remaining four parameters are fixed by fitting to the
pion decay constant and the masses of pion, kaon, and η0.
With this set of parameters the mass of η is underestimated
by about six percent and the constituent masses of the light
quarks turn out to be Mq ¼ 0.368 GeV for u-d quarks,
while the same for strange quark turns out as
Ms ¼ 0.549 GeV, at zero temperature and zero baryon
density.
In the numerical calculations that follow, we have taken

the quark chemical potential μ to be the same for all the
three flavors. For given values of T, μ and strength of a
magnetic field B, we first solve the gap equations (7)–(8)
self consistently along with the condensates given in Eq. (9)
with the parameters of the NJL model as above. Since we
have assumed mu ¼ md, the equations actually represent
four coupled equations for a zero magnetic field: two
corresponding to the scalar contributions towards the
masses, i.e., Mu

s ¼ Md
s and Ms

s, and two corresponding
to the pseudoscalar contributions towards the masses, i.e.,
Mu

p ¼ Md
p and Ms

p, which has been considered earlier in
Ref. [24]. However, this degeneracy is lifted in the presence
of a nonzero magnetic field. Thus, Eqs. (7)–(8) actually
represent six coupled mass gap equations—the contribu-
tions to the masses arising from the scalar and pseudoscalar
condensates for each flavor. Once the solutions to these
coupled equations for the masses and the condensates are
found, they are then substituted in Eq. (10) to find the
thermodynamic potential Ω. In case of more than one
solution to the gap equation, the solution with the minimum
Ω is chosen.
In the present analysis, we investigate the behavior of

scalar and pseudoscalar contributions to the quark mass
with temperature, chemical potential, and magnetic field
for different values of θ.
Let us first discuss the effect of a magnetic field on the

vacuum properties within the model. In Fig. 1 we plot the

constituent quark masses given as Mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi2

s þMi2
p

q
as a

function of magnetic field for different representative
values of θ. Because of the different charges of the u
and d quarks, the isospin symmetry is lost between the light
quarks when an external magnetic field is applied to the
system. The magnetic catalysis of dynamical generation of
mass is seen for all the quarks with the constituent quark
masses increasing with magnetic field for all values of θ.
The constituent quark masses here, however, are generated
from quark-antiquark condensates both in scalar and
pseudoscalar channels for nonzero values of θ.
In Fig. 2 the condensates in scalar and pseudoscalar

channels for u quarks are plotted as functions of θ for
different strengths of magnetic field. The condensates in the
scalar and pseudoscalar channel vary in a complimentary
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manner so that the total constituent mass remains almost
constant as θ is varied. This behavior is also seen with
increasing magnetic field, along with the fact that the
condensates in both the channels become larger in magni-
tude for a larger magnetic field. The spontaneous CP
violation is seen for θ ¼ π with two degenerate solutions
for the pseudoscalar condensate differing by a sign.
In Fig. 3 we display the variation of the effective

potential with θ for different strengths of magnetic fields.
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FIG. 2 (color online). θ dependence of the order parameters for
u quarks for different strengths of magnetic field. The solid lines
correspond to condensates in the scalar channel while the dotted
lines correspond to condensates in the pseudoscalar channel.
Spontaneous breaking of CP at θ ¼ π with two degenerate vacua
for pseudoscalar condensates may be noted.
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FIG. 3 (color online). Effective potential at T ¼ μ ¼ 0 as a
function of θ for different strengths of magnetic field.
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FIG. 1 (color online). Constituent quark mass Mi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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at T ¼ 0, μ ¼ 0 as a function of magnetic field

for θ ¼ 0 (top), θ ¼ π=2 (middle), and θ ¼ π (bottom).
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The effective potential shown here is normalized with
respect to the effective potential at θ ¼ 0; jBj ¼ 0. It is
minimum when θ ¼ 0, which is consistent with the Vafa-
Witten theorem. The behavior we see here is similar to what
we observed without the magnetic field [24]. The magnetic
field only reduces the effective potential.
In studies of effective theories of strong interactions,

spontaneous CP violation at θ ¼ π depends upon the
strength of the determinant interaction, the number of
flavors, as well as the current quark masses [20,30]. It
might be interesting at this point to explore the effect of the
current quark mass of the strange quark on the behavior of
condensates. For θ ¼ 0, this was investigated in Ref. [40]
for the NJL model regarding chiral transition arising from
scalar condensates of quark-antiquark pairs. We, on the
other hand, look into the effect of current quark masses of
strange quarks on the pseudoscalar condensates in the
presence of a magnetic field and focus on the case of θ ¼ π
where spontaneous CP violation can arise.
In Fig. 4, we have plotted the masses arising from

condensates in scalar and pseudoscalar condensates as a
function of magnetic field using three different values of
the s-quark current quark mass: (i) ms ¼ 5.5 MeV, i.e.,
degenerate strange quark mass with the u, d quarks;
(ii) ms ¼ 50 MeV, intermediate between the light quarks
and the heavy strange quark; and (iii) ms ¼ 140.7 MeV
as is phenomenogically taken to fit the low energy
hadronic properties [39]. In all three figures we have
taken θ ¼ π.
Let us note that the magnetic field effects become

noticeable when the strength of the magnetic field is of
the order of the square of the quark masses. In the case (i) of
the degenerate three flavor case with tiny current quark
mass, the condensates in both the scalar and pseudoscalar
channels contribute significantly to the effective constituent
quark masses for all three flavors as can be seen in the top
panel of Fig. 4. For a vanishing magnetic field, the scalar
condensate contribution is about 168 MeV while that of the
pseudoscalar condensate is about 270 MeV for all three
flavors. The dynamically generated masses for the strange
quark and the down quark are identical both for the scalar
as well as pseudoscalar channels due to their identical
electric charges and are different from up quarks in the
presence of a magnetic field. Further, this also leads to a
significant contribution to the u-quark condensates in the
scalar channel. This is because, for θ ¼ π, in the right-hand
side of Eq. (7), for u quarks, the contribution of the
determinant term becomes weaker as Ids Iss is of the same
order as the product IdpIsp when the strange quark con-
densate in the pseudoscalar channel is non-negligible. This
leads to a significant contribution to the up quark masses
arising from scalar condensates.
The degeneracy of the d- and s-quark condensates is not

there anymore when mu;d ≠ ms as may be seen from the
middle panel (ms ¼ 50 MeV) and the bottom panel
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FIG. 4 (color online). Effect of strange quark mass on the
constituent quark masses as a function of magnetic field for
θ ¼ π. The solid lines correspond to masses arising from scalar
condensates (Ms) and the dashed lines correspond to the same
arising from pseudoscalar condensates (Mp). The various s-quark
current quark masses are taken as ms ¼ 5.5 MeV (top),
ms ¼ 50 MeV (middle), and ms ¼ 140.7 MeV (bottom).
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(ms ¼ 140 MeV) in Fig. 4. As the strange quark mass is
increased, the magnetic catalysis effects for the strange
condensates become weaker. Further, because of the large
current quark mass, the strange condensates become
dominant in the scalar channel even for θ ¼ π. This is in
contrast to condensates of light quarks in the scalar channel,
which are negligible compared to the light quark conden-
sates in the pseudoscalar channel. This effect is further
enhanced when ms ¼ 140.7 MeV. Here, the dynamical
mass arising from strange quarks in the pseudoscalar
channel is about 18 MeV, which is negligible compared
to the same arising from condensates in the scalar channel,
which is about 550 MeV. Further, because of the large mass
of strange quark, these values are not affected by the
magnetic field we have considered here.
In Fig. 5 we show the temperature dependence of the

total mass of the u quark for different values of magnetic
field at zero chemical potential. For vanishing θ, the total
mass gets a contribution only from the condensates in the
scalar channel. Within the model, the chiral transition
temperature increases with the magnetic field similar to
that observed in several effective models as well as some
lattice QCD models [41]. The general reason for this
behavior is that the magnetic field enhances the conden-
sates and hence requires higher temperatures to melt the
condensate. As a result of the charge difference we obtain a
higher transition temperature for u quarks than for d quarks
with the difference becoming larger with larger values of
the magnetic field. The chiral transition is a crossover due
to finite current quark mass. However, in some of the recent
lattice calculations, inverse magnetic catalysis near the
critical temperature is observed leading to a reduction of the
crossover transition temperature with a magnetic field [42].
At sufficiently lower temperature, on the other hand,
magnetic catalysis is observed in these lattice simulations
with the condensates getting enhanced with a magnetic
field. Such an effect can be generated in an ad hoc manner
by reducing the effective four fermion coupling by making
it a function of temperature and magnetic field as in
Ref. [43]. There have been other attempts to explain this
by invoking paramagnetic contributions to the pressure
with large magnetization [44], magnetic inhibition due to
neutral meson fluctuation [45], as well as a backreaction of
the Polyakov loop that could be affected by a magnetic field
[46]. In the present work, however, we continue to consider
the consequences of the ansatz as in Eq. (2) to discuss the
effects of the nonvanishing θ and magnetic field on the
phase structure within the premises of the NJL model.
As θ is increased, the contribution to the mass from the

pseudoscalar condensates also increases. We also plot the
temperature dependence of the pseudoscalar component of
the u-quark mass arising from pseudoscalar condensates
Mp

u for θ ¼ π
2
and θ ¼ π in Fig. 6. As may be observed from

Fig. 6(a), for θ ¼ π=2 the CP transition is a crossover
transition. For θ ¼ π, however, the CP transition is a
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FIG. 5 (color online). Temperature dependence of constituent
quark masses for up and strange quarks for θ ¼ 0 (top), θ ¼ π=2
(middle), and θ ¼ π (bottom) with different strengths of magnetic
field. In each plot the lower curves are for the up quark mass
variation while the upper curves show temperature dependence of
the strange quark mass.
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second order transition with the pseudoscalar condensates
smoothly vanishing at the critical temperature. Further, this
CP restoration transition temperature increases with the
magnetic field. We should, however, note that what we
considered here is the equilibrium uniform CP violating
phase structure induced by the determinant term. However,
the local parity violating phase can also arise due to
fluctuations of topological charges induced through spha-
leron configuration that are not exponentially suppressed
[3]. On the other hand, such domains can also arise due to
nonequilibrium situations depending upon the kinetics of
the phase transition. Such CP-odd domains can decay via
CP-odd processes and can have observable effects like a
chiral magnetic effect for noncentral heavy ion collisions
[4] as well as a possible excess in dilepton production for
central collisions [47].
In Fig. 7, we display the dependence of the constituent

quark mass for strange and up quarks on quark chemical
potential at zero temperature for different values of the
strength of magnetic field. As chemical potential is
increased, a first order transition is observed for all values
of θ and magnetic field, e.g., for θ ¼ 0 (top panel), for a
vanishing magnetic field the u-quark mass decreases from
about 370 to about 50 MeV for u quarks. Because of the
flavor mixing KMT interaction, this is also reflected in a
discontinuity for the strange quark mass from its vacuum
value of about 550 to 465 MeV. For θ ¼ 0, the critical
chemical potential μc where the constituent quark mass
shows this discontinuity decreases with magnetic field.
Let us note that for θ ¼ 0, the entire mass arises from
quark condensates in the scalar channel apart from the
current quark masses. This behavior of having lower
critical chemical potential for a higher magnetic field is
the phenomenon of inverse magnetic catalysis of chiral

symmetry breaking at finite chemical potential [27,35].
For finite θ, however, the mass is generated by conden-
sates in both scalar and pseudoscalar channels. For θ ¼ π
(bottom panel), however, while the dominant contribution
for light quark masses arises from the pseudoscalar
channel, the same arises from the scalar channel for the
strange quarks. It turns out that for θ ¼ π, at a zero
magnetic field the critical quark chemical potential is
μc ∼ 345 MeV with a first order transition. As the mag-
netic field is increased, μc decreases and is minimum at
eB ¼ 7m2

π with μc ∼ 323 MeV. As the magnetic field is
increased further, the critical chemical potential also
increases and becomes about μc ∼ 360 MeV for eB ¼
10m2

π . Such a behavior of decrease of critical chemical
potential for intermediate strengths of the magnetic field
and then increase for stronger fields is also observed
in Ref. [48].
In general, the phase transition line for the light quarks at

zero temperature in the plane of the magnetic field and
quark chemical potential is shown in Fig. 8. The massive
quark phase exists to the left of the critical line while the
region to the right of the critical line corresponds to
(almost) massless quark phase. For θ ¼ 0, the mass here
arises entirely from the scalar condensates while for θ ¼ π,
the quark mass arises mostly from the pseudoscalar
condensates but for the small current quark mass contri-
butions to the scalar condensates. The discontinuous
structures in the critical line for lower magnetic fields
are due to the effects of discrete Landau levels. There is a
region in the phase diagram, where, for fixed μ, with an
increase in the magnetic field massless phase is restored.
The critical chemical potential decreases with magnetic
field up to eB≃ 13m2

π , eB≃ 11m2
π , eB≃ 7m2

π for θ ¼ 0,
θ ¼ π=2, and θ ¼ π, respectively.
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FIG. 6 (color online). Temperature dependence of the pseudoscalar condensates for θ ¼ π=2 (a) and θ ¼ π (b) with different strengths
of magnetic field.
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This inverse magnetic catalysis of CP transition at finite
θ can be understood in a manner similar to Ref. [48]
discussed for chiral symmetry breaking in the NJL model.
Without loss of generality, this analysis can be carried out
for θ ¼ π by analyzing the pseudoscalar gap Eq. (8) in this
limit. Here, we can approximate the scalar condensates
Iis ≃ 0 as well as the corresponding masses Mi

s ≃ 0 for the
light quarks. Further, as the coupling is large, we can
approximate the solution of the pseudoscalar gap Eq. (8) to
be that given by the μ ¼ 0 solution. For nonzero but small
magnetic fields jqijB ≪ M2, we can get the solution up to
second order in the magnetic field as
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FIG. 7 (color online). Up and strange quark masses as a
function of quark chemical potential at zero temperature for
θ ¼ 0 (top), θ ¼ π=2 (middle), and θ ¼ π (bottom) with different
strengths of magnetic field. In each plot the upper curves show μ
dependence of strange quarks while the lower ones are for the up
quarks.
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Mi
p ≃Mi

0

�
1þ GsjqiBj2

Mi2
0 ð1 − 6G

π2
fðMi

0;ΛÞÞ
�
; ð19Þ

where Mi
0 is the solution of the pseudoscalar mass

gap Eq. (8) with μ ¼ 0, B ¼ 0, and fðMi
0;ΛÞ ¼

Λ2½ð1þ M̂i2
0 Þ − M̂i2

0 logð1þM̂i2
0 =2

M̂i
0

Þ�, where M̂i
0 ¼ Mi

0=Λ.

Inserting this solution in the thermodynamic potential of
Eq. (10) and subtracting out Mi

p ¼ 0 free energy density,
one gets the thermodynamic potential difference between
the condensed phase and the noncondensed phase, up to
second order in B as

ΔΩ≃ −
3

8π2
X
i

Mi2
0 Λ

2

�
1 −

π2

3GΛ2

�
þ 3

4π2
X
i

jqiBjμ2

−
3

4π2
X
i

jqiBj2
�
1þ log

Mi2
0

2jqijB
�
: ð20Þ

In the above, the first term is the vacuum (T ¼ 0, B ¼ 0,
μ ¼ 0) contribution to the free energy difference between
the condensed and noncondensed phase. The term linear in
the magnetic field corresponds to the free energy cost to
form a quark-antiquark pair in the pseudoscalar channel at
finite μ, which depends upon the magnetic field along with
the chemical potential. The last term is the gain in
thermodynamic potential due to condensation that is
quadratic in magnetic field strength. Therefore, as we turn
on the magnetic field, and start from broken phase with
ΔΩ < 0, for the small field it can make ΔΩ positive with
the symmetry restored. However, as the field strength is
increased further, the quadratic term starts dominating and
the symmetry broken phase is preferred again, leading to
the increase of the critical chemical potential with a
magnetic field. This behavior of the critical chemical
potential with a magnetic field is reflected in Figs. 6–7.

IV. SUMMARY

In the present investigation, we have focused on the
effect of the θ vacuum on the chiral transition for hot and
dense matter in the presence of a magnetic field. The effect
of the CP violating θ term in QCD is incorporated through
a θ dependent flavor mixing determinant interaction within
a three flavor NJL Lagrangian. The methodology uses an
explicit variational construct for the ground state in terms of
quark-antiquark paring, instead of performing a chiral
rotation of quark fields [22,23]. The ansatz functions in
the variational construct for the ground state are determined
from the minimization of the thermodynamic potential
solving self-consistent gap equations for the condensates in
the scalar as well as the pseudoscalar channels.
For nonvanishing θ, the constituent quark masses arise

from quark-antiquark condensates both in scalar and
pseudoscalar channels. With increasing values of CP

violating parameter θ, and for light quarks, the pseudo-
scalar condensates increase and become maximum in
magnitude at θ ¼ π. On the other hand, the condensate
in the scalar channel decreases with θ and almost vanishes
for θ ¼ π but for the current quark mass contribution. The
condensates in the two channels vary in a complimentary
way such that the constituent quark mass remains almost
constant with θ variation. The magnetic field enhances the
condensates in both the channels and breaks the isospin
symmetry of the light quarks.
The effective potential as a function of θ shows the

minimum at θ ¼ 0 with the cusp at θ ¼ π consistent with
the Vafa-Witten theorem. Introduction of a magnetic field
does not change this behavior. It only increases the
magnitude of the effective potential.
We also examined the effects of s-quark mass on the

vacuum structure in the presence of finite θ and a magnetic
field. It is observed that when the mass of the strange quark
is similar to that of u and d quarks, its condensate structure
is similar to that of d quarks essentially dictated by its
charge. In particular, for θ ¼ π, this leads to the condensate
structure for u and d quarks in the scalar channel of similar
magnitude as that in the pseudoscalar channel. On the other
hand, for the phenomenological value of ms (140.7 MeV)
of the model, the s-quark condensate is vanishingly small in
the pseudoscalar channel as compared to the scalar channel.
This further leads to negligible magnitude of the light quark
condensates in the scalar channel for θ ¼ π. Although the
s-quark condensates are vanishingly small in the pseudo-
scalar channel, the scalar channel s-quark condensate
significantly affects the light quark condensates in the
pseudoscalar channel due to the flavor mixing terms in the
mass gap equations.
At vanishing chemical potential, with temperature, the

condensates in both the channels decrease. The CP
transition is a second order transition with a critical
temperature Tc ≃ 200 MeV. With a magnetic field, this
CP transition still remains second order with the transition
temperature increasing as magnetic field strength is
increased similar to the magnetic catalysis of chiral
symmetry breaking at finite temperature. This high temper-
ature restoration of CP is expected as the instanton effects
responsible for the CP violating phase become suppressed
exponentially at high temperatures [49].
At finite chemical potential, however, the CP transition

is a first order transition. Further, inverse magnetic catalysis
for the CP transition is observed at finite chemical potential
at zero temperature, i.e., the corresponding critical chemi-
cal potential decreases with magnetic fields for small
magnetic fields. The possibility of a first order phase
transition can lead to formation of CP-odd metastable
domains that could be of relevance for heavy ion collisions
at the Facility for Antiproton and Ion Research as well as at
the Nucleotron-based Ion Collider facility at Dubna.
However, it ought to be mentioned that for the application
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to heavy ion collision, it is crucial to include the non-
equilibrium dynamics of the formation of domains, which
will provide the relevant time scales and also provide
information on the possibility of measuring the effects
arising from the formation of such CP-odd domains [50].
We have considered the quark-antiquark pairing in our

ansatz for the ground state that is homogeneous with zero
total momentum as in Eq. (2). However, it is possible that
the condensate could be spatially nonhomogeneous with a
net total momentum [51–53] or for very strong fields could
be nonisotropic with vector condensation [54]. Further, one
could include the effect of deconfinement transition by
generalizing the present model to Polyakov loop NJL
models for three flavors to investigate the inter-relationship
of deconfinement and the chiral transition [55] as well as
CP violation [23] in the presence of strong fields for the

three flavor case considered here. This will be particularly
important for finite temperature and low baryon densities.
On the other hand, at finite density and small temperatures,
the ansatz can be generalized to include the diquark
condensates in the presence of a magnetic field [56–58].
Some of these calculations are in progress and will be
reported elsewhere.
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