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We discuss the OðαsÞ supersymmetric QCD corrections to neutralino-stop coannihilation into a top
quark and a gluon in the minimal supersymmetric Standard Model (MSSM). This particular channel can be
numerically important in wide ranges of the MSSM parameter space with rather light stops. We discuss
technical details such as the renormalization scheme and the phase-space slicing method with two cutoffs.
We also comment on improvements with respect to earlier works on the given process. Further, we study
for the first time the phenomenologically very interesting interplay of neutralino-stop coannihilation with
neutralino-pair annihilation into quark pairs taking the full next-to-leading order SUSY-QCD corrections
into account. We demonstrate that the numerical impact of these corrections on the total (co)annihilation
cross section and finally on the theoretically predicted neutralino relic density is significant.
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I. INTRODUCTION

While there is striking evidence for the existence of cold
dark matter (CDM) in our Universe today, its exact nature
remains one of the most important open questions of
modern physics. Recent measurements of the cosmic
microwave background from the Planck satellite, combined
with results from WMAP polarization data, have allowed
one to determine the dark matter relic density ΩCDMh2 of
the Universe to precisely [1,2]

ΩCDMh2 ¼ 0.1199� 0.0027: ð1:1Þ

Beyond the Standard Model, a common assumption is
that cold dark matter invokes a new particle, which is stable
due to some Z2 symmetry. The relic density can then be
predicted based on cosmology and particle physics.
Denoting the dark matter candidate by χ, the theoretical
value of its relic density (Ωχh2) is given by

Ωχh2 ¼
mχnχ
ρcrit

; ð1:2Þ

where h is the Hubble constant, mχ is the mass of the dark
matter particle, and ρcrit is the critical density of the
Universe. Moreover, nχ denotes today’s number density
of the dark matter particle in the Universe. This number can
be obtained by solving the Boltzmann equation,

dnχ
dt

¼ −3Hnχ − hσannvi½n2χ − ðneqχ Þ2�; ð1:3Þ

which describes the time evolution of the number density of
a thermal relic in the Universe. The term proportional to
the Hubble parameter H describes the dilution due to the
expansion of the Universe, while the second term on
the right-hand side corresponds to (co)annihilation of the
relic particle into Standard Model particles. It contains the
(co)annihilation cross section [3–5]

hσannvi ¼
X
i;j

hσijviji
neqi
neqχ

neqj
neqχ

; ð1:4Þ

where the sum runs over all Z2-odd particles of the theory.
In this manner, Eq. (1.4) accounts for pair annihilation of
the dark matter particle as well as for coannihilation
processes [6] with other Z2-odd particles. The equilibrium
number densities appearing in Eqs. (1.3) and (1.4) are
related to the mass of the corresponding particle as well as
to the temperature T through neqi ∼ exp f−mi=Tg. As a
consequence, the ratios of the number densities appearing
in Eq. (1.4) are given by

neqi
neqχ

∼ exp

�
−
mi −mχ

T

�
: ð1:5Þ

This shows that coannihilation processes are relevant in
scenarios where another particle is almost degenerate in
mass with the dark matter particle.
In the present paper, we focus on the case of the minimal

supersymmetric Standard Model (MSSM), in which the
lightest neutralino is the most popular candidate for cold
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dark matter. The neutralino is a mixture of the bino ~B, the
wino ~W, and the Higgsinos ~H1 and ~H2,

~χ01 ¼ Z1 ~B
~Bþ Z1 ~W

~W þ Z1 ~H1

~H1 þ Z1 ~H2

~H2: ð1:6Þ

In case of a light stop, its coannihilation processes can be
numerically dominant in the calculation of the cross
section [7,8].
The parameters of the Boltzmann equation are affected

by theoretical uncertainties, which have to be reduced in
order to meet the experimental precision of Eq. (1.1). On
the cosmology side, e.g. variations in the Hubble expansion
rate or altered assumptions on the underlying cosmological
model give rise to uncertainties in the relic density
prediction [9–11]. On the particle physics side, the main
uncertainty resides in the calculation of the (co)annihilation
cross sections σij appearing in Eq. (1.4). In publicly
available tools such as MICROMEGAS [12] or
DARKSUSY [13], these cross sections are evaluated only
at the tree level taking into account effective quark masses
and running couplings for certain cases. However, it is well
known that higher-order corrections can have a sizable
impact on such cross sections and thus on the theory
prediction of the relic density.
This has been explicitly shown for different annihilation

channels and scenarios with the common conclusion that
the impact of the higher-order corrections on the relic
density can be numerically more important than the current
experimental uncertainty of Eq. (1.1). Previous studies
include neutralino pair annihilation into quark-antiquark
pairs [14–17] and electroweak final states [18–23] as well
as coannihilations of the lighter neutralinos and charginos
[17]. Neutralino-stop coannihilation with Higgs or electro-
weak vector bosons in the final state has also been studied
at the one-loop level [24].
It is the aim of the present paper to extend and to

combine the already existing analyses. With respect to our
previous paper [24], we now also include the neutralino-
stop coannihilation with a gluon and a top quark in the final
state. This final state was already considered in the analysis
of Ref. [25], although no further details were given
concerning the corresponding calculation. Moreover,
Ref. [25] focused on a rather special case of a binolike
neutralino, which coannihilates exclusively with a right-
handed stop according to ~B~tR → tg and ~B~tR → bWþ.
Our analysis extends Ref. [25] in several important

aspects. First, we discuss in detail the treatment of the
arising ultraviolet (UV) and infrared (IR) divergences in the
process with a gluon in the final state, e.g. nontrivial issues
like the renormalization of the strong coupling constant αs
as well as the phase-space slicing method, which is applied
in order to cancel the infrared divergences and to properly
evaluate the real emission cross sections. Moreover, our
analysis is general and remains valid when the neutralino
has sizable admixtures of wino and Higgsinos altering its

couplings and annihilation channels. Also, the lightest stop
is likely to be a mixture of the left- and right-handed
superpartners of the top quark, and a large mixing in the
stop sector [26,27] is often required for a Higgs mass of
about 125 GeV [28,29]. Moreover, all corresponding final
states with electroweak vector bosons have been taken into
account.
Furthermore, we study for the first time the phenom-

enologically very realistic and interesting interplay of
neutralino pair annihilation into quark pairs [17] and
neutralino-stop coannihilation processes. Apart from the
newly added stop-neutralino coannihilation into a gluon
and a top quark, we include the coannihilation into a top
quark and a Higgs boson which becomes significant if one
attempts to achieve a Higgs mass of around 125 GeV by a
large trilinear coupling in the stop sector as shown
in Ref. [24].
Our paper is organized as follows: In Sec. II we present

our calculation and discuss technical details such as the
renormalization scheme and the infrared treatment.
Numerical results for the annihilation cross section and
the neutralino relic density are shown in Sec. III, which
includes also a phenomenological discussion of the results.
Finally, conclusions are given in Sec. IV.

II. TECHNICAL DETAILS

The analysis presented in this paper involves a calcu-
lation of the coannihilation cross section at next-to-leading
order (NLO) in the strong coupling constant. In order to
provide predictions for the relic density up to the next-to-
leading order, one has to consistently calculate all relevant
processes up to that same order. In our case, we consider the
pair annihilation of neutralinos into heavy quarks and
coannihilation of the lightest neutralino and scalar top
quarks into a quark and an electroweak gauge boson, a
Higgs boson, or a gluon.
Most of these processes have been separately analyzed in

our previous work [17,24]. Here, we combine them for the
first time within a single analysis and further add a new and
important coannihilation process, namely the process with
a gluon in the final state. Next-to-leading order corrections
to these processes involve one-loop diagrams, which are
ultraviolet and infrared divergent. The UV divergences are
canceled by renormalization, while the IR divergences
vanish when including 2 → 3 processes with an additional
parton in the final state.
In the following, we will discuss additions which have to

be made to the renormalization scheme and to the treatment
of IR divergences in order to treat the coannihilation
processes with a gluon in the final state (see Fig. 1).
The necessary one-loop diagrams and 2 → 3 processes for
a gluon in the final state are depicted in Figs. 2–6. All
diagrams have been calculated by using the publicly
available tools FEYNARTS [30], FEYNCALC [31] and
FORM [32]. In order to regularize the occurring UV

HARZ et al. PHYSICAL REVIEW D 91, 034028 (2015)

034028-2



divergences, we calculate in D ¼ 4 − 2ε dimensions and
use the dimensional reduction (DR) scheme, which pre-
serves supersymmetry in contrast to the conventional
minimal subtraction scheme (MS). The whole calculation
is performed in the ’t Hooft-Feynman gauge, which means
we have included also external Faddeev-Popov ghosts.
In comparison to our previous calculation in Ref. [24],

the coannihilation process ~χ01~t1 → tg involves diagrams
with a more complicated gauge structure. As a result
several different color factors appear. Therefore, in every
contribution, virtual or real, we identify the gauge invariant
color classes and treat each color class independently.
The color class proportional to the Casimir operator

eigenvalue CF is similar to our previous calculation, where
instead of the gluon, we had a color singlet electroweak
boson in the final state. All ultraviolet and infrared
divergences in that case can be treated analogously as
in Ref. [24].
The additional complications come from the contribu-

tions proportional to the other Casimir operator eigenvalue
CA. This class of diagrams includes diagrams with a triple-
gluon coupling which introduce collinear infrared diver-
gences in addition to the infrared soft and ultraviolet
divergences. This causes a much more intricate divergence
structure and requires a dedicated treatment, especially of
the infrared divergences.
There is yet another small invariant class of diagrams

which is proportional to the SUð3Þ invariant Tf and is
connected to a closed fermion loop. If the fermion happens
to be a light quark, these contributions are also infrared
divergent.

A. Renormalization

Ultraviolet divergences that arise when calculating loop
diagrams can be removed by a suitable redefinition of
parameters and fields. In Ref. [24], we have proposed
a renormalization scheme suitable for all relevant

annihilation and coannihilation processes. To circumvent
known issues of previous on-shell and DR renormalization
schemes, we have put forward a mixed scheme where some
input parameters are defined on-shell ðmt;m~t1 ; m ~b1

; m ~b2
Þ

and others are defined in the DR renormalization scheme
ðmb; At; AbÞ. The renormalization and factorization scales
are set to 1 TeV, which corresponds to the scale at which the
DR-input values are given [33]. In our last paper [17], we
have improved on the treatment of heavy quark masses and
their Yukawa couplings.
Here, we will focus on the renormalization of the strong

coupling constant αs and of the gluon field, which are
necessary ingredients to render finite the one-loop cross
section of the newly added coannihilation process with a
gluon in the final state.

1. Gluon wave-function renormalization

Having an external gluon requires the renormalization of
the gluon field. We renormalize the gluon field by rescaling
it using a wave-function renormalization constant Zg,

Aμ →
ffiffiffiffiffi
Zg

p
Aμ ¼

�
1þ 1

2
δZg

�
Aμ: ð2:1Þ

The wave-function renormalization constant Zg is con-
nected to the general two-point Green’s function of a vector
field which can be parametrized as

Πμνðk2Þ ¼
�
gμν −

kμkν

k2

�
ΠTðk2Þ þ kμkν

k2
ΠLðk2Þ; ð2:2Þ

where ΠT and ΠL are the transverse and longitudinal form
factors which receive contributions from all diagrams in
Fig. 3. By requiring that the gluon propagator has a unit
residue even at the one-loop level, we obtain the following
expression for the renormalization constant:

δZg ¼ −ℜ
�∂ΠTðk2Þ

∂k2
����
k2¼0

�
: ð2:3Þ

This renormalization constant is both ultraviolet and infra-
red divergent. The ultraviolet divergence of the constant
can be written as

δZUV
g ¼ αs

4π

1

ε
½CA − 2Tfnq�; ð2:4Þ

FIG. 1. Leading-order Feynman diagrams for neutralino-squark
coannihilation into a quark and a gluon.

FIG. 2. Quark and squark self-energies at the one-loop level contributing through the propagators in the s and t channels, respectively.
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where the ultraviolet divergence manifests itself as a pole 1
ε,

nq indicates the number of active quarks, and the constants
CA and Tf are the conventional SUð3Þ invariants

CA ¼ NC ¼ 3; Tf ¼ 1

2
: ð2:5Þ

The infrared divergence of the gluon wave-function
renormalization constant is caused by an exchange of a
massless gluon in the one-loop diagrams contributing to
Green’s function and also by a collinear radiation of a
massless particle (gluon, Faddeev-Popov ghost, or a mass-
less quark) from another massless particle. The infrared
divergent part of the gluon wave-function renormalization
constant is

δZIR
g ¼ αs

4π

1

ε

�
−
5

3
CA þ 4

3
Tfnq0

�
; ð2:6Þ

where nq0 is the number of effectively massless quarks.

2. Renormalization of αs

In order to specify the renormalization of any param-
eter, one needs to give its definition which is unavoidably
tied to its input value and the corresponding counterterm
resulting from the definition. Throughout our calculation,
we use the strong coupling constant defined in the DR
scheme in the MSSM. Its value in this scheme is scale
dependent and has to be obtained from the conventional
value extracted from experimental data which is defined in
the MS scheme in the Standard Model and extracted at the
scale Q ¼ mZ of the mass of the Z boson. The procedure
to obtain the desired value of αs can be sketched as
follows:

α
MS;SM;nq¼5
s ðm2

ZÞ⟶
ð1Þ

α
MS;SM;nq¼5
s ðQ2Þ⟶ð2Þ α

DR;SM;nq¼5
s ðQ2Þ

⟶
ð3Þ

α
DR;MSSM;nq¼6
s ðQ2Þ: ð2:7Þ

There are several steps in the transformation which can be
performed in different order: We have to change the scale
of the coupling constant, transform the coupling from the
MS scheme to the DR scheme, and add effects of heavy
particles such as the top quark and all colored super-
symmetric particles (for a discussion of different
approaches see [34]). We chose the following sequence
of transformations.
In the first step, we use the well-known scale dependence

of the strong coupling constant in the StandardModel in the
MS scheme which at NmLO is given by

das
d log μ2r

¼ βNmLOðasÞ ¼ −
Xm
k¼0

akþ2
s βk; ð2:8Þ

with the shorthand notation as ≡ α
MS;SM;nq¼5
s =4π. The

renormalization scale is denoted by μr and nq stands for
the number of effectively massless quark flavors, which is
set to nq ¼ 5 in our case.
We use the expansion coefficients βk of the β function of

QCD at k ¼ 3, i.e., at N3LO [35],

β0 ¼ 11 − 2=3nq;

β1 ¼ 102 − 38=3nq;

β2 ¼ 2857=2 − 5033=18nq þ 325=54n2q;

β3 ¼ 29243.0 − 6946.30nq þ 405.089n2q þ 1093=729n3q:

ð2:9Þ
After we have shifted the scale using three-loop renorm-
alization group equations from Q2 ¼ m2

Z to the final scale

FIG. 3. Gluon self-energies at the one-loop level leading to the gluon wave-function renormalization constant δZg, which enters the
counterterm of the strong coupling constant as well as directly the counterterms to the quark-quark-gluon and squark-squark-gluon
coupling.
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Q2
fin ¼ 1TeV2, all remaining steps of Eq. (2.7) are per-

formed at this scale.
The next step is rather more involved, as it requires a

consistent definition of αs in the dimensional reduction
scheme within QCD without supersymmetry. The two-loop
relation between the two definitions of the strong coupling
constant can be written as [36]

αDRs ¼ αMS
s

�
1þ αMS

s

π

CA

12
þ
�
αMS
s

π

	2�
11

72
C2
A −

1

8
CFTnq

	�
;

ð2:10Þ

where it is understood that both coupling constants are
evaluated at the same scale, in the Standard Model and
with nq ¼ 5.
The last step is to obtain a coupling constant in the

MSSM, taking into account the existence of heavier
supersymmetric particles which alter the scale dependence.
The effects of the heavy top quark are also taken into
account in this step in parallel with all other particles so that

we obtain α
DR;MSSM;nq¼6
s ≡ αfulls . The relation between the

final strong coupling and the Standard Model one can be
cast into the form

αfulls ¼ αDRs

�
1 −

αDRs
π

ζ1 þ
�
αDRs
π

	2

ð2ζ21 − ζ2Þ
�
; ð2:11Þ

where the first-order decoupling coefficient ζ1 is given by

ζ1 ¼ −
1

6
log

Q2
fin

m2
t
−

1

24

X
q

X
i¼1;2

log
Q2

fin

m2
~qi

−
1

2
log

Q2
fin

m2
~g

:

ð2:12Þ

The explicit result for the second-order decoupling coef-
ficient is too long to be shown here in its entirety. For all the
details and the results for some special cases, we refer the
reader to Ref. [37].
After we have established the value of the strong

coupling constant, the corresponding counterterm remains
to be specified. The counterterm of αs in the MSSM in the
DR scheme is

δαs ¼
αs
8π

Δ½nq − 3CA�; ð2:13Þ

where Δ ¼ 1
ε − γE þ log 4π.

With the treatment described above, a UV-finite calcu-
lation is achieved, which has been validated by various
consistency checks.

B. Phase-space slicing

The IR divergences occurring in the virtual corrections
are canceled by including the real emission processes

FIG. 4. Vertex corrections at the one-loop level contributing to neutralino-squark coannihilation into a gluon in the final state. The first
row arises from the neutralino-squark-quark coupling, the second row from the gluon-quark-quark coupling, and the third and fourth
rows from the gluon-squark-squark coupling. The first diagram of the second and third rows, respectively, give rise to an infrared single
pole (soft). The diagrams with a gluon-gluon-gluon vertex, however, lead to an infrared double pole (soft collinear).
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~χ01ðp1Þ þ ~t1ðp2Þ → tðp3Þ þ gðp4Þ þ gðkÞ ð2:14Þ

and

~χ01ðp1Þ þ ~t1ðp2Þ → tðp3Þ þ qðp4Þ þ qðkÞ: ð2:15Þ

The corresponding diagrams are depicted in Fig. 6.
Whereas the infrared divergences of the virtual part can
be explicitly isolated in D ¼ 4 − 2ε dimensions, those in

the real part result from the integration over the gluon
phase space.
In contrast to neutralino-stop coannihilation with a Higgs

or electroweak vector boson in the final state, where only
soft divergences appear (see Ref. [24]), in the case of a
gluon in the final state additional collinear divergences
have to be considered. Therefore, a simple phase-space
slicing method with just one cutoff on the gluon energy is
not sufficient any more, and the method has to be extended
to two cutoffs in order to distinguish between the soft (S),

FIG. 6. Real gluon emission diagrams contributing at the next-to-leading order to neutralino-squark coannihilation with a gluon in the
final state. The first and second rows show the usual emission from the initial state stop, the final state top and gluon as well as from
the corresponding propagator particle (top in case of the s channel, stop for the t channel). For the t-channel diagram also radiation off
the squark-squark-gluon vertex is possible. In the third row the diagrams containing ghosts are depicted, which are needed in order to
maintain gauge invariance. Further, light quark emission off the final state gluon is possible (fourth row).

FIG. 5. Box diagrams at the one-loop level contributing to neutralino-squark coannihilation into a gluon. The first diagram in the first
row leads to an infrared double pole (soft collinear), and the first and third diagrams in the second row give rise to an infrared single
pole (soft).
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hard collinear (HC), and hard noncollinear (HC) regions of
phase space (see Fig. 7). To do so, we use the two-cutoff
phase-space slicing method as introduced and discussed in
Ref. [38]. The first cutoff δs is applied on the gluon energy
to distinguish between the soft and hard phase spaces. The
second cutoff δc is used to separate the hard collinear and
hard noncollinear phase space. In this way, the full 2 → 3
cross section is split into three parts,

σ2→3
full ¼ σS þ σHC þ σHC: ð2:16Þ

Having used the cutoffs δs and δc to decompose the
2 → 3 phase space into the three different regions as
shown in Fig. 7, we can integrate now the full 2 → 3
matrix element in the hard noncollinear (and thus finite)
region numerically. At this point, one should note that we
apply the cutoffs only selectively on those subclasses of
diagrams which would give rise to divergences when
integrating over the squared amplitudes. The whole list of
squared amplitudes and the corresponding cuts are given
in Table I.

In contrast to the hard noncollinear region, in the soft or
collinear parts of the phase space, where the matrix element
is divergent, we use the eikonal or leading collinear pole
approximation of the full matrix element. Both approx-
imations rely on the factorization of the differential 2 → 3
cross section in terms of the 2 → 2 matrix element
according to

�
dσ
dΩ

	
S;HC

¼
�
dσ
dΩ

	
tree

× FS;HC; ð2:17Þ

where the factors FS;HC contain all infrared poles isolated
with the help of the applied approximations. Table I gives
an overview over the different divergent cases and cate-
gorizes the squared amplitudes arising from the different
diagrams of Fig. 6.
As mentioned earlier, the nontrivial color structure is

essential to the structure of infrared divergences. The
diagrams proportional to CF lead only to soft divergences,
where one cutoff is sufficient. The diagrams with the color
factor CA, on the other hand, give rise to both the soft and
the collinear divergences, and a two-cutoff treatment is
necessary. The last class of diagrams is the one proportional
to Tf, which is only collinear divergent. The decomposition
in the different color classes simplifies the analytical and
numerical cross-check of expected cancellations. In the
following, we address each class separately.

1. Soft limit

In the soft limit the eikonal approximation allows one to
factorize the squared amplitudes of the diagrams containing
the infrared divergence according to

FIG. 7 (color online). Schematic picture of the sliced phase
space with the two cutoffs δs and δc.

TABLE I. Overview over all squared matrix elements corresponding to diagrams in Fig. 6 together with the classification of their
divergent behavior (convergent, soft, soft collinear, hard collinear) and the corresponding cuts imposed on the integration to avoid the
divergences. In the last column the corresponding squared amplitudes are listed indicating if the diagrams squared correspond to the S
channel or the T channel and indicating also the particle which radiates the gluon in each of the diagrams: i ¼ initial state squark,
p ¼ propagator, f ¼ final state quark, g ¼ gluon, v ¼ vertex; or in case of the radiated particle not being a gluon, the particle which is
radiated off: η ¼ ghost and q ¼ light quark.

Condition for pure hard 2 → 3 processes Squared amplitudes

Convergent SiTv, SpTv, SfTv, SgTv
TiTv, TpTv, TfTv, TgTv, TvTv

Soft x2 > 2δs=
ffiffiffi
s

p
and x3 > 2δs=

ffiffiffi
s

p
SiSi, SiSp, SiSf, SpSp, SpSf, SfSf
SiTi, SiTp, SpTi, SiTf, TfTi, SpTp, SpTf, SfTp, SfTf
TiTi, TiTp, TiTf, TpTp, TpTf, TfTf

Soft collinear x1 < 1þ μ23 − δc=s and x2 > 2δs=
ffiffiffi
s

p
SiSg, SpSg, SfSg

and x3 > 2δs=
ffiffiffi
s

p
SiTg, SpTg, SfTg, TiSg, TpSg, TfSg
TiTg, TpTg, TfTg

Hard collinear x1 < 1þ μ23 − δc=s SgSg, SηSη, SqSq
SgTg, SηTη, SqTq
TgTg, TηTη, TqTq
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jMj2S ¼ jM0j2

×

�
ð−g2sCFÞ

�
p2
2

ðp2:kÞ2
þ p2

3

ðp3:kÞ2
−

2p2:p3

ðp2:kÞðk:p3Þ
�

þ ð−g2sCAÞ
2

�
2p2:p4

ðp2:kÞðp4:kÞ
þ 2p3:p4

ðp3:kÞðp4:kÞ
��

;

ð2:18Þ

with gs being the strong coupling constant and CA ¼ 3

together with CF ¼ 4=3 the color factors. jM0j2 is the
factorized 2 → 2 tree-level squared matrix element. Wewill
treat the two different color classes separately as the first
proportional to CF contains only soft infrared divergences
and leads to single poles in ε and the second class
proportional to CA combines both soft and collinear
divergences. In this case, the combination of infrared
divergences manifests itself through the appearance of
double poles in ε. This difference between the two color
classes requires a different treatment of the phase-space
integration.
In the case of pure soft divergent amplitudes the cross-

section contribution of each term of Eq. (2.18) can be
written in the generic form�
dσ
dΓ2

	
¼
�
dσ
dΓ2

	
0

g2sμ4−D

8π3
CF

Z
j~kj≤δs

dD−1k
ð2πÞD−4

1

2ω

a:b
ða:kÞðk:bÞ ;

ð2:19Þ

where the integration over theD-dimensional momentum k
of the radiated particle is performed over energies up to the
soft cutoff δs. Further, μ stands for the chosen renormal-
ization scale and dΓ2 denotes the two-body phase space of
the tree-level final-state partons with momenta p3 and p4.
In order to isolate the soft infrared divergence, we reduce

the phase-space element and split off the angular part
dΩD−2 which does not contain any divergence in this case

Z
dD−1k

ð2πÞD−12ω
¼
Z

dj~kjj~kjD−2

ð2πÞD−12j~kj

Z
dΩD−2: ð2:20Þ

Taking into account the k2 in the denominator which arises
from calculating the two scalar products in the denominator
of Eq. (2.19), the single pole can be isolated as

Z
δs

0

dkkD−5 ¼ δðD−4Þ
s

D − 4
¼ −

δðD−4Þ
s

2ε
: ð2:21Þ

When performing the integration over the remaining phase
space, two different cases can occur: Both momenta in the
scalar products of Eq. (2.18) are equal (Ia2) or different
(Iab). The corresponding integrals can be found in
Appendix A 1.
The collinear divergences in the second and more

complicated contribution to jMj2S require additional care

when integrating over the angular part of the D-
dimensional momentum of the additional gluon.
Therefore, the angular part of the integral is rewritten as [38]

Z
dD−1k

ð2πÞD−12ω
¼
Z

dkkD−2

ð2πÞD−12k

×
Z

dθ1sinD−3θ1dθ2sinD−4θ2dΩD−4:

ð2:22Þ

The differential cross section for the second part of jMj2S can
be reformulated as

�
dσ
dΓ2

	
¼ −

�
dσ
dΓ2

	
0

g2sCA

16π3
μ4−DπεΓð1 − εÞ

Γð1 − 2εÞ
1

s

×
Z

δs

0

dk kD−5
Z

π

0

dθ1 sinD−3θ1

Z
π

0

dθ2sinD−4θ2

×

�
−
4ðm2

2 − tÞ
xp2kxp4k

−
2ðs −m2

3Þ
xp3k

−
2ðs −m2

3Þ
xp4k

�
;

ð2:23Þ

where we use the abbreviations xp2k; xp3k, and xp4k as
defined in Appendix A 2. For each of the three terms of
Eq. (2.23), the integration over θ1 and θ2 can be cast in the
following form:

Iðl;mÞ
ε ¼

Z
π

0

dθ1sin1−2εθ1

Z
π

0

dθ2sin−2εθ2

×
ðaþ b cos θ1Þ−l

ðAþ B cos θ1 þ C sin θ1 cos θ2Þm
: ð2:24Þ

Similar to the purely soft case, the integration over the
momentum in Eq. (2.22), results in a soft divergence. The
additional collinear divergence comes in through the inte-

grals Iðl;mÞ
ε which have already been studied for different

cases of the occurring parameters in the literature, e.g. in
Refs. [39–44].
After rearranging the relevant parts of Eq. (2.18) in order

to achieve integrals of the form of Eq. (2.24) and taking into
account Eq. (2.21), we finally obtain the soft-collinear
contribution

�
dσ
dΓ2

	
¼
�
dσ
dΓ2

	
0

g2sCA

16π3s
πεΓð1 − εÞ
Γð1 − 2εÞ

�
−

1

2ε

	�
μ2

δ2s

	
ε

× ½4ðm2
2 − tÞIð1;1Þε ðxp2kxp4kÞ

þ 2ðs −m2
3ÞIð0;1Þε ðxp3kÞ þ 2ðs −m2

3ÞIð1;1Þε ðxp4kÞ�;
ð2:25Þ

where we identify the cases Ið0;1Þε and Ið1;1Þε of the general
integral given in Eq. (2.24).
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Whereas Ið0;1Þε results in a finite contribution, Ið1;1Þε gives
rise to the collinear divergence. Combined with the soft
divergence from the integration over the momentum, it
leads to a double pole for the soft-collinear diagrams.
Further details can be found in Appendix A 3.
Thus, we have isolated all occurring soft and soft-

collinear divergences of the real emission diagrams and
treated them according to their color structure. The con-
tribution proportional to CF, given in Eq. (2.18), contains
only single poles which are completely canceled by the
virtual counterpart without any other contribution. The
contribution proportional to CA in Eq. (2.18) leads to
double and single poles, and only the double poles are
canceled directly by adding virtual contributions. The
single poles need to be combined with other single poles
from the same color class in the hard-collinear limit, and
only their sum cancels with the poles of the corresponding
virtual contributions.

2. Hard-collinear limit

In the following, we discuss the treatment of the collinear
divergences in the hard-collinear part of the phase space.
The parts of the amplitude which are not collinear divergent
are not subject to the treatment described here in this
section. Collinear divergences occur, when the momentum
p5 of the emitted massless particle becomes collinear to the
momentum p4 of the massless emitter particle.1 In the
collinear limit, we can regard these two momenta as a
single effective momentum p45 ¼ p4 þ p5. Further details
on the definition of the momenta can be found in
Appendix A 2.
Because of the factorization theorem [45,46], the

squared matrix element of the 2 → 3 processes in the
collinear limit can be described as the 2 → 2 matrix
element multiplied by an appropriate splitting kernel,

X̄
jM1þ2→3þ4þ5j2

≃XjM1þ2→3þ40 j2P440 ðz; εÞg2sμ2ε
2

s45
; ð2:26Þ

where s45 ¼ 2p4:p5 describes the collinearity and P440 the
corresponding Altarelli-Parisi splitting kernels [47] as
given in Appendix A 4. Thus, in the hard-collinear limit
(E4;5 > δs and 0 ≤ s45 ≤ δc), the differential cross section
can be written as

�
dσ
dΓ2

	
¼
�
dσ
dΓ2

	
0

g2sð4πμ2ÞεΓð1 − εÞ
8π2Γð1 − 2εÞ

×
Z

δc

0

ds45
sεþ1
45

Z
dz

P440 ðz; εÞ
ðzð1 − zÞÞε ; ð2:27Þ

where dΓ2 denotes the two-body phase space of the
particles with momenta p3 and p45. Moreover, z describes
the momentum fraction of particle with momentum p4 to
the quasiparticle p45. Further details on the definitions can
be found in Appendix A 2, and we refer to Ref. [38] for all
other details on the derivation.
The collinear divergence can be isolated thanks to the

fact that the integral over the momentum fraction in
Eq. (2.27) is independent of s45:Z

δc

0

ds45
sεþ1
45

¼ −
1

ε
δ−εc : ð2:28Þ

The integration bounds of the integral over the momentum
fraction z in Eq. (2.27) have to reflect the fact that the
energies of the final state particles in the hard-collinear
region are bound from below by the soft cutoff δs.
Therefore, the amplitudes which correspond to the process
~χ01~t1 → tgg and are divergent also in the soft limit have to be
integrated by using the following integration bounds:

1 −
1 − δs

β

1 − s45
s12

1
β

≤ z ≤
1 − δs

β

1 − s45
s12

1
β

; ð2:29Þ

with

β ¼ 1 −
m2

3

s12
: ð2:30Þ

Further details on the derivation can be found in
Appendix A 4.
There is still a class of diagrams which was not yet

mentioned. It is the one belonging to the processes ~χ01~t1 →
tqq with light quarks in the final state. The squared matrix
elements of this class contain the color factor Tf. These
diagrams do not give rise to any soft divergences but are
collinear divergent. The integration in this case is possible
over the whole momentum fraction phase space 0 ≤ z ≤ 1.
Performing all integrations, the differential cross section

can finally be written as�
dσ
dΓ2

	
¼
�
dσ
dΓ2

	
0

g2s
8π2

�

Ag→gg
0 þAg→qq

0

�

þ
�
1

ε
þ log4π − γEþ logμ2

	

Ag→gg
ε þAg→qq

ε

��
;

ð2:31Þ

with the corresponding form factors given in
Appendix A 4.

3. Cutoff independence

The phase-space slicing method allows for the cancella-
tion of all occurring infrared divergences over the whole

1Note that in this part the momentum of the additional gluon is
denoted by p5 in contrast to k in the previous section.
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phase space. In the calculation of the full 2 → 3 process,
this method introduces a dependence on the cutoffs
δs and δc,

σ2→3
full ¼ σSðδsÞ þ σHCðδs; δcÞ þ σHCðδs; δcÞ: ð2:32Þ

The final result, however, does not depend on these cutoffs
if the splitting is performed properly. The cutoff independ-
ence is therefore a powerful numerical check, especially
since the different contributions as classified in Table I can
be investigated separately. An example of such a check is
shown in Fig. 8.
First, we show two special subsets of matrix elements

where the infrared divergence comes either only from the
soft or only from the collinear region. It stands to reason
that these subsets of matrix elements need only one cutoff
for the phase-space slicing to isolate the divergence, either
the soft cutoff δs or the collinear cutoff δc.

For the process with a gluon in the final state, the upper-
left plot of Fig. 8 shows the behavior of the purely soft
contributions to the cross section. The relevant squared
amplitudes are given in the second row of Table I. They
include gluon emission from the initial stop, the propagator
top or stop, respectively, and the final state top. The graph
shows the sum of the corresponding 2 → 3 processes and
their soft gluon approximation. If the cutoff independence
is fulfilled, the sum of both should stay constant when
varying the soft cutoff parameter while being independent
from the collinear cutoff altogether. In the upper-right
subfigure of Fig. 8 a similar plot for the purely hard-
collinear light quark emission is shown. Here the
corresponding 2 → 3 processes and their collinear approxi-
mation are added up. As there are no soft-collinear
contributions in this case, it can be studied independently
from the soft cutoff. The collinear approximation is well
valid up to roughly δc=s ¼ 2 × 10−3.

0.5

1.0

1.5

2.0

2.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

− 1 .2

− 0 .8

− 0 .4

0 .0

0 .4

0 .8

1 .2

FIG. 8 (color online). Plots demonstrating the cutoff independence of our NLO calculation for the case of a final state with a top quark
and a gluon. Upper left: Purely soft IR-convergent contribution arising from gluon emission off quarks and squarks. Upper right: Purely
collinear IR-convergent contribution arising from light quark emission. Bottom: Soft-collinear IR-convergent contribution arising from
gluon emission off a gluon.
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Generally, for too small values for the cutoffs, problems
can occur regarding the cutoff independence. In this case,
the full 2 → 3 matrix element would be integrated already
over a part of the phase space where the divergence resides,
which renders the numerical integration unreliable. Similar
problems would arise for too large cutoffs, where we reach
a region where the soft (or collinear) limit does not hold any
more and the approximation breaks down. Therefore, we
have checked for cutoff independence in a limited interval,
e.g. for the soft cutoff δs=

ffiffiffi
s

p
∈ ð10−5; 10−2Þ or the collin-

ear cutoff δc=s ∈ ð10−6; 10−3Þ. As can be seen in Fig. 8, the
result is indeed independent of the cutoff over the given
intervals.
As discussed in Sec. II B 2, the matrix elements which

include the g → gg splitting are divergent both in the soft
and in the collinear limits, which is clearly manifested by
the appearance of double poles. As a consequence, the
cutoff behavior can be studied only in dependence of both,
the soft and the collinear cutoffs. This is shown in the lower
plot of Fig. 8. Here, a broad plateau is visible, which
demonstrates that also in the soft-collinear case the calcu-
lation is independent from both cutoffs over a large region
of phase space. For our study we have chosen the cutoffs to
be δs=

ffiffiffi
s

p ¼ 3.0 × 10−4 and δc=s ¼ 3.0 × 10−5. We have
verified that the chosen value for the soft cutoff is also
appropriate for the other possible coannihilation final
states, e.g. for the th0 final state.

III. RESULTS AND DISCUSSION

In the following, we discuss the impact of the radiative
corrections on the (co)annihilation cross section and the
neutralino relic density on the basis of an example scenario
as defined in Table II. For the sake of generality, we have
chosen to work in the phenomenological MSSM (pMSSM)
with 11 free parameters. In this setup, the Higgs sector is
parametrized by the ratio of the vacuum expectation values
of the two Higgs doublets, tan β, the off-diagonal Higgsino
mass parameter μ, and the pole mass of the pseudoscalar
Higgs boson, mA. The bino, wino, and gluino mass
parameters M1, M2, and M3 are chosen to be independent,
which allows the most general situation at the level of the
decomposition of the neutralino dark matter candidate. The
masses of left- and right-handed squarks of the first and
second generations are parametrized by a common mass
parameter M2

~q1;2
. For the third generation of up-type

squarks, we have two parameters M2
~q3
, corresponding to

left-handed stops and sbottoms as well as right-handed

sbottoms, and M2
~u3
for the right-handed stops. The trilinear

coupling parameter for the stops is Tt ¼ AtYt, while the
remaining trilinear couplings are set to zero. Finally, the
slepton sector being less relevant in our study, we restrict
our analysis to a common mass parameter M2

~l
for all left-

and right-handed sleptons and sneutrinos.
The corresponding mass spectrum is obtained using the

public spectrum generator SPHENO 3.2.3 [48]. We show the
most relevant masses like the mass of the lightest neu-
tralino, the lightest stop, and the lightCP-even Higgs boson
in Table III. The neutralino relic density given in Table III
has been obtained by using the standard MICROMEGAS

2.4.1 calculation. Finally, the value of the inclusive branch-
ing ratio of the decay b → sγ as obtained by SPHENO is also
indicated in Table III.

A. Phenomenology

Before studying in detail the impact of the loop correc-
tions on the cross section and on the neutralino relic
density, we want to discuss the phenomenology of the
chosen scenario. In Fig. 9, we show the cosmologically
favored region [see Eq. (1.1)] in the M1–M ~q3 parameter
plane together with the four leading contributions to the
total (co)annihilation cross section σann. The other remain-
ing free parameters are set as indicated in Table II. The
region in parameter space where the relic density is
compatible with the measured value by the Planck satellite
within one sigma is denoted by an orange band.
The Planck preferred region in the case of our scenario

follows an approximate straight line of constant mass
difference between the lightest neutralino and the lightest
scalar top quark. Comparing the plots in Fig. 9, we see that
the preferred region runs through areas where different
(co)annihilation processes dominate.
For larger values of bothM1 andM ~q3 , the coannihilation

into a final state with a vector boson dominates. Out of
all possible vector bosons, the gluon gives the largest

TABLE III. Physical neutralino, stop, and Higgs masses as well
as neutralino relic density and the inclusive branching ratio of the
decay b → sγ.

m~χ0
1

338.3 GeV
m~t1 375.6 GeV
mh0 122.0 GeV
Ω~χ0

1
h2 0.1136

BRðb → sγÞ 3.25 × 10−4

TABLE II. Parameters in the pMSSM defining the example scenario in the pMSSM. All quantities except tan β are
given in GeV.

tan β μ mA M1 M2 M3 M ~q1;2 M ~q3 M ~u3 M ~l Tt

5.8 2925.8 948.8 335.0 1954.1 1945.6 3215.1 1578.0 609.2 3263.9 2704.1
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contribution because of the strong interaction of the gluon
with the top quark. This contribution can be as large as
30%, whereas the other vector contributions together are
typically only half as important—up to 10%–20%.
In the opposite corner of the preferred region, where the

importance of the final state with a vector boson dimin-
ishes, the neutralino and the scalar top quark coannihilate
predominantly into a Higgs boson and a quark (see the
lower-right plot in Fig. 9). This process was analyzed in
Ref. [24], where it was shown that the importance of this
process is connected to the large trilinear coupling in the
t-channel exchange diagram. Our scenario features such a
large trilinear coupling as a means to satisfy the Higgs mass
constraint. Therefore, it is to be expected that this channel
becomes very important for smaller values of M ~q3 , which
enhances the contribution of the t-channel diagram in this
process. The contribution of this class of processes to the
relic density can be as high as 40%.
The last important contribution is the neutralino anni-

hilation into a top antitop pair (see the upper-left plot in
Fig. 9). This contribution lies predominantly above the
preferred region, and it is more important for lighter stop

masses as the driving matrix element is the scalar top quark
exchange in the t channel.
The parameter point of Table II is chosen within the

plane of Fig. 9. It features a neutralino relic density of
Ω~χ0

1
h2 ¼ 0.1136 and a Higgs mass of mh0 ¼ 122.0 GeV,

which both lie within theoretical and experimental uncer-
tainties. The mass difference between the lightest stop and
the lightest neutralino is 37.3 GeV, which favors their
coannihilation. The corresponding relative contributions to
the total neutralino annihilation cross section of Eq. (1.4) of
the dominant processes are listed in Table IV. With the

FIG. 9 (color online). Two-dimensional scans inM1 andM ~q3 showing the relative contributions of different processes to the total (co)
annihilation cross section σann. The orange band indicates the region of parameter space which is (at 1 σ confidence level) favored by the
Planck measurement corresponding to Eq. (1.1).

TABLE IV. Dominant (co)annihilation channels contributing to
Ω~χ0

1
h2 for the example scenario of Table II.

~χ01~t1 → tg 23%

~χ01~t1 → th0 23%

~χ01~t1 → tZ0 5%

~χ01~t1 → bWþ 10%

~χ01 ~χ
0
1 → tt 15%P

corr 76%
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neutralino annihilation and neutralino-stop coannihilation
processes summing up to 76%, we are able to correct a
large fraction of the total coannihilation cross section.

B. Coannihilation cross section

In the following, we study the impact of the one-
loop corrections on the cross section of the different
(co)annihilation subchannels. In Fig. 10, we show the cross
section of the four dominant (co)annihilation channels as a
function of the center-of-mass momentum pcm. For each
channel we show our tree-level (black dashed line), the full
one-loop (blue solid line), and the MICROMEGAS (orange
solid line) cross section. The grey shaded area depicts the
thermal velocity distribution in arbitrary units evaluated at
the freeze-out temperature in order to demonstrate in which
region of pcm the cross section contributes to the neutralino
relic density. Furthermore, in the lower part, we show the
corresponding relative shifts of the differently calculated
cross sections (second item in the legend).
The upper-left plot shows the cross section for

neutralino annihilation into tops. The sharp peak around

pcm ≈ 330 GeV corresponds to the resonances of the
heavier CP-even and pseudoscalar Higgs bosons.
A difference between our and the MICROMEGAS cross

section at tree level can be observed. However, differences
even at tree level are a general and expected feature. The
first general difference is the different definition of masses
and mixing matrices due to our chosen renormalization
scheme. Another difference is that MICROMEGAS pro-
vides a tree level with effective couplings. Especially, the
treatment of the top quark mass gives rise to large
differences. Whereas in our calculation we use the
on-shell mass for the top with mOS

t ¼ 172.3 GeV, in

MICROMEGAS the DR-mass with mDR
t ¼ 161.6 GeV is

taken into account. This can lead to large differences in
particular in diagrams containing Yukawa couplings. In
the case of neutralino pair annihilation this kind of
different technical treatment causes only a relatively small
difference of around 10%. If we consider further the
effect of our one-loop calculation, a large shift of around
35% with respect to the default MICROMEGAS result is
obtained.

FIG. 10 (color online). Tree-level (black dashed line), full one-loop (blue solid line), and MICROMEGAS (orange solid line) cross
sections for the dominant (co)annihilation channels. The upper part of each plot shows the absolute value of σv together with the thermal
velocity distribution (in arbitrary units evaluated at the freeze-out temperature), whereas the lower part shows the corresponding relative
shift (second item in the legend).
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In the upper-right plot, a similar plot for neutralino-stop
coannihilation into a top and the lightest Higgs boson is
shown. In this case, the relative difference between both
tree-level calculations is roughly 35%. This is again
triggered by the difference of the definition of the top
mass which has a huge impact due to the Yukawa couplings
in the s- and t-channel diagrams. With the t channel being
enhanced due to a large trilinear coupling, the effect is even
larger. This leads also to a huge shift between the one-loop
corrected result with respect to MICROMEGAS of around
43%. However, we can observe that our NLO calculation
with respect to our own tree-level calculation differs only
by less than 10%, which confirms perturbativity.
In the case of an electroweak vector boson in the final

state, the difference of the two tree-level calculations lies at
around 15%. This is smaller than for the Higgs boson final
state, as the Yukawa couplings are less important. However,
the effect is larger than for the neutralino pair annihilation,
as the latter is more phase space suppressed and the
s-channel dominated W boson final state is more sensitive
to the exact definition of the mixing angles. With the loop
corrections being negative (in contrast to the channels
discussed before) this, however, causes smaller loop
corrections of about 10%.
However, the process with the gluon in the final state

shows a completely different behavior. Here, our tree-level
cross section with respect to the one of MICROMEGAS is
lower by 9%. In this case, the main reason for the difference
lies in the fact that for the gluon final state the renormalized
αs already enters at the tree level and thus causes a
difference. After accounting for the next-to-leading order
contribution, the SUSY-QCD corrections lead to a positive
shift of roughly 40% over the MICROMEGAS result. This is
usual for such calculations and is caused by the strong loop
corrections containing α2s .

Altogether, the one-loop corrections account for relative
corrections of the range of 10% to 45% with respect to the
cross sections used by MICROMEGAS. This shows the
necessity to take into account these loop corrections and to
further study their impact on the neutralino relic density.

C. Neutralino relic density

For studying the impact of the next-to-leading order
corrections on the neutralino relic density, we again have a
look at the two-dimensionalM1-M ~q3 plane in the vicinity of
our example scenario. The left plot of Fig. 11 shows in
green the total contribution of neutralino pair annihilation
and neutralino-stop coannihilation processes for which we
provide loop corrected results. As before, we use orange to
highlight the parameter space compatible up to one sigma
with the Planck measurement. On the right hand side a
zoom-in of this parameter plane is shown. The region
favored by the Planck result is again indicated in the orange
color. This region is based on the out-of-the-box
MICROMEGAS/CALCHEP calculation. In blue, we show
our one-loop result. This calculation includes all SUSY-
QCD corrections to neutralino annihilation into heavy
quarks as well as to neutralino-stop coannihilation into
all final states. We are able to correct up to 80% of the total
(co)annihilation processes. For the remaining processes
which we do not correct but which enter the relic density
calculation, we take over the cross sections calculated by
MICROMEGAS/CALCHEP.
As discussed in Sec. III B the one-loop-corrected cross

sections of the various channels differ from the default
MICROMEGAS cross section by up to 45%. This leads to a
relative correction to the MICROMEGAS relic density of
17.5% (shown as black solid lines in Fig. 11). This
correction causes a clear shift of the Planck favored one-
sigma band in the parameter space. The separation of the

FIG. 11 (color online). Scan in the M1-M ~q3 plane in the vicinity of our example scenario. On the left hand side we show in green the
total contribution of corrected (co)annihilation processes. The favored region of parameter space by the one-sigma Planck results is
depicted in orange. On the right hand side a zoom-in is shown. The blue band shows additionally the favored Planck one-sigma band
taking into account the presented loop corrections.
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bands shows that the calculated loop corrections are
important and have to be taken into account as their
impact can be larger than the corresponding experimental
uncertainty.
Finally, we want to study the interplay of different

channels and their corresponding corrections in our chosen
scenario. In Fig. 12 we study the relic density along a line in
the M1-M ~q3 plane. For each value of the bino mass
parameter M1, the corresponding value of the squark mass
parameter M ~q3 is chosen such that the neutralino relic
density obtained with MICROMEGAS meets exactly the
central value of the limits in Eq. (1.1).
The left plot in Fig. 12 shows the relative contributions of

all relevant channels on the top panel and the ratio of the
stop and neutralino masses in the bottom panel.
Investigating the mass ratio, we see that as we move
toward larger values ofM1, the mass of the scalar top quark
gets closer to the lightest neutralino, and as expected the
importance of the coannihilation process grows. We can
identify three distinct regions in the M1 parameter, each
with a different composition of contributing channels.
Below we will show how this composition influences
the radiative corrections to the relic density. For that
purpose, the right plot in Fig. 12 depicts the next-to-leading
corrections along the same line in theM1-M ~q3 plane broken
down to different contributions.
For lower M1 (M1 ∼ 250 GeV), the neutralino pair-

annihilation into top quarks dominates and accounts for
up to 55% of the total annihilation cross section. The
second most important contribution in this region is the
neutralino-stop coannihilation into a Higgs boson and a
quark which can reach up to 30%. As shown in Fig. 10,

both of these processes receive substantial next-to-leading
order corrections. The neutralino pair annihilation into top
quarks is increased by about 35% and the coannihilation
into a Higgs boson and a quark receives a 40% correction
with respect to MICROMEGAS. As a consequence, the relic
density is decreased by about 18%.
Going toward higher values of M1, pair annihilation

becomes less important, and coannihilation processes with
the lightest stop dominate. This is due to the fact that the
stop mass is getting closer to the neutralino mass, as
illustrated in the lower part of the left panel in Fig. 12.
Coannihilation dominates when the relative mass differ-
ence is lower than 15%. For medium values of
M1 ∼ 320 GeV, three contributions, the neutralino pair
annihilation, the neutralino-stop coannihilation into a
Higgs boson and a quark and the neutralino-stop coanni-
hilation into a gluon and a quark, compete and each of them
amounts to about 20%. Although all three processes
contribute almost the same, the radiative corrections to
these processes are not the same at all. Out of the processes
considered, the largest corrections come from the coanni-
hilations with the strongly interacting gluon in the final
state. Even though the corrections to the processes are
large, the total correction to the relic density is not as large
as for small M1 because we are correcting only 70% of the
total annihilation cross section as compared to 85% in the
case of lower values of M1.
For large values of M1 (M1 ∼ 380 GeV), the coannihi-

lation into a quark and a vector boson takes over. Out of all
vector boson final states, the gluon is enhanced the most
due to the strong coupling constant. The next important
channel is the coannihilation into bWþ which is larger than

FIG. 12 (color online). Relative contribution of the dominant (co)annihilation channels (left) and neutralino relic density (right) along
a slope in the M1-Mq3 plane in the vicinity of our example scenario. The slope is chosen such that the neutralino relic density (orange
solid line) obtained by the standard MICROMEGAS calculation exactly meets the central value of the limit given in Eq. (1.1). In the right
panel we show the relic density obtained by MICROMEGAS (MO), by our tree-level calculation of the relevant processes, and by our
one-loop calculation (NLO). We also indicate the relic density when taking into account one-loop corrections only for the tt final state,
and only for tt and tg final states. The upper and lower limits imposed by Eq. (1.1) are indicated by the grey area. We show in addition
the ratio between the stop and the neutralino mass (lower left) and the relative correction to the neutralino relic density (lower right).
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the rest because the bottom quark is much lighter than the
top quark. The neutralino pair annihilation is largely
suppressed and the coannihilation with th0 in the final
state is reduced as well, although it is still comparable with
the coannihilation into bWþ. These facts are also reflected
in the decomposition of the next-to-leading corrections to
the relic density (shown on the right in Fig. 12). Almost
90% of the correction stems from the gluon final state, and
the neutralino pair annihilation hardly contributes to the
loop correction. The remaining two processes are of almost
equal importance with corrections of opposite signs, which
means that their contribution to the total correction almost
cancels and changes signs at about M1 ∼ 360 GeV as can
be seen on the right in Fig. 12. Although for large M1 the
fraction of processes we correct is not as large (only about
65%), the one-loop SUSY-QCD correction is still sub-
stantial (about 15%) owing to the large correction to the tg
final state.
In summary, the comparison between our one-loop result

and the values obtained by MICROMEGAS, as shown in
Figs. 11 and 12, demonstrates that with corrections to the
theoretically predicted relic density of up to almost 25% the
one-loop corrections can be significant and therefore
necessary to take into account for a precise determination
of the favored parameter space.

IV. CONCLUSIONS

In this paper, we have studied for the first time the
combination of one-loop corrections to neutralino pair-
annihilation and neutralino-stop coannihilation. We
extended our previous work [24] by the coannihilation
process with a gluon in the final state, which needs
additional, dedicated treatment with respect to other neu-
tralino-stop coannihilation processes. We have described in
detail the performed αs renormalization including the full
two-loop MSSM matching coefficients as well as the
derivation of the gluon wave-function renormalization
constant. As in the case of a gluon in the final state, not
only soft but also collinear divergences appear, and the one-
cutoff phase-space slicing as used in Ref. [24] was
extended by using phase-space slicing with two cutoffs.
We have used the eikonal and the leading pole approxi-
mation in the soft and collinear limits, respectively, and
have shown in detail how the poles can be extracted in this
case. Further, we have demonstrated that this method
renders the real emission finite without being cutoff
dependent.
We have chosen a representative parameter point, where

we have shown that a scenario with an admixture of
neutralino pair annihilation into quarks and coannihilation
meets today’s limits regarding the relic density constraint,
the Higgs mass, and the low energy observables. Further, this
kind of scenarios with a light stop being almost degenerate in
mass with the neutralino as lightest supersymmetric particle

is very attractive as they are not yet excluded by direct or
monojet searches in this mass region.
We have discussed in detail the impact of our performed

one-loop correction to the (co)annihilation cross sections
for different final states. Corrections of up to 40%–45%
with respect to the default MICROMEGAS value have been
observed, especially for the lightest Higgs and gluon final
state. Combining all corrected channels, which make up
roughly 80% of the total (co)annihilation cross section in
our example scenario, a relative correction to the default
MICROMEGAS relic density of almost 20% is achieved.
This leads to a clear shift of the Planck one-sigma band in
the parameter space. Thus, we could demonstrate that these
corrections are non-negligible and therefore interesting to
be taken into account.
All loop corrections are implemented in a computer

package, called DM@NLO [49], which can easily be
linked to MICROMEGAS in order to obtain a more precise
theoretical prediction of the neutralino relic density.
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APPENDIX: DETAILS OF THE
TWO-CUTOFF METHOD

1. Soft integrals

The integrals for the purely soft divergent cases

Iab ¼
Z
j~kj≤δs

d3k
2ω

�
2a:b

ða:kÞðk:bÞ
�

ðA1Þ

can be generically calculated. Denoting Δ ¼ 1
ε − γE þ

log 4π, the result for the self-contracted case is

Ia2 ¼ 2π

�
−Δþ log

4δ2s
μ2

þ a0

j~aj log
a0 − j~aj
a0 þ j~aj

�
: ðA2Þ

The corresponding integral for an interference of two real
emission diagrams with different radiated particles a and b
can be written as
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Iab ¼
4παða:bÞ
ðαaÞ2 − b2

8<
:1

2

�
−Δþ log

4δ2s
μ2

	
log

ðαaÞ2
b2

þ
2
41
4
log2

P0 − j~Pj
P0 þ j~Pj

þ Li2

 
1 −

P0 − j~Pj
α2a2−b2
2ðαa0−b0Þ

!

þ Li2

0
@1 −

P0 þ j~Pj
α2a2−b2
2ðαa0−b0Þ

1
A
3
5P¼αa

P¼b

9=
;; ðA3Þ

with

α ¼
2pipj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðpi:pjÞ2 −m2

i m
2
j

q
2m2

i
; ðA4Þ

where mi and mj describe the masses of the particles of
which a gluon is radiated off. The symbols pμ

i and pμ
j

indicate their corresponding momenta. The solution is
chosen such that the condition ðαa0 − b0Þ=b0 > 0 is valid.
A detailed derivation of the above integrals can be found
in Ref. [50].

2. Definition of momenta and energies

In the following, we summarize the definitions of the
D-dimensional momenta of the real emission process.
We follow the notation of Ref. [38].
In the soft(-collinear) case, the momentum of the

additionally radiated gluon or the light quark is defined as

kμ ¼ kð1;…; 0; sin θ1 sin θ2; sin θ1 cos θ2; cos θ1Þ: ðA5Þ

The D-dimensional momenta of the corresponding tree-
level diagrams can be written as

pμ
1 ¼

ffiffiffi
s

p
2

�
2E1ffiffiffi
s

p ;…; 0; 0; β1

	
; ðA6Þ

pμ
2 ¼

ffiffiffi
s

p
2

�
2E2ffiffiffi
s

p ;…; 0; 0;−β1
	
; ðA7Þ

pμ
3 ¼

ffiffiffi
s

p
2

�
2E3ffiffiffi
s

p ;…; 0; β2 sin θ; β2 cos θ

	
; ðA8Þ

pμ
4 ¼

ffiffiffi
s

p
2

�
2E4ffiffiffi
s

p ;…; 0;−β2 sin θ;−β2 cos θ
	
; ðA9Þ

where pμ
1 and pμ

2 indicate the momentum of the incoming
particles (e.g. neutralino and stop) and pμ

3 and pμ
4 the

outgoing particles (e.g. top and gluon). Their energies and
velocities βi¼1;2 are given by

E1 ¼
sþm2

1 −m2
2

2
ffiffiffi
s

p ; E2 ¼
sþm2

2 −m2
1

2
ffiffiffi
s

p ; ðA10Þ

E3 ¼
sþm2

3 −m2
4

2
ffiffiffi
s

p ; E4 ¼
sþm2

4 −m2
3

2
ffiffiffi
s

p ; ðA11Þ

β1 ¼
λ1=2ðs;m2

1; m
2
2Þ

s
; β2 ¼

λ1=2ðs;m2
3; m

2
4Þ

s
; ðA12Þ

with λðx; y; zÞ being the Källén function. Thus, we can
write the different combinations of scalar products as
follows:

ðp2:kÞ ¼
k
ffiffiffi
s

p
2

�
2E2ffiffiffi
s

p þ β1 cos θ1

	
≡ k

ffiffiffi
s

p
2

xp2k; ðA13Þ

ðp3:kÞ ¼
k
ffiffiffi
s

p
2

�
2E3ffiffiffi
s

p − β2 sinθ sinθ1 cosθ2− β2 cosθ cosθ1

	

≡ k
ffiffiffi
s

p
2

xp3k; ðA14Þ

ðp4:kÞ ¼
k
ffiffiffi
s

p
2

�
2E4ffiffiffi
s

p þβ2 sinθ sinθ1 cosθ2þβ2 cosθcosθ1

	

≡k
ffiffiffi
s

p
2

xp4k; ðA15Þ

where we introduced the abbreviations xpik used
in Eq. (2.23).
In the collinear limit [~p2

t ≪ ðzpÞ2], we can express the
outgoing momenta of the two relevant particles pμ

4 and pμ
5

with one effective momentum pμ
45 ¼ pμ

4 þ pμ
5 þOðp2

t Þ

pμ
45 ¼ ðp; 0; 0; pÞ; ðA16Þ

pμ
4 ≃

�
zpþ ~p2

t

2zp
; ~pt; zp

	
; ðA17Þ

pμ
5 ≃

�
ð1 − zÞpþ ~p2

t

2ð1 − zÞp ;−~pt; ð1 − zÞp
	
; ðA18Þ

where ~kt indicates the transverse components of the particle
with momentum pμ

4 in the center-of-mass system. Also, z
denotes the momentum fraction of particle p4 with respect
to the merged D-dimensional momentum p45 and (1 − z)
the complementary fraction of particle p5 in the direction of
the z axis.

3. Soft-collinear integrals

In the soft-collinear case it is advantageous to rewrite the
corresponding scalar products such that they obey the form

Iðl;mÞ
ε ¼

Z
π

0

dθ1sin1−2εθ1

Z
π

0

dθ2sin−2εθ2

×
ðaþ b cos θ1Þ−l

ðAþ B cos θ1 þ C sin θ1 cos θ2Þm
: ðA19Þ
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Most of these integrals are well known and tabulated in the
literature; see e.g. Refs. [39–42]. According to the relation
between A, B, and C as well as a and b, special integrals
have to be chosen. In our case, we need two different
integrals. The first one,

Ið0;1Þε ¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þC2

p
�
ln
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þC2

p

A−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þC2

p

þ 2ε

�
Li2

�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þC2

p

Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þC2

p þ 1

4
ln2

Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þC2

p

A−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þC2

p
	�

þOðε2Þ
�
; ðA20Þ

fulfills the condition A2 ≠ B2 þ C2 and can be found
in Ref. [42].
For the second one a more general integral is necessary,

which corresponds to the conditions a2 ≠ b2 as well as
A2 ¼ B2 þ C2. To render finite contributions, we need this
type of integral up to OðεÞ, which could not be found in
present literature. Therefore, a similar integral of Ref. [43]
has been used for its derivation,

Ið1;1Þε ¼ π
1

aA − bB

�
−
1

ε
þ ln

ðaA − bBÞ2
ða2 − b2ÞA2

− ε

�
ln2
�ða − bÞA
Aa − bB

	
−
1

2
ln2
�
aþ b
a − b

	

þ 2Li2

�
bðB − AÞ
Aða − bÞ

	
− 2Li2

�
−bðAþ BÞ
Aa − bB

	�

þOðε2Þ
�
: ðA21Þ

We have verified the corresponding terms up to Oðε0Þ by
comparing with Ref. [41].

4. Hard-collinear integrals

In the collinear limit the squared matrix element of a
2 → 3 process factorizes due to the factorization theorem
[45,46] into the leading order squared matrix element and
an Altarelli-Parisi splitting kernel [47]. For the expressions
appearing in this paper, we need the D-dimensional
unregulated splitting functions

Pijðz; εÞ ¼ PijðzÞ þ εP0
ijðzÞ ðA22Þ

with [38]

PggðzÞ ¼ 2N
�

z
1 − z

þ 1þ z
z

þ zð1 − zÞ
�
; ðA23Þ

P0
ggðzÞ ¼ 0; ðA24Þ

PqgðzÞ ¼
1

2
½z2 þ ð1 − zÞ2�; ðA25Þ

P0
qgðzÞ ¼ −zð1 − zÞ: ðA26Þ

The integration bounds of Eq. (2.29) can be obtained by
applying the hard condition on the energies E4 and E5.
With the hard condition

δs

ffiffiffiffiffiffi
s12

p
2

≤ E4;5 ≤
ffiffiffiffiffiffi
s12

p
2

�
1 −

m2
3

s12

	
ðA27Þ

and E4 and E5 being defined as

E5 ¼
s12 − s34
2
ffiffiffiffiffiffi
s12

p and E4 ¼
s12 − s35
2
ffiffiffiffiffiffi
s12

p ; ðA28Þ

the integration bound for z can be derived as

1 −
1 − δs

β

1 − s45
s12

1
β

≤ z ≤
1 − δs

β

1 − s45
s12

1
β

; ðA29Þ

with β being defined as

β ¼ 1 −
m2

3

s12
: ðA30Þ

The relations necessary for the derivation are

s12 ¼ ðp3 þ p45Þ2 ≃m2
3 þ 2p3:p45 þ s45;

s34 ¼ ðp3 þ p4Þ2 ¼ m2
3 þ 2p3:p4

≃m2
3 þ zð2p3:p45Þ

≃m2
3 þ zðs12 −m2

3 − s45Þ;
s35 ¼ ðp3 þ p5Þ2 ¼ m2

3 þ 2p3:p5

≃m2
3 þ ð1 − zÞð2p3:p45Þ

≃m2
3 þ ð1 − zÞðs12 −m2

3 − s45Þ: ðA31Þ

With these conditions, the necessary form factors including
the OðδcδsÞ term can be obtained as

Ag→qq
0 ¼ nq0

3

�
log δc −

5

3

�
; ðA32Þ

Ag→qq
ε ¼ −

nq0

3
; ðA33Þ
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Ag→gg
0 ¼ CA

�
67

18
−
π2

3
−
�
log 2δs − log

� ffiffiffiffiffiffi
s12

p
−

m2
3ffiffiffiffiffiffi
s12

p
		

2

− log δc

�
11

6
þ log 4δ2s − 2 log

� ffiffiffiffiffiffi
s12

p
−

m2
3ffiffiffiffiffiffi
s12

p
		

þ 2Li2

�
δc

2
ffiffiffi
s

p
δs

	�
; ðA34Þ

Ag→gg
ε ¼CA

�
11

6
þ log4δ2s − 2 log

� ffiffiffiffiffiffi
s12

p
−

m2
3ffiffiffiffiffiffi
s12

p
	�

; ðA35Þ

which enter the final expression for the hard-collinear
contribution in Eq. (2.31). In comparison to Ref. [38], a
different definition of the soft cutoff δs has been chosen (we
use for consistency the one introduced in Sec. II B 1).
Moreover, we have considered a massive particle with
momentum p3 in the final state leading to a difference in
our expressions when compared to Ref. [38]. These
differences have to be further taken into account in the
correspondingOðδc=δsÞ term, which we have also included
in our analysis.
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