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An extensive model-independent analysis of B → DD decays is carried out employing SUð3Þ flavor
symmetry, including symmetry-breaking corrections. Several theoretically clean observables are identified
which allow for testing the standard model. These include the known time-dependent CP asymmetries, the
penguin pollution of which can be controlled in this framework, but notably also quasi-isospin relations
which are experimentally well accessible and unaffected by symmetry-breaking corrections. Theoretical
assumptions can be kept to a minimum and controlled by additional sum rules. Available data are used in
global fits to predict the branching ratio for the B0 → Dþ

s D−
s decay as well as several CP asymmetries

which have not been measured so far, and future prospects are analyzed.
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I. INTRODUCTION

In the past decade, the connection of CP and flavor
violation in the standard model (SM), embodied by the
Kobayashi–Maskawa mechanism [1], has been confirmed
up to the order of 10–20% [2,3]. The fact that there is still
no direct evidence of physics beyond the SM comes rather
unexpectedly; as a consequence, we have to prepare to
search for new physics (NP) effects which are small
compared to the leading SM contributions, even when
the latter are already suppressed. Specifically, in the context
of quark flavor physics, this typically implies the necessity
to gain (improved) control over hadronic matrix elements
(MEs), which for most modes still constitutes a serious
challenge. In this article, this is achieved by employing
SUð3Þ-flavor symmetry including symmetry-breaking cor-
rections, thereby extracting information on the MEs from
data. The full set of B-meson decays into two charmed
pseudoscalars, B → DD, is considered which constitutes a
valuable source of information on the weak phases of the
SM and provides access to NP.
Recently, the LHCb Collaboration has measured various

relative branching ratios [4,5] and two effective lifetimes
[6] of B → DD modes for the first time. Together with
previous measurements [7–14], this enables a phenomeno-
logical analysis for the full set of modes which was not
possible before. However, the flavor-SUð3Þ symmetry
relating them is known to be broken at a level of
ϵSUð3Þ ∼ms=ΛQCD ∼ 20–30%, making precision predic-
tions difficult. Specifically, in Ref. [15] it has been

demonstrated that the symmetry breaking severely affects
the extraction of the Cabibbo-Kobayashi-Maskawa (CKM)
angle γ. Furthermore, also strategies to extract the weak
mixing angles ϕd;s including “penguin pollution” by using
(the U-spin subgroup of) SUð3Þ (as for example in
Refs. [16–19]) are affected to some extent, as demonstrated
recently in Refs. [20,21]. This work includes therefore the
SUð3Þ-breaking corrections model-independently. Since
there are several suppression factors of similar order in
B → DD decays, some SUð3Þ-breaking MEs are poten-
tially larger than others appearing already in the SUð3Þ
limit. We therefore develop a power counting to obtain
information on both, the SUð3Þ-breaking and other sub-
leading amplitudes like penguin and annihilation contri-
butions from data, taking into account the full set of
B → DD modes. While approximations remain necessary,
they are made on a subleading level compared to previous
analyses and can be tested within the resulting framework.
Furthermore, the analysis will improve in the future due to
the higher precision of the expected data, especially from
the LHCb and Belle II experiments [22–24].
This article is organized as follows. Section II provides

the SUð3Þ analysis of the modes under consideration,
including SUð3Þ breaking model-independently. The fol-
lowing definition of the power counting allows one to
identify three quasi-isospin relations. The section closes
with a discussion of reparametrization invariance (RI),
which crucially affects the extraction of the angle γ. The
phenomenological analysis is carried out in Sec. III, where
the presently available data are analyzed, sum rules for
amplitudes and rates derived, and key observables identi-
fied to test the SM in the future. The following global
analysis allows for predicting various CP asymmetries and
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one rate in B → DD that have not been measured yet.
In Sec. IV explicit inclusion of NP contributions in the
analysis is discussed, before concluding in Sec. V; several
Appendixes contain additional details on the experimental
input, the SUð3Þ analysis, the performed fits, and the
uncertainty estimates for future measurements.

II. B → DD AMPLITUDES IN BROKEN SUð3Þ
In this section the theoretical analysis of the B → DD

amplitudes is performed. First the necessary SUð3Þ expres-
sions including symmetry breaking are derived, then the
power counting for the various suppression effects is
defined, and from that important model-independent ampli-
tude relations are derived. Furthermore, the relation of RI
and SUð3Þ breaking is discussed, questioning the sensi-
tivity to the CKM angle γ of these modes.

A. SUð3Þ limit

We start by performing the SUð3Þ analysis in the
symmetry limit. Ignoring electroweak penguin operators
with very small Wilson coefficients (to which wewill return
below), the relevant effective Hamiltonian reads

Hb→d;s
eff ¼ 4GFffiffiffi

2
p

X
U¼c;u

X
D¼d;s

λUD

�X2
i¼1

CiOU
i þ

X6
i¼3

CiOi

�

≡Hc þHu; ð1Þ

with λUD ¼ VUbV�
UD, the tree operators Ou;c

1;2, and the
penguin operators O3–6; see e.g. Ref. [25]. The symmetry
analysis is analogous to the one in Ref. [21] (see also
Refs. [26,27] for early applications), leaving us with a pure
flavor triplet coming with λcD, while the tree operators Ou

1;2
involve the representationsR ¼ 3; 6̄; 15. With the initial state
i transforming as a 3̄ and the final state f as 1 ⊕ 8, this
implies a description with six independent reducedMEs. The
decay amplitude of a b → D decay D is thus expressed as

AD ¼ AcðDÞ þAuðDÞ
¼

X
U¼u;c

λUD

X
R;f

CU
fRðDÞhfjRjiiU; ð2Þ

with the Clebsch–Gordan coefficients CU
fRðDÞ provided in

Table V in Appendix B, in accordance with Refs. [26,27].
Approximations typically involve arguments about dif-

ferent contractions of the involved operators which are
commonly described in terms of topological amplitudes
[28–31], which can, however, be expressed in terms of
SUð3Þ MEs [26]. We therefore translate the derived SUð3Þ
amplitudes into this language, using the topological ampli-
tudes introduced in Ref. [31]. Note that the number of
topologies before redefinitions is larger than the number of
SUð3Þ amplitudes. The description is, however, equivalent,
as long as no assumptions regarding the various MEs are

made. The translation is again given in Appendix B, and the
resulting amplitude decompositions in the SUð3Þ limit are
given in Table I.

B. Including SUð3Þ breaking
SUð3Þ breaking is induced by the quark mass term,

transforming as an octet when neglecting isospin breaking
[32] (see also Refs. [30,33] for this treatment of symmetry
breaking in B decays). The leading SUð3Þ-breaking part of
Ac consists of the four MEs of its tensor product with the
effective Hamiltonian; the corresponding coefficients are
listed in Table VI in Appendix B and are in Table II again
translated to topological amplitudes. After redefinitions,
there are furthermore five SUð3Þ-breaking MEs at first
order inAu; as discussed below, however, for all considered
observables, they have only a small impact compared to the
present experimental precision. For the sake of complete-
ness, these coefficients are presented in Appendix B, but we

TABLE I. B → DD amplitudes in the SUð3Þ limit, given in
terms of topological amplitudes; see Appendix B for details. The
power counting is explained in the text; the number in brackets
indicates the additional CKM suppression in b → s transitions.

Mode λcDT λcDAc λuD ~P1 λuD ~P3 λuDAu
1 λuDAu

2

Counting 1 δ2 δ3ð5Þ δ4ð6Þ δ3ð5Þ δ4ð6Þ

B− → D−D0 1 0 −1 0 1 0
B− → D−

s D0 1 0 −1 0 1 0
B̄0 → D−

s Dþ 1 0 −1 0 0 0
B̄s → D−Dþ

s 1 0 −1 0 0 0
B̄0 → D−Dþ 1 1 −1 −1 0 0
B̄s → D−

s Dþ
s 1 1 −1 −1 0 0

B̄0 → D−
s Dþ

s 0 1 0 −1 0 0
B̄s → D−Dþ 0 1 0 −1 0 0
B̄0 → D̄0D0 0 −1 0 1 0 −1
B̄s → D̄0D0 0 −1 0 1 0 −1

TABLE II. First-order SUð3Þ-breaking corrections to the Ac
part of the B → DD amplitudes, given in terms of topological
amplitudes; see Appendix B for details. The power counting is
explained in the text.

Mode λcDδT1 λcDδT2 λcDδAc
1 λcDδAc

2

Counting δ δ δ3 δ3

B− → D−D0 0 − 1
2

0 0
B− → D−

s D0 1 0 0 0
B̄0 → D−

s Dþ 1 0 0 0
B̄s → D−Dþ

s −1 1
2

0 0
B̄0 → D−Dþ 0 − 1

2
1
2

− 1
2

B̄s → D−
s Dþ

s 0 1 −1 1
B̄0 → D−

s Dþ
s 0 0 1

2
1
2

B̄s → D−Dþ 0 0 −1 0
B̄0 → D̄0D0 0 0 − 1

2
1
2

B̄s → D̄0D0 0 0 1 0
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will only use the corrections toAc in the phenomenological
analysis.
Extending this analysis to higher orders in the symmetry

breaking yields at most one additional ME in both
amplitudes Au;c; this observation follows from the analysis
in Ref. [33], where all potentially contributing MEs are
listed (without their hierarchy). The expressions given
here are therefore already close to the most general result.
The missing pieces, which can be counted asOðϵ2Þ, can be
derived from that result and are given in Table VIII again
for completeness.

C. Power counting

As a prerequisite for the phenomenological discussion,
the expected size of the various contributions has to be
classified. This is nontrivial for several reasons, one issue
being that there are various suppression factors involved:

(i) CKM structure: jλuD=λcDj ¼ fRu; λ2Rug for
D ¼ fd; sg, respectively, where Ru ≈ 0.35 denotes
a side in the unitarity triangle, implying in both cases
a suppression of AuðDÞ relative to AcðDÞ, but
especially for D ¼ s.

(ii) Penguin suppression: The amplitudes ~Pi have two
contributions, MEs of penguin operators, which
are suppressed by the small Wilson coefficients
C3–6 ∼ few%, and penguin contractions of the tree
operatorsOu

1;2, which involve additional interactions
to create the c̄c pair, yielding a similar suppression
which is, however, harder to quantify.

(iii) Annihilation: The annihilation graphs AU
i involve

the spectator quark, implying naively a suppression
of the order ΛQCD=mb. However, nonfactorizable
contributions can give larger contributions, e.g. of
ordermD=mB [34]. Nevertheless, these contributions
remain suppressed. An additional suppression is
assumed when the interaction furthermore involves
the creation of a c̄c pair from the vacuum, which is
the case for the amplitudes Au

i [15].
(iv) 1=Nc suppression: The various topologies can be

classified according to their scaling with the number
of colors Nc ¼ 3 [35,36]. The scaling for the
amplitudes in Table I reads [31] T; Au

1 ∼ 1,
~P1; Au

2; A
c ∼ 1=Nc, and ~P3 ∼ 1=N2

c.
To obtain a power counting for the amplitudes, we assign
to (each order of) these effects as well as for SUð3Þ
breaking a common factor δ ∼ 20–30%, yielding T ∼ 1;
Ac ∼ δ2; λuD ~P1; λuDAu

1 ∼ δ3ð5Þ and λuDAu
2; λuD ~P3 ∼ δ4ð6Þ for

D ¼ dðsÞ, with an additional factor of δ for the SUð3Þ
corrections to these amplitudes. Note that these factors are
given relative to the leading amplitude, i.e. relative to λcD
for a b → D decay. While this assignment is not rigorous, it
allows for a systematic classification of the amplitudes in
question. Despite some of these arguments being on the
level of topological amplitudes which can rescatter into
each other, the estimates are expected to be conservative

enough to include these effects. Below we will differentiate
between predictions expected to hold generally in the SM,
like the quasi-isospin relations, and others more sensitive to
dynamical assumptions; we furthermore identify experi-
mental tests for both types.
A first important consequence of our power counting is

that all amplitudes AuðDÞ are suppressed at least like δ2

relative to the leading amplitude AcðDÞ. In the following
we will neglect therefore the SUð3Þ corrections to the
former, given the present experimental precision for the CP
asymmetries; this assumption should be reconsidered in the
future, but then measurements will signal this necessity and
allow for an improved fit in any case. Using this approxi-
mation, ten unknown MEs remain. While in principle these
modes offer up to 26 observables, with the limited data
available the power counting is necessary to make a fit
viable. To determine the influence of different assumptions
and inputs, three scenarios are introduced in Sec. III,
yielding predictive frameworks and at the same time testing
the power counting.

D. Quasi-isospin relations

In the absence of electroweak penguin operators, the
b → s part in Hc transforms as a pure isospin singlet [37].
This results in the relations

AcðB̄0 → D−
s DþÞ ¼ AcðB− → D−

s D0Þ and ð3Þ

AcðB̄s → D−DþÞ ¼ −AcðB̄s → D̄0D0Þ; ð4Þ

which do not receive SUð3Þ-breaking corrections; see
also Ref. [30]. Importantly, the same relations hold for
the penguin contributions to Au; extending them to the full
amplitudes, the only corrections stem from highly sup-
pressed annihilation contributions in Au [λusAu

1 and λusAu
2

at Oðδ5ð6ÞÞ in our power counting for the first (second)
relation] and ΔI ¼ 1 contributions from electroweak pen-
guin operators inAc, which are heavily suppressed as well.
Therefore, we have actually for the full amplitudes

AB̄0→D−
s Dþ ≃AB−→D−

s D0 and ð5Þ

AB̄s→D−Dþ ≃ −AB̄s→D̄0D0 ; ð6Þ

to very high precision in the SM, even in the presence of
enhanced penguin contributions and still unaffected by
SUð3Þ breaking. Similarly, for b → d decays the following
quasi-isospin relation arises,

AB̄0→D−Dþ þAB̄0→D̄0D0 ≃AB−→D−D0 ; ð7Þ

which again receives corrections from annihilation con-
tributions, this time at the level of Oðδ3Þ, and ΔI ¼ 3=2
contributions from electroweak penguin operators; this last
relation has also been discussed in Refs. [15,38]. Note that
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jAB̄0→D̄0D0 j is much smaller than the other two amplitudes.
Note furthermore that all three quasi-isospin relations hold
analogously for B → DD� and B → D�D� modes.
Given the very high precision of especially Eqs. (5) and

(6), we would like to comment on the potential influence of
electroweak penguin operators. Their Wilson coefficients
are very small, which we count conservatively as Oðδ2Þ.
But most importantly, their main contributions stem from
the SUð3Þ-triplet part [including the operators with the
flavor structure ðD̄bÞðc̄cÞ], which have tree-level MEs with
the final state; these contributions can be absorbed into the
MEs already present. The remaining contributions, which
involve a change in isospin by ΔI ¼ 1; 3=2 [and therefore
lead to corrections to Eqs. (3)–(7)], stem from insertions of
the electroweak penguin operators into annihilation dia-
grams, which then require additionally the creation of a c̄c
pair from the vacuum and are suppressed by Nc, yielding
contributions suppressed at least as Oðδ5Þ in AcðDÞ and δ6
in AuðDÞ. We neglect these tiny terms in the following and
consider the leading ones absorbed into the MEs already
present.
In the SM, Eqs. (5) and (6) therefore directly translate

into precision relations for the corresponding rates,
unaffected by the SUð3Þ symmetry breaking, thereby
allowing one to test for NP with ΔI ¼ 1. Note that the
corresponding ratios of rates are also experimentally
advantageous, since they are independent of fs=fd.
Similarly, Eq. (7) provides a test for ΔI ¼ 3=2 contribu-
tions, albeit in this case with a SM “pollution” of a few
percent. The corresponding CP asymmetries are predicted
to be small in all b → s modes; any sizable signal
[more than ∼3ð10Þ% for tree-(annihilation-)dominated
modes and enhanced penguins] would imply NP as well.
Furthermore, the potentially large relative corrections for
the CP asymmetries provide access to the amplitudes Au

i .
We discuss additional sum rules for amplitudes and
observables in Secs. III C and III D.

E. Reparametrization invariance

Before turning to the phenomenological analysis, we
would like to comment on an effect prohibiting in some
situations the extraction of the weak phase γ, usually
dubbed “reparametrization invariance” (RI) [39–41]: the
basic observation is that, depending on the structure of the
decays in question, there exist transformations that leave
the decay amplitudes form invariant but change the
apparent weak phase. As a result, it is impossible in these
situations to extract γ without knowledge of the MEs; only
the values 0 and π can be excluded from data. This situation
usually changes when considering more decay modes
which are related by flavor symmetries, since the different
MEs enter with different weights, breaking the invariance.
This is confirmed for B → DD decays by observing that
the coefficient matrix given in Table I has full rank when
including the CKM factors.

But the situation is actually more subtle. First of all,
considering e.g. only b → d modes, which are expected to
have larger direct CP asymmetries and thereby increased
sensitivity to γ, we still observe an approximate RI, broken
only by the MEs Au

1;2. The same statement holds when
considering only b → s modes. Again, when combining
the two sets, the RI is broken, even when neglecting Au

1;2.
However, we observe that the inclusion of unknown
SUð3Þ-breaking MEs can actually restore the approximate
RI; the additional MEs are capable of absorbing the
RI-breaking terms, implying again no sensitivity to γ as
long as Au

1;2 can be neglected. This is the analytical reason
behind the observation of very large uncertainties for γ in
the presence of general SUð3Þ breaking in Ref. [15].
Related to the RI is a reduced rank of the coefficient
matrix including the CKM factors; the combinations of
MEs entering are such that the different relative weights
from λud; λus do not enter explicitly, allowing one to
perform the redefinition for the full set of amplitudes.
It should be emphasized that the (assumed) knowledge

of one or several of the MEs will break the invariance, as
will to some extent restrictions on the size of MEs. For
example, the assumption of factorizable SUð3Þ breaking in
Refs. [16,42] enables the extraction of γ from B → DþD−

and Bs → Dþ
s D−

s (B0 → Dþ
s D−) in these cases. However,

the theoretical error related to this assumption is hard to
quantify, prohibiting a precision extraction. Also applying
our power counting restricts the freedom to redefine the
various parameters, but again high precision seems
unachievable unless there is substantial theoretical progress
in calculating the relevant hadronic amplitudes explicitly.
We will therefore concentrate on the mixing phase ϕs,

the extraction of which remains mostly unaffected by these
observations, and use external input for ϕd and γ which
breaks the invariance and allows for extracting hadronic
parameters. Note that using the SM central value for γ is no
restriction; due to the RI, also NP amplitudes can be written
with that phase, and only the interpretation of the hadronic
parameters changes in this case.

III. PHENOMENOLOGICAL ANALYSIS

After a review of the experimental situation for B → DD
decays, we define three scenarios to analyze the relative
importance of the various dynamical suppression effects.
Next we derive for each of them sum rules for amplitudes
and observables. We discuss the data for branching ratios
andCP asymmetries with respect to the amplitude structure
obtained in the last section, before discussing the results of
the global analysis and its future prospects.

A. Experimental situation

Until recently, only little data were available for
B → DD decays. This situation has improved, starting by
first measurements of Bs decays by the CDF [13,43] and
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Belle [14,44] experiments and more recently by results
from the LHCb experiment [4–6]. Specifically, Ref. [4]
provides relative branching ratios for all Bs modes and
several B0 modes as well, leaving only the rate for B0 →
Dþ

s D−
s undetermined. In addition, several measurements

of CP asymmetries are expected from LHCb in the near
future, given the much larger data sample that has become
available since. In the farther future, also the Belle II
experiment is expected to deliver data for these modes.
These experimental developments are a main motivation of
the present study.
In Table III, we list the presently available data for all

B → DD modes. In the cases where relative branching
ratios have been measured, we use them in the numerical
analysis, providing here the absolute ones only for
convenience. For B− → D−

s D0, B̄0 → DþD−, and
B̄s → Dþ

s D−
s , we combine the very recent measurements

by the LHCb [4] and Belle [12,14] collaborations with
those considered already in the latest PDG update [7].
Furthermore, we include a correction stemming from
ΓðΥð4SÞ → BþB−Þ=ΓðΥð4SÞ → B̄0B0Þ ¼ 1.055 � 0.025
[7] for the B factory results for B̄0 → DþD−

and B− → D0D−.
For a decay D of a B̄ meson (at t ¼ 0) into a CP

eigenstate f, we use the following notation for the time-
dependent CP asymmetries:

aCPðD; tÞ≡ ΓðD; tÞ − ΓðD̄; tÞ
ΓðD; tÞ þ ΓðD̄; tÞ

¼ SCPðDÞ sinðΔmtÞ þ ACPðDÞ cosðΔmtÞ
coshðΔΓt=2Þ − AΔΓðDÞ sinhðΔΓt=2Þ : ð8Þ

The coefficients for mixing-induced CP violation SCPðDÞ,
direct CP violation ACPðDÞ, and the rate asymmetry
AΔΓðDÞ are defined in Appendix A. An important issue
is the difference between the results from the BABAR [11]
and Belle [12] experiments for the time-dependent CP
asymmetry in B0 → DþD−. The BABAR result lies within
the physical region and is consistent with the expectations
jΔSCPðB0 → DþD−Þj; jACPj ≪ 1 discussed below, where

ΔSCPðDÞ≡ −ηfCPSCPðDÞ − sinϕðDÞ ð9Þ

is the “penguin shift” and ϕðDÞ ¼ ϕdðϕsÞ for a B0 (Bs)
decay. The Belle result, on the other hand, is outside the
physical region (defined by S2CP þ A2

CP ≤ 1), indicating
large values for the direct CP asymmetry as well as
ΔSCPðB0 → DþD−Þ. This makes the averaging of the
two results problematic. The two data sets defined below
are used to demonstrate the influence of these differences.
For modes with a low rate, it might be experimentally

advantageous to start by measuring the time-integrated
CP asymmetry. However, this is only feasible for the Bd
modes, since the oscillations in the Bs system are so fast
that the asymmetry is mostly averaged out.
While the values for the branching ratios quoted in

Table IV correspond to the time-integrated rates, the
theoretical expressions for the rates below are for t ¼ 0.
This difference is relevant only for Bs decays into CP
eigenstates; it is included following Ref. [45], using

BRtheo ¼
1 − y2s

1 − AΔΓðDÞys
BRexp; ð10Þ

where the value employed for the relative width difference
is ys ≡ ΔΓs=ð2ΓsÞ ¼ 0.067� 0.008 [8]. The relative rate
difference AΔΓ of heavy and light Bs eigenstates to a given
final state vanishes for flavor specific decays and is
generally final state dependent. It is related to the CP
asymmetries by ðAΔΓðDÞÞ2þðSCPðDÞÞ2þðACPðDÞÞ2¼1;
we use for the calculation the theoretical expectation
Ab→s
ΔΓ ðDÞ ≈ cosϕs ≈ 1, with a positive sign determined

by the positive CP eigenvalue of the relevant final states,
implying a rather large correction of ∼7% for the corre-
sponding branching ratios. This result follows already from
the observation that the relevant decays, i.e. Bs decays into
CP eigenstates, are all b → s transitions; the CKM sup-
pression alone for ACP and ΔSCP, together with jϕsj ∼
Oð%Þ suffices to predict jAb→s

ΔΓ j≃ cosϕs ¼ 1þOð10−3Þ.
This is even strengthened by dynamical considerations,
leading to 1 − jAb→s

ΔΓ j≲ 10−3, implying excellent null tests
of the SM from these observables. From these consider-
ations the prediction for the effective lifetimes of these
modes reads

τeffðB̄s → DDjCPÞ ¼ ð1.421� 0.013Þ ps; ð11Þ

TABLE III. Available data for B → DD decays. The values for
the branching ratios correspond to a fit to the data in Table IV
(statistical and systematic uncertainties added in quadrature),
taking the finite width of the Bs into account; see the text. The
labels (a) and (b) indicate the different inputs for the two data sets.
n/a refers not applicable.

Mode BRtheo=10−3 ACP=% SCP=%

B− → D−D0 0.37� 0.04a 3� 7 [7] n/a
B− → D−

s D0 9.4� 0.9 n/a
B̄0 → D−

s Dþ 7.6� 0.7 −1� 2
b [12] n/a

B̄s → D−Dþ
s 0.30� 0.04 n/a

B̄0 → D−Dþ 0.226� 0.023a (a) 31� 14 [8] −98� 17 [8]
BABAR [11]: (b) 7� 23 −63� 36
Belle [12]: 43� 17 −106þ22

−16
B̄s → D−

s Dþ
s 4.6� 0.5

B̄0 → D−
s Dþ

s ≤ 0.036c [10]
B̄s → D−Dþ 0.27� 0.05
B̄0 → D̄0D0 0.013� 0.006
B̄s → D̄0D0 0.19� 0.04

aCorrection forΓðΥð4SÞ→B0B̄0Þ≠ΓðΥð4SÞ→BþB−Þ included.
bStatistical uncertainty only, not used in the numerical

analysis.
cUpper limit at 90% C.L., not used in the numerical analysis.
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using τs ¼ ð1.516� 0.008Þ ps [8], in agreement with the
experimental result in Ref. [6], τeffðB̄s → D−

s Dþ
s Þ ¼

ð1.379� 0.026� 0.017Þ ps.
Finally, we point out the importance of correlations

between the measurements for Bs decays, especially those
induced by the ratio of production rates fs=fd. This ratio
provides already the dominant systematic uncertainty for
the ratios involving Bs decays in Ref. [4] (except for
B̄s → D̄0D0) and is likely to dominate soon the total
uncertainty in various decays. At least in the latter situation,
the inclusion of the resulting correlations is mandatory and
provides in addition the possibility to profit from future
potentially more precise determinations of this quantity.
For the LHCb results, we therefore use this ratio explicitly
in the numerical analysis, with its experimental value
fs=fdjLHCb ¼ 0.259� 0.015 [46,47]; for the CDF and
Belle measurements, this is not necessary, since the
corresponding ratio, different from the one at LHCb,
appears only once.1

B. Scenarios

Given the presently available data, the necessity for
approximations on a subleading level remains. To this aim
again the power counting is applied. However, this count-
ing may be spoiled when the schematic scaling with δ is
violated by one or more of the discussed effects. Therefore,
we define three scenarios, corresponding to different
dynamical situations, which will help to judge the effec-
tiveness of the various suppression mechanisms:

(i) Scenario 1—SUð3Þ limit: We start by assuming the
SUð3Þ hierarchy to be the strongest one and neglect-
ing all SUð3Þ-breaking contributions; given the
discussion above, we do not expect a very good
description of the data. The advantage of this limit is
that we can test for the necessity of SUð3Þ breaking
and potentially also for subleading amplitudes inAu.

(ii) Scenario 2—Standard counting: Here the assump-
tion is for all subleading MEs to obey the power
counting. This corresponds to the situation generi-
cally expected in the SM, already allowing for
rather conservative ranges for the subleading con-
tributions. The first contribution toAu arises with the
standard counting (scenario 2) on the δ3ð4Þ level for
the tree-dominated (annihilation) modes, implying
typical direct CP asymmetries of a few percent
(10%) for b → d decays and even less for b → s
modes,2 together with jADj2 ≈ jAcðDÞj2.

The data for the CP asymmetries in B̄0 → DþD−

contradict the assumption in this scenario in part,
as the Belle measurement indicates a sizable
direct CP asymmetry as well as a deviation from
ΔSCPðB → DþD−Þ ≈ 0. This second scenario there-
fore corresponds to resolving the tension between
the BABAR and Belle measurements in favor of the
former.

(iii) Scenario 3—Enhanced penguins: The final scenario
is defined by assuming no additional suppression
for penguin MEs (as motivated by the largish CP
asymmetries measured by Belle), such thatAu arises
on the δ2 level. The ranges outside of scenario 2 but
inside the ones from this scenario can be interpreted
as either extremely conservative SM predictions or
already as NP.

These scenarios allow for distinguishing different dynami-
cal suppression effects. Significant measurements of
observables outside the predictions of scenario 3 can be
considered a NP signal. The technical implementation of
the power counting is that each real parameter x related to a
subleading ME of order n is restricted to jxj ≤ δn−1=2,
choosing δ ¼ 30%.

C. Amplitude sum rules

The scenarios defined in the previous subsection imply
relations between the amplitudes which hold up to
SUð3Þ-breaking terms in scenario 1 and up to corrections
of higher orders in δ for scenarios 2 and 3. These can be
used to further test the underlying assumptions. The
number of sum rules is determined by the rank of the full
coefficient matrix of the hadronic amplitudes, including the
CKM factors; in general there exist sum rules even if
the number of hadronic MEs equals the number of decays.
This is illustrated by the fact that there are two sum rules
that hold exactly in all scenarios discussed here, reading

AB̄0→D−
s Dþ −AB−→D−

s D0 þAB̄s→D−Dþ þAB̄s→D̄0D0

¼ λus
λud

ðAB̄0→D−Dþ −AB−→D−D0 þAB̄0→D̄0D0Þ; ð12Þ

AB̄0→D−
s Dþ −AB̄s→D−

s D
þ
s
þAB̄s→D−Dþ

¼ λcs
λcd

ðAB̄0→D−Dþ −AB̄s→D−Dþ
s
−AB̄0→D−

s D
þ
s
Þ: ð13Þ

The first of these equations corresponds to a linear
combination of the three quasi-isospin sum rules,
Eqs. (5)–(7), in which the very small terms in Au
breaking those relations cancel as well. It is only broken
by an SUð3Þ-breaking correction to the annihilation
amplitudes in Au. In the latter relation, an analogous
cancellation happens for the more generic SUð3Þ-
breaking contributions, including even the first-order
ones to Au. However, the fact that these sum rules

1Note, however, that we use for the computation of the
Tevatron value for BRðB̄s → D−

s Dþ
s Þ the ratio fs=fdjTev ¼

0.311� 0.037 [8] instead of the average of the Tevatron and
LEP results used in Ref. [13].

2Note that in the fit we parametrize all MEs relative to T. Since
we do not impose jAu

2=A
cj; j ~P3=Acj ∼Oðδð3ÞÞ additionally, larger

values for ACP might be allowed in the fit when jAcj is smaller
than its expectation.
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involve a large number of amplitudes renders them
phenomenologically somewhat less useful. Note that
the ratios of CKM factors appearing here are approx-
imately invariant under CP transformations.
In the SUð3Þ limit (scenario 1), both sides of relation (13)

vanish separately, and similarly Eq. (12) can be separated
into two parts. The resulting four simpler rules read

AB̄s→D−Dþ
s
þAB̄0→D−

s D
þ
s
¼ AB̄0→D−Dþ ; ð14Þ

AB̄0→D−
s Dþ þAB̄s→D−Dþ ¼ AB̄s→D−

s D
þ
s
; ð15Þ

which can be understood as a consequence of U-spin
symmetry, see also Ref. [15], and two more generic
SUð3Þ relations,

AB̄s→D−Dþ þAB̄s→D̄0D0 ¼ λus
λud

½AB̄0→D−
s D

þ
s
þAB̄0→D̄0D0 �;

ð16Þ

AB̄0→D−
s Dþ −AB−→D−

s D0 ¼ λus
λud

½AB̄s→D−Dþ
s
−AB−→D−D0 �:

ð17Þ

Furthermore, as noted above, AuðDÞ ≤ Oðδ3Þ holds for
all modes.
In scenario 2, there are six sum rules which hold up

to Oðδ3Þ or better. They can be chosen as Eqs. (5)–(7),
Eq. (13), and two simpler rules3

AB̄0→D−
s D

þ
s
¼ −AB̄0→D0D̄0 and ð18Þ

AB̄s→D−Dþ ¼ λcs
2λcd

ðAB̄0→D−
s D

þ
s
−AB̄0→D0D̄0Þ; ð19Þ

both broken by δAc
i and Au

i . Note that these latter rules are
broken formally at the same order but have relative
corrections of order δ. In this scenario AuðDÞ ≤ Oðδ3Þ
holds again for all modes. The number of sum rules can be
easily understood from the fact that there are only four MEs
up to Oðδ2Þ and ten amplitudes.
In scenario 3, actually the same relations hold on the

same level, despite the assumption of enhanced penguins
[leading toAuðDÞ ≤ Oðδ2Þ, only]. This fact is related to the
RI discussed above and demonstrates that identical sum
rules can represent different physical situations.

D. Rate sum rules

The fact that in the SUð3Þ limit the decays have pairwise
equal decompositions, see Table I, results from the U-spin

subgroup of SUð3Þ. As a consequence, the well-known
equality

ΓðDb→sÞ
ΓðDb→dÞ

¼ −
ACPðDb→dÞ
ACPðDb→sÞ

ð20Þ

holds for each pair [16,48]; these relations receive correc-
tions of OðδÞ when breaking SUð3Þ. They are examples of
rate sum rules, i.e. sum rules formulated directly on the
level of observables instead of amplitudes. These are easier
to test experimentally; all linear relations between

ΓD ¼ ΓðDÞ þ ΓðD̄Þ
2

and ΔΓD ¼ ΓðDÞ − ΓðD̄Þ
2

ð21Þ

can be found with an algorithm recently discussed in
Ref. [49], which will be applied in the following. From
the amplitude sum rules derived above, on the other hand,
one can infer typically only inequalities for observables, but
they can still be tested in the context of a global analysis.
The quasi-isospin sum rules imply scenario-independent
sum rules for the rates:

ΓB̄0→D−
s Dþ ¼ ΓB−→D−

s D0ð1þOðδ5ÞÞ; ð22Þ

ΓB̄s→D̄0D0 ¼ ΓB̄s→D−Dþð1þOðδ4ÞÞ; ð23Þ

ΓB̄0→D−Dþ ¼ ΓB−→D−D0ð1þOðδ2ÞÞ: ð24Þ

They hold analogously for B → DD� and B → D�D�
modes. Since there are two sets of modes in B → DD�,
we can define the following double ratio (analogously,
two pairs of transversity amplitudes can be chosen for
B → D�D�):

BRB̄0→D�−
s Dþ

BRB−→D�−
s D0

=
BRB̄0→D−

s D�þ

BRB−→D−
s D�0

¼ 1þOðδ5Þ: ð25Þ

The size of the corresponding CP asymmetries depends on
the scenario, as do other additional sum rules.
For scenario 1, the rate sum rules correspond simply

to Eq. (20); furthermore, ACPðDÞ ∼Oðδ5ð4ÞÞ holds for all
tree-dominated (annihilation) b → s modes, and ACPðDÞ ∼
Oðδ3ð2ÞÞ holds for the b → d ones. This renders the
relations in Eq. (20) very hard to test experimentally.
However, they can be replaced by the following relation
for the tree-dominated (annihilation)U-spin partner modes:

ΓðDb→sÞ
ΓðDb→dÞ

¼
���� λcsλcd

����
2

½1þOðδ3ð2ÞÞ�: ð26Þ

In scenario 2, the expectations for the individual CP
asymmetries remain the same as in scenario 1, while
Eq. (26) holds only up to OðδÞ. Since also Eqs. (18)
and (19) hold only up to relative order OðδÞ, the same is
true for the resulting rate relations:

3The form in which Eq. (19) is given is such that it is
broken only by δAc

1; it can be simplified to AB̄s→D−Dþ ¼
λcs=λcdAB̄0→D−

s D
þ
s
when both corrections δAc

i vanish.
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ΓB̄0→D−
s D

þ
s
¼ ΓB̄0→D0D̄0ð1þOðδÞÞ; ð27Þ

���� λcdλcs

����
2

ΓB̄s→D−Dþ ¼ ΓB̄0→D−
s D

þ
s
ð1þOðδÞÞ: ð28Þ

They are dominantly broken by δAc
i ; while both are broken

by δAc
2, the first of these relations survives in the presence

of δAc
1. This implies that they can be used to test for the size

of these SUð3Þ-breaking contributions.
In scenario 3, all individual CP asymmetries are expected

to be larger, ACPðDÞ ∼Oðδ4ð3ÞÞ for tree-dominated (anni-
hilation) b → s modes and ACPðDÞ ∼Oðδ2ð1ÞÞ for b → d
ones. In this case, the relations

AB̄0→D−
s Dþ

CP ¼ AB−→D−
s D0

CP ½1þOðδÞ� and ð29Þ

AB̄s→D̄0D0

CP ¼ AB̄s→D−Dþ
CP ½1þOðδÞ� ð30Þ

hold, but given the still small absolute size of all b → s
asymmetries, this will again be hard to test. Finally, there is
one nontrivial rule,

ΔΓB̄s→D−Dþ
s
þ ΔΓB̄s→D−

s D
þ
s
þ ΔΓB̄0→D−Dþ

¼ ð2ΔΓB−→D−D0 þ ΔΓB−→D−
s D0Þ½1þOðδÞ�; ð31Þ

which can be experimentally verified in the future as another
cross-check of the assumptions in this scenario.

E. Branching ratios and SUð3Þ breaking
Equations (22)–(24) provide relations between decay

rates, two of which hold to very high precision in the SM.
Equation (23) is experimentally well fulfilled within the
still sizable uncertainties. Using this relation, the measure-
ments can be combined to predict for the SM

BRðB̄s → D̄0D0Þ ¼ BRðB̄s → D−DþÞ
¼ ð0.21� 0.03Þ × 10−3: ð32Þ

The inequality implied by Eq. (7) is fulfilled as well, while
Eq. (24) holds only marginally; this indicates a relatively
large annihilation amplitude. More importantly, the data
show a tension at the 2σ level for Eq. (22); the correspond-
ing ratio of branching ratios, as measured in Ref. [4], is
expected to decrease to ∼1.08 with additional data, while a
confirmation of the present central value with improved
precision would challenge the SM:

(i) For the corrections discussed above to yield an effect
of this size, the power counting would have to be
completely invalidated, for which there are no
indications.

(ii) Isospin-breaking corrections to Eq. (5) could stem
from different production rates of neutral and
charged B mesons, assumed to be equal in Ref. [4],

or from the decay rates themselves. However, both
effects are too small to explain the present central
value. Note that the ratio of production rates cancels
for the double ratio defined in Eq. (25). This double
ratio is consistent with unity with present data [7],
within rather large uncertainties.

A confirmation at the level of the present central value
would therefore be a sign for a ΔI ¼ 1 NP contribution;
this possibility is further discussed in Sec. IV.
To get a first impression of the size of SUð3Þ breaking in

these decays, only the leading amplitudes T and Ac are
considered. In this limit, all direct CP asymmetries vanish,
and Eq. (20) is replaced by Eq. (26). The corresponding
measurements of ratios of amplitudes are plotted in Fig. 1
and indicate small to moderate SUð3Þ breaking. This strict
limit allows furthermore to extract several values for T
(assumed without loss of generality to be real and positive
in the following) and Ac from data, separately for the b → s
and b → d modes. Consistent values are extracted for
b → s and b → d and within each class, showing again
no sign of large SUð3Þ breaking and also no sign of
penguin contributions affecting the rates. The relative size
of the two considered amplitudes is jAc=Tj ∼ 15%, with a
strong phase difference argðAc=TÞ ∼ π. While the magni-
tude is consistent with the expectation from the power
counting, Oðδ2Þ—although on the high side, as already
expected from the discussion above—it is questioning the
common neglect of this amplitude in phenomenological
analyses. The absolute value is about the size of the
estimate in Ref. [34] (albeit the real part of the ratio has
the opposite sign) but smaller than the result in Ref. [50].
On the other hand, the measured values for the branching
ratios of the annihilation-dominated modes seem consis-
tently larger than the estimates in Ref. [51]. The size of jAcj
can actually account for the fact, emphasized in Ref. [4],
that the ratio BRðB̄s → Dþ

s D−
s Þ=BRðB̄0 → DþD−

s Þ shows
a significant deviation from the naive expectation of
unity holding for jAcj ≪ jTj in the SUð3Þ limit: using the
U-spin relation (15), a range compatible with the other

cs A
B D D0

cd A
B Ds D0

cd A
B0 Ds D

cs A
Bs D Ds

cs A
B0 D D

cd A
Bs Ds Ds

cs A
B0 D0 D0

cd A
Bs D0 D0

0.0 0.5 1.0 1.5 2.0

FIG. 1 (color online). Experimentally extracted ratios of am-
plitudes for U-spin partners, cf. Eq. (26), consistent with the
expected small to moderate SUð3Þ breaking.
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measurements is obtained for a relative strong phase around
π between T and Ac.
Together these observations indicate the validity of the

power counting and a small to moderate SUð3Þ breaking
of about 10–30% on the amplitude level. While sizable
contributions to AuðDÞ are not excluded, SUð3Þ-breaking
contributions inAcðDÞ seem to be sufficient to describe the
data for branching ratios for the considered modes. While
sizable contributions to AuðDÞ are not excluded, SUð3Þ-
breaking contributions in AcðDÞ seem to be sufficient to
describe the data for branching ratios for the considered
modes. Note that the apparent antialignment of T and Ac,
chosen here to be along the real axis, implies that
ReðAuðDÞÞ can be relatively large in all modes without
inducing sizable direct CP violation.

F. CP violation

CP-violating observables usually constitute the main
interest in B → DD decays. They provide access to
fundamental parameters of the SM as well as a high
sensitivity to NP. However, data for the branching ratios,
apart from being important in their own right, are also
necessary to obtain sufficient control over the hadronic
uncertainties to extract precision results.
Sensitivity to ϕs stems mainly from time-dependent

measurements in B → DþD− and Bs → Dþ
s D−

s ; the latter
is, from the theoretical point of view, similarly “golden” as
Bs → J=ψϕ. Experimentally, however, the J=Ψ mode is
advantageous despite the necessity of an angular analysis.
The extraction of the mixing phase ϕd is difficult, since it
enters only in b → d transitions for B → DD. It has
therefore been proposed to use it as an auxiliary channel,
constraining the shift due to penguin contributions in
SCPðB̄s → D−

s Dþ
s Þ [16]. However, this kind of strategy

requires additional information to control the influence
from SUð3Þ breaking [21]; this is achieved within the larger
framework developed in this article, allowing for model-
independently extracting the potential shift in ϕs due to
penguin pollution.
Regarding the CKM angle γ, the situation is very

complicated: first of all, obviously significantly measured
direct CP asymmetries are required to obtain sensitivity.
More importantly, the approximate RI discussed in
Sec. II E renders a precision extraction impossible without
further theory input. We will therefore use external input
for this phase.
The comparison of the extracted value for ϕs with the

one obtained independently yields information on NP.
While the extraction assuming Au ≡ 0 is trivial once the
necessary data are available, this article aims at improving
the resulting precision by taking subleading contributions
into account. As noted in the Introduction, this is of special
importance since all measurements so far indicate that NP
does not yield large contributions, which therefore compete
with the subleading terms in the SM. Given the possibility

discussed in this article to include corrections to the already
rather clean SM predictions for various CP asymmetries in
these modes, B → DD decays provide an opportunity for a
clean NP search.
The direct CP asymmetries and penguin shifts in b → s

modes are expected to be tiny in the SM for all decay
modes: below one (few) percent in scenario 2 for tree-
dominated (annihilation) modes and even with enhanced
penguins below a few (ten) percent. A significant meas-
urement of a direct CP asymmetry or penguin shift in a
b → s mode outside these ranges would therefore con-
stitute a “smoking gun” signal for NP. Additionally, the
difference of asymmetries for the quasi-isospin related
modes provide direct access to the amplitudes Au

i .
b → d modes provide additional sensitivity: while they

can have a larger SM “background,” there are strong
correlations which again allow one to test the SM.
Despite the limited available data for CP asymmetries,
these correlations provide already information on the
modes not measured yet.
CP asymmetries in the modes without a tree contribu-

tion offer complementary information: due to the sup-
pression of the leading amplitude, they are expected to be
larger than their counterparts in tree-dominated modes in
the SM; by the same token, the relative influence of NP
operators is enhanced. While a single measurement would
be insufficient to claim NP, sensitivity is provided by the
patterns induced by the flavor symmetry in the SM as well
as in given NP models. For example, the SM asymmetries
are expected to be correlated due to the SUð3Þ-limit
relation Eq. (20), softened by SUð3Þ breaking. For the
corresponding Bs modes, the integrated asymmetries are
tiny: they are b → s decays with very small asymmetries
to begin with but are then additionally suppressed by a
factor ∼1=xs ∼ few%.
Direct CP asymmetries and penguin shifts have fur-

thermore the advantage of providing a clear signal for
Au ≠ 0; a significant measurement implies a lower bound
on jAuj in the corresponding channel. However, as relative
strong phases are involved, the combination of different
measurements is necessary before a small jAuj can be
deduced from, e.g., a small direct CP asymmetry.
The direct CP asymmetries for B− → D0D− and B̄0 →

DþD−
s are measured to be small and consistent with zero,

as expected in scenario 2.4 The difficulties regarding the
available data for the time-dependent CP asymmetry in
B̄0 → DþD− have already been mentioned in Sec. III A;
while the BABAR data are compatible with vanishing
ΔSCP and ACP, Belle obtains large central values for both

4As ACPðB̄0 → DþD−
s Þ has been obtained as a cross-check in

the analysis of B0 → DþD− without assessing the systematic
uncertainties, we do not use the result in the global fit but see it as
another indication for Au being of the expected size. A refined
measurement of this mode would be of interest in the context of
the present analysis.
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observables, with a significance of around two standard
deviations each, but in the unphysical region. The con-
firmation of large values would imply a violation of the
generic SM power counting (scenario 2) which predicts
asymmetries in tree-dominated b → d decays below 10%.
Separate analyses for the two data sets are performed, using
either the Heavy Flavor Averaging Group (HFAG) average
of the two results (a) or the BABAR result only (b), in order
to highlight the different predictions. In any case, new
results are expected for this mode as well, hopefully
resolving the issue. Note that, as a remnant of Eq. (7),
the leading contributions to B̄0 → D−Dþ and B− → D−D0

are equal including their SUð3Þ-breaking parts, implying
the corresponding CP asymmetries to be equal as well up
to a few percent. This implies a SM value closer to the
BABAR result. More quantitative predictions are made in
the context of the following global analysis.

G. Global analysis

The global analysis provides quantitative control over
SUð3Þ-breaking contributions and other subleading terms.
The focus lies on the scenarios defined in Sec. III B. First
their compatibility with the data is analyzed in global χ2

fits, before presenting the predictions for branching ratios
and CP asymmetries. The fits are carried out using the
augmented Lagrangian [52,53] and Sbplx/Subplex algo-
rithms [54,55] that are implemented in the “NLopt”
code [55].
The χ2 analysis allows for the following observations

(see Appendix C for details):
(i) Scenario 1 generally does not describe the data well.
(ii) Scenario 2 provides an excellent fit, the best of any

scenario, since the data are in accordance with SM
expectations. The fit shows no sign of imaginary
contributions to Ac and does not improve when
including enhanced penguins or symmetry breaking
for Ac.

(iii) For data set (a), only scenario 3 yields a reason-
able fit.

(iv) Data set (b) is significantly preferred over data set (a)
in the sense that scenario 2 is viable, but the data sets
lead to similar results when allowing for arbitrary
penguin contributions.

(v) In all scenarios the most important amplitude apart
from the tree contribution is Ac, which is obvious
from the significant measurements of annihilation
modes in Ref. [4]. The fits confirm the previous
observations that jAcj is on the large side, jAcj=T ∈
½0.1; 0.27� (95%), and has a negative real part.

(vi) The fits are consistent with small to moderate
(10–30%) SUð3Þ breaking. The imaginary parts of
δTi are only loosely constrained, since they enter
observables always doubly suppressed.

(vii) No indication is found for sizable contributions from
δAc

i or Au
i .

In the following results from scenario 2—corresponding
to the SM predictions—and scenario 3 (a)/(b) are consid-
ered in more detail, illustrating the effect of enhanced
penguins on the one hand and the different results for the
CP asymmetries in B̄0 → D−Dþ on the other. In the fit
subleading terms such as δAc

i and Au
i are included but

restricted to lie within the (conservative) ranges expected
from their power counting. As so far data for CP-violating
observables in B → DD are scarce, the numerical analysis
in this section can only be understood as a first step,
providing a strategy for the future; specifically, the data do
not yet suffice to extract a competitive value for the weak
phases ϕs, for which therefore external input is used [2].
Nevertheless, the present measurements already yield
interesting predictions.
For the relations between observables and MEs to be

more transparent, we list in Table IX examples for
combinations of observables that are sensitive to a specific
parameter to leading order in the power counting.
For the results regarding branching ratios, it is not

differentiated between the different scenarios, since the
results are almost identical. Conservative predictions
require the inclusion of the SUð3Þ-breaking terms also
for the annihilation modes: for example, the fit yields the
prediction

BRðB̄0 → D−
s Dþ

s Þ ∈ ½0.3; 2.9� × 10−5ð1σÞ; ð33Þ

∈ ½0.1; 3.8� × 10−5ð2σÞ; ð34Þ

while neglecting δAc
i and Au for these modes would yield

BRðB̄0→D−
s Dþ

s Þ¼ð1.12�0.15Þ×10−5, using the exper-
imental values for the other annihilation-dominated modes.
The main relations sensitive to NP are Eqs. (5), (6),

and to some extent (7). The data confirm these relations,
showing, however, some tension with Eq. (5), as dis-
cussed above. Figure 2 visualizes aspects of Eq. (7). It
results in a correlation between the difference of branch-
ing ratios

ΔBR≡ BRðB− → D0D−Þ − rτ;PSBRðB̄0 → D−DþÞ;
ð35Þ

where rτ;PS denotes the ratio of lifetimes and phase space
factors for the two decays, and BRðB̄0 → D̄0D0Þ, result-
ing in both quantities being stronger constrained from the
fit than by data directly,

ΔBR ∈ ½0.09; 0.16� × 10−3ð1σÞ; ð36Þ

∈ ½0.05; 0.19� × 10−3ð2σÞ; ð37Þ

to be compared with ΔBRjexp ¼ ð0.144� 0.046Þ × 10−3,
cf. Table III, and

BRðB̄0 → D̄0D0Þ ¼ ð1.4� 0.5Þ × 10−5: ð38Þ
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The latter result demonstrates again the substantial impact
of SUð3Þ breaking for the annihilation amplitudes, since
the SUð3Þ-limit prediction from data is BRðB̄0→D̄0D0Þ ¼
ð1.19�0.16Þ×10−5. Therefore, all branching ratios of
annihilation modes are better constrained in the fit
than by their individual measurements available so far;
improved data will allow one to restrict the SUð3Þ
breaking for these modes and test the quasi-isospin
relation Eq. (6) and the correlation from Eq. (7).
In Figs. 3 and 4, the presently available data for CP

asymmetries are shown together with the fit results in the
different scenarios. Note that, as a consequence of Eq. (7)
and the suppression of AðB̄0 → D̄0D0Þ, the fit result for
ACPðB̄0 → D−DþÞ is already nontrivial with present data
(note, however, that in scenario 2 the horizontal limitation
is due to parameter restrictions, and only the diagonal
bounds reflect this correlation). Specifically, the predictions
clearly differ for the two data sets, as can be seen in Fig. 3;
even with enhanced penguins, the present central value
in data set (a) is very large. The confirmation of large
values with higher precision could again indicate NP.
Furthermore, as can be seen in Fig. 4, in scenario 3 (a)
the prediction for ΔSCPðB̄s → D−

s Dþ
s Þ is shifted to positive

values by the measurement of SCPðB̄0 → D−DþÞ, to be
compared with a distribution around zero for scenario 3 (b).
The visible correlation stems from the relation

ΔSCPðB̄s → D−
s Dþ

s Þ
ΔSCPðB̄0 → D−DþÞ ¼ −λ2

cosðϕsÞ
cosðϕdÞ

þOðδ3Þ: ð39Þ

More generally, since the shift due to penguin pollution
does not exceed the small value sinϕs in any scenario,
all of them predict a very small, positive result for

SCPðB̄s → D−
s Dþ

s Þ, the range of which can be further
reduced with additional data, specifically a smaller uncer-
tainty in SCPðB̄0 → D−DþÞ.
In Fig. 5, the predicted correlation between direct and

mixing-induced CP asymmetries in B̄s → D−
s Dþ

s is shown.
It is almost absent in scenarios 2 and 3 (b), while in scenario
3 (a) negative values of ΔSCP tend to imply negative values
of the direct CP asymmetry.
The correlation for the CP asymmetries of B̄0 → D−

s Dþ
and B̄s → D−Dþ

s is shown in Fig. 6. Their correlation—
stemming from Eq. (20), but including symmetry-breaking

FIG. 2 (color online). SM fit result for BRðB̄0 → D̄0D0Þ vs
ΔBR at 95% C.L. [scenarios 2 and 3 (a)/(b) together in purple],
together with the experimental results (yellow).

FIG. 3 (color online). SM fit result for ACPðB̄0 → D−DþÞ vs
ACPðB− → D−D0Þ for the data sets (a) (upper plot) and (b) (lower
plot), together with the corresponding experimental results. Here
and in the following, blue areas indicate fits in scenario 3 [light
blue for data set (a) and dark blue for (b)], and red indicates the
result in scenario 2.
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contributions—allows one for example to restrict the range
of the b → s mode further by a measurement of the b → d
one or to test the SM when both asymmetries are measured.
Note that the large possible range for ACPðB̄s → D−Dþ

s Þ is
not generically expected; it corresponds to the situation
in which the penguin amplitude is largely enhanced and
additionally the leading amplitudeAc reduced compared to
T due to SUð3Þ breaking. Note again that for scenario 3 the
CP asymmetry in B− → D−

s D0 is approximately equal to
the one in B̄0 → D−

s Dþ, cf. Eq. (29).
As mentioned before, the CP asymmetries for the modes

without a tree contribution tend to be larger than their

tree-dominated counterparts. However, since at present
there is no measurement of such aCP asymmetry available,
the global fit does not yield more information than the
general correlations already discussed.

H. Prospects for LHCb and Belle II

To estimate the theoretical uncertainty in the extraction
of the weak phase ϕs from B → DD in the future, we

FIG. 4 (color online). SM fit result for SCPðB̄s → D−
s Dþ

s Þ vs
SCPðB̄0 → D−DþÞ for the data sets (a) (upper plot) and (b) (lower
plot), together with the corresponding experimental results for
SCPðB̄0 → D−DþÞ. Colors are as in Fig. 3.

FIG. 5 (color online). Predictions for ACPðB̄s → D−
s Dþ

s Þ vs
SCPðB̄s → D−

s Dþ
s Þ (95% C.L.) from the SM fit for scenarios 2

and 3. Colors are as in Fig. 3.

FIG. 6 (color online). SM predictions for the direct CP asym-
metries ACPðB̄s→D−Dþ

s Þ vs ACPðB̄0→D−
s DþÞ (95% C.L.).

Colors are as in Fig. 3.
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perform a fit with experimental uncertainties expected in
2022; see Appendix D. As is illustrated in Fig. 7, the
penguin pollution can be well controlled within our
approach, so the limiting factor will be the experimental
precision for the key observables like SCPðB̄s → D−

s Dþ
s Þ.

The quasi-isospin sum rules provide an alternative method
to search for NP. Here very interesting tests are possible
already with the available 3 fb−1 from LHCb, and more
will be in the farther future. For a potential significant
measurement of an intermediate difference of 5 to 10% in
one mode, the issue would be to clearly tell the SM from NP.
To that aim additional measurements e.g. of the annihilation-
dominated modes are interesting, since the effect might be
enhanced here, because of a smaller normalization. We can
benefit from B → DD� modes, since not only one of the
SM sources of isospin violation cancels in the double ratio
Eq. (25) but also a potential QCD enhancement could be
absent in the second case, while the presence of an additional
NP operator should be visible in both sets.

IV. INCLUSION OF NP

The inclusion of NP contributions in the symmetry
framework is in principle straightforward, analogous to
the treatment in Ref. [56]: considering NP models with a
specific flavor structure, the corresponding specific pattern
of NP contributions can be included into the analysis.
Since in general the NP contributions have different Dirac
structures than the SM ones, they belong to separate
representations, even if their flavor structure is identical.5

Therefore, the power counting from above can be kept for
the SM contributions, while additional rules specific to the
NP model under consideration have to be included.
While the coupling strength of one such operator can be

absorbed into the unknown ME(s) related to it, its weak
phase and the relative coupling strength of the SUð3Þ-
related operators have to be specified. Since a third weak
phase is not observable without theory input on the MEs
due to RI [40], it can without loss of generality be chosen
to be “distributed” among the two existing SM structures,
but the relative size of these two contributions and of the
SUð3Þ-related operators (if present) are model dependent.
At the moment the inclusion of additional contributions

in the fit is difficult, since the number of measurements
does not exceed the number of parameters significantly.
Furthermore, the SM fits work satisfactorily. However, the
tension of the data with relation (5) motivates the analysis
of possible patterns of isospin-breaking contributions
which could become apparent with more precise data.
Corresponding fits are postponed to future work when more
data are available.
We consider generic isospin-changing NP operators in

the ΔB ¼ 1 Hamiltonian:

HNP ¼ ΔNP
s ððbūus̄ÞNP − ðbd̄ds̄ÞNPÞ

þ ΔNP
d ððbūud̄ÞNP − ðbd̄dd̄ÞNPÞ ð40Þ

¼ ΔNP
s ð−6̄NP1;0;−2=3 − 15NP1;0;−2=3Þ

þ ΔNP
d

�
−
1

2

ffiffiffi
3

2

r
3NP1=2;−1=2;1=3 þ

1

2
6̄NP1=2;−1=2;1=3

þ 1

2
ffiffiffi
6

p 15NP1=2;−1=2;1=3 −
2ffiffiffi
3

p 15NP3=2;−1=2;1=3

�
: ð41Þ

The complex parameters ΔNP
s;d represent the effective NP

couplings of the b → s; d transitions, respectively. Note
that the Dirac structure in Eq. (40) remains unspecified.
The resulting corrections to the quasi-isospin sum rules

Eqs. (5)–(7) are the same as from Au
1;2, with the SM

coupling strengths λud;s replaced by ΔNP
d;s. Consequently,

Eq. (12) is broken by these contributions for
ΔNP

d =ΔNP
s ≠ λud=λus. If the SM MEs Au

1;2 are negligible,
Eq. (12) can be replaced by the corresponding rule
involving ΔNP

d;s. Generically, due to their relation to the
same operator, both NP contributions would be expected to
be of a similar size. The breaking of Eq. (6) is then expected
to be enhanced relative to the one of Eq. (5) approximately
as T=ReAc. Furthermore, due to the same underlying
Hamiltonian, isospin-violating operators in B → DD
would also contribute to various other decays, as
B → D�Dð�Þ, discussed above, but also for example to
B → J=ψK decays and other b → d; s modes, see e.g.
Refs. [41,57]. While making a quantitative connection
between these modes is again complicated by our limited

FIG. 7 (color online). Estimated precision for ΔSCPðB̄s →
D−

s Dþ
s Þ vs ΔSCPðB̄0 → D−DþÞ (95% C.L.) within the future

scenario explained in the text, assuming enhanced penguins.

5In specific models, the relevant operators may in principle be
identical to the SM ones; in this case, simply the coefficient of the
corresponding representations is to be changed.
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capability to compute hadronic MEs (and they are not
related by flavor symmetry), the combination of different
decay modes certainly allows for an improved differ-
entiation between NP and the SM.

V. CONCLUSIONS

Given the absence of clear NP signals in flavor physics
so far, searches are confronted with the scenario of NP
contributions that are comparable with subleading SM
ones. Within the framework developed in this article for
B → DD decays, combining an SUð3Þ analysis with a
power counting for various suppression mechanisms, NP
can be differentiated from small SM effects in differ-
ent ways:

(i) The mixing angle ϕs can be extracted very cleanly
with additional data, controlling the penguin pollu-
tion from subleading amplitudes from data.

(ii) Very precise quasi-isospin relations, Eqs. (5), and
(6), allow for testing isospin-changing NP contri-
butions by measuring ratios of branching ratios. The
combination with additional measurements, e.g. in
B → DD�, provides improved differentiation from
SM contributions.

(iii) The specific pattern of CP asymmetries and branch-
ing ratios implied by the SM lead to various
predictions derived in this article that can be tested.

Moreover, B → DD decays allow one to extract different
topological amplitudes that are suppressed in the SM,
thereby enabling tests and improvements of dynamical
calculations and models describing them. These theoretical
features, combined with the experimental prospects at the
LHCb and Belle II experiments, render them valuable
NP probes.
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Note added.—While finishing this work, a measurement of
the time-dependent CP asymmetry in B̄s → D−

s Dþ
s was

published [58]. The values quoted there for jλj and ϕs

correspond to SðB̄s → D−
s Dþ

s Þ ¼ −0.02� 0.17� 0.02 and
ACPðB̄s → D−

s Dþ
s Þ ¼ −0.09þ0.20

−0.16 � 0.02. This measure-
ment is consistent with our prediction in Fig. 5 but does
not yet allow for constraining the global fit further. Note
that the uncertainties are very close to our estimates in
Table X.

APPENDIX A: EXPERIMENTAL INPUTS

In Table IV, we provide the experimental results on
branching ratios as they are used in the numerical analysis.
The available values for CP asymmetries are given in
Table III. Ratios are used where they have been measured
(avoiding double counting of the uncertainty of the
normalization modes), and the correlation induced by
fs=fdjLHCb, which enters most of the recent LHCb results
[4], is taken into account explicitly. For Belle and CDF,
only one result for a Bs decay enters the analysis, so making
the corresponding factor explicit yields no advantage.
The definitions for the coefficients in the time-dependent

CP asymmetry, cf. Eq. (8), are given as

ACPðDÞ ¼ −
1 − jλðDÞj2
1þ jλðDÞj2 ; ðA1Þ

SCPðDÞ ¼ 2ImλðDÞ
1þ jλðDÞj2 ; ðA2Þ

AΔΓðDÞ ¼ 2ReλðDÞ
1þ jλðDÞj2 ; and ðA3Þ

λðDÞ ¼ ηfCPe
−iϕD

AðDÞ
ĀðDÞ : ðA4Þ

TABLE IV. Experimental results for the branching ratios as
used in the numerical analysis; the CP asymmetries are given in
Table III. In this table, fs=fd ¼ fs=fdjLHCb.
Observable Value

BRðB− → D−D0Þ ð0.37� 0.04Þ × 10−3
a [7]

BRðB− → D−
s D0Þ ð10.0� 1.7Þ × 10−3 [7]

BRðB−→D−
s D0Þ

BRðB̄0→D−
s DþÞ 1.22� 0.07 [4]

BRðB̄0 → D−
s DþÞ ð7.2� 0.8Þ × 10−3 [7]

fs
fd

BRðB̄s→D−Dþ
s Þ

BRðB̄0→D−
s DþÞ 0.0098� 0.0010b [5]

BRðB̄0 → D−DþÞ ð0.226� 0.023Þ × 10−3
a [8,9,12]

fs
fd

BRðB̄s→D−
s D

þ
s Þ

BRðB̄0→D−
s DþÞ 0.143� 0.009b [4]

BRðB̄s→D−
s D

þ
s Þ

BRðB̄0→D−
s DþÞ 0.56� 0.11c [13]

BRðB̄s → D−
s Dþ

s Þ ð5.9� 1.6Þ × 10−3 [14]
fs
fd

BRðB̄s→D−DþÞ
BRðB̄0→D−DþÞ 0.28� 0.05b [4]

BRðB̄0→D̄0D0Þ
BRðB−→D−

s D0Þ 0.0014� 0.0006 [4]

fs
fd

BRðB̄s→D̄0D0Þ
BRðB−→D−

s D0Þ 0.0048� 0.0009b [4]

aCorrection for ΓðΥð4SÞ → B0B̄0Þ ≠ ΓðΥð4SÞ → BþB−Þ
included.

bValue calculated from information in the paper.
cCalculated using fs=fdjTev ¼ 0.328� 0.039 [8].

MARTIN JUNG AND STEFAN SCHACHT PHYSICAL REVIEW D 91, 034027 (2015)

034027-14



APPENDIX B: DETAILS OF THE SUð3Þ
ANALYSIS

We provide the list of the coefficients CU
fR [cf. Eq. (2)] in

Table V. The relation to the toplogical amplitudes used in
Table I is as follows:

T ¼ h8jð3Þj3̄ic; ðB1Þ

Ac ¼ −
1

3
ðh8jð3Þj3̄ic þ h1jð3Þj3̄icÞ; ðB2Þ

~P1 ¼ −
ffiffiffiffiffiffiffiffi
1

120

r
ð

ffiffiffiffiffi
45

p
h8jð3Þj3̄iu þ

ffiffiffiffiffi
10

p
h8jð6̄Þj3̄iu

þ h8jð15Þj3̄iuÞ; ðB3Þ

~P3 ¼
ffiffiffiffiffiffiffiffi
1

120

r
½

ffiffiffi
5

p
ðh1jð3Þj3̄iu þ h8jð3Þj3̄iuÞ

þ
ffiffiffiffiffi
10

p
h8jð6̄Þj3̄iu − h8jð15Þj3̄iu�; ðB4Þ

Au
1 ¼ −

ffiffiffiffiffi
1

15

r
ð

ffiffiffi
5

p
h8jð6̄Þj3̄iu þ

ffiffiffi
2

p
h8jð15Þj3̄iuÞ; ðB5Þ

Au
2 ¼

ffiffiffiffiffi
1

15

r
ð

ffiffiffi
5

p
h8jð6̄Þj3̄iu −

ffiffiffi
2

p
h8jð15Þj3̄iuÞ: ðB6Þ

Note again that these expressions are equivalent to the
SUð3Þ ones, as long as no assumption is made regarding
the relative size of the various amplitudes and all of them
are considered as complex. Note furthermore that the
absorbed coefficients fulfill

P jcij2 ≤ 1 (¼ 1 only for T).

The topological amplitudes are in turn linear combina-
tions of the ones introduced in Ref. [31]; in the SUð3Þ
limit, the translation reads T ¼ E1 þ P1, Ac ¼ A2 þ P3,
~P1 ¼ PGIM

1 − P1, ~P3 ¼ PGIM
3 − P3, using unitarity, i.e.

λtD ¼ −λcD − λuD.
The coefficients of the SUð3Þ-breaking reduced MEs are

listed in Table VI. The contributions given in Table II are
reordered in terms correcting the T and Ac amplitudes in the
topological approach. The translation reads

δT1 ¼
1

2
h8jð3Þj3̄ic;ϵ −

1ffiffiffiffiffi
20

p h8jð15Þj3̄ic;ϵ; ðB7Þ

δT2 ¼
1

2
h8jð3Þj3̄ic;ϵ þ

1ffiffiffiffiffi
20

p h8jð15Þj3̄ic;ϵ

þ 1ffiffiffi
2

p h8jð6̄Þj3̄ic;ϵ; ðB8Þ

δAc
1 ¼

1

6
ðh1jð3Þj3̄ic;ϵ þ h8jð3Þj3̄ic;ϵÞ þ

ffiffiffiffiffi
1

20

r
h8jð15Þj3̄ic;ϵ;

ðB9Þ

δAc
2 ¼

1ffiffiffi
5

p h8jð15Þj3̄ic;ϵ −
1ffiffiffi
2

p h8jð6̄Þj3̄ic;ϵ: ðB10Þ

While corrections to the tree and annihilation amplitudes
can be separated, given the structure of the various decay
amplitudes, the choice of the linear combinations “1” and
“2” is arbitrary and done in a way to obtain simple
expressions for the decay amplitudes.
The corrections to the amplitudes AuðDÞ are obtained

analogously to the previous ones. While the calculation

TABLE VI. Coefficients for the SUð3Þ-breaking contributions
in B → DD decays due to the Hc terms.

Decay Cc;ε
8 15 Cc;ε

8 6̄
Cc;ε
8 3 Cc;ε

1 3

B− → D−D0 −
ffiffiffiffi
1
80

q
−

ffiffi
1
8

q
− 1

4
0

B− → D−
s D0 −

ffiffiffiffi
1
20

q
0 1

2
0

B̄0 → D−
s Dþ −

ffiffiffiffi
1
20

q
0 1

2
0

B̄s → D−Dþ
s

ffiffiffiffi
9
80

q ffiffi
1
8

q
− 1

4
0

B̄0 → D−Dþ −
ffiffiffiffi
1
20

q
0 − 1

6
1
12

B̄s → D−
s Dþ

s

ffiffi
1
5

q
0 1

3
− 1

6

B̄0 → D−
s Dþ

s

ffiffiffiffi
9
80

q
−

ffiffi
1
8

q
1
12

1
12

B̄s → D−Dþ −
ffiffiffiffi
1
20

q
0 − 1

6
− 1

6

B̄0 → D̄0D0
ffiffiffiffi
1
80

q
−

ffiffi
1
8

q
− 1

12
− 1

12

B̄s → D̄0D0
ffiffiffiffi
1
20

q
0 1

6
1
6

TABLE V. Coefficients CU
fRðDÞ of the SUð3Þ analysis in the

SUð3Þ limit, cf. Eq. (2).

Decay Cc
8 3 Cc

1 3 Cu
8 15 Cu

8 6̄
Cu
8 3 Cu

1 3

B− → D−D0 1 0 −
ffiffiffiffi
3
40

q
−

ffiffiffiffi
1
12

q ffiffi
3
8

q
0

B− → D−
s D0 1 0 −

ffiffiffiffi
3
40

q
−

ffiffiffiffi
1
12

q ffiffi
3
8

q
0

B̄0 → D−
s Dþ 1 0

ffiffiffiffiffiffi
1

120

q ffiffiffiffi
1
12

q ffiffi
3
8

q
0

B̄s → D−Dþ
s 1 0

ffiffiffiffiffiffi
1

120

q ffiffiffiffi
1
12

q ffiffi
3
8

q
0

B̄0 → D−Dþ 2
3

− 1
3

ffiffiffiffi
1
30

q
0

ffiffi
1
6

q
−

ffiffiffiffi
1
24

q

B̄s → D−
s Dþ

s
2
3

− 1
3

ffiffiffiffi
1
30

q
0

ffiffi
1
6

q
−

ffiffiffiffi
1
24

q

B̄0 → D−
s Dþ

s − 1
3

− 1
3

ffiffiffiffiffiffi
1

120

q
−

ffiffiffiffi
1
12

q
−

ffiffiffiffi
1
24

q
−

ffiffiffiffi
1
24

q

B̄s → D−Dþ − 1
3

− 1
3

ffiffiffiffiffiffi
1

120

q
−

ffiffiffiffi
1
12

q
−

ffiffiffiffi
1
24

q
−

ffiffiffiffi
1
24

q

B̄0 → D̄0D0 1
3

1
3

ffiffiffiffi
3
40

q
−

ffiffiffiffi
1
12

q ffiffiffiffi
1
24

q ffiffiffiffi
1
24

q

B̄s → D̄0D0 1
3

1
3

ffiffiffiffi
3
40

q
−

ffiffiffiffi
1
12

q ffiffiffiffi
1
24

q ffiffiffiffi
1
24

q
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yields 13 independent MEs, the rank of the corresponding
coefficient matrix in this case is only 9. This does not
change when including the leading-order contributions, so
four of the corrections can in fact be absorbed into the
leading-order MEs. We give here the coefficients for the
reduced system, see Table VII, corresponding to physical
combinations.

APPENDIX C: FIT DETAILS

We provide additional information regarding the fits in
Sec. III G. First we observe a very good consistency of the
available measurements (apart from the CP asymmetries in
B̄0 → D−Dþ). The only sizable offset in χ2 in the following
fits (in the sense that the value cannot be reduced by any
parameter choice for realistic values of the MEs) stems
from the tension with the quasi-isospin relation Eq. (5). To
test the overall consistency of a scenario, we start with T
and Ac and add single MEs (while in the numerical analysis
all MEs are always included).
In scenario 1, neglecting SUð3Þ-breaking contributions,

no good fit is achieved. The only acceptable fit with χ2 ≈ 17
for 10 degrees of freedom (d.o.f.)6 is reached for data set (b)

when adding only ~P1. However, this ME is then required
to be very large (larger than in scenario 3), since it is “used”
to fit some of the rate differences. Restricting ~P1 to the
expected range again yields a bad fit. For data set (a), no
acceptable fit is found.
The fits for data set (a) in scenario 2 remain bad, while

for data set (b) an excellent fit with χ2min ≈ 9 for 8 d.o.f.
exists when adding only δT1;2 to the fit, as expected with
our power counting. Note that neither imaginary parts inAc
nor penguin contributions are necessary in this case. Also,
the fit does not worsen at all when restricting to the
expected SUð3Þ breaking.
In scenario 3, at least ~P1 should be included, since it is of

the same order as Ac in this scenario. That leads to an
acceptable fit for data set (a) with χ2min ≃ 11 for 6 d.o.f.
For data set (b), the fit does not improve significantly
compared to scenario 2 and is in that sense worse than the
previous fit since there are fewer d.o.f. The global χ2min
values when including all MEs with their power counting
are χ2min;S3ðaÞ ¼ 9.3 and χ2min;S3ðbÞ ¼ 8.9.
To better understand the consequences of certain mea-

surements for the global fit, we present in Table IX
examples for combinations of observables that are to
leading order sensitive to one parameter in the different
scenarios. Listed are the coefficients that multiply the
corresponding rates or CP asymmetries, yielding for
example for the next-to-last column

ACPðB̄0 → D−
s DþÞ − ACPðB− → D−

s D0Þ
2Imðλus=λcsÞ

¼ ImðAu
1Þ

T
:

ðC1Þ

APPENDIX D: FUTURE SCENARIOS

To analyze the future potential of the method developed
in this article, we give projections for the experimental
uncertainties of the various observables, considering the
plans for LHCb and Belle II. While we expect these

TABLE VIII. Coefficients for higher-order SUð3Þ-breaking
contributions in B → DD decays (normalized to the largest
coefficient).

Decay Cc;ε 2

8 15 Cu;ε 2

8 15

B− → D−D0 − 1
3

0
B− → D−

s D0 1
2

0

B̄0 → D−
s Dþ 1

2
1

B̄s → D−Dþ
s 1 1

B̄0 → D−Dþ − 2
3

−1
B̄s → D−

s Dþ
s −1 −1

B̄0 → D−
s Dþ

s 1 1
B̄s → D−Dþ 1

2
1

B̄0 → D̄0D0 1
3

0

B̄s → D̄0D0 − 1
2

0

TABLE VII. Coefficients for the SUð3Þ-breaking contributions
in B → DD decays due to theHu terms. The labels only indicate
the representation with the largest coefficient in the correspond-
ing linear combination, and the additional index indicates the
relevant tensor product.

Decay Cu;ϵ
1 33

Cu;ϵ
8 33

Cu;ϵ
8 6̄3

Cu;ϵ
8 153

Cu;ϵ
8 156̄

B− → D−D0 0 −
ffiffiffiffiffiffi
3

128

q
−

ffiffi
3

p
8

−
ffiffiffiffiffiffi
3

640

q
−

ffiffiffiffiffiffi
1

960

q

B− → D−
s D0 0

ffiffiffiffi
3
32

q
0 −

ffiffiffiffiffiffi
3

160

q
1ffiffiffiffi
60

p

B̄0 → D−
s Dþ 0

ffiffiffiffi
3
32

q
0 −

ffiffiffiffiffiffi
3

160

q
− 1ffiffiffiffi

60
p

B̄s → D−Dþ
s 0 −

ffiffiffiffiffiffi
3

128

q ffiffi
3

p
8

ffiffiffiffiffiffi
27
640

q ffiffiffiffiffiffi
3

320

q

B̄0 → D−Dþ 1ffiffiffiffiffiffi
384

p − 1ffiffiffiffi
96

p 0 −
ffiffiffiffiffiffi
3

160

q
− 1ffiffiffiffiffiffi

240
p

B̄s → D−
s Dþ

s − 1ffiffiffiffi
96

p 1ffiffiffiffi
24

p 0
ffiffiffiffi
3
40

q
0

B̄0 → D−
s Dþ

s
1ffiffiffiffiffiffi
384

p 1ffiffiffiffiffiffi
384

p −
ffiffi
3

p
8

ffiffiffiffiffiffi
27
640

q ffiffiffiffiffiffi
3

320

q

B̄s → D−Dþ − 1ffiffiffiffi
96

p − 1ffiffiffiffi
96

p 0 −
ffiffiffiffiffiffi
3

160

q
− 1ffiffiffiffi

60
p

B̄0 → D̄0D0 − 1ffiffiffiffiffiffi
384

p − 1ffiffiffiffiffiffi
384

p −
ffiffi
3

p
8

ffiffiffiffiffiffi
3

640

q
1ffiffiffiffiffiffi
960

p

B̄s → D̄0D0 1ffiffiffiffi
96

p 1ffiffiffiffi
96

p 0
ffiffiffiffiffiffi
3

160

q
− 1ffiffiffiffi

60
p

6Note that the determination of this number is nontrivial since
for example no observable is sensitive to ImδT1;2 to leading order
and potential constraints from the power counting. In these fits we
only demand jX=Tj ≤ 1 (X being a real or imaginary part of an
ME) and count simply observables and parameters to determine
the d.o.f.
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estimates to be rather reliable for the statistical uncertain-
ties, the systematic ones are clearly more complicated; we
try to include the expected main improvements while still
keeping the estimates conservative.
LHCb recorded another approximate 2 fb−1 at 8 TeV in

2012 which are analyzed at the moment. The plan is [59] to
record another 5–6 fb−1 at 13 TeV in 2015–2018 and after
the upgrade 15 fb−1 at 14 TeV in 2020–2022; from 2024
on additional data up to at least 50 fb−1 are to be recorded.

Belle II is expecting to start physics runs in 20187; in the first
year, onemight expect four times the Belle data set, while by
the end of 2022, the aim is to have reached 50 ab−1.
The resulting yields scale with these expected integrated

luminosities, but other factors have to be taken into

TABLE IX. Examples for combinations of observables that determine simple fit parameter combinations to leading order, as further
explained in the text. The last line indicates the expected absolute size of the corrections to these relations; the number in brackets, when
present, shows a possible enhancement of the correction for enhanced penguins.

Mode jAD=λcDj2 ACPðDÞ=ImðλuD=λcDÞ
B− → D−D0 0 1

6
0 0 0 0 0 0 0 0

B− → D−
s D0 0 0 0 0 0 0 0 0 − 1

2
0

B̄0 → D−
s Dþ 0 0 0 0 0 0 1

2
0 1

2
0

B̄s → D−Dþ
s 0 − 1

2
0 0 0 0 0 0 0 0

B̄0 → D−Dþ 2
3

0 − 1
3

0 0 0 0 0 0 0
B̄s → D−

s Dþ
s

1
3

1
3

1
3

0 0 0 0 0 0 0
B̄0 → D−

s Dþ
s 0 0 0 1

3
1
6

1
2

0 0 0 0
B̄s → D−Dþ 0 0 0 1

3
0 0 0 1

2
0 1

2

B̄0 → D̄0D0 0 0 0 1
3

1
6

− 1
2

0 0 0 0
B̄s → D̄0D0 0 0 0 0 − 1

3
0 0 0 0 − 1

2

Parameter combination T2 TReðδT1Þ TReðδT2Þ jAcj2 Re½ðAcÞ�δAc
1� Re½ðAcÞ�δAc

2� Imð ~P1Þ=T Imð ~P3=AcÞ ImðAu
1Þ=T ImðAu

2=A
cÞ

Correction δ2 δ2 δ2 δ6ð5Þ δ6ð5;†Þ δ6 δ4ð3Þ δ3ð2Þ δ4 δ3

†Note that the enhanced penguin constitutes a relative correction of Oð1Þ in this case.

TABLE X. Extrapolated uncertainties for B → DD observables, assuming future data as described in the text. The index “rel”
indicates that the uncertainty is given for the ratio with the normalization mode in Ref. [4], not the branching ratio itself. For the CP
asymmetries, a value is only given when our estimate lies below 40% (and the present uncertainties).

Mode Observable δO (2014) δO (2018) δO (2022)

B− → D−D0 BR=10−3 0.01 0.004
ACP=% 3 1

B− → D−
s D0 BR=10−3 0.6 0.2 0.07

ACP=% 0.8 0.4 0.2
B̄0 → D−

s Dþ BR=10−3 0.2 0.06
ACP=% 0.8 0.4 0.2

B̄s → D−Dþ
s BRrel 0.002 0.0009

ACP=% 5 3 1
B̄0 → D−Dþ BR=10−3 0.008 0.002

S; C=% 7 2
B̄s → D−

s Dþ
s BRrel 0.02 0.008 0.003

S; C=% 16 8 4
B̄0 → D−

s Dþ
s BR=10−3 0.002 0.0005

S; C=%
B̄s → D−Dþ BRrel 0.1 0.05 0.02

S; C=% 27 12
B̄0 → D̄0D0 BR=10−3 0.003 0.002 0.0007

S; C=% 23
B̄s → D̄0D0 BRrel 0.002 0.0008 0.0003

S; C=% 26 11

7A possible shift of this date by one year or more should be
taken into account for the following dates accordingly.
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account. In the case of LHCb, we additionally account
for the higher cross sections for B mesons at 13=14 TeV
by a factor of 2 and for the improvements from the
upgrade by another factor of 2. Compared to the yields in
Ref. [4] at 1 fb−1, this procedure yields the approximate
factors 4 for the data set so far,8 14 until 2018, and 74
until 2022. Clearly, these factors have large uncertainties.
Especially it should be noted that the analyses at higher
beam energy are challenging; some uncertainties might
also increase in this environment, so the advantages
considered here might be partially reversed.
Of the 1000 fb−1 collected at Belle, about 121 fb−1 were

recorded at the Y(5S) resonance, and 711 fb−1 were
recorded at the Y(4S) resonance [60]. In our projections
we assume that this ratio will remain the same at Belle II.
The expected integrated luminosity at Belle II is 4 ab−1 in
2018 [61] and 50 fb−1 until 2022–2023 [62]. Consequently,
we scale the yields with factors of 4 and 50 for 2018 and
2022, respectively. From these prospects for the yields, we
estimate the expected statistical uncertainties.
The systematic uncertainties obviously depend on the

observable under consideration. For the branching ratios
of Bs modes, the limiting systematic uncertainties will be
the external inputs: fs=fd and (in part related to that) the
measurements of the corresponding D decay modes.
Especially the former input is already clearly dominated
by systematic/theory uncertainties, see Refs. [46,47],
making it hard to reduce the related uncertainty below 5%.
The latter uncertainty is expected to improve with more
statistics.
The remaining (ratios of) branching ratios are expected

to be determined with higher precision, although still the D
branching ratios enter. For high-statistics measurements,
one should furthermore include potential differences
between fd and fu, which are typically assumed to
be equal.

For the CP asymmetries in flavor specific modes,
systematic uncertainties are determined by the production
and detection asymmetries. The production asymmetry can
in principle be determined from a pure tree decay like
B− → D0π−, and also the uncertainty for the detection
asymmetry is reducible with more statistics. This situation
implies that the uncertainties for these CP asymmetries
will probably remain determined by the statistical ones. We
scale the uncertainties according to our prescription above
where such measurements are available. In the cases where
only branching ratios have been measured so far, we
estimate the direct CP asymmetry uncertainty from that
of the branching ratio. For the LHCb measurements where
the available yields are from branching ratio measurements,
we add a factor of 2 in selection efficiency for the
CP asymmetry measurements (which is again a rough
estimate). We assume that the uncertainty for ACPðB̄0 →
D−

s DþÞ is the same as for ACPðB− → D−
s D0Þ.

For time-dependent asymmetries, the issue is more
complicated. The CP-violating parameters of interest are
obtained from fits, rendering the relation to the number of
events nontrivial. To estimate this, we use existing time-
dependent analyses from LHCb for CP asymmetries in
Bs → KþK− and B0 → πþπ− decays [63]. We scale the
resulting statistical precision obtained in this analysis with
the square-root of yields, taking into account the effective
tagging power, which we assume to stay at εeff ¼ 5%.
In this way we obtain the LHCb prospects for the time-
dependent CP asymmetries of B̄s → D−

s Dþ
s , B̄s → D−Dþ,

B̄0 → D̄0D0, and B̄s → D̄0D0. For the channel B̄0 →
D−Dþ, we scale the Belle results. For B̄0 → D−

s Dþ
s and

B̄0 → D̄0D0, no statistical significant yield is available
from Belle yet. To obtain an estimate for BRðB̄0 →
D−

s Dþ
s Þ, we scale the relative error of B̄0 → D−Dþ to

account for the differences in yields and multiply the result
with the corresponding SUð3Þ-limit branching ratio.
We do not estimate the corresponding time-dependent
CP-asymmetry parameters.
These considerations yield the uncertainty estimates

given in Table X.
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