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The nature of chiral phase transition of massless two flavor QCD depends on the fate of flavor singlet
axial symmetryUAð1Þ at the critical temperature (Tc). Assuming that a finiteUAð1Þ breaking remains at Tc,
the corresponding three dimensional effective theory is composed of four massless and four massive scalar
fields. We study the renormalization group flow of the effective theory in the ϵ-expansion, using a mass
dependent renormalization scheme, and determine the region of the attractive basin flowing into the Oð4Þ
fixed point with a focus on its dependence on the size of the UAð1Þ breaking. The result is discussed from a
perspective of the decoupling of massive fields. It is pointed out that, although the effective theory inside
the attractive basin eventually reaches the Oð4Þ fixed point, the approaching rate, one of the universal
exponents, is different from that of the standardOð4Þmodel. We present the reason for this peculiarity, and
propose a novel possibility for chiral phase transition in two-flavor QCD.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is a unique gauge
theory in that its nonperturbative phenomena are experi-
mentally observable and thus one can test our understanding
on nonperturbative dynamics quantitatively. Understanding
the underlying principles of nonperturbative dynamics is
not only important in its own right but also interesting
because it could provide a solid basis for studying other
hypothetical strong coupling gauge theories.
In this paper, we address chiral phase transition of

massless two-flavor QCD at vanishing density. This system
is obviously different from QCD in real world as it consists
of massive flavors,1 and hence studying this system may be
considered to be academic. On the other hand, since this
system can be seen as one of extreme cases of real QCD,
precise knowledge on this system could provide with
foundations for understanding phase diagrams of real
QCD as a function of chemical potential, quark masses,
or the number of flavors, etc.
The order of chiral phase transition of massless two

flavor QCD has been studied in uncountably many works
both analytically and numerically, but not settled yet [7].
One of analytical methods is to examine the renormaliza-
tion group (RG) flow of the corresponding Landau-
Ginzburg-Wilson (LGW) theory. In 1983, Pisarski and
Wilczek revisited the β functions of linear sigma models
(LSMs) calculated in the ϵ expansion and classified by
the resulting RG flow the nature of chiral phase transition
of QCD with arbitrary number of massless flavors [8].
However, the two flavor case remained uncertain because
two distinct effective theories are possible, depending on

the presence of flavor singlet axial [UAð1Þ] symmetry
at the critical temperature (Tc), and they draw different
conclusions.
In the case where a large UAð1Þ symmetry breaking

remains at Tc, Oð4Þ LSM should be analyzed. OðNÞ LSM
has been well studied again both analytically and numeri-
cally,2 and the existence of the stable infrared fixed point
(IRFP), or the Wilson-Fisher fixed point, is established.
On the other hand, when the UAð1Þ symmetry is

effectively and fully restored at Tc, the symmetry of the
system turns to ULð2Þ ×URð2Þ [or Oð2Þ ×Oð4Þ]. This
case has been also studied through various methods and is
attracting attention [15–23]. It appears that the nature of the
transition in this system is still under debate.
Numerical simulations based on lattice QCD can directly

determine the nature of the transition of massless two-flavor
QCD without any assumption, in principle. Interestingly, a
possibility of first order phase transition is recently reported
in one of the lattice calculations [24], while there remain
many systematic uncertainties to be checked.
In this work, we will not pursue whether the ULð2Þ ×

URð2Þmodel has an IRFP or not, and would rather focus on
the case where the UAð1Þ symmetry breaking is small but
finite at Tc. Although the size of the symmetry breaking at
Tc is determined by nonperturbative dynamics and its
precise value is not known yet, it is probable from recent
studies that the breaking effect is not large [5,25–28].
This system is interesting from the field theoretical

viewpoint. ULð2Þ ×URð2Þ LSM contains eight degenerate
scalar fields, and by introducing the breaking, half of them
gain mass proportional to the breaking. When the size of
breaking is infinitely large, the system is simply reduced to

1For the lattice studies of chiral transition of realistic 2þ 1
flavor QCD, see, for example, Refs. [1–6]. 2See, for example, Refs. [9–14].
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the Oð4Þ LSM and will end up with second order phase
transition [8]. Even if the breaking is tiny, we expect that
the massive degrees of freedom will decouple from the
system and Oð4Þ LSM is eventually realized as the flow
goes into the infrared limit. However, we are concerned that
the decoupling theorem [29,30] is not obvious in three
dimensions because the scalar quartic couplings have a
mass dimension.
For example, four-point Green’s functions can, in gen-

eral, have a term like ḡ2ðP2Þ=M2 due to massive fields with
a mass M, where P represents a typical scale of external
momenta and ḡðP2Þ is an effective quartic coupling
connecting light and heavy fields. In three dimensions,
ḡðP2Þ has a mass dimension, and whether ḡ2ðP2Þ=M2

vanishes in the P2 → 0 limit is determined by P2 depend-
ence of the running of ḡ2ðP2Þ. Indeed, the presence of
nondecoupling effects is reported in Ref. [31], where a
theory with a dimensionful scalar cubic coupling is
examined in 3þ 1 dimensions. It is thus interesting to
see in the context of the RG flow how or even whether the
decoupling occurs.
We take the ϵ expansion approach to study this system

since the ϵ is suitable for investigating the detailed structure
of the decoupling on a fundamental level. The calculation is
done mainly in a mass-dependent renormalization scheme
such that β functions contain information on finite mass of
would-be decoupling particles. The consistency with the
MS scheme is checked through the calculation of four-point
correlation function. As for other parts, we simply follow
the standard. With β functions thus obtained, we determine
the attractive basin flowing into the Oð4Þ (or Wilson-
Fisher) fixed point and see how the area of the basin is
affected by the size of the UAð1Þ breaking.
We point out that, although the effective theory starting

from the inside of the attractive basin eventually reaches the
Oð4Þ fixed point, one of the universal exponents turns out
to differ from that of the standard Oð4Þ LSM. We present
the reason for this peculiarity and propose a novel pos-
sibility for chiral phase transition in two-flavor QCD, that is
second order phase transition with, say, the UAð1Þ broken
scaling.
The same system has been studied in the functional

renormalization group (FRG) approach in Ref. [32], where
the phase transition in the presence of a finite UAð1Þ
breaking is concluded to be of first order. Since the β
functions calculated in the ϵ expansion are embedded in
the FRG, the same conclusion is naively expected to be
reached. However, our conclusion is different from theirs.
Determining the order of the chiral phase transition of

massless two-flavor QCD has some impact on models of
dynamical electroweak symmetry breaking with electro-
weak baryogenesis. For an attempt on the lattice, see
Ref. [33,34].
Our analysis is performed at the leading order of the ϵ

expansion. Thus, our findings may be significantly affected

by higher orders in the expansion. Furthermore, it is
pointed out that the ϵ expansion is sometimes not useful
even for qualitative discussions [19]. Nevertheless, we
believe that the ϵ expansion suffices for exploring possible
scenarios and making a survey of how the decoupling of
massive fields occurs along the flow toward the infra-
red limit.
The rest of the paper is organized as follows. In Sec. II,

the effective theory we will discuss is introduced. We
briefly summarize the leading ϵ expansion results for the
large and vanishing limits of theUAð1Þ breaking in Sec. III.
The β functions and the RG flow in the presence of a finite
UAð1Þ breaking are shown in Sec. IV. Based on those
results, we determine the attractive basin in Sec. V. The
decoupling theorem is addressed in this system in Sec. VI.
Summary and outlook are given in Sec. VII. A part of this
work has been published in Ref. [35].

II. EFFECTIVE THEORY

We take a linear sigma model (LSM) that has the same
global symmetry as that of massless two-flavor QCD
around the critical temperature, Tc. Following the stan-
dard procedure, we make a working hypothesis that the
system undergoes second order phase transition. Then,
the order parameters suitably chosen are small and hence
is used as an expansion parameter to construct Landau-
Ginzburg-Wilson (LGW) field theory. At the critical
temperature, the system becomes infrared conformal,
and modes with a divergent correlation length arise.
Then, the original system defined in four space-time
dimensions can be approximately described in three
space dimensions. In the following, the calculation is
done in D ¼ 4 − ϵ dimension, and in the end ϵ ¼ 1 is
substituted.
The building block of the LSM is a 2 × 2 complex matrix

field

Φ ¼
ffiffiffi
2

p
ðϕ0 − iχ0Þt0 þ

ffiffiffi
2

p
ðχi þ iϕiÞti; ð1Þ

where t0 ¼ 12×2=2 and ti ¼ σi=2 (i ¼ 1, 2, 3) is the
generator of SUð2Þ group. ϕ0 and ϕi correspond to σ
and πi in more commonly used name, respectively.
Similarly χ0 and χi to η0 and δi. Thus, χ0 denotes the
isosinglet pseudoscalar, and χi the isotriplet scalar. Under
chiral and UAð1Þ transformations, Φ transform as

Φ → e2iθAL†ΦR ðL ∈ SULð2Þ; R ∈ SURð2Þ; θA ∈ ReÞ:
ð2Þ

UVð1Þ symmetry corresponding to the baryon number
conservation was omitted. Since Φ can be considered as
the order parameter of chiral symmetry, nonzero vacuum
expectation value of Φ indicates spontaneous chiral
symmetry breaking (SχSB). Most general renormalizable
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Lagrangian conserving chiral and UAð1Þ rotations is then
given by

LUð2Þ×Uð2Þ ¼
1

2
tr½∂μΦ†∂μΦ� þ

1

2
m2

0tr½Φ†Φ�

þ π2

3
g1ðtr½Φ†Φ�Þ2 þ π2

3
g2tr½ðΦ†ΦÞ2�: ð3Þ

which is referred to as Uð2Þ ×Uð2Þ LSM. Since we are
interested in the system at around Tc, m0 will be set to zero
in the analysis of Uð2Þ × Uð2Þ LSM.
In order to incorporate the effect of UAð1Þ symmetry

breaking into the system, the following terms are added

Lbreaking ¼ −
cA
4
ðdetΦþ detΦ†Þ

þ π2

3
xTr½ΦΦ†�ðdetΦþ detΦ†Þ

þ π2

3
yðdetΦþ detΦ†Þ2

þ wðtr½∂μΦ†t2∂μΦ�t2� þ H:c:Þ: ð4Þ

The third term is symmetric under Z4, and so is the rest
under Z2. Rewriting the total Lagrangian in terms of the
component fields, we obtain

Ltotal ¼ LUð2Þ×Uð2Þ þ Lbreaking

¼ ð1þ wÞ 1
2
ð∂μϕaÞ2 þ ð1 − wÞ 1

2
ð∂μχaÞ2 þ

m2
ϕ

2
ϕa

2 þm2
χ

2
χa

2

þ π2

3
½λðϕa

2Þ2 þ ðλ − 2xÞðχa2Þ2 þ 2ðλþ g2 − zÞϕa
2χb

2 − 2g2ðϕaχaÞ2�; ð5Þ

where λ ¼ g1 þ g2=2þ xþ y, z ¼ xþ 2y and a runs 0
to 3. We refer to the theory of Eq. (5) as the UAð1Þ broken
LSM. The nonzero value of w affects all the terms through
the redefinition of the field normalization. In the following,
we set the tree level value of w to zero, although w receives
radiative corrections at two or higher loops unless both cA
and x are zero. Notice that the cA term in Eq. (4) separates
off the degeneracy between ϕa and χa as

m2
ϕ ¼ m2

0 −
cA
2
; m2

χ ¼ m2
0 þ

cA
2
: ð6Þ

In order to reproduce the properties of QCD vacuum, cA is
taken to be positive. Otherwise the parity or isovector
symmetry is broken. As usual, T ¼ Tc corresponds to
m2

ϕ ¼ 0, which means that only χ’s have a mass of
m2

χ ¼ cA > 0. When cA is infinitely large, χa would be
decoupled from the system, and the total Lagrangian
Eq. (5) becomes Oð4Þ LSM,

LOð4Þ ¼
1

2
ð∂μϕaÞ2 þ

π2

3
λðϕ2

aÞ2: ð7Þ

III. RG FLOWS FOR cA ¼ 0 AND ∞

In order to determine the renormalization group (RG)
flow of the theory, the β functions in the effective theories
are calculated. Loop integrals are regularized by the
dimensional regularization with D ¼ 4 − ϵ. In order to
see the effects of the massive fields to the β functions, we
take a mass dependent renormalization scheme. Here we
choose the renormalization conditions that some specific

four-point amputated Green’s functions should coincide,
at a symmetric, off-shell kinematic point (SYM) s ¼ t ¼
u ¼ μ2, with their tree level expressions:

Γ4ðϕ1ðp1Þ;ϕ1ðp2Þ;ϕ2ðp3Þϕ2ðp4ÞÞjSYM ¼ −
8

3
π2μϵλ̂R

ð8Þ

Γ4ðχ1ðp1Þ; χ1ðp2Þ; χ2ðp3Þχ2ðp4ÞÞjSYM
¼ −

8

3
π2μϵðλ̂R − 2x̂RÞ ð9Þ

Γ4ðϕ1ðp1Þ; χ2ðp2Þ;ϕ1ðp3Þχ2ðp4ÞÞjSYM
¼ −

8

3
π2μϵðλ̂R þ ĝ2;R − ẑRÞ ð10Þ

Γ4ðϕ1ðp1Þ; χ2ðp2Þ;ϕ2ðp3Þχ1ðp4ÞÞjSYM ¼ 4

3
π2μϵĝ2;R

ð11Þ

where p1;2 and p3;4 are the incoming and outgoing
momenta, respectively. s ¼ ðp1 þ p2Þ2 ¼ ðp3 þ p4Þ2,
t ¼ ðp1 − p3Þ2 ¼ ðp2 − p4Þ2 and u ¼ ðp1 − p4Þ2 ¼
ðp2 − p3Þ2. The conditions (8)-(11) are for the UAð1Þ
broken LSM. Those for the Uð2Þ ×Uð2Þ or the Oð4Þ
LSM can be obtained by simply omitting irrelevant
couplings or conditions. For example, the condition for
the Oð4Þ LSM is given by Eq. (8) only. The mass
dimension μϵ is factored out from the original quartic
couplings as explicitly shown, and the hatted couplings are
defined to be dimensionless. Hereafter, the subscript “R”
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denoting renormalized one is omitted to avoid notational
complexity.
First we discuss the RG flow for the case with infinitely

large cA. In this case, we deal with Oð4Þ LSM, Eq. (7),
which contains only a single coupling λ̂. From the con-
dition (8), we obtain as the β function [36]

βλ̂;cA¼∞ ¼ μ
dλ̂
dμ

¼ −ϵλ̂þ 2λ̂2: ð12Þ

Although the β function is known through higher orders
in other scheme [11],3 we showed the one loop result for
the later use. λ̂ reaches the IRFP λ̂IR;cA¼∞ ¼ ϵ=2 as long as
the coupling at the initial scale Λ satisfies λ̂ðΛÞ > 0. The
existence of the IRFP meets the working hypothesis, and
thus massless two-flavor QCD satisfies the necessary
condition for the second order phase transition with the
Oð4Þ scaling if cA is infinitely large [8].
Next, we consider the case with UAð1Þ symmetry

effectively restored. Uð2Þ ×Uð2Þ LSM in Eq. (3) with
m0¼0 contains two independent couplings, λ̂ ¼ ĝ1 þ ĝ2=2
and ĝ2. With the conditions (8) and (11), their β functions
are obtained as [8]

βλ̂;cA¼0 ¼ −ϵλ̂þ 8

3
λ̂2 þ λ̂ĝ2 þ

1

2
ĝ22; ð13Þ

βĝ2;cA¼0 ¼ −ϵĝ2 þ 2λ̂ĝ2 þ
1

3
ĝ22: ð14Þ

The one loop β functions (13) and (14) show no IRFP.
However, it should be noted that the existence of IRFP
and hence the possibility of the continuous transition in
Uð2Þ ×Uð2Þ LSM is reported in Refs. [21,22] employing
different approaches.

IV. RG FLOW FOR FINITE cA

We now turn to the UAð1Þ broken theory (5) with a finite
and positive cA. The explicit one loop calculation yields

βλ̂ ¼ −ϵλ̂þ 2λ̂2

þ 1

6
fðμ̂Þð4λ̂2 þ 6λ̂ĝ2 þ 3ĝ22 − 8λ̂ ẑ−6ĝ2ẑþ 4ẑ2Þ;

ð15Þ

βĝ2 ¼ −ϵĝ2 þ
1

3
λ̂ĝ2 þ

1

3
fðμ̂Þĝ2ðλ̂ − 2x̂Þ

þ 1

3
hðμ̂Þĝ2ð4λ̂þ ĝ2 − 4ẑÞ; ð16Þ

βx̂¼−ϵx̂þ4fðμ̂Þðλ̂ x̂−x̂2Þ

þ 1

12
ð1−fðμ̂ÞÞð8λ̂2−6λ̂ĝ2−3ĝ22þ8λ̂ ẑþ6ĝ2ẑ−4ẑ2Þ;

ð17Þ

βẑ ¼ −ϵẑþ 1

2
ð2λ̂2 − λ̂ĝ2 þ 2λ̂ ẑÞ

−
1

6
hðμ̂Þð4λ̂2 þ 3ĝ22 − 8λ̂ ẑþ4ẑ2Þ

þ 1

6
fðμ̂Þð−2λ̂2 þ 3λ̂ĝ2 þ 3ĝ22 − 2λ̂ ẑ− 6ĝ2ẑ

þ 12λ̂ x̂þ6ĝ2x − 12x̂ ẑþ4ẑ2Þ; ð18Þ

where μ̂ ¼ μ=
ffiffiffiffiffi
cA

p
and

fðμ̂Þ ¼ 1 −
4

μ̂
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ μ̂2

p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̂2

4þ μ̂2

s
;

hðμ̂Þ ¼ 1 −
1

μ̂2
ln½1þ μ̂2�: ð19Þ

For small μ̂ these functions take the asymptotic forms,

fðμ̂Þ ¼ μ̂2

3
þOðμ̂4Þ; hðμ̂Þ ¼ μ̂2

2
þOðμ̂4Þ; ð20Þ

and for large μ̂,

lim
μ̂→∞

fðμ̂Þ ¼ lim
μ̂→∞

hðμ̂Þ ¼ 1: ð21Þ

Thus, for infinitely large cA (or μ̂ → 0 with μ fixed), βλ̂
[Eq. (15)] reduces to βλ̂;cA¼∞ [Eq. (12)] as expected. On the
other hand, in the cA → 0 limit (or μ̂ → ∞with μ fixed), the
β functions Eqs. (15)–(18) agree with those in Ref. [37],
where the calculation is done with cA ¼ 0 in the mass
independent scheme. Note that the first term in each of
Eqs. (15)–(18) comes from the mass dimension of the
original dimensionful quartic couplings. Because of this,
the dimensionless couplings behave like 1=μ at the
tree level.
With the dimensional regularization, the wave function

renormalizations for ϕ and χ do not receive corrections at
the one-loop. We take the on-shell scheme in the renorm-
alization of two-point functions. Thus,

ffiffiffiffiffi
cA

p
is defined to

be the pole mass of χa and does not depend on the
renormalization scale.
Two side remarks related to discrete symmetries are

below. Even if we set the mass of χa to zero (cA ¼ 0) at tree
level, it would potentially receive radiative corrections
unless x is also zero and Z2 symmetry is present. But
the associated counterterms allow us to keep the renor-
malized cA to zero.3See also Ref. [10].
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Another remark is that ŷ ¼ 0 at a certain scale can be
kept at the different scale only if Z2 symmetry is preserved,
i.e., both cA and x̂ are zero. We can explicitly check this in
the β functions (15)–(18). These features are not affected by
higher orders of the perturbation series.
The β functions in (15)–(18) indicate no stable IRFP.

Figure 1 shows an example of the RG flow in the UAð1Þ
broken LSM with ϵ ¼ 1, where the flow is projected on to
the λ̂-ĝ2 plane for clarity. In this example, x̂ and ẑ are set to
zero everywhere. The direction of the flow at each point
is indicated by the arrow. It turns out that at a region far
from the line along λ̂ ¼ 1=2 the flow depends on μ2=cA
only weakly while it is drastically changed in the vicinity of
the line for ĝ2 > 0.

To see other aspects of the RG flow, the flow is
calculated for two initial conditions, ðλ̂ðΛÞ; ĝ2ðΛÞ; x̂ðΛÞ;
ẑðΛÞÞ ¼ ð0.25; 0.25; 0; 0Þ and (0.75, 0.25, 0, 0) with
varying cA=Λ2. Figure 2 shows the result projected onto
the λ̂-ĝ2 plane, where the flows are classified into two types:
one approaching λ̂ ¼ 1=2 (solid curves) and the other going
λ̂ ¼ −∞ (dashed curves). In the latter case (dashed curves),
ĝ2 also diverges, i.e., not approaching some finite value,
and then one usually expects first order phase transition.
In the former case (solid curves), the flow never reaches

an IRFP because it does not exist, at least, at this order, but
projecting it onto the λ̂-axis, it appears to reach the IRFP,
λ̂ ¼ ϵ=2. In the infrared limit, μ2=cA becomes arbitrary
small as long as cA is finite. Then χ would be effectively

-1

-0.5

 0

 0.5

 1

-0.5  0  0.5  1  1.5

ĝ 2

λ̂

μ2/cA=0.01,x̂=0,ẑ=0

-1

-0.5

 0

 0.5

 1

-0.5  0  0.5  1  1.5

ĝ 2

λ̂

μ2/cA=100,x̂=0,ẑ=0

FIG. 1 (color online). The RG flow of the couplings in the UAð1Þ broken LSM (5) projected on to the λ̂-ĝ2 plane. μ2=cA is 0.01 (left)
and 100 (right). The length of arrow does not represent the velocity of the flow. The solid lines show the stability bound obtained at the
tree level analysis of the effective potential for the Uð2Þ × Uð2Þ LSM [38]. The dashed and dotted lines are just to guide the eyes.

FIG. 2 (color online). The RG flow of the couplings in the UAð1Þ broken LSM (5) on the λ̂-ĝ2 plane. Two initial conditions are chosen
to be ðλ̂ðΛÞ; ĝ2ðΛÞ; x̂ðΛÞ; ẑðΛÞÞ ¼ ð0.25; 0.25; 0; 0Þ and cA=Λ2 ¼ ð 1

2nþ1
Þ2 (left), and (0.75, 0.25, 0, 0) and cA=Λ2 ¼ ð 1

10ð2nþ1ÞÞ2 (right), as
an example, where n ¼ 0;…; 10. The IRFP of Uð2Þ ×Uð2Þ LSM reported in Ref. [21] is plotted at ðλ̂; ĝ2Þ∼ð0.0048; 0.073Þ (cross) as a
reference.
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seen as a very massive field and decoupled from the system.
Actually, λ̂ ¼ ϵ=2 is the IRFP of Oð4Þ LSM (7), which
seems to support our interpretation that the UAð1Þ broken
theory (5) is reduced to the Oð4Þ LSM in the IR limit via
the decoupling of χ. This point is further discussed in
the Sec. VI.
When approaching the Oð4Þ fixed point, ĝ2ðμÞ and ẑðμÞ

diverge as we will see below, but the terms including those
couplings in βλ̂ asymptotically vanish due to the suppres-
sion of fðμ̂Þ [see Eq. (20)]. It means that although the
couplings connecting ϕ and χ diverge the perturbative
expansion of βλ̂ is still sensible as long as this suppres-
sion works.
It is interesting to note that the approaching rate to

λ̂ ¼ ϵ=2 differs from that in the ordinaryOð4Þ LSM model.
In order to see this, we substitute λ ¼ ϵ=2 into βĝ2 , βẑ and
βx̂, and pick up the dominant terms in the μ → 0 limit to
obtain

βĝ2 ≈ −
5

6
ϵĝ2; ð22Þ

βx̂ ≈ −ϵx̂þ 1

12
ð−3ĝ22 þ 6ĝ2ẑ − 4ẑ2Þ; ð23Þ

βẑ ≈ −
1

2
ϵẑ −

1

4
ϵĝ2; ð24Þ

where we have assumed that in the μ → 0 limit the terms
proportional to fðμ̂Þ and hðμ̂Þ are smaller than the other
terms. Equation (22) is easily solved, and the others too
by expressing the couplings as ẑðμÞ ∼ μa and x̂ðμÞ ∼ μb

with unknown constants a and b. Then, the asymptotic
behaviors of ĝ2ðμÞ, x̂ðμÞ, and ẑðμÞ in the vicinity of λ̂ ¼ ϵ=2
are found to be related to each other as

ĝ2;asymðμÞ ¼ lim
μ→0

ĝ2ðμÞ ¼ c

�
μffiffiffiffiffi
cA

p
�

−5ϵ=6
; ð25Þ

x̂asymðμÞ ¼ lim
μ→0

x̂ðμÞ ¼ 3

32
ĝ22;asymðμÞ; ð26Þ

ẑasymðμÞ ¼ lim
μ→0

ẑðμÞ ¼ 3

4
ĝ2;asymðμÞ; ð27Þ

where the constant c depends on the initial condition. This
behavior is consistent with the assumption above and
confirmed in the numerical calculation as shown in Fig. 3.
Substituting λ̂ ¼ 1=2þ α and the asymptotic behavior

Eqs. (25)–(27) into Eq. (15), we obtain

μ
dα
dμ

≈ αþ c2

24
μ̂2−

5ϵ
3 ; ð28Þ

Then, as μ → 0, λ̂ behaves like

λ̂asym ¼ ϵ

2
−

c2

8ð5ϵ − 3Þ μ̂
2−5ϵ

3 : ð29Þ

The approaching rate in this case turns out to be ∼μ1=3 for
ϵ ¼ 1 while in ordinary Oð4Þ LSM (7) it is linear in μ. It is
also interesting to note that λ̂ always approaches 1=2 from
below as demonstrated in Fig. 3. This is not the case in the
ordinary Oð4Þ LSM. The origin of the discrepancy in the
approaching rate is addressed in Sec. VI.

V. ATTRACTIVE BASIN

Next, we present the attractive basin flowing into the
Oð4Þ fixed point. We survey the initial coupling space on
the (λ̂ðΛÞ, ĝ2ðΛÞ) plane with two values of cA=Λ2 ¼ 1 and
0.01, shown in Figs. 4 and 5, respectively. The attractive
basin is represented by the hatched area. x̂ðΛÞ and ẑðΛÞ are
also varied as shown in the figures. It is seen that the
attractive basin shrinks especially in the ĝ2 direction as
cA=Λ2 decreases and is not very sensitive to x̂ðΛÞ and ẑðΛÞ,
unless x̂ðΛÞ > 0 and ẑðΛÞ < 0, in the region we studied.
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FIG. 3 (color online). The μ dependence of the couplings is shown for two different initial conditions. Each coupling is normalized by
its asymptotic behavior shown in Eqs. (25)–(27) and (29). The initial conditions are ðλ̂ðΛÞ; ĝ2ðΛÞ; x̂ðΛÞ; ẑðΛÞÞ ¼ ð0.25; 0.25; 0; 0Þ and
cA=Λ2 ¼ 1 (left), and (0.75, 0.25, 0, 0) and cA=Λ2 ¼ 0.01 (right). The constant c in Eq. (25) is 0.2613774 and 0.4201792, respectively.
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Here let us assume that Λ is the cutoff scale below which
the UAð1Þ broken LSM well describes massless two-flavor
QCD and that the size of cA is much smaller than Λ. Then,
in order for the UAð1Þ broken LSM to undergo second
order phase transition via the Oð4Þ fixed point, the initial
condition, especially ĝ2ðΛÞ, has to be suitably tuned.

VI. DECOUPLING

In this section, the decoupling theorem [29,30] is
revisited in this system. The theorem states that with a
few exceptions [31,39] the existence of heavy particles is

unknowable in low energy experiments as long as the
momentum scale is much smaller than the heavy particles’
mass. If the theorem holds in the present case, any n-point
Green’s functions consisting only of ϕa in the UAð1Þ
broken LSM should agree with those in the ordinary
Oð4Þ LSM in the infrared limit. Thus, even if λ̂ approaches
the IRFP of the Oð4Þ LSM and the UAð1Þ broken
LSM appears to reduce to the Oð4Þ LSM, the observed
discrepancy in the approaching rate indicates that the
decoupling theorem does not hold in the UAð1Þ bro-
ken LSM.

FIG. 4 (color online). The attractive basin in the ðλ̂ðΛÞ; ĝ2ðΛÞÞ plane (hatched area) is shown, where x̂ðΛÞ and ẑðΛÞ are varied from −1
to 1 as indicated. cA=Λ2 ¼ 1.
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To see this more explicitly, we calculate the four-point
Green’s function of ϕa in the ordinary Oð4Þ and the UAð1Þ
broken LSM. In each LSM, the calculation is done with two
renormalization schemes, one being the symmetric scheme
defined in (8)–(11) and another being the M̄S scheme, to
examine the scheme dependence. The external momenta are
set to s ¼ t ¼ u ¼ P2. Since we consider the case where P2

is extremely small, the RG improvement is carried out.

A. Ordinary Oð4Þ LSM
First, we present the four-point function,Gð4Þ

Oð4Þðfpig; λ̂;μÞ,
in the ordinary Oð4Þ LSM, (7). Calculating it to one loop,

and performing the RG improvement, which is described in
the next subsection in detail, one obtains

Gð4Þ
Oð4Þðfpig; λ̂; μÞ ¼

�
Π4

1

−1
p2
i

�
4

PϵGð4Þ
Oð4Þðλ̄Þ; ð30Þ

where

Gð4Þ;sym
Oð4Þ ðλ̄Þ ¼ −

8

3
π2λ̄; Gð4ÞMS

Oð4Þ ðλ̄Þ ¼ −
8

3
π2ðλ̄ − 2λ̄2Þ;

ð31Þ
for symmetric and MS scheme, respectively, and λ̄ðPÞ
satisfies

FIG. 5 (color online). The same plot as Fig. 4 but for cA=Λ2 ¼ 0.01. x̂ðΛÞ and ẑðΛÞ are varied from −0.3 to 0.3.
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dλ̄ðPÞ
d ln½P=μ� ¼ −ϵλ̄þ 2λ̄2; ð32Þ

independently of the scheme at this order. Then, the
asymptotic behavior of the coupling in P → 0 is given by

λ̄ðP → 0Þ → ϵ

2
þ c0

�
P
μ

�
ϵ

ð33Þ

with unknown constant c0, and hence those of the four-
point function

Gð4Þsym
Oð4Þ ðP → 0Þ → −

8

3
π2
�
ϵ

2
þ c0

�
P
μ

�
ϵ
�
; ð34Þ

Gð4ÞMS
Oð4Þ ðP → 0Þ → −

8

3
π2
�
ϵ

2
−
ϵ2

2
þ c0

�
P
μ

�
ϵ
�
; ð35Þ

are obtained.4 Therefore, at the one loop, the approaching
rate of the four-point function of ϕa to its asymptotic value
is Pϵ and independent of renormalization scheme.

B. UAð1Þ broken LSM with symmetric scheme

Next, we calculate the four-point function in the UAð1Þ
broken LSM, renormalized with the conditions (8)–(11).
In the following, the couplings are, for convenience,
rewritten as

λ1 ¼
π2

3
λ; λ2 ¼

π2

3
ðλ − 2xÞ;

λ3 ¼
2

3
π2ðλþ g2 − zÞ; λ4 ¼ −

2

3
π2g2;

and ρ ¼ cA=μ2 is introduced. To one loop, the four-point
function is given by

Gð4Þ;sym
1 ðfpig; fλ̂ig; ρ; μÞ
¼ h0jϕ1ðp1Þϕ1ðp2Þϕ2ðp3Þϕ2ðp4Þj0i

¼
�
Π4

i¼1

−1
p2
i

�
μϵgð4Þ;sym1 ðP=μ; fλ̂ig; ρÞ; ð36Þ

where the dimensionless function gð4Þ;sym1 ðP=μ; fλ̂ig; ρÞ is

gð4Þ;sym1 ðP=μ; fλ̂ig; ρÞ ¼ −8λ̂1 −
1

π2

Z
1

0

dξf24λ̂12 ln½P2=μ2� þ 22λ̂1
2ðln½P2=μ2� þ ln½P2=μ2�Þ

þ ðλ̂3λ̂4 þ 2λ̂23Þ ln½fρþ ξð1 − ξÞP2=μ2g=fρþ ξð1 − ξÞg�
þ 2−2λ̂24ðln½fρþ ξð1 − ξÞP2=μ2g=fρþ ξð1 − ξÞg� þ ln½fρþ ξð1 − ξÞP2=μ2g=fρþ ξð1 − ξÞg�Þg:

ð37Þ
From the RG equation, �

μ
∂
∂μþ

X
i

βi
∂
∂λ̂i þ βρ

∂
∂ρþ 4γϕ

�
Gð4Þ;symðfpig; fλ̂ig; ρ; μÞ ¼ 0; ð38Þ

that for gð4Þ;sym1 ðP=μ; fλ̂ig; ρÞ is obtained as� ∂
∂ ln½P=μ� −

X
i

βiðfλ̂ig; ρÞ
∂
∂λ̂i − βρðfλ̂ig; ρÞ

∂
∂ρ − 4γϕðfλ̂ig; ρÞ − ϵ

�
gð4Þ;sym1 ðP=μ; fλ̂ig; ρÞ ¼ 0; ð39Þ

where the derivative with regard to μ is altered to that of P=μ. Using the fact that γϕ ¼ 0 at the one loop, the solution is
given by

gð4Þ;sym1 ðP=μ; fλ̂ig; ρÞ ¼ Gð4Þ;sym
1 ðfλ̄iðPÞg; ρ̄ðPÞÞ exp

�
ϵ

Z
ln½P=μ�

0

d ln½P0=μ�
�

¼
�
P
μ

�
ϵ

Gð4Þ;sym
1 ðfλ̄iðPÞg; ρ̄ðPÞÞ; ð40Þ

where λ̄i and ρ̄ satisfy

d
d ln½P=μ� λ̄iðPÞ ¼ βiðfλ̄ig; ρ̄Þ;

d
d ln½P=μ� ρ̄ðPÞ ¼ −2ρ̄ðPÞ; ð41Þ

4The Oðϵ2Þ term in (35) is subject to the next to leading order.
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and the boundary conditions are set by

λ̄iðP¼μÞ¼ λ̂iðμÞ; ρ̄ðP¼μÞ¼ρ¼cA=μ2: ð42Þ
Then, we obtain, as the RG improved one,

Gð4Þ;sym
1 ðλ̄i; ρ̄Þ ¼ −

8

3
π2λ̄ðPÞ: ð43Þ

From the asymptotic behavior of λ̄ðP → 0Þ, the asymp-
totic behavior of the four-point function in P → 0 is found
to be

Gð4Þ;sym
1 ðfλ̄ig; ρ̄Þ → −

8

3
π2
�
1

2
− k

�
P
μ

�
2−5ϵ=3

�
; ð44Þ

with a constant k. Thus, in this scheme the asymptotic
behavior of the four-point function is that of λ̄ðPÞ as it
should be.

C. UAð1Þ broken LSM with MS scheme

To check the scheme dependence of the infrared behav-
ior of the four-point function, the calculation is repeated in
MS scheme. β functions in this scheme is easily obtained
from (15)–(18) by putting fðμ̂Þ ¼ 1 and hðμ̂Þ ¼ 1. Thus, β
functions do not contain any information on the decoupling
by definition. In this subsection, the couplings are defined
in the MS scheme except for ρ, unless otherwise stated.
Following the same procedure in Sec. VI B, we obtain, as
the RG improved one,

Gð4ÞM̄S
1 ðfλ̄ig; ρ̄Þ

¼−
8

3
π2
�
λ̄−2λ̄2þ1

6
ð4λ̄2þ6λ̄ḡ2þ3ḡ22−8λ̄ z̄−6ḡ2z̄þ4z̄2Þ

×
1

2

Z
1

0

dx ln½ρ̄þxð1−xÞ�
�
: ð45Þ

In contrast to the symmetric scheme, the χ mass (ρ̄)
dependence appears here.

Since we are interested in the P dependence of Gð4ÞM̄S
1 ,

we differentiate it with regard to lnðP=μÞ. Neglecting
higher order terms, it yields

dGð4ÞM̄S
1 ðfλ̄ig; ρ̄Þ
d ln½P=μ�

¼ −
8

3
π2
�

d
d ln½P=μ� λ̄

þ 1

6
ð4λ̄2 þ 6λ̄ḡ2 þ 3ḡ22 − 8λ̄ z̄−6ḡ2z̄þ 4z̄2Þ

×
1

2

dρ̄
d ln½P=μ�

∂
∂ρ̄

Z
1

0

dx ln½ρ̄þ xð1 − xÞ�
�
: ð46Þ

Now, using the following,

∂
∂ρ̄

Z
1

0

dx ln½ρ̄þ xð1 − xÞ� ¼ 1

ρ̄
ð1 − fð1=ρ̄ÞÞ:

ð47Þ

d
d ln½P=μ� λ̄ ¼ −ϵλ̄þ 8

3
λ̄2 þ λ̄ḡ2 þ

1

2
ḡ22 −

4

3
λ̄ z̄−ḡ2z̄þ

2

3
z̄2;

ð48Þ

we obtain

dGð4ÞMS
1 ðfλ̄ig; ρ̄Þ
d ln½P=μ�

¼ −
8

3
π2
�
−ϵλ̄þ 2λ̄2 þ 1

6
fð1=ρ̄Þ

× ð4λ̄2 þ 6λ̄ḡ2 þ 3ḡ22 − 8λ̄ z̄−6ḡ2z̄þ 4z̄2Þ
�

¼ dGð4Þsym
1 ðfλ̄ig; ρ̄Þ
d ln½P=μ� : ð49Þ

The last line holds because ϵ is counted as the same order as
the couplings. Thus, it is confirmed that the P dependence
of the four-point function agrees between two schemes.

D. Reason for the different approaching rate

Here let us explore reasons for the different approaching
rate. The reason seems to be simply originating from the
fact that the quartic couplings describing interactions
between the light ϕa and heavy χb fields have a mass
dimension in three dimensional theory.
The contribution of massive fields (χb) with a mass

M to a renormalized Green’s function of light fields (ϕ) at
external momentum P will take the form of ĝ2ðPÞP2=M2

when P2=M2 ≪ 1, where ĝ represents a generic dimen-
sionless quartic coupling and is related to the coupling
in Lagrangian as g ¼ μϵĝ. This is indeed seen in Eq. (45),
if one expands the logarithmic term assuming 1=ρ̄ðPÞ ¼
P2=cA ≪ 1.
If D ¼ 4 (or ϵ ¼ 0), ĝ2ðPÞP2=M2 will vanish as P2 → 0

because ĝ2ðPÞ depends on P, at most, logarithmically, but
when D ¼ 3 (or ϵ ¼ 1), it does not in general because the
factor P2 can be compensated by ĝ2ðPÞ, which behaves
∼1=P2 at the tree level. Thus, in general, the decoupling
theorem does not hold when a coupling has a mass
dimension. The same conclusion is reported in Ref. [31],
where nondecoupling effects of the scalar cubic interaction
in 3þ 1 dimensions is studied.
Another and more important reason is below. Usually,

the approaching rate is argued in terms of more familiar
quantity, ω, defined by
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ω ¼ dβλ̂
dλ̂

				
λ̂¼λ̂IRFP

; ð50Þ

which is one of the universal exponents. The above results
yield

ωOð4Þ ¼ ϵ and ωUAð1Þbroken ¼ 2 − 5ϵ=3; ð51Þ

for the Oð4Þ and the UAð1Þ broken LSM, respectively.
According to the general argument of renormalization

group, ω is determined by the RG dimension of the leading
irrelevant operator in a model under consideration. While
ðϕa

2Þ2 is the one in the Oð4Þ LSM, it is not evident in the
UAð1Þ broken LSM but should not be the same as the Oð4Þ
LSM because ωOð4Þ ≠ ωUAð1Þbroken.
One possible candidate is ðϕaχaÞ2, which should become

eventually irrelevant since its effects to the low energy
behavior are expected to vanish as χa decouples from
the system. Since the coefficient of ðϕaχaÞ2 term is ĝ2,
we calculate ω with ĝ2 ¼ 0 as a trial and obtain ωĝ2¼0 ¼
ωOð4Þ ¼ ϵ. Then, it is concluded from this observation that
the operator ðϕaχaÞ2 effectively plays a role of the leading
irrelevant operator in the UAð1Þ broken LSM. Therefore,
the UAð1Þ broken LSM is the system which is invariant
underOð4Þ rotation for ϕa in the IR limit, but does not obey
the Oð4Þ scaling.
It is important to notice that our study suggests a novel

possibility for the nature of chiral phase transition of two-
flavor QCD. Currently, three possibilities remains: (i) first
order, (ii) second order with the Oð4Þ scaling, (iii) second
order with the Uð2Þ ×Uð2Þ scaling. We suggest a new one:
(iv) second order with, say, the UAð1Þ broken scaling.

VII. SUMMARY AND OUTLOOK

The nature of the chiral phase transition of massless two-
flavor QCD depends on the fate of UAð1Þ symmetry at the
critical temperature. Two extreme cases with infinitely
large and vanishing UAð1Þ breaking have been well studied

relying on effective theories and seem to have their
respective IRFP although the latter is not settled yet. We
have studied the case with a finite UAð1Þ breaking.
The RG flow of Uð2Þ ×Uð2Þ LSM with a finite UAð1Þ

breaking is investigated in the ϵ expansion. It turns out that
if the couplings start from a certain region, i.e., attractive
basin, one of the couplings flows into the same fixed point
as the one in Oð4Þ LSM although the approaching rate is
different from the Oð4Þ case. The interpretation of this is
that the UAð1Þ broken LSM approaches the Oð4Þ LSM in
the IR limit via the decoupling of the massive fields.
The attractive basin flowing into the Oð4Þ fixed point

shrinks as cA decreases. Thus, for smaller cA, the phase
transition of massless two flavor QCD favors the first order
phase transition more than the second.
The observed discrepancy in the approaching rate is

caused by the nondecoupling effect. In other words, the
decoupling rate of the massive fields is slower than the
approaching rate in the standard Oð4Þ LSM, and it
effectively changes the RG dimension of the leading
irrelevant operator through ðϕaχaÞ2. In order to establish
the nondecoupling, it is clearly interesting to calculate the
other critical exponents and compare with those of the
Oð4Þ LSM.
The existence of an IRFP just satisfies a necessary

condition for second order phase transition. The phase
transition can be more clearly investigated by calculating
the effective potential. Such a study is ongoing [40].
The analysis here consists of simple one-loop calcula-

tions, and hence the results are neither quantitative nor
conclusive. Nevertheless, we believe that this simple
analysis is still useful to explore possible scenarios and
offers a good starting point for further study.
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