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We investigate the quark Wigner distributions in a light-cone spectator model. The Wigner distribution,
as a quasidistribution function, provides the most general one-parton information in a hadron. Combining
the polarization configurations, unpolarized, longitudinal polarized, or transversal polarized, of the quark
and the proton, we can define 16 independent Wigner distributions at leading twist. We calculate all these
Wigner distributions for the u quark and the d quark, respectively. In our calculation, both the scalar and the
axial-vector spectators are included, and the Melosh–Wigner rotation effects for both the quark and the
axial-vector spectator are taken into account. The results provide us a very rich picture of the quark
structure in the proton.
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I. INTRODUCTION

One of the main goals of particle physics is to unravel the
quark and gluon structure of hadrons, which are funda-
mentally described by QCD in the framework of the Yang–
Mills gauge theory. Because of the nonperturbative nature
of the QCD at the hadron scale, it is almost impossible to
calculate all the properties of hadrons directly from the
QCD at present. Though the Euclidean lattice method
provides a first-principle numerical simulation [1], it is
challenged by the enormous computational complexity and
the unavoidable multihadron thresholds [2]. The Dyson–
Schwinger equation method also leads to important insights
on the nonperturbative properties of QCD [3]. Besides, the
remarkable connection between the quantum gauge field
theory in four dimensions and the classical gravity theory in
five dimensions, developed in last 15 years and known as
the holographic dual, sheds light on the confinement
dynamics in QCD [4].
The parton model formulated by Feynman and formal-

ized by Bjorken and Paschos [5,6] has proved successful in
explaining the high-energy hadronic scattering experi-
ments. Based on the partonic picture and factorization
theorem [7], a general process independent function,
referred to as the parton distribution function, is defined
to describe the light-cone longitudinal momentum
fractions carried by the partons in a nucleon, and it is a
powerful tool on data analyses of high-energy hadronic
scattering experiments. With the development of the
polarization techniques, one is able to obtain spin related
partonic information in the nucleon from the helicity and
transversity. To describe the three-dimensional structure of
the nucleon, the transverse momentum dependent parton

distributions (TMDs) [8] and the generalized parton dis-
tributions (GPDs) [9] are introduced and proven to be
useful tools. The TMD contains three-dimensional momen-
tum distributions of the partons, while the GPD contains
longitudinal momentum and two-dimensional transverse
coordinates of the partons through the impact parameter
dependent densities (IPDs).
As a further generalization, the Wigner distributions are

defined as position-momentum joint distributions to under-
stand the partonic structure of the nucleon. The Wigner
distribution is a kind of phase-space distribution that
contains the most general one-parton information in a
nucleon. In fact, it is not a new concept and has been
widely applied in many physical areas, such as the quantum
information, quantum molecular dynamics, optics, non-
linear dynamics, and so on [10] and is even directly
measurable in some experiments [11]. The Wigner distri-
bution was first explored in QCD as a six-dimensional
(three positions and three momentums) function [12,13], in
which the relativistic effects were neglected. Then, a
five-dimensional (two transverse positions and three
momentums) Wigner distribution [14] was proposed in
the light-cone formalism or in the infinite momentum
frame, where the parton language is well defined. The
simple QCD vacuum structure in the light-cone form
allows an unambiguous definition of the constituents of
a hadron [15]. The five-dimensional Wigner distributions
will reduce to the TMDs and IPDs, when the transverse
coordinates or the transverse momentums are integrated.
Thus, possible relations between the TMDs and GPDs may
be established via the Wigner distributions. Unlike the
TMDs and the IPDs, the Wigner distributions do not have
probability interpretations because of the Heisenberg
uncertainty principle in quantum theories [16], but at twist
2, they can be expressed in terms of light-cone wave*mabq@pku.edu.cn
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functions, and the semiclassical interpretations are still
possible [14].
In this paper, we focus on quark Wigner distributions in

the proton. With the combination of the polarization
configurations (unpolarized or polarized along three spatial
directions) of the quark and the proton, 16 Wigner
distributions are defined at the leading twist. We investigate
all these Wigner distributions in a light-cone spectator
model. Both the scalar and the axial-vector spectators are
included, and the axial-vector one is necessary for flavor
separation. This model is proven successful in calculating
the structure functions [17]. With the Melosh–Wigner
rotation effect [18] taken into account, this kind of models
has been applied to investigate many physical quantities,
such as quark unpolarized, helicity, and transversity dis-
tributions [19,20]; form factors [21]; TMDs [22–25]; and
GPDs [26,27], and the results are comparable with experi-
ments. Therefore, the investigation of the Wigner distribu-
tions in such a simple model may still provide us some
valuable information to help us understand the structure of
the nucleon. The paper is organized as follows. We briefly

review the light-cone spectator model in Sec. II, and then
calculate theWigner distributions in Sec. III. The numerical
results are shown in Sec. IV including discussions. A
summary is drawn in the last section.

II. LIGHT-CONE SPECTATOR MODEL

The proton is an eigenstate of the light-cone Hamiltonian
HLC ¼ PþP− − P2⊥, and the eigenvalue is the invariant mass
square. In the light-cone (or front) form relativistic dynamics
[28], the fields are quantized at fixed light-cone time
τ ¼ tþ z instead of the ordinary time t in the instant form.
The light-cone longitudinal momentum kþ ¼ k0 þ k3 of any
massive particle is restricted to be positive definite, and thus
the Fock space vacuum state j0i, i.e., the free vacuum, is
exactly the QCD vacuum, if the possibility of the color-
singlet states built on massless gluon quanta with zero
momentum is ignored [15]. Therefore, one may have an
unambiguous definition of the constituents of the hadron.
Then, the proton state can be expanded on the complete basis
of free multiparticle Fock states as

jΨ∶Pþ;P⊥; Szi ¼
X
n;fλig

YN
i¼1

Z
dxid2k⊥i

2
ffiffiffiffi
xi

p ð2πÞ3 ð16π
3Þδ

�
1 −

XN
j¼1

xj

�
δð2Þ

�XN
j¼1

k⊥j

�

× ψnðfxjg; fk⊥jg; fλjgÞjn∶fxiPþg; fxiP⊥ þ k⊥ig; fλigi; ð1Þ

where N is the number of the components in the Fock state
jni, xi ¼ kþi =P

þ is the light-cone longitudinal momentum
fraction carried by the ith component, and k⊥i and λi are its
intrinsic transverse momentum and light-cone helicity.
The projection of the proton state on the Fock state jni
is the so-called light-cone wave function ψn, which is frame
independent.
The proton state is normalized as

hΨ∶P0þ;P0⊥; S0zjΨ∶Pþ;P⊥; Szi
¼ 2Pþð2πÞ3δðPþ − P0þÞδð2ÞðP⊥ − P0⊥ÞδSzS0z ; ð2Þ

and the light-cone wave functions are correspondingly
normalized as

X
n;fλig

YN
i¼1

Z
dxid2k⊥i

2ð2πÞ3 ð16π3Þδ
�
1 −

XN
j¼1

xj

�
δð2Þ

�XN
j¼1

k⊥j

�

× jψnðfxjg; fk⊥jg; fλjgÞj2 ¼ 1: ð3Þ

The one-particle Fock state is defined as jpi ¼ffiffiffiffiffiffiffiffiffi
2pþp

a†ðpÞj0i with the commutation or anticommutation
relations,

½aðpÞ; a†ðp0Þ� ¼ fbðpÞ; b†ðp0Þg
¼ ð2πÞ3δðpþ − p0þÞδð2Þðp⊥ − p0⊥Þ; ð4Þ

where the aðpÞ, a†ðpÞ, bðpÞ, and b†ðpÞ are annihilation
and creation operators for bosons and fermions,
respectively.
In the spectator model, the proton is viewed as a struck

quark and a spectator that contains the remaining part of the
proton. Considering the fact that the leading term in the
Fock states expansion for the proton is the valence three-
quark state juudi, we approximately regard the proton state
as a valence quark and a spectator that carries the diquark
quantum numbers, and some nonperturbative effects
between the quarks and gluons in the spectator part from
higher Fock states are effectively absorbed into the mass of
the spectator. This kind of picture has been applied to study
many physical observables and is supported by some light-
front holographic model [29]. However, this picture is
actually simplistic, and some effects cannot be realistically
absorbed into the spectator mass [30]. More realistic
analyses will provide better descriptions of the nucleon
[31,32]. Here, we only adopt this crude model to have some
qualitative results.
Constrained by the quantum numbers of the proton and

the quark, the spectator can only be either a scalar or an
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axial vector, and the latter one is necessary for flavor
separation. Therefore, we express the proton state as

jΨi ¼ sin θϕSjqSi þ cos θϕV jqVi; ð5Þ

where S and V stand for the scalar and the axial-vector
spectators, respectively; ϕS and ϕV are the momentum
space light-cone wave functions; and θ is an angle to
describe the SUð6Þ spin-flavor symmetry breaking. In this
paper, we choose the isospin symmetric case θ ¼ π=4 in
our calculations. This choice is also adopted in the
calculations of helicity and transversity distributions
[19,20], form factors [21], and single-spin asymmetries
[33], and the results therein are comparable with the data.
One might alternatively regard it as a parameter to fit data.
The spin space wave function of the quark-spectator

state is acquired from the SUð6Þ quark model in the instant
form [19]:

jqSi↑=↓ ¼ u↑=↓T SðudÞ;

jqVi↑=↓ ¼ � 1

3
½u↑=↓T V0

TðudÞ −
ffiffiffi
2

p
u↓=↑T V�1

T ðudÞ

− ffiffiffi
2

p
d↑=↓T V0

TðuuÞ þ 2d↓=↑T V�1
T ðuuÞ�: ð6Þ

Then, we transform the instant form spinors to the light-cone
form spinors through the Melosh–Wigner rotation [18],

χ↑T ¼ w½ðkþ þmÞχ↑F − ðk1 þ ik2Þχ↓F�;
χ↓T ¼ w½ðkþ þmÞχ↓F þ ðk1 − ik2Þχ↑F�; ð7Þ

which plays an important role in understanding the “proton
spin puzzle” [34]. The factorw ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþðk0 þmÞ

p
and the

subscripts T and F stand for the instant form and the light-
cone form spinors, respectively. This transformation pro-
cedure is consistent with the results directly derived from the
light-cone field theory [35]. For the spectator, the scalar one
does not transform since it has spin zero, and the axial-vector
one transforms as [36]

Vþ1
T ¼ w2½ðkþ þmÞ2Vþ1

F −
ffiffiffi
2

p
ðkþ þmÞðk1 þ ik2ÞV0

F

þ ðk1 þ ik2Þ2V−1
F �;

V0
T ¼ w2½

ffiffiffi
2

p
ðkþ þmÞðk1 − ik2ÞVþ1

F

þ 2ðkþðk0 þmÞ − ðk1 − ik2Þðk1 þ ik2ÞÞV0
F

−
ffiffiffi
2

p
ðkþ þmÞðk1 þ ik2ÞV−1

F �;
V−1
T ¼ w2½ðk1 − ik2Þ2Vþ1

F þ
ffiffiffi
2

p
ðkþ þmÞðk1 − ik2ÞV0

F

þ ðkþ þmÞ2V−1
F �: ð8Þ

For the momentum space light-cone wave function,
we assume the Brodsky–Huang–Lepage (BHL) prescrip-
tion [37],

ϕDðx; k⊥Þ ¼ AD exp

�
−

1

8β2D

�
m2

q þ k2⊥
x

þm2
D þ k2⊥
1 − x

��
;

ð9Þ

where the subscript D represents the type of the spectator
with S for the scalar one and V for the axial-vector one, mq

and mD are the masses of the quark and the spectator, βD is
the harmonic oscillator scale parameter, and AD is the
normalization factor. We simply adopt m ¼ 330 MeV,
βD ¼ 330 MeV as often adopted in the literature [38–40].
In principle, the spectator masses have a spectrum that
might be extracted from experiments, and some modern
understandings on diquark correlations in the nucleon are
explored in Ref. [41]. Here, for simplicity, we regard them
as parameters and choose the values asmS ¼ 600 MeV and
mV ¼ 800 MeV. Apart from the BHL prescription, some
other forms were proposed in the literature, such as the
Terentev–Karmanov prescription [42], Chung–Coaster–
Polyzou prescription [43], and Vega–Schmidt–Gutsche–
Lyubovitskij prescription [44]. The choice of the
momentum space wave function only affects the results
quantitatively, and the qualitative properties are essentially
determined by the spin structures.

III. QUARK WIGNER DISTRIBUTIONS
IN THE PROTON

The Wigner distribution is a quantum phase-space
distribution first introduced by Wigner in quantum
mechanics [45]. It is in general not positive definite and
has no probability interpretations because of the
Heisenberg uncertainty principle in quantum theories.
Whereas, at certain situation, semiclassical interpretations
are still possible, and thus it can be viewed as a quasidis-
tribution function. Similar to the quark-quark correlation
operator, the Hermitian Wigner operator for quarks at a
fixed light-cone time is defined as [14]

Ŵ½Γ�ðb⊥;k⊥;xÞ

¼1

2

Z
dzþd2z⊥
ð2πÞ3 eik·zψ̄

�
y−

z
2

�
ΓWψ

�
yþ z

2

�				
zþ¼0

; ð10Þ

where y ¼ ð0; 0; b⊥Þ and W is the gauge link Wilson line
connecting the points y − z=2 and yþ z=2 to ensure the
SUð3Þ color gauge invariance of the Wigner operator. The
Γ represents a Dirac γ matrix, and at twist-2, it is γþ, γþγ5,
or iσjþγ5 with j ¼ 1 or 2, corresponding to unpolarized,
longitudinal-polarized, or j-direction transverse-polarized
quarks, respectively. The b⊥ and k⊥ are the intrinsic
transverse position and transverse momentum of the quark.
They are not Fourier conjugate variables as demonstrated in
Ref. [14], but the bj and kj along the same direction are still
protected by the uncertainty principle, since they are not
commutative with each other.
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Interpolating the Wigner operator (10) between the
initial and final proton states with a transverse momentum
Δ⊥ transferred,

ρ½Γ�ðb⊥; k⊥; x; SÞ

¼
Z

d2Δ⊥
ð2πÞ2



Pþ;

Δ⊥
2

; S

				Ŵ½Γ�ðb⊥; k⊥; xÞ
				Pþ;−

Δ⊥
2

; S

�
;

ð11Þ

where S is the spin of the proton state, the five-dimensional
Wigner distribution is defined. Here, the Drell–Yan–West
frame (Δþ ¼ 0) [46], which is widely used in the
calculation of form factors [47], is adopted, and with this
choice, one may have semiclassical probability interpreta-
tions [14]. Including a longitudinal momentum transfer,
one can define a six-dimensional Wigner distribution
ρ½Γ�ðb⊥; ξ; k⊥; x;SÞ but will lose the quasiprobability inter-
pretation. Combining the polarization configurations,
unpolarized (U), longitudinal polarized (L), and transverse
polarized (T), of the proton and the quark, one can define
16 independent twist-2 quark Wigner distributions. They
are the unpolarized Wigner distribution

ρUUðb⊥;k⊥;xÞ¼
1

2
½ρ½γþ�ðb⊥;k⊥;x; êzÞþρ½γþ�ðb⊥;k⊥;x;−êzÞ�;

ð12Þ
the unpolarized-longitudinal Wigner distribution

ρULðb⊥;k⊥;xÞ

¼ 1

2
½ρ½γþγ5�ðb⊥;k⊥;x; êzÞþ ρ½γþγ5�ðb⊥;k⊥; x;−êzÞ�; ð13Þ

the unpolarized-transverse Wigner distribution

ρjUTðb⊥;k⊥;xÞ

¼1

2
½ρ½iσjþγ5�ðb⊥;k⊥;x; êzÞþρ½iσjþγ5�ðb⊥;k⊥;x;−êzÞ�; ð14Þ

the longitudinal-unpolarized Wigner distribution

ρLUðb⊥;k⊥;xÞ¼
1

2
½ρ½γþ�ðb⊥;k⊥;x; êzÞ−ρ½γþ�ðb⊥;k⊥;x;−êzÞ�;

ð15Þ
the longitudinal Wigner distribution

ρLLðb⊥;k⊥; xÞ

¼ 1

2
½ρ½γþγ5�ðb⊥;k⊥;x; êzÞ− ρ½γþγ5�ðb⊥;k⊥;x;−êzÞ�; ð16Þ

the longitudinal-transverse Wigner distribution

ρjLTðb⊥; k⊥; xÞ

¼ 1

2
½ρ½iσjþγ5�ðb⊥; k⊥; x; êzÞ − ρ½iσjþγ5�ðb⊥; k⊥; x;−êzÞ�;

ð17Þ

the transverse-unpolarized Wigner distribution

ρiTUðb⊥; k⊥; xÞ

¼ 1

2
½ρ½γþ�ðb⊥; k⊥; x; êiÞ − ρ½γþ�ðb⊥; k⊥; x;−êiÞ�; ð18Þ

the transverse-longitudinal Wigner distribution

ρiTLðb⊥;k⊥;xÞ

¼ 1

2
½ρ½γþγ5�ðb⊥;k⊥;x; êiÞ−ρ½γþγ5�ðb⊥;k⊥;x;−êiÞ�; ð19Þ

the transverse Wigner distribution

ρTTðb⊥; k⊥; xÞ

¼ 1

2
δij½ρ½iσjþγ5�ðb⊥; k⊥; x; êiÞ − ρ½iσjþγ5�ðb⊥; k⊥; x;−êiÞ�;

ð20Þ
and the pretzelous Wigner distribution

ρ⊥TTðb⊥; k⊥; xÞ

¼ 1

2
ϵij½ρ½iσjþγ5�ðb⊥; k⊥; x; êiÞ − ρ½iσjþγ5�ðb⊥; k⊥; x;−êiÞ�:

ð21Þ
The first subscript stands for the proton polarization, and
the second one stands for the quark polarization. The names
are given by considering the polarization configuration of
the quark, and then a prefix is added to describe the proton
polarization, unless it is parallel polarized with the quark.
The pretzelous Wigner distribution is named after the
pretzelocity TMD to describe the case that both the quark
and the proton are transversely polarized but along two
orthogonal directions.
The Wigner distributions have direct connection with the

generalized parton correlation functions (GPCFs) [48],
which are the fully unintegrated off-diagonal quark-quark
correlator for a nucleon. The generalized transverse
momentum dependent parton distributions (GTMDs) can
be defined by integrating the GPCFs over the light-cone
energy. Then, the Wigner distributions can be regarded as
the transverse Fourier transformation of the GTMDs. Since
all the TMDs and GPDs can be obtained from the GTMDs,
the GTMD is viewed as the so-called mother function.
Therefore, the Wigner distribution is a connection between
the TMDs and IPDs. Since the TMDs and IPDs are in
general independent functions, the relations between them,
if they exist, should be established at the level of Wigner
distributions. Hence, the Wigner distribution is a useful tool
to study the nucleon structure, although there are at present
no clear methods to extract it from experiments.
The Wilson line W that connects the quark fields at two

points y − z=2 and yþ z=2 plays an important role in
understanding the naive time-reversal-odd (T-odd) TMDs
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[49]. The path is process dependent, and a sign change
of quark Sivers and Boer–Mulders functions in the semi-
inclusive deeply inelastic scattering and Drell–Yan proc-
esses is predicted on the basis of this understanding. Here,
we choose a staplelike path for the Wilson line as [48]

y −
z
2
¼

�
0;−

z−

2
; b⊥ −

z⊥
2

�
→

�
0;∞; b⊥ −

z⊥
2

�

→

�
0;∞; b⊥ þ z⊥

2

�
→

�
0;
z−

2
; b⊥ þ z⊥

2

�

¼ yþ z
2

in order to obtain the appropriate Wilson line when taking
the TMD and IPD limits. Although the two segments along

the light-cone direction vanish in the light-cone gauge
Aþ ¼ 0, the transverse segment at the light-cone infinity is
still nontrivial [50]. Here, we take a crude truncation of the
Wilson line at the first order for simplicity, and it reduces to
the unit operator 1. At the leading twist, there are 16
independent GTMDs, which are in general complex-valued
functions, while the Wigner distributions are always real
valued. If separating the real part and the imaginary part of
the GTMDs, one can define 32 real-valued GTMDs, and 16
of them are T even, while the other 16 are T odd. Our
truncation of the Wilson line essentially means to neglect
the T-odd ones, i.e., the contribution from the imaginary
part of the GTMDs.
Quantized at the fixed light-cone time, the quark field

operator in Eq. (10) is expressed as

ψ

�
yþ z

2

�
¼

X
λ

Z
dlþffiffiffiffiffiffiffiffi
2lþp d2l⊥

ð2πÞ3 ½bλðlÞuðl; λÞe
−il·ðyþz

2
Þ þ d†λðlÞvðl; λÞeil·ðyþ

z
2
Þ�; ð22Þ

and similarly for ψ̄ðy − z=2Þ. The twist-2 Wigner operators are expressed as

Ŵ½γþ�ðb⊥; k⊥; xÞ ¼
1

2

Z
dl0þd2l0⊥
ð2πÞ3

Z
dlþd2l⊥
ð2πÞ3

×

�
½b†↑ðl0Þb↑ðlÞ þ b†↓ðl0Þb↓ðlÞ�e−iðl0⊥−l⊥Þ·b⊥δ

�
kþ −

l0þ þ lþ

2

�
δð2Þ

�
k⊥ −

l0⊥ þ l⊥
2

�

− ½d†↑ðlÞd↑ðl0Þ þ d†↓ðlÞd↓ðl0Þ�eiðl0⊥−l⊥Þ·b⊥δ
�
kþ þ l0þ þ lþ

2

�
δð2Þ

�
k⊥ þ l0⊥ þ l⊥

2

��
; ð23Þ

Ŵ½γþγ5�ðb⊥; k⊥; xÞ ¼
1

2

Z
dl0þd2l0⊥
ð2πÞ3

Z
dlþd2l⊥
ð2πÞ3

×
�
½b†↑ðl0Þb↑ðlÞ − b†↓ðl0Þb↓ðlÞ�e−iðl0⊥−l⊥Þ·b⊥δ

�
kþ −

l0þ þ lþ

2

�
δð2Þ

�
k⊥ −

l0⊥ þ l⊥
2

�

þ ½d†↑ðlÞd↑ðl0Þ − d†↓ðlÞd↓ðl0Þ�eiðl0⊥−l⊥Þ·b⊥δ
�
kþ þ l0þ þ lþ

2

�
δð2Þ

�
k⊥ þ l0⊥ þ l⊥

2

��
; ð24Þ

Ŵ½iσ1þγ5�ðb⊥; k⊥; xÞ ¼
1

2

Z
dl0þd2l0⊥
ð2πÞ3

Z
dlþd2l⊥
ð2πÞ3

×

�
½b†↑ðl0Þb↓ðlÞ þ b†↓ðl0Þb↑ðlÞ�e−iðl0⊥−l⊥Þ·b⊥δ

�
kþ −

l0þ þ lþ

2

�
δð2Þ

�
k⊥ −

l0⊥ þ l⊥
2

�

− ½d†↑ðlÞd↓ðl0Þ þ d†↓ðlÞd↑ðl0Þ�eiðl0⊥−l⊥Þ·b⊥δ
�
kþ þ l0þ þ lþ

2

�
δð2Þ

�
k⊥ þ l0⊥ þ l⊥

2

��
; ð25Þ

where we use the Lepage–Brodsky conventions for the properties of the light-cone spinors [51]. In the spectator model, the
proton state in Eq. (11) is expressed as

				Pþ;−
Δ⊥
2

; S

�
¼

X
σ;s

Z
dxq
2

ffiffiffiffiffixqp
d2kq⊥
ð2πÞ3

Z
dxD
2

ffiffiffiffiffiffi
xD

p d2kD⊥
ð2πÞ3 16π3δð1 − xq − xDÞδð2Þðkq⊥ þ kD⊥Þ

× ψS
σsðxq; kq⊥Þ

ffiffiffiffiffiffiffiffi
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where kq⊥ and kD⊥ are the intrinsic transverse momentum
for the quark and the spectator and xq ¼ kþq =Pþ and xD ¼
kþD=P

þ are the light-cone momentum fractions carried by
the quark and the spectator. The arguments for the creation
(annihilation) operators are the frame dependent transverse
momentum in the one-particle Fock state definition,
whereas the light-cone wave function ψS

σsðx; kq⊥Þ, which
describes the amplitude of the quark-spectator state in the
proton, is frame independent and only depends on boost
invariant variables x and kq⊥. The light-cone wave function
can be factored into a spin space part and a momentum
space part. The spin space part is given by the Melosh–
Wigner rotations (7) and (8), and the momentum space part
is given by the BHL prescription (9). Then, sandwiching
the Wigner operators in Eqs. (23)–(25) between the proton
states with different polarization configures, we can obtain
the expressions of all the 16 quark Wigner distributions in
terms of the overlap of light-cone wave functions, as shown
in the Appendix.

IV. NUMERICAL RESULTS AND DISCUSSIONS

TheWigner distribution is a five-dimensional function of
bx, by, kx, ky, and x. As a phase-space distribution, what we
concern ourselves with most is the behavior in the

transverse coordinate and transverse momentum space.
Therefore, we integrate over the light-cone momentum
fraction x and display its behavior in the remaining four
dimensions, i.e., the so-called transverse Wigner distribu-
tions [14]. We plot the Wigner distribution in the transverse
coordinate space with a definite transverse momentum and
in the transverse momentum space with a definite coor-
dinate. Apart from the TMDs and IPDs, which can all be
obtained from the Wigner distributions, one may define the
mixing distributions by integrating over a transverse
coordinate and a transverse momentum along two
perpendicular transverse directions as

~ρΛλðbx; ky; xÞ ¼
Z

dbydkxρΛλðb⊥; k⊥; xÞ; ð27Þ

ρ̄Λλðby; kx; xÞ ¼
Z

dbxdkyρΛλðb⊥; k⊥; xÞ: ð28Þ

Unlike the Wigner distributions, the mixing distributions
are real distribution functions since the remaining variables
are not protected by the uncertainty principle, and they
describe the correlation of quark transverse coordinate and
transverse momentum in orthogonal directions. Both
Wigner distributions and mixing distributions are

FIG. 1 (color online). Unpolarized Wigner distributions ρUU and mixing distributions ~ρUU for the u quark (upper) and the d quark
(lower). The first column is the Wigner distributions in transverse coordinate space with definite transverse momentum
k⊥ ¼ 0.3 GeVêy. The second column is the Wigner distributions in transverse momentum space with definite transverse coordinate
b⊥ ¼ 0.4 fmêy. The third column is the mixing distributions ~ρUU.

TIANBO LIU AND BO-QIANG MA PHYSICAL REVIEW D 91, 034019 (2015)

034019-6



dimensionless quantities in natural units. In this section, we
display the numerical results of quark Wigner distributions
and mixing distributions.

A. Unpolarized proton

In Fig. 1, we plot the unpolarized Wigner distributions
ρUU and mixing distributions ~ρUU. The unpolarized Wigner
distributions represent the transverse phase-space distribu-
tion of the unpolarized quark in an unpolarized proton. Its
behaviors in transverse coordinate space and transverse
momentum space are plotted with fixed transverse momen-
tum and transverse coordinate separately. We denote the
direction of the fixed momentum or the fixed coordinate as
the y direction, since there is no privileged transverse
direction because of the SO(2) symmetry in the transverse
plane. The same case also occurs for ρUL, ρLU, and ρLL for
which neither the quark nor the proton is transverse
polarized.
As general properties, the left (−êx)-right (êx) symmetry

of the unpolarized Wigner distributions is a direct result of
the space symmetry and reflects the fact that the proton
viewed from any direction is the same. This property is also
observed in the mixing distributions in which one may
clearly find the quark has no preference on moving either
clockwise or counterclockwise. It is consistent with our

topological knowledge that any preference must break the
SO(3) symmetry. The up (êy)-down (−êy) symmetry of the
Wigner distributions reflects the nature that the quarks in
the proton is in equilibrium. The two classes of mixing
distributions defined in Eqs. (27) and (28) have a simple
relation,

~ρUUðbx; ky; xÞ ¼ ρ̄UUðby;−kx; xÞ; ð29Þ

and this relation also survives for ~ρUL, ~ρLU, and ~ρLL.
Comparing the behaviors of the u quark and the d quark,

we find in our model that the u quark favors concentrating
in the center relative to the d quark in the coordinate space,
while they have similar spread behaviors in the momentum
space. Though it is a common result to find that the u
concentrates in the center in quark models, this property
does have dependence on the parameters in the model. The
similar behavior in the momentum space is due to the same
choice of the β parameter in the scalar and axial-vector
cases. Besides, as found in some constituent quark model
and chiral quark soliton model [14], the property that the
distributions decrease faster in the y direction than the x
direction is not obvious in our model.
In Fig. 2, we plot the unpolarized-longitudinal Wigner

distributions ρUL and mixing distributions ~ρUL. They

FIG. 2 (color online). Unpolarized-longitudinal Wigner distributions ρUL and mixing distributions ~ρUL for the u quark (upper) and the
d quark (lower). The first column is the Wigner distributions in transverse coordinate space with definite transverse momentum
k⊥ ¼ 0.3 GeV êy. The second column is the Wigner distributions in transverse momentum space with definite transverse coordinate
b⊥ ¼ 0.4 fm êy. The third column is the mixing distributions ~ρUL.
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describe the longitudinal-polarized quark in an unpolarized
proton. This distribution will vanish in either the TMD or
IPD limit, and therefore no general relations at twist 2 are
found between the TMDs or IPDs and the unpolarized-
longitudinal Wigner distributions. Hence, the information
contained in this distribution cannot be observed from the
leading-twist TMDs or IPDs, though some effects might be
found at subleading twist.
Because of the privileged direction defined by the quark

polarization, dipole structures are found in the unpolarized-
longitudinal Wigner distributions, and correspondingly
quadrupole structures appear in the mixing distributions.
Considering the physical interpretations, these distributions
essentially reflect quark spin-orbit correlations. This cor-
relation can be clearly observed from the quadrupole
structure of the unpolarized-longitudinal mixing distribu-
tions, and no correlation case corresponds to vanishing
mixing distributions.
We find in our model that both the u quark and the d

quark have negative spin-orbit correlations. This result has
little dependence on the choice of momentum space wave
functions or the parameters in the model. It is mainly
determined by the spin structures of the quark and the
spectator. However, it is indeed model dependent, and our
result is opposite of that from some constituent quark
model [14]. Therefore, realistic analyses in QCD on this
distribution may help us clarify this issue.
In Fig. 3, we plot the unpolarized-transverse Wigner

distributions ρUT and mixing distributions ρ̄UT. They
describe the transverse-polarized quark in an unpolarized
proton. The SO(2) symmetry in the transverse space is

explicitly broken by the quark polarization direction,
referred to as the x direction.
At the TMD limit, the unpolarized-transverse Wigner

distribution will reduce to the Boer–Mulders function h⊥1 ,
while at the IPD limit, it is related to the ~HT together with
some other distributions, whereas the h⊥1 corresponds to the
T-odd part, while the ~HT corresponds to the T-even part.
Since the T-odd part is neglected in this paper, the results of
ρUT here will vanish at the TMD limit.
As a general property determined by the spin structures,

the unpolarized-transverse Wigner distributions vanish
when the quark intrinsic transverse coordinate is parallel
to the polarization. In other words, quark transverse spin
has no correlation with its parallel transverse coordinate.
Besides, the results displayed here have no dependence on
the direction of quark transverse momentum, but this
behavior may be changed by a nontrivial Wilson line.

B. Longitudinal-polarized proton

In Fig. 4, we plot the longitudinal-unpolarized Wigner
distributions ρLU and mixing distributions ~ρLU. They
describe quark phase-space distributions in a longi-
tudinal-polarized proton without any information of quark
spins. Thus, they are suitable to study quark orbital angular
momentum related issues [52]. Similar to the unpolarized-
longitudinal Wigner distribution, no twist-2 TMDs or IPDs
are related to the longitudinal-unpolarized Wigner distri-
bution. Therefore, it will vanish at the TMD or IPD limit,
and the phase-space behavior in this distribution cannot
generally be extracted from leading-twist TMDs or IPDs.

FIG. 3 (color online). Unpolarized-transverse Wigner distributions ρUT and mixing distributions ρ̄UT for u quark (upper) and d quark
(lower). The first column is the distributions in transverse coordinate space with fixed transverse momentum k⊥ ¼ 0.3 GeV êx parallel
to the quark polarization, and the second column is those with fixed transverse momentum k⊥ ¼ 0.3 GeV êy perpendicular to the quark
polarization. The third column is the distributions in transverse momentum space with fixed transverse coordinate b⊥ ¼ 0.4 fm êy
perpendicular to the quark polarization. The fourth column is the mixing distributions.
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The longitudinal-unpolarized Wigner distributions have
dipole structures, and correspondingly the mixing distri-
butions have quadrupole structures. The preference of
quark orbital motions, clockwise or counterclockwise,
are clearly observed from them. We find in our calculations
that the u quark has positive orbital angular momentum,
while the d quark has negative orbital angular momentum,
but this is model dependent, and the choice of the wave
functions may also change this behavior. In addition, the
sign change of the d quark distribution in a large coordinate
or momentum region is found, as also observed in some
constituent quark model. Comparing the longitudinal-
unpolarized distributions with the unpolarized-longitudinal
distributions, we find in this model that quark orbital
motions have stronger correlation to quark spins than to
nucleon spins. However, this property is not general.
Therefore, more careful investigation on this distribution
is required.
In Fig. 5, we plot the longitudinal Wigner distributions

ρLL and mixing distributions ~ρLL. They describe the
longitudinal-polarized quark in a longitudinal-polarized
proton and correspond to the helicity distributions after
integrating over transverse variables.
In the simple model, we find the u quark is positive

polarized, while the d quark is negative polarized. This is
qualitatively consistent with our knowledge from the axial

charge. In the large transverse momentum region, a sign
change is clearly observed in d quark mixing distribution,
as also found in some constituent quark model. This kind of
sign change is also found in the large longitudinal
momentum region of d quark helicity distributions in
similar models [24]. Besides, it is natural to find that the
quark helicity distributions concentrate on the center in the
phase space, though it is a result of a simplistic model.
In Fig. 6, we plot the longitudinal-transverse Wigner

distributions ρLT and mixing distributions ρ̄LT. They
describe the correlation of the phase-space distribution
with quark transverse spin and proton longitudinal spin. At
the TMD limit, the longitudinal-transverse Wigner distri-
bution will reduce to one worm-gear function, the longi-
tudinal transversity h⊥1L. At the IPD limit, it is related to the
IPDs HT and ~HT together with other distributions. Unlike
the unpolarized-transverse distributions, both the TMD and
the IPDs are related to the T-even part of the longitudinal-
transverse Wigner distribution at certain limits. Thus, it is
possible to build some relation between them, though no
general relations have been found yet.
In the longitudinal-transverse Wigner distribution, the

transverse SO(2) symmetry is explicitly broken by the
transverse polarization direction, which we refer to as the x
direction. With a trivial Wilson line as adopted in this paper,
theWigner distribution as well as the corresponding mixing

FIG. 4 (color online). Longitudinal-unpolarized Wigner distributions ρLU and mixing distributions ~ρLU for the u quark (upper) and d
quark (lower). The first column is the Wigner distributions in transverse coordinate space with definite transverse momentum
k⊥ ¼ 0.3 GeV êy. The second column is the Wigner distributions in transverse momentum space with definite transverse coordinate
b⊥ ¼ 0.4 fm êy. The third column is the mixing distributions ~ρLU.
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FIG. 6 (color online). Longitudinal-transversal Wigner distributions ρLT with fixed k⊥ for the u quark (upper) and the d quark (lower).
The first column is the distributions in transverse coordinate space with fixed transverse momentum k⊥ ¼ 0.3 GeV êx parallel to the
quark polarization. The second column is the distributions in transverse momentum space with fixed transverse coordinate b⊥ ¼
0.4 fm êx parallel to the quark polarization, and the third column is those with fixed transverse coordinate b⊥ ¼ 0.4 fm êy perpendicular
to the quark polarization. The fourth column is the mixing distributions ρ̄LT.

FIG. 5 (color online). Longitudinal Wigner distributions ρLL and mixing distributions ~ρLL for the u quark (upper) and the d quark
(lower). The first column is the Wigner distributions in transverse coordinate space with definite transverse momentum
k⊥ ¼ 0.3 GeV êy. The second column is the Wigner distributions in transverse momentum space with definite transverse coordinate
b⊥ ¼ 0.4 fm êy. The third column is the mixing distributions ~ρLL.
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distribution is vanishing when the quark transverse momen-
tum is perpendicular to the transverse polarization. Careful
examinations including a nontrivial Wilson line may lead to
nonzero values in this situation. In general, this behavior
reflects a strong correlation to the direction of the quark
intrinsic transverse momentum, and in contrast the corre-
lation to the direction of transverse coordinate is weak in
this model.

C. Transverse-polarized proton

In Fig. 7, we plot the transverse-unpolarized Wigner
distributions ρTU and mixing distributions ρ̄TU. They
describe the unpolarized quark in a transverse-polarized
proton and thus represent the correlation of quark trans-
verse distributions and proton transverse spin. A privileged
direction in the transverse plane is determined by the proton
polarization, which is referred to as the x direction.
At the TMD limit, the transverse-unpolarized Wigner

distribution corresponds to a naive T-odd distribution, the
Sivers function f⊥1T . At the IPD limit, it is related to the
IPDs H and E together with other distributions. However,
these two limits select two different parts of the Wigner
distribution. The Sivers TMD corresponds to the T-odd
part, while the IPDs H and E only depend on the T-even
part. Thus, there is no general relation between them if no
further assumptions are applied to connect the T-odd and T-
even parts. However, some relation between the Sivers
function f⊥1T and the GPD E is suggested by some model
calculations [26,53] and also implicated in some experi-
ments [54]. Thus, this kind of connection is not impossible.

In our calculation, since the effect from the Wilson line is
neglected, the vanishing result is obtained at the TMD limit.
Therefore, the nontrivial gauge link plays an important role
in establishing the possible relation between the Sivers
TMD and the GPDs.
Similar to the situation in the unpolarized-transverse

Wigner distribution, the transverse-unpolarized Wigner
distribution is vanishing if quark transverse coordinate is
parallel to the proton polarization. Together with the
behavior of the unpolarized-transverse Wigner distribution,
the quark transverse coordinate has no correlations to either
the quark parallel transverse spin or proton parallel trans-
verse spin. Besides, its behavior has no dependence on the
direction of quark transverse momentum, but a nontrivial
Wilson line may change this property.
In Figs. 8, we plot the transverse-longitudinal Wigner

distributions ρTL and mixing distributions ρ̄TL. They
describe the longitudinal-polarized quark in a transverse-
polarized proton. At the TMD limit, the transverse-
longitudinal Wigner distribution will reduce to the other
worm-gear function, the transverse-helicity g1L. At the IPD
limit, it is related to the IPDs ~H and ~E together with other
distributions. Both of the transverse-helicity TMD g1L and
the IPDs ~H and ~E only depend on the T-even part of the
transverse-longitudinal distribution. Thus, it is possible to
establish some relations between them. Besides, the T-odd
part, which is neglected in our model calculation, will
provide us information beyond TMDs and IPDs.
Similar to the situation of the longitudinal-transverse

Wigner distribution, the isotropy in the transverse plane is

FIG. 7 (color online). Transverse-unpolarized Wigner distributions ρTU and mixing distributions ρ̄TU for the u quark (upper) and the d
quark (lower). The first column is the distributions in transverse coordinate space with fixed transverse momentum k⊥ ¼ 0.3 GeVêx
parallel to the proton polarization, and the second column is those with fixed transverse momentum k⊥ ¼ 0.3 GeVêy perpendicular to
the proton polarization. The third column is the distributions in transverse momentum space with fixed transverse coordinate b⊥ ¼
0.4 fm êy perpendicular to the proton polarization. The fourth column is the mixing distributions.
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explicitly violated by the transverse polarization, to which
we refer as the x direction, in transverse-longitudinal
Wigner distributions. Determined by the combination of
the polarization configurations, the phase-space distribu-
tion is zero when quark transverse momentum is
perpendicular to the proton spin, but a nontrivial Wilson
line may lead to nonzero values. This behavior reflects a

strong correlation to the direction of quark transverse
momentum. Compared to the longitudinal-transverse
Wigner distribution, the correlation to the direction of
quark transverse coordinate is not weak in this case.
In Figs. 9 and 10, we plot the transverse Wigner

distributions ρTT and mixing distributions ~ρTT and ρ̄TT.
They describe the phase-space distribution in the case that

FIG. 8 (color online). Transverse-longitudinal Wigner distributions ρTL and mixing distributions ρ̄TL for the u quark (upper) and the d
quark (lower). The first column is the distributions in transverse coordinate space with fixed transverse momentum k⊥ ¼ 0.3 GeV êx
parallel to the proton polarization. The second column is the distributions in transverse momentum space with fixed transverse
coordinate b⊥ ¼ 0.4 fm êx parallel to the proton polarization, and the third column is those with fixed transverse coordinate b⊥ ¼
0.4 fm êy perpendicular to the proton polarization. The fourth column is the mixing distributions.

FIG. 9 (color online). Transverse Wigner distributions ρTT for the u quark (upper) and the d quark (lower). The first column is the
distributions in transverse coordinate space with fixed transverse momentum k⊥ ¼ 0.3 GeVêx parallel to the quark polarization, and the
second column is those with fixed transverse momentum k⊥ ¼ 0.3 GeVêy perpendicular to the quark polarization. The third column is
the distributions in transverse momentum space with fixed transverse coordinate b⊥ ¼ 0.4 fmêx parallel to the quark polarization, and
the fourth column is those with fixed transverse coordinate b⊥ ¼ 0.4 fmêy perpendicular to the quark polarization.
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both the quark and the proton are transverse polarized.
Because of the two degrees of freedom of the choice of the
transverse polarization direction, there are two independent
combinations of the transverse polarizations of the quark
and the proton. For the transverse Wigner distributions, the
quark and proton are parallel polarized and referred to as
the x direction. The situation that the quark and proton are
transverse polarized along two orthogonal directions is

described by the pretzelous Wigner distributions, as plotted
in Fig. 11.
The transverse Wigner distributions will reduce to the

transversity distributions when the transverse phase space
is integrated. Unlike the longitudinal Wigner distributions
in which the quark helicity concentrates on the center of the
phase space, we find in the model that the maximum of the
d quark transversity distribution in the phase space is not on
the center point. Although this behavior is not forbidden by
any physical principles, it is beyond our intuition that the
distribution usually decreases monotonically with the
increasing distance away from the center [55]. Though
this is a model dependent result, it provides us the
possibility that may be taken into account in realistic
analyses.
For the pretzelous Wigner distribution in Fig. 11, a

quadrupole structure is observed. This behavior is essen-
tially determined by the spin structures. In this model, we
find opposite correlation in the phase space for the u quark
and d quark in this situation.

V. SUMMARY

In this paper, we investigate quark Wigner distributions
in a light-cone spectator model. The Wigner distribution, as
a phase-space distributions, contains full one-parton infor-
mation in the proton. All TMDs and IPDs can be obtained
from the Wigner distributions at certain limits. Therefore, it
is a possible bridge to build the relation between the TMDs
and GPDs. Besides, the Wigner distributions do contain
information that cannot in general be extracted from the

FIG. 10 (color online). Transverse mixing distributions ~ρTT
(left) and ρ̄TT (right) for the u quark (upper) and d quark (lower)
with the quark polarized along the x direction.

FIG. 11 (color online). Pretzelous Wigner distributions ρ⊥TT for the u quark (upper) and d quark (lower). The first column is the
distributions in transverse coordinate space with fixed transverse momentum k⊥ ¼ 0.3 GeV êx parallel to the quark polarization, and
the second column is those with fixed transverse momentum k⊥ ¼ 0.3 GeV êy parallel to the proton polarization. The third column is the
distributions in transverse momentum space with fixed transverse coordinate b⊥ ¼ 0.4 fm êx parallel to the quark polarization, and the
fourth column is those with fixed transverse coordinate b⊥ ¼ 0.4 fm êy parallel to the proton polarization.
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TMDs and GPDs. Thus, the study on Wigner distributions
will provide us new knowledge on understanding the
nucleon structures.
We perform the calculations of all twist-2 quark Wigner

distributions in a spectator model, which has been applied
to study many physical observables in high-energy scatter-
ing experiments. In our calculation, we include both the
scalar and the axial-vector spectators to have flavor
separation. For the Wilson line, we take a crude truncation
in this paper, and this means the neglect of the naive T-odd
part in Wigner distributions. Though the calculations are
performed in a simplistic model, we can still find some
general properties of quark Wigner distributions from the
results. Thus, the plots displayed here can be view as
qualitative results. More realistic analyses in QCD are
required in the future.
The dipole and quadrupole structures of some Wigner

distributions and mixing distributions are determined by the
spin structures of the quark and proton and should be
general properties. Although the Wilson line is neglected in
this study, some possible effects from the nontrivial Wilson
line are discussed. Some Wigner distributions that have no
corresponding TMDs or IPDs are also interesting, such as
the unpolarized-longitudinal distribution ρUL and the longi-
tudinal-unpolarized distribution ρLU. They are related to the
issues on spin-orbit correlation and orbit angular momen-
tum, and variant results can be obtained from different
models. Therefore, more careful investigation on these

Wigner distributions is important to clarify the physical
pictures. In addition, we have some discussion on the
possibility to establish the relations between TMDs and
GPDs. Though no general relations have been found, it is
suggested by some model calculations and implicated by
some experiments to relate the Sivers function with the
GPD E. Since they are related to the same Wigner
distribution but different parts, it is an opportunity to find
the relation at Wigner distribution level. Therefore, the
investigation on Wigner distributions can improve our
understanding on the nucleon structure, and more realistic
analyses are deserved.
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APPENDIX: LIGHT-CONE WAVE FUNCTION
OVERLAP REPRESENTATION FOR THE

WIGNER DISTRIBUTION

In this section, we take the ρ½γþ�ðb⊥; k⊥; x;↑Þ as an
example to demonstrate how the twist-2 Wigner distribu-
tions are expressed in terms of the overlap of light-cone
wave functions in the spectator model.
Interpolating theWigner operator in Eq. (23) between two

proton states with a transverse momentum Δ⊥ transferred,
we can obtain the Wigner distribution with Eq. (11) as

ρ½γþ�ðb⊥; k⊥; x;↑Þ

¼
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× ð2πÞ3ðx0xPþ − xqPþÞδ
�
−k0q⊥ þ kq⊥ þ

�
1 −

x0q þ xq
2

�
Δ⊥

�

¼
X
λ;s

Z
d2Δ⊥
ð2πÞ2

e−iΔ⊥·b⊥

16π3
ψ↑�
λs

�
x; k⊥ þ ð1 − xÞΔ⊥

2

�
ψ↑
λs

�
x; k⊥ − ð1 − xÞΔ⊥

2

�
:

This result is consistent with the Drell–Yan–West assignment [46] in the form factor calculations, as demonstrated in the
Appendix in Ref. [35]. For the other twist-2 Wigner distributions, similar expressions can be derived but with different
combinations of the helicity states. This approach can also be applied to any N-particle Fock state.
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