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The effect of chiral imbalance on the QCD phase structure is studied in a framework of
Dyson–Schwinger equations. It is found that the chiral phase transition is always a crossover in the
T − μ5 plane when μ is 0 MeV or small values. The trail of the critical endpoints (CEPs) along with the
variation of the chiral chemical potential is given. We find that the effect of μ5 is somewhat different from
the existing chiral model calculations; namely, the CEP first moves roughly along the phase boundary of
T − μ plane in a smaller μ direction, as in the chiral model calculations, but turns in the opposite direction to
move away from the small chemical potential region, which has never been observed before. In addition,
we also discuss the possibility of whether the study at finite temperature and chiral chemical potential can
provide some useful information for the detection of the CEP at finite temperature and baryon chemical
potential, since the former can be calculated in lattice QCD without the sign problem.
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I. INTRODUCTION

It is well known that a pure non-Abelian gauge theory
has many vacua characterized by different integer Chern–
Simons numbers. These different vacua can be twisted from
one to another by sphalerons or instantons, which are the
gluon configurations associated with nonzero winding
numbers [1,2]

QW ¼ g2

32π2

Z
d4xϵμνρωF

μν
a Faρω: ð1Þ

At high temperature, copious sphalerons can be created
[3,4], and through the Adler–Bell–Jackiw relation [5–7],
the quarks that interact with these gluon configurations
would acquire chirality, i.e., the chiral imbalance

N5 ¼ NR − NL ¼ n5V ¼ 2NfQW: ð2Þ

Because there is no direct P and CP violation in QCD, it
has the equal probability to produce a sphaleron with either
a positive or negative winding number. So, the chirality in
each event of quark-gluon plasma production is nonzero,
but the chirality averaged with many events vanishes. In a
word, there is only event-by-event P and CP violation in
this case. To facilitate the study involving the asymmetry
between left- and right-handed quarks, a chiral chemical

potential μ5 is introduced, and the following term should be
added to the Lagrangian density [8]

μ5ψ̄γ4γ5ψ : ð3Þ

As the introduction of a baryon chemical potential μ would
induce a net baryon density n, the chiral chemical potential
μ5 can induce the chirality density

n5 ¼ −NcNf

Z
d4p
ð2πÞ4 tr½Sðp; μ5Þγ4γ5�; ð4Þ

in which S is the quark propagator; Nc and Nf denote the
color factor and the number of flavors, respectively; and the
trace is taken over Dirac indices.
It is generally accepted that the chiral phase transition

of QCD at low temperature and high baryon chemical
potential is of first order and the first-order phase transition
line terminates at the critical endpoint (CEP) [9–17].
Detecting the CEP has been one of the most important
aims of worldwide experiments in high-energy heavy ion
colliders. Locating its position and plotting the phase
diagram is also a hot topic in the field of nonpurterbative
QCD. As previously discussed, the chiral imbalance might
appear in the production of quark-gluon plasma event by
event, so it is of interest to study the effect of this
asymmetry on the phase diagram and on the position of
the CEP. In the literature, the phase diagram with zero
baryon density in the μ5 − T plane has been plotted out
with the Polyakov–Nambu–Jona-Lasinio (PNJL) model,
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the linear sigma model coupled to quarks and to the
Polyakov loop (PLSMq), and lattice QCD [18–21]; also,
the phase diagram at T − μ − μ5 space is given by the PNJL
model [22]. As the theory at finite μ5 does not suffer from
the sign problem [8], it is expected that the study in the
μ5 − T plane using lattice QCD could provide useful
information for the understanding of the phase structure
in the μ − T plane [20,22]. The Dyson–Schwinger equa-
tions (DSEs) are a widely adopted continuum nonpertur-
bative field-theoretical method that has been proven to be
successful in the study of chiral phase transition and hadron
physics [23–25]. Compared to the Nambu–Jona-Lasinio
model and some other chiral models, it can describe
simultaneously the two most important low-energy phe-
nomena of QCD, i.e., the dynamical chiral symmetry
breaking and confinement. In this paper, we will study
the previously discussed problems in the framework of
the DSEs.

II. THEORETICAL AND NUMERICAL ANALYSIS

It has been proven that the inverse of the quark
propagator can include at most the following eight
Lorentz structure components: ~γ · ~p, γ4, 1, ~γ · ~pγ4,
~γ · ~pγ5, γ4γ5, γ5, ~γ · ~pγ4γ5 [26]. At finite temperature
and/or baryon chemical potential but with no chiral
imbalance, the most general form of the inverse of the
quark propagator S−1ð ~pkÞ would include four Lorentz
components [24,26],

S−1ð ~pkÞ ¼ i~γ · ~pAð ~p2
kÞ − iγ4ωkCð ~p2

kÞ þ Bð ~p2
kÞ

þ i~γ · ~pγ4Dð ~p2
kÞ; ð5Þ

in which ~qn ¼ ð~q; ~ωnÞ, with ~ωn ¼ ð2nþ 1ÞπT þ iμ. If the
chiral chemical potential is nonzero, the chiral balance will
be broken, and the Lorentz structure of the inverse of the
quark propagator becomes

S−1ð ~pk;μ5Þ ¼ i~γ · ~pAð ~p2
k;μ5Þþ iγ4ωkCð ~p2

k;μ5Þ
þBð ~p2

k;μ5Þ− i~γ · ~pγ4Dð ~p2
k;μ5Þþ γ5Gð ~p2

k;μ5Þ
þ γ4γ5Hð ~p2

k;μ5Þþ i~γ · ~pγ5Eð ~p2
k;μ5Þ

− i~γ · ~pγ4γ5Fð ~p2
k;μ5Þ: ð6Þ

In the rainbow approximation, the gap equation can be
written as

S−1ð ~pk; μ5Þ ¼ S−10 ð ~pk; μ5Þ þ
4

3
T

Xþ∞

n¼−∞

Z
d3q
ð2πÞ3 g

2

×Deff
μν ð ~pk − ~qn; μ5ÞγμSð ~qn; μ5Þγν; ð7Þ

in which S0ð ~pk; μ5Þ is the free quark propagator that can be
derived from the Lagrangian,

S−10 ð ~pk; μ5Þ ¼ iγ4 ~ωk þ i~γ · ~pþm − μ5γ4γ5: ð8Þ

In nowadays literature of the DSE, the effective model
gluon propagator is often introduced as a physical input,
and the quark propagator is calculated out by the gap
equation with this input. There are two qualitative require-
ments for the effective gluon propagator in the DSE
approach. First, the effective gluon propagator should
simulate the infrared enhancement and confinement.
Second, this gluon propagator should lead to dynamical
chiral symmetry breaking, and the obtained quark propa-
gator has no particlelike poles on the timelike p2 axis (so
that quarks are confined). In other words, the physical input
of the effective gluon propagator must ensure that the DSE
has the features of confinement and dynamical chiral
symmetry breaking simultaneously. The rank-2 confining
separable model gluon propagator is a generally used
effective model in the literature and was first proposed
for describing the properties of light flavor pseudoscalar
and vector mesons [27,28]. Simplicity is a big advantage of
this model. It overcomes the difficulty in the summation of
the frequency spectrum at finite temperature confronted in
many other more sophisticated gluon propagator models
[29–31], but it can be used to highlight many underlying
mechanisms. In the literature, it has been used to study
the chiral phase transition without considering the chiral
imbalance and gives reasonable results compared to that
obtained with other nonperturbative methods [9,10,32,33].
At finite temperature, chemical potential, and chiral chemi-
cal potential, this model gluon propagator can be written as

g2Deff
μν ð ~pk− ~qn;μ5Þ

¼ δμν½D0f0ðp2
kÞf0ðq2nÞþD1f1ðp2

kÞpk ·qnf1ðq2nÞ�; ð9Þ

in which ~qn¼ð~q; ~ωnÞ, with ~ωn¼ð2nþ1ÞπTþiμ [28,34,35],
f0ðq2nÞ ¼ expð−q2n=Λ2Þ, f1ðq2nÞ ¼ expð−q2n=Λ2

1Þ, Λ0 ¼
0.638 GeV, Λ1=Λ0¼1.21, D0Λ2

0¼260.0, D1Λ4
1 ¼ 130.0,

and the degenerated light quark mass m ¼ 5.3 MeV [28].
As it is noted in Ref. [28], the UV cutoff of this model is
much stronger than general asymptotic behavior, so it is
not suitable to study the physics in which the asymptotic
behavior becomes apparent but can be used in the study that
centers on physics in the chiral symmetry broken phase and
in the vicinity of the chiral phase transition.
Substituting Eqs. (8) and (9) into the gap equation (7),

one obtains the coupled integral equations

Að ~p2
k; μ5Þ ¼ 1þ a1ðT; μ; μ5Þf1ðp2

kÞ; ð10Þ

Bð ~p2
k; μ5Þ ¼ mþ b0ðT; μ; μ5Þf0ðp2

kÞ
þ b1ðT; μ; μ5Þωkf1ðp2

kÞ; ð11Þ
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Cð ~p2
k; μ5Þ ¼ 1þ c0ðT; μ; μ5Þf0ðp2

kÞ= ~ωk

þ c1ðT; μ; μ5Þf1ðp2
kÞωk= ~ωk; ð12Þ

Dð ~p2
k; μ5Þ ¼ Fð ~p2

kÞ ¼ 0; ð13Þ

Eð ~p2
k; μ5Þ ¼ e1ðT; μ; μ5Þf1ðp2

kÞ; ð14Þ

Gð ~p2
k; μ5Þ ¼ g0ðT; μ; μ5Þf0ðp2

kÞ þ g1ðT; μ; μ5Þωkf1ðp2
kÞ;
ð15Þ

Hð ~p2
k; μ5Þ ¼ −μ5 þ h0ðT; μ; μ5Þf0ðp2

kÞ
þ h1ðT; μ; μ5Þωkf1ðp2

kÞ; ð16Þ

in which

a1ðT; μ; μ5Þ ¼
8

3

Z
1

~q2f1ðq2nÞ
Að ~q2n; μ5Þt1 þHð ~q2n; μ5Þt2

t3
;

ð17Þ

b0ðT; μ; μ5Þ ¼
16

3

Z
0

f0ðq2nÞ
Bð ~q2n; μ5Þt1 þ ~q2Fð ~q2n; μ5Þt2

t3
;

ð18Þ

b1ðT;μ;μ5Þ ¼
16

3

Z
1

ωnf1ðq2nÞ
Bð ~q2n;μ5Þt1 þ ~q2Fð ~q2n;μ5Þt2

t3
;

ð19Þ

c0ðT;μ;μ5Þ ¼
8

3

Z
0

f0ðq2nÞ
~ωnCð ~q2n;μ5Þt1 − i~q2Eð ~q2n;μ5Þt2

t3
;

ð20Þ

c1ðT;μ;μ5Þ¼
8

3

Z
1

ωnf1ðq2nÞ
~ωnCð ~q2n;μ5Þt1− i~q2Eð ~q2n;μ5Þt2

t3
;

ð21Þ

e1ðT;μ;μ5Þ¼−
8

3

Z
1

~q2f1ðq2nÞ
Eð ~q2n;μ5Þt1þ i ~ωnCð ~q2n;μ5Þt2

t3
;

ð22Þ

g0ðT;μ;μ5Þ¼
16

3

Z
0

f0ðq2nÞ
Gð ~q2n;μ5Þt1þ ~q2Dð ~q2n;μ5Þt2

t3
;

ð23Þ

g1ðT;μ;μ5Þ ¼
16

3

Z
1

ωnf1ðq2nÞ
Gð ~q2n;μ5Þt1þ ~q2Dð ~q2n;μ5Þt2

t3
;

ð24Þ

h0ðT; μ; μ5Þ ¼ −
8

3

Z
0

f0ðq2nÞ
Hð ~q2n; μ5Þt1 þ ~q2Að ~q2n; μ5Þt2

t3
;

ð25Þ

h1ðT;μ;μ5Þ¼−
8

3

Z
1

ωnf1ðq2nÞ
Hð ~q2n;μ5Þt1þ ~q2Að ~q2n;μ5Þt2

t3
;

ð26Þ

where
R
0 ¼ D0T

Pþ∞
n¼−∞

R d3q
ð2πÞ3,

R
1 ¼ D1T

Pþ∞
n¼−∞

R d3q
ð2πÞ3,

t1 ¼ B2 þ ~q2ðF2 − D2 − E2 þ A2Þ − G2 þ ~ωnC2 þ H2,
t2 ¼ −2ðBF −DG − i ~ωnCEþ AHÞ, and t3 ¼ t21 − ~q2t22.
By solving Eqs. (11)–(27) numerically, we can deter-

mine the phase diagram in the T − μ − μ5 space. The chiral
phase transition lines in the T − μ plane corresponding to
different chiral chemical potentials μ5 are plotted out in
Fig. 1. The black point in each line is the CEP. It connects
the crossover line (the dashed line) and the first-order phase
transition line (the solid line). When the baryon chemical
potential μ is zero, the corresponding chiral phase transition
line in the T − μ5 plane is also plotted out (the long-dashed
line). In Fig. 2, we plot the phase diagram for μ5 ¼ 0 and
the trail of the CEP for μ5 increasing from 0 MeV to
750 MeV in the T − μ plane. It can be seen that the effect of
μ5 is somewhat different from the existing chiral model
calculations; namely, the CEP first moves roughly along
the phase boundary of the T − μ plane in the smaller μ
direction, as in the chiral model calculations [20], but turns
in the opposite direction to move away from the small
chemical potential region, which is quite different than the
existing studies and has apparent consistency with lattice
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FIG. 1 (color online). The 3D phase diagram. For μ5 increasing
by each 100 MeV from 0 MeV, the corresponding chiral phase
transition line in the T − μ plane is plotted out. The black point in
each line is the CEP. It connects the crossover line (the dashed
line) and the first-order phase transition line (the solid line).
When the baryon chemical potential μ is zero, the corresponding
chiral phase transition line in the T − μ5 plane is also plotted out
(the long-dashed line).
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QCD calculation [21], which is to say the “CEP5” in the
T − μ5 plane might not exist. Our results also imply that,
even if we include a small baryon chemical potential in the
lattice QCD calculation, the CEP5 might not be found,
either. The black point that lies at ðT0

CEP; μ
0
CEPÞ ¼

ð69 MeV; 270.3 MeVÞ is the CEP for μ5 ¼ 0. As the chiral
chemical potential increases by each 50 MeV, the corre-
sponding CEP is marked out by an open circle. It is shown
that the position of the CEP moves almost in parallel with
the crossover line to smaller baryon chemical potential
when μ5 < 190 MeV, and the CEP with the smallest
μ⋆CEP ¼ 255.3 MeV is obtained when μ5 ¼ 190 MeV,
but when μ5 > 190 MeV, the CEP moves toward a larger
baryon chemical potential. It moves toward a high temper-
ature when μ5 < 350 MeV but moves toward a low
temperature when μ5 > 350 MeV. It will reach about
0.58T0

CEP when μ5 ¼ 750 MeV, at which temperature
the chiral imbalance might hardly exist. In the literature,
the phase diagram in the T − μ5 plane with zero baryon
number density has been plotted out using the PNJL model
and PLSMq, which indicates that the chiral phase transition
will be strengthened from a crossover to a first-order
phase transition as the chiral chemical potential increases.
But according to the trail of CEPs in Fig. 2, the chiral phase
transition at finite temperature and chiral chemical potential
but with zero baryon chemical potential should remain as a
crossover, no matter how large the chiral chemical potential
is (see the long-dashed line in the T − μ5 plane in Fig. 1 and
the top line in Fig. 6). In fact, this will always be the case
for μ < μ⋆CEP. Our result indicates that the result obtained at
finite ðT; μ5Þ might not provide much useful information
for the one at finite ðT; μÞ. Furthermore, our result also
indicates that, even with small baryon chemical potential
under which condition lattice QCD calculation has no sign

problem, one still cannot find the CEP in the T − μ5 plane.
From the trail of the CEPs projected on the μ − μ5 plane
(Fig. 3), it can also be found that μ and μ5 play definitely
different roles in the chiral phase transition, so the result
obtained in the T − μ5 plane for zero or small values of μ
might not offer much help to the chiral phase transition at
finite T and μ. For μ⋆CEP < μ < μ0CEP, the chiral phase
transition will be strengthened from a crossover to a first-
order phase transition as μ5 increases, but it will be back to
a crossover when μ5 is large enough. For μ > μ0CEP, the
chiral phase transition remains a first-order phase transition
when μ5 is small, but it will be weakened to a crossover
when μ5 is too large. The connection point of the crossover
line and the first-order phase transition line is a CEP that
indicates a second-order phase transition. We take
μ ¼ 253.5, 265, and 273 MeV as the representative values
for these three domains and will show the properties of
them in detail below.
It is considered that the B function [in the quark

propagator, Eq. (6)] evaluated at the lowest Matsubara
frequency and zero momentum is an equivalent order
parameter as the quark condensate, because it can com-
pletely determine the character of the chiral phase transition
[36–38]. In this paper, we will adopt this definition:

χðT; μ; μ5Þ ¼ Bð0; ~ω2
0; μ5Þ: ð27Þ

The dependence of χðT; μ; μ5Þ on T for μ5 equal to 50, 100,
and 500 MeV is plotted in Fig. 4. In each panel, the solid,
long-dashed, and dashed lines represent that for μ at 253.5,
265, and 273 MeV, respectively. When the baryon chemical
potential is at 253.5 MeV (solid line), the chiral phase
transition is always a crossover at all of the three axial
chemical potentials. When the baryon chemical potential is
at 265 MeV (long-dashed line), the chiral phase transition is
of first order when the chiral chemical potential is at
100 MeV, but it is a crossover in other two cases. When
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FIG. 2 (color online). The chiral phase diagram for μ5 ¼
0 MeV and the trail of the CEPs in the μ − T plane along with
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the baryon chemical potential is at 273 MeV (dashed line),
the chiral phase transition is of first order when the chiral
chemical potential is at 50 and 100MeV, but it is a crossover
in the remaining case. From the variation of the chiral charge
density n5 along with the temperature, we can find the same
properties. The lines of n5 are plotted in Fig. 5 for the same μ

and μ5 presented in the previous figure. In each panel, the
first, second, and third lines (from top to bottom) represent
that for μ at 253.5, 265, and 273 MeV, respectively. It can be
found that the chiral charge density will have an apparent
step at the first-order chiral phase transition point but will
change smoothly otherwise.
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In fact, as we previously discussed, for μ ¼ 253.5 MeV,
which is smaller than μ⋆CEP, the chiral phase transition
will always be a crossover in the T − μ5 plane. For
μ ¼ 265 MeV, the chiral phase transition is a crossover
when μ5 < 90 MeV, but it will be strengthened to a first-
order phase transition when 90 MeV < μ5 < 305.5 MeV
and will be back to a crossover when μ5 > 305.5 MeV. For
μ ¼ 273 MeV, the chiral phase transition is of first order
when μ5 < 350 MeV, but it will be weakened to a cross-
over when μ5 > 350 MeV. The corresponding phase dia-
gram in the T − μ5 plane is plotted in Fig. 6. Then, let us
look again at the chiral phase transition line when
μ ¼ 265 MeV. Its first-order part would become shorter
and shorter as μ increases toward μ0CEP and at last shrink to
be a CEP point when μ is equal to μ0CEP. But its first-order
part would become longer and longer as μ decreases toward
μ⋆CEP, and its left CEP point will reach the temperature axis
when μ is equal to μ⋆CEP.
As discussed above, our results have apparent consis-

tency with the lattice QCD result [21], but they are quite
different in the chiral model calculations [20]. A natural
question that would arise is the following: are these results
artifacts or in some sense physical? To study this further,
we have also been trying to use some more elegant as well
as widely used gluon models (which means more reliable
conclusions), such as the famous Maris–Tandy model [39].
The numerical calculations are then much more difficult
than the separable model, but the preliminary results show
that the qualitative behaviors are similar; namely, at some
critical μ5 and larger values, μc of the CEP will turn back to
increase instead of decrease [40].

III. CONCLUSIONS

In this paper, we study the effect of chiral imbalance on
the chiral phase transition diagram, especially on the

positions of the CEP, in the framework of Dyson–
Schwinger equations. Our result indicates that the CEP
will move toward the temperature axis almost in parallel
with the crossover line when μ5 increases from 0 to
190 MeV, but it will move backward to bigger μ when
μ5 > 190 MeV. The chiral phase diagram in the T − μ5
plane for μ at different values is studied. It is found that the
corresponding chiral phase diagram on this plane is a
crossover when the baryon chemical potential is zero and
will always be the case when μ is smaller than μ⋆CEP.
Together with the trail of CEPs projected on the μ − μ5
plane, we conclude that μ and μ5 have no similarity in the
chiral phase transition, and we cannot expect the study in
the T − μ5 plane (with μ equal to zero or a small value) can
provide much useful information for the study at finite T
and μ (without chiral chemical potential). These results are
different from that obtained using the PNJL model and
PLSMq [18–20,22]. But lattice QCD calculation without
baryon chemical potential does not find the CEP5 in the
T − μ5 plane [21]. We expect that, even if one includes a
small baryon chemical potential in the lattice QCD calcu-
lation, the CEP5 might not be found, either. Although the
trail of CEPs in this paper is different from that obtained
from the PNJL model and PLSMq [18–20,22], at small
chiral chemical potential, both our work and those works
have the same result that the CEP moves toward the
temperature axis when μ5 increases (here, we note that,
although Refs. [18,19,22] do not consider the baryon
chemical potential, from its phase diagram in the T − μ5
plane, we can deduce that the CEP should moves toward
the temperature axis as μ5 increases). Since the chiral
condensate is not very small in the neighborhood of the
CEP5 and the chiral condensate can suppress the chirality,
μ5 in this region might not be very large. So the most
probable phenomenon observed in experiments is that the
CEP is pushed farther from the temperature axis by chiral
imbalance. And to some extent, our results, which have
apparent consistency with the lattice calculation, indicate
that the physics related to the chiral chemical potential
deserve further studies. Some further discussions with more
elegant gluon models, which means more reliable con-
clusions, are in the works [40]. Last but not least, we need
to say that to identify the origin of the discrepancy between
our work and the previous chiral models is necessary and
important. A possible reason for this discrepancy may be
the cutoff artifact, and this is also one of our future works.
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