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This article gives details of our proposal to replace ordinary chiral SUð3ÞL × SUð3ÞR perturbation theory
χPT3 by three-flavor chiral-scale perturbation theory χPTσ. In χPTσ , amplitudes are expanded at low
energies and small u; d; s quark masses about an infrared fixed point αIR of three-flavor QCD. At αIR, the
quark condensate hq̄qivac ≠ 0 induces nine Nambu-Goldstone bosons: π; K; η, and a 0þþ QCD dilaton σ.
Physically, σ appears as the f0ð500Þ resonance, a pole at a complex mass with real part ≲mK .
The ΔI ¼ 1=2 rule for nonleptonic K decays is then a consequence of χPTσ , with a KSσ coupling fixed
by data for γγ → ππ and KS → γγ. We estimate RIR ≈ 5 for the nonperturbative Drell-Yan ratio
R ¼ σðeþe− → hadronsÞ=σðeþe− → μþμ−Þ at αIR and show that, in the many-color limit, σ=f0 becomes
a narrow qq̄ state with planar-gluon corrections. Rules for the order of terms in χPTσ loop expansions
are derived in Appendix A and extended in Appendix B to include inverse-power Li-Pagels singularities
due to external operators. This relates to an observation that, for γγ channels, partial conservation of the
dilatation current is not equivalent to σ-pole dominance.
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I. SUMMARY

The precise determination of the mass and width of the
f0ð500Þ resonance [1–3] prompted us [4] to revisit an old
idea [5,6] that the chiral condensate hq̄qivac ≠ 0 may also
be a condensate for scale transformations in the chiral
SUð3ÞL × SUð3ÞR limit. This may occur in QCD if the
heavy quarks t; b; c are first decoupled and then the strong
coupling1 αs of the resulting three-flavor theory runs
nonperturbatively to a fixed point αIR in the infrared limit
(Fig. 1). At that point, βðαIRÞ vanishes and the gluonic term
in the strong trace anomaly [7]

θμμ ¼ βðαsÞ
4αs

Ga
μνGaμν þ ð1þ γmðαsÞÞ

X
q¼u;d;s

mqq̄q ð1Þ

is absent, which implies

θμμjαs¼αIR
¼ ð1þ γmðαIRÞÞðmuūuþmdd̄dþmss̄sÞ
→ 0; SUð3ÞL × SUð3ÞR limit ð2Þ

and hence a 0þþ QCD dilaton2 σ due to quark condensa-
tion.3 The obvious candidate for this state is the f0ð500Þ,
which arises from a pole on the second sheet at a complex
mass with typical value [1]

mf0 ¼ 441 − i272 MeV ð3Þ

and surprisingly small errors [19]. In all estimates of this
type, the real part of mf0 is less than mK .
In Sec. II below, we recall problems with the phenom-

enology of χPT3 caused by the f0 pole in 0þþ channels and
observe that they can be avoided by treating f0 as a Nambu-
Goldstone (NG) boson σ in the limit (2). The result is
chiral-scale perturbation theory χPTσ, where the NG sector
fπ; K; η; f0=σg is clearly separated in scale from other
hadrons.

*rcrewthe@physics.adelaide.edu.au
†tunstall@itp.unibe.ch
1We have ½Dμ; Dν� ¼ igGa

μνTa where Dμ is the covariant
derivative, fTag generate the gauge group, αs ¼ g2=4π is the
strong coupling, and β ¼ μ∂αs=∂μ and γm ¼ μ∂ lnmq=∂μ refer
to a mass-independent renormalization scheme with scale μ.

2We reserve the term dilaton and notation σ for a NG boson
due to scale invariance being preserved by the Hamiltonian but
broken by the vacuum, in some limit. We are not talking about the
σ model, scalar gluonium [8], or walking gauge theories [9–12]
where β ≈ 0 near a scale-invariant vacuum [13–15] and proposals
for “dilatons” [12,16,17] seem unlikely [18].

3In field and string theory, it is often stated that Green’s
functions are manifestly conformal invariant for β ¼ 0. This
assumes that, as in perturbative theories with β ¼ 0, there are no
scale condensates. If a scale condensate is present, conformal
invariance becomes manifest only if all four-momenta are
spacelike and large.
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Section III introduces the model-independent χPTσ

Lagrangian for meson amplitudes expanded in αs about
αIR for mu;d;s ∼ 0. It summarizes soft π; K; η; σ meson
theorems for three-flavor chiral and scale symmetry. For
amplitudes where σ plays no role, the results agree with
χPT3. Results for soft σ amplitudes (Sec. IV) are similar to
those found originally [5,6] but include effects due to the
gluonic term in (1). In Appendix A, Weinberg’s analysis of
the χPT2 loop expansion [28] is extended to include χPTσ.
Effective electromagnetic and weak operators are then

added to simulate two-photon processes (Sec. VI) and
nonleptonic K decays (Sec. VII). The main result is a
simple explanation of the ΔI ¼ 1=2 rule for kaon decays:
in the lowest order of χPTσ, there is a dilaton pole diagram
(Fig. 2) that produces most of the fππgI¼0 amplitude

A0 ¼ Ag8;27vertices þ Aσ-pole ≃ Aσ-pole ð4Þ

and makes it large relative to the I ¼ 2 amplitude A2 [3]:

jA0=A2jexpt ≃ 22: ð5Þ

We conclude that the ratio of the 8 and 27 contact couplings
g8 and g27 is of the order

1≲ jg8=g27j≲ 5; ð6Þ

indicated by early calculations [29–32] and not the value 22
found by fitting lowest order χPT3 to data.
In order to obtain a value for the KSσ coupling of Fig. 2,

we compare the two-photon processes γγ → ππ (Fig. 3) and
KS → γγ. Well-known features of these amplitudes are the
presence of ultraviolet finite π�; K� loop diagrams coupled
to the external photons [33] and the need for a rule [34–36]

Aμ ∼ ∂μ ¼ OðpÞ ð7Þ

specifying the effect of a photon or weak boson field Aμ on
the chiral order of terms in loop expansions. These features
are important for our analysis and, in particular, for an

investigation in Sec. VI of the relation between the
σγγ coupling (Fig. 3) and the electromagnetic trace
anomaly [37,38]

~θμμ ¼ θμμ þ ðRα=6πÞFμνFμν;

R ¼ σðeþe− → hadronsÞ
σðeþe− → μþμ−Þ

����
energy→∞

ð8Þ

at the QCD infrared fixed point αs ¼ αIR. Here Fμν and α
are the electromagnetic field strength tensor and fine-
structure constant, and ~θμν is the energy-momentum tensor
for QCD and QED combined.
To obtain an approximate result for the decay σ → γγ,

the momentum q carried by θμμ has to be extrapolated from
q2 ¼ 0 (given exactly by the electromagnetic trace
anomaly) to q2 ¼ m2

σ . In simple cases and when photons
are absent, this amounts to σ-pole dominance of θμμ, i.e.,
partial conservation of the dilatation current (PCDC) [39],
which is the direct analogue of partial conservation of
the axial-vector current (PCAC) for soft-pion amplitudes.
However, we find that, unlike PCAC for π0 → γγ, PCDC
for σ → γγ is modified by meson loop diagrams coupled to
photons. In effect, these ultraviolet convergent diagrams
produce an infrared singularity, which is an inverse power
of the light quark mass, arising in the same way as
conventional Li-Pagels singularities [40,41], but suffi-
ciently singular to compete with the pole term.
In Appendix B, we show that, for a fixed number of

external operators coupled purely to the NG sector, these
inverse-power singularities do not upset the convergence of
the chiral expansion: relative to the corresponding lowest
order graph, be it tree or loop, each additional loop
produces a factor OðmqÞ or Oðmq lnmqÞ. The analysis
generalizes the rule (7) for minimal gauge couplings

FIG. 1. The solid line shows a three-flavor β function (or better,
a QCD version [20] of the Gell-Mann-Low Ψ function) with an
infrared fixed point αIR at which αs freezes [21–26], but the
manifest scale invariance of [13–15] is avoided. The existence of
αIR for small Nf values is not entirely settled. The dashed line
shows the original lattice result [27] for Nf ¼ 0 (no quarks)
where β remains negative and becomes linear at large αs.

FIG. 2. Tree diagrams in the effective theory χPTσ for the decay
KS → ππ. The vertex amplitudes due to 8 and 27 contact
couplings g8 and g27 are dominated by the σ=f0-pole amplitude.
The magnitude of gKSσ is found by applying χPTσ to KS → γγ
and γγ → ππ.

FIG. 3. Dilaton pole in γγ → ππ. In this order of χPTσ ,
diagrams with a π� or K� loop coupled to both photons must
also be included.
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[34,35] and its extension to axial anomalies [36] to include
(a) other nonminimal gauge couplings such as the electro-
magnetic trace anomaly (8) and (b) external Wilson
operators of any kind. Appendix C is a brief note about
Eq. (8) for QCD in the physical region 0 < αs < αIR.
Unlike other results in this article, our estimate

RIR ≈ 5 ð9Þ

for the renormalized value of R at the fixed point depends
on the many-color limit Nc → ∞. This involves the
observation (Sec. II) that for Nc large, the dilaton σ=f0
is a qq̄ state, i.e., similar to π; K; η, but with planar-gluon
corrections. Like other qq̄ resonances, σ=f0 has a narrow
width in that limit (Sec. IV).

II. MOTIVATION

It may seem odd that new conclusions about QCD can be
drawn simply from approximate chiral symmetry and 0þþ
pole diagrams. Scalar pole dominance for reactions like
KS → ππ was considered long ago [42–45]; it can be easily
incorporated in a chiral invariant way, and if difficulties
with hyperon decays4 are overlooked, theory and experi-
ment for soft π; K; η amplitudes are in excellent agreement,
with dispersive corrections included where necessary.
The flaw in this picture is contained in another old

observation—lowest order χPT3, if not corrected, typically
fails for amplitudes that involve both a 0þþ channel and
OðmKÞ extrapolations in momenta:

(i) Final-state ππ interactions [46] in Kl4 decays [47]
and nonleptonic K [48,49] and η [50,51] decays
compete with and often dominate purely chiral
contributions [46–52].

(ii) The chiral one-loop prediction for the KL → π0γγ
rate [53] is only one third of the measured value [54].

(iii) The lowest order prediction [55,56] of a linear rise in
the γγ → π0π0 cross section disagrees [57] with the
Crystal Ball data [58].

These facts became evident at a time when it was thought
that 0þþ resonances below ≈ 1 GeV did not exist,5 but it
was already clear that agreement with data required the
inclusion of large dispersive effects that had to be somehow
“married” to chiral predictions [61]. The same can be said
now, except that the f0ð500Þ pole of Eq. (3) can be
identified as the source of these effects. Consequently
dispersion theory for these processes, with the possible
exception of η → 3π decay [62], is far better understood
[45,63–66].

But that does nothing to alter the fact that the lowest
order of standard chiral SUð3ÞL × SUð3ÞR perturbation
theory χPT3 fits these data so poorly. The lowest order
amplitude ALO is the first term of an asymptotic series

A ¼ fALO þANLO þANNLO þ � � �gχPT3
ð10Þ

in powers of OðmKÞ momenta and quark masses mu;d;s ¼
Oðm2

KÞ (withmu;d=ms held fixed). If the first term is a poor
fit, any truncation of the series to make it agree with a
dispersive fit to data is unsatisfactory because the series is
diverging.
For example, consider the amplitude for KL → π0γγ

[item (ii) above]. Let the series (10) be matched to data by
including dispersive NLO corrections (next to lowest order)
and then truncating:

AKL→π0γγ ≃ fALO þANLOgχPT3
: ð11Þ

The LO prediction for the rate is one third too small, so
depending on the relative phase of the LO and NLO terms,
a fit can be achieved only for

jANLOjχPT3
≳ ffiffiffi

2
p

jALOjχPT3
: ð12Þ

How can this be reconciled with the success [35] of χPT3

elsewhere? Corrections to lowest order χPT3 should be
∼ 30% at most:

jANLO=ALOjχPT3
≲ 0.3; acceptable fit: ð13Þ

A standard response6 is that there are limits to the
applicability of an expansion like χPT3, so failures in a
few cases are to be expected.
In our view, there is a consistent trend of failure in 0þþ

channels, which can and should be corrected by modifying
the lowest order of the three-flavor theory. This must be
achieved without changing χPT2, where amplitudes are
expanded about the chiral SUð2ÞL × SUð2ÞR limit with
OðmπÞ extrapolations7 in momenta; χPT2 is wholly suc-
cessful, producing convergent results with small correc-
tions, typically 5% or at most 10%:

jANLO=ALOjχPT2
< 0.1; observed fits: ð14Þ

Our solution is to replace χPT3 by chiral-scale pertur-
bation theory χPTσ, whose NG sector fπ; K; η; σ=f0g
includes f0ð500Þ as a dilaton σ associated with the
scale-invariant limit (2). In χPTσ , the strange quark mass
ms sets the scale of m2

f0
as well as m2

K and m2
η (Fig. 4,

4Accounting for nonleptonic hyperon decays will require
either χPT for baryons or the weak sector of the Standard Model
to be modified.

5The ϵð700Þ resonance considered in [5,6,37,38] was last listed
in 1974 [59]. Replacing it by f0ð500Þ was proposed in 1996 [60].

6LCT thanks Professor H. Leutwyler for a discussion of this
point.

7For some authors, “two-flavor theory” refers to pionic
processes without the restriction OðmπÞ on pion momenta. That
is χPT3 or χPTσ, not χPT2 (see Fig. 4).
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bottom diagram). As a result, the rules for counting powers
of mK are changed: f0 pole amplitudes (NLO in χPT3) are
promoted to LO. That fixes the LO problem for amplitudes
involving 0þþ channels and OðmKÞ extrapolations in
momenta. At the same time, χPTσ preserves the LO
successes of χPT3 elsewhere: for reactions that do not
involve σ=f0, the predictions of χPT3 and χPTσ are
identical.
The analysis relies on a clear distinction being drawn

between χPT2, χPT3, and χPTσ. For each amplitude A,
these three versions of χPT produce three inequivalent
asymptotic expansions of the form (10). The corresponding
scale separations between NG sectors and other particles
are shown in Fig. 4.
We use χPT2 in the strict sense originally intended

[34,41,67–69]: an asymptotic expansion for the limit
mu;d → 0 with ms ≠ 0 and (crucially) momentum extrap-
olations limited to OðmπÞ. There are only three NG bosons
fπþ; π0; π−g, with no dilaton: χPT2 is not sensitive to the
behavior of β because of the relatively large term mss̄s in
Eq. (1) for θμμ. Since s is not treated as a light quark, the K
and η mesons as well as f0; ρ;ω; N; η0… are excluded from
the χPT2 NG sector.
If there is an OðmKÞ extrapolation in momentum,

χPT2 is not sufficient. Three-flavor contributions must
be included, either as large dispersive extrapolations or

with χPT2 replaced by a three-flavor chiral expansion:
χPT3 [35,41,70–72] or χPTσ.
AnOðmKÞ extrapolation may arise because K or η is soft

or because the pion momenta in (say) ππ → ππ or γγ → ππ
are chosen to be OðmKÞ or because of a kinematic
constraint. A well-known example is the fact that χPT2

says almost nothing about KS → ππ: if one pion becomes
soft, the momentum difference between on-shell states jKi
and jπi is necessarily OðmKÞ. An example of interest in
Sec. VII is the pion-loop result [33] for KS → γγ, which is
not implied by χPT2: a three-flavor expansion is necessary.
Both χPT3 and χPTσ involve the limit8

mi ∼ 0; mi=mj fixed; i; j ¼ u; d; s: ð15Þ

In each case, amplitudes are expanded in powers and
logarithms of

fmomentag=χch ≪ 1; ð16Þ

where the infrared mass scale χch ≈ 1 GeV is set by the
chiral condensate hq̄qivac. In χPT3, χch is 4πFπ [75], where
Fπ ¼ 93 MeV is the pion decay constant; a similar result
is found for χPTσ in Sec. IV. The chiral scale χch also sets
the mass scale of particles outside the corresponding NG
sectors.9 For nucleons with mass MN , this is evident from
the Goldberger-Treiman relation

FπgπNN ≃ gAMN: ð17Þ

It is essential [75] to make a clear distinction between the
low-energy scale χch and the ultraviolet QCD scale ΛQCD ≈
200 MeV associated with expansions in the asymptotically
free domain

fmomentag=ΛQCD ≫ 1: ð18Þ

Strong gluonic fields are presumably responsible for both
scales, but that does not mean that the dimensionless ratio

χch=ΛQCD ≈ 5 ð19Þ

has to be 1.
The difference between χPT3 and χPTσ can be seen in

the relation between hadronic masses and terms in Eq. (1)
for θμμ.
In χPT3, there is no sense in which the gluonic trace

anomaly is small. For example, the gluonic anomaly is
taken to be responsible for most of the nucleon’s mass:

FIG. 4. Scale separations between NG sectors and other
hadrons for each type of chiral perturbation theory χPT discussed
in this paper. Note that scale separation in χPT2 [chiral
SUð2ÞL × SUð2ÞR, top diagram] is ensured by limiting extrap-
olations in momenta p; p0 to OðmπÞ [not OðmKÞ]. In conven-
tional three-flavor theory χPT3 (middle diagram), there is no scale
separation: the non-NG boson f0ð500Þ sits in the middle of the
NG sector fπ; K; ηg. Our three-flavor proposal χPTσ (bottom
diagram) for OðmKÞ extrapolations in momenta implies a clear
scale separation between the NG sector fπ; K; η; σ ¼ f0g and the
non-NG sector fρ;ω; K�; N; η0;…g.

8We require ms > mu;d throughout. Double asymptotic series
can be considered for either χPT2 and χPT3 [35,73] or χPT2 and
χPTσ . The unusual limit ms → 0 for fixed mu;d ≠ 0 considered in
Sec. 4 of [74] does not produce any NG bosons.

9Except for glueballs, if they exist. In χPTσ , they may have
large masses due to gluonic scale condensates such as hG2ivac.
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MN ¼ hNjθμμjNi ¼
χPT3

βðαsÞ
4αs

hNjG2jNi þOðm2
KÞ: ð20Þ

This assumes that f0ð500Þ pole terms can be neglected, or
equivalently, given that f0 is so light on the mass scale for
non-NG particles set by χch, that f0 couples weakly to G2

and q̄q. As noted in Fig. 4, the small f0 mass implies that
χPT3 has no scale separation, which (as we have seen) is a
problem because f0 couples so strongly to other particles.
Contrast this with χPTσ , where the infrared regime

OðmKÞmomenta ≪ χch ð21Þ

emphasizes values of αs close to αIR, so a combined limit

mu;d;s ∼ 0 and αs ≲ αIR ð22Þ

must be considered. Since βðαsÞ is small, the gluonic trace
anomaly is small as an operator, but it can produce large
amplitudes when coupled to dilatons.
Consider how MN arises in χPTσ (Fig. 5). Like other

pseudo-NG bosons, σ couples to the vacuum via the
divergence of its symmetry current,

hσjθμμjvaci ¼ −m2
σFσ ¼ Oðm2

σÞ; mσ → 0; ð23Þ

where Fσ is the dilaton decay constant. The nucleon
remains massive in the scaling limit because of its coupling
−gσNNσN̄N to σ and the factor −i=m2

σ produced by the
σ pole at zero-momentum transfer. This gives rise to the
well-known analogue [39]

FσgσNN ≃MN ð24Þ

of the Goldberger-Trieman relation (17).
In our scheme, both the gluonic anomaly and the quark

mass term in Eq. (1) for θμμ can contribute to MN in the
chiral-scale limit (2). That is because we require10

m2
σ ¼ Oðm2

KÞ ¼ Oðmu;d;sÞ; ð25Þ

which allows the constants FG2 and Fq̄q given by

βðαsÞ=ð4αsÞhσjG2jvaci ¼ −m2
σFG2 ;

f1þ γmðαsÞg
X

q¼u;d;s

mqhσjq̄qjvaci ¼ −m2
σFq̄q ð26Þ

to remain finite in that limit:

MN ≃ FG2gσNN þ Fq̄qgσNN: ð27Þ

Suggestions that a resonance like f0ð500Þ cannot be a
pseudo-NG boson have no foundation. There can be no
theorem to that effect because counterexamples such as our
effective chiral-scale Lagrangian in Sec. III are so easily
constructed. It is true that in the symmetry limit where a NG
boson becomes exactly massless, it has zero width, but that
is because there is no phase space for it to decay into other
massless particles. If phase space for strong decay is made
available by explicit symmetry breaking and quantum
number conservation allows it, a pseudo-NG boson will
decay:

mσ > 2mπ ⇒ width Γσ→ππ ≠ 0: ð28Þ

Note that
(i) Non-NG bosons need not be resonances; for exam-

ple, η0ð960Þ is stable against strong decay.
(ii) The resonance f0=σ becomes a massless NG boson

only if all three quarks u; d; s become massless as αs
tends to αIR. In that combined limit, all particles
except π; K; η and σ remain massive. Strong gluon
fields set the scale of the condensate hq̄qivac, which
then sets the scale for massive particles and reso-
nances except (possibly) glueballs.

(iii) QCD at αs ¼ αIR resembles the physical theory (i.e.,
QCD for 0 < αs < αIR) in the resonance region but
differs completely at high energies because it lacks
asymptotic freedom. Instead, Green’s functions
scale asymptotically with nonperturbative anoma-
lous dimensions in the ultraviolet limit.

Another key difference between χPT3 and χPTσ

becomes evident in the many-color limit Nc → ∞
[76–78]. At issue is the quark content of the f0ð500Þ
resonance: is it a standard qq̄ meson or an exotic tetraquark
state qq̄qq̄? In general, this is a model-dependent question;
indeed, the tetraquark idea was first proposed for the 0þ
nonet in the context of the quark-bag model [79]. However,
the large-Nc limit permits conclusions that are far less
model dependent.
In modern analyses of χPT3, f0ð500Þ is often considered

to be a multiparticle state and so is not represented by a
field in an effective Lagrangian. Instead, the χPT3 expan-
sion is unitarized, with f0 identified as a resonating two-
meson state produced by the unitarized structure. From
that, the large-Nc conclusion [80]

FIG. 5. Dominant σ-pole diagram in χPTσ for hNjθμμjNi.

10In principle, we could have constructed a chiral-scale
perturbation theory with mσ and mK as independent expansion
parameters, but that would make sense only if there were a fourth
light quark or different low-energy scales for chiral and scale
expansions. Figure 4 provides clear confirmation that the choice
mσ ¼ OðmKÞ is sensible.
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f0 ∼ ππ ∼ ðqq̄Þ2; unitarized χPT3 ð29Þ

is drawn. This assumes from the outset that f0 is not a
dilaton. The problem, already discussed at the beginning of
this section, is that the χPT3 expansion diverges because it
is dominated by these unitary “corrections.”
In χPTσ, the large-Nc properties of f0=σ are similar to

those of pions and are found by considering the two-point
function of θμν instead of chiral currents. At large-Nc, the
spin-2 part is dominated by pure-glue states:

Thvacjθαβθμνjvacispin-2 ¼ OðN2
cÞ: ð30Þ

However, when the spin-0 part is projected out by taking
the trace θαα, the quark term dominates the gluonic anomaly
of Eq. (1) at large Nc because of the factor αs ∼ 1=Nc
multiplying G2. Thus, we find

Thvacjθααθμμjvaci ¼ OðNcÞ ð31Þ

due to the quark term compared withOð1Þ from the gluonic
anomaly. Clearly, a σ pole can be present only if f0=σ is a
qq̄ state. At zero-momentum transfer, this pole contributes
m2

σF2
σ to the amplitude (31), from which we conclude

Fσ ¼ Oð
ffiffiffiffiffiffi
Nc

p
Þ; ð32Þ

as for the pion decay constant Fπ. We see in Sec. IV that the
dilaton, like other qq̄ states, obeys the narrow width rule at
large Nc.
Sometimes pure-glue corrections in f0=σ are dominant.

The most obvious example is the nucleon mass MN , where
the leading OðNcÞ contribution due to qq̄ states is the
numerically small two-flavor sigma term

hNjmuūuþmdd̄djNi ≪ MN: ð33Þ

Therefore (as is generally agreed), most ofMN comes from
the mu;d-independent term due to pure-glue exchange. In
particular, the terms ∼G2 and mss̄s in Eq. (1) for θ

μ
μ couple

to a nucleon only via pure-glue states.

III. CHIRAL-SCALE LAGRANGIAN

Consider strong interactions at low energies αs ≲ αIR
within the physical region

0 < αs < αIR: ð34Þ

Let d denote the scaling dimension of operators used to
construct an effective chiral-scale Lagrangian. In general,
there must be a scale-invariant term Linv with scaling
dimension d ¼ 4, a term Lmass with dimension [81]

dmass ¼ 3 − γmðαIRÞ; 1 ≤ dmass < 4 ð35Þ

to simulate explicit breaking of chiral symmetry by the
quark mass term, and a term Lanom with dimension d > 4 to
account for gluonic interactions responsible for the strong
trace anomaly in Eq. (1):

LχPTσ
¼ ∶Ld¼4

inv þ Ld>4
anom þ Ld<4

mass∶: ð36Þ

The anomalous part of dmass is evaluated at αIR because we
expand in αs about αIR. A proof that Lanom has dimension
d > 4 appears later in this section.
We restrict our analysis to the NG sector of χPTσ (Fig. 4).

Then operators in

LχPTσ
¼ L½σ; U;U†� ð37Þ

are constructed from a QCD dilaton field σ and the usual
chiral SUð3Þ field

U ¼ Uðπ; K; ηÞ; UU† ¼ I: ð38Þ

Scale and chiral transformations commute, so σ is chiral
invariant. The scale dimensions of π; K; η and hence U
must be zero in order to preserve the range of field values
on the coset space SUð3ÞL × SUð3ÞR=SUð3ÞV [82].
In Eq. (36), both Linv and Lanom are SUð3ÞL × SUð3ÞR

invariant, while Lmass belongs to the representation
ð3; 3̄Þ⊕ð3̄; 3Þ associated with the π; K; η ðmassÞ2 matrix
M. In lowest order, with M diagonalized,

M ¼ F2
π

4

0
B@

m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

1
CA; ð39Þ

the vacuum condition for U is

U → I for π; K; η → 0: ð40Þ

The dimension of Lanom can be found from the scaling
Ward identities (Callan-Symanzik equations)

�
μ
∂
∂μþ βðαsÞ

∂
∂αs þ γmðαsÞ

X
q

mq
∂

∂mq

�
A ¼ 0 ð41Þ

for renormalization-group invariant QCD amplitudes A.
The term β∂=∂αs corresponds to the gluonic anomaly
in Eq. (1), so the effect of αs∂=∂αs on A is to insert the
QCD operator G2 ¼ Ga

μνGaμν at zero-momentum transfer.
Applying αs∂=∂αs to Eq. (41),

�
μ
∂
∂μþ βðαsÞ

∂
∂αs þ β0ðαsÞ − βðαsÞ=αs

�
αs

∂A
∂αs

¼ −αs
∂
∂αs

X
q

γmðαsÞmq
∂A
∂mq

; ð42Þ
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we see that the anomalous dimension function for G2 is

γG2ðαsÞ ¼ β0ðαsÞ − βðαsÞ=αs: ð43Þ

Hence, to lowest order in the expansion αs ≲ αIR, Lanom has
a positive anomalous dimension equal to the slope of β at
the fixed point (Fig. 1):

danom ¼ 4þ β0ðαIRÞ > 4: ð44Þ

As αs → αIR, the gluonic anomaly vanishes, so for
consistency,10 we must require terms in Lanom to involve
derivatives ∂∂ ¼ OðMÞ or have OðMÞ coefficients:

Lanom ¼ Oð∂2;MÞ: ð45Þ

The result is a chiral-scale perturbation expansion χPTσ

about αIR with QCD dilaton mass mσ ¼ OðmKÞ.
An explicit formula for the χPTσ Lagrangian (36) can

be readily found by following the approach of Ellis [5,83].
Let Fσ be the coupling of σ to the vacuum via the energy-
momentum tensor θμν, improved [84] when spin-0 fields
are present:

hσðqÞjθμνjvaci ¼ ðFσ=3Þðqμqν − gμνq2Þ: ð46Þ

When conformal symmetry is realized nonlinearly [85], a
dilaton field σ is needed to create connection terms ∼ ∂σ in
covariant derivatives. It transforms as

σ → σ −
1

4
Fσ log j detð∂x0=∂xÞj ð47Þ

under conformal transformations x → x0, which corre-
sponds to scale dimension 1 for the covariant field
eσ=Fσ . The dimensions of χPT3 Lagrangian operators
such as

K½U;U†� ¼ 1

4
F2
πTrð∂μU∂μU†Þ ð48Þ

and the dilaton operator Kσ ¼ 1
2
∂μσ∂μσ can then be

adjusted by powers of eσ=Fσ to form terms in L. In lowest
order,

Ld¼4
inv;LO¼fc1Kþc2Kσþc3e2σ=Fσge2σ=Fσ ;

Ld>4
anom;LO¼fð1−c1ÞKþð1−c2ÞKσþc4e2σ=Fσgeð2þβ0Þσ=Fσ ;

Ld<4
mass;LO¼TrðMU†þUM†Þeð3−γmÞσ=Fσ ; ð49Þ

where β0 and γm are the anomalous dimensions β0ðαIRÞ and
γmðαIRÞ of Eqs. (44) and (35).
The constants c1 and c2 are not fixed by general

arguments, while c3 and c4 depend on the vacuum con-
dition chosen for the field σ. The role of c3 and c4 is to fix
the scale of eσ=Fσ , just as the ðmassÞ2 matrix fixes the chiral

SUð3Þ direction of U [Eqs. (39) and (40)]. The simplest
choice of field variables11 is to have all NG fields σ; π; K; η
fluctuate about zero.
For the vacuum to be stable in the σ direction at σ ¼ 0,

Lagrangian terms linear in σ must cancel:

4c3 þ ð4þ β0Þc4 ¼ −ð3 − γmÞhTrðMU† þUM†Þivac
¼ −ð3 − γmÞF2

π

�
m2

K þ 1

2
m2

π

�
: ð50Þ

Equations (45) and (50) imply that both c3 and c4
are OðMÞ.
Evidently χPTσ is a simple extension of the conventional

three-flavor theory χPT3. The χPTσ Lagrangian defined by
Eqs. (36) and (49) satisfies the condition

LχPTσ
→ LχPT3

; σ → 0 ð51Þ

and hence preserves the phenomenological success of
lowest order χPT3 for amplitudes that do not involve the
0þþ channel (Sec. II). In next to lowest order, new chiral-
scale loop diagrams involving σ need to be checked.
The χPTσ Lagrangian obeys the standard rule that each

term Ld of dimension d contributes ðd − 4ÞLd to the trace
of the effective energy-momentum tensor:

θμμjeff ¼ ∶β0Ld>4
anom − ð1þ γmÞLd<4

mass∶: ð52Þ

Note that the critical exponent β0 normalizes the gluonic
term in θμμ.

IV. STRONG INTERACTIONS

In lowest order, L gives formulas for the σππ coupling

Lσππ ¼ fð2þ ð1 − c1Þβ0Þj∂πj2
− ð3 − γmÞm2

πjπj2gσ=ð2FσÞ ð53Þ

and dilaton mass mσ

m2
σF2

σ ¼ F2
π

�
m2

K þ 1

2
m2

π

�
ð3 − γmÞð1þ γmÞ

− β0ð4þ β0Þc4; ð54Þ

which resemble pre-QCD results [5,6,83,88] but have
extra gluonic terms proportional to β0. For consistency
with data, we must assume that the unknown coefficient
2þ ð1 − c1Þβ0 in Eq. (53) does not vanish accidentally.
That preserves the key feature of the original work, that
Lσππ is mostly derivative: for soft ππ scattering (energies
∼mπ), the dilaton pole amplitude is negligible because the

11On-shell amplitudes do not depend on how the field variables
are chosen [86,87].
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σππ vertex is Oðm2
πÞ, while the σππ vertex for an on-shell

dilaton

gσππ ¼ −ð2þ ð1 − c1Þβ0Þm2
σ=ð2FσÞ þOðm2

πÞ ð55Þ

is Oðm2
σÞ, consistent with σ being the broad reso-

nance f0ð500Þ.
Comparisons with data require an estimate of Fσ, most

simply from NN scattering and the dilaton relation (24).
The data imply [89] a mean value gσNN ∼ 9 and hence
Fσ ∼ 100 MeV but with an uncertainty that is either model
dependent or very large (≈ 70%). That accounts for the
large uncertainty in

1
1

2
⪅ j2þ ð1 − c1Þβ0j ⪅ 6 ð56Þ

when we compare Eq. (55) with data [1]:

jgσππj ¼ 3.31þ0.35
−0.15 GeV; and mσ ≈ 441 MeV: ð57Þ

The convergence of a chiral-scale expansion can be
tested by adding σ-loop diagrams to the standard χPT3

analysis [35]. These involve the (as yet) undetermined
constants β0; γm; c1…4: for example, corrections to gσππ
involve the σσσ and σσππ vertices derived from Eq. (49).
However, a numerical estimate of scales associated with

the expansion can be obtained using the dimensional
arguments of Manohar and Georgi [75]. The idea is to
count powers of dimensionful quantities Fπ and (for χPTσ)
Fσ associated with the quark condensate hq̄qivac and keep
track of powers of 4π arising from loop integrals. To
illustrate their point, Manohar and Georgi considered loop
corrections to ππ scattering, such as the first diagram in
Fig. 6, for which they obtained the estimate

Aloop=Atree ∼
1

16π2F2
π
× logarithms: ð58Þ

In our scheme, we must add contributions

∼
�

1

16π2F2
σ
and

F2
π

16π2F4
σ

�
× logarithms ð59Þ

from, e.g., the second and third graphs of Fig. 6. As a result,
we find that there are in principle two χPTσ scales

χπ ¼ 4πFπ and χσ ¼ 4πFσ: ð60Þ

The rough estimate of 100 MeV for Fσ (close to
Fπ ≃ 93 MeV) indicates that in effect there is a single
infrared mass scale

χπ ≈ χσ ≈ 1 GeV; ð61Þ

as foreshadowed in Eq. (16).

Numerology that ignores factors of 4π can be as
misleading in χPTσ as in χPT3. The most important
example of this arises from the observation that f0ð500Þ
is almost as broad as it is heavy. Does this mean that the
width of f0ð500Þ is a lowest order effect, i.e., of the same
order in mσ as the real part of the mass? If so, would not
that invalidate PCDC, where dominance by a real pole is
assumed for the lowest order?
To see that the answer is “no”, let us estimate the σ width

Γσππ in the spirit of Manohar and Georgi. We find

Γσππ ≈
jgσππj2
16πmσ

∼
m3

σ

16πF2
σ
∼ 250 MeV; ð62Þ

so Γσππ isOðm3
σÞ and hence nonleading relative to the mass

mσ . We are therefore justified in using just tree diagrams to
generate the lowest order12 of χPTσ , as in χPT2 and χPT3.
(The main exception to this rule, for two-photon channels,
is discussed in Sec. VI and Appendix B.) Pure numerology
fails because Fσ in the denominator of (62) is an order of
magnitude smaller than χπ;σ .
In the large-Nc limit, as shown in Sec. II, the dilaton

behaves as a qq̄ state. It follows that the gluonic corrections
∼ ð1 − c1Þβ0 in Eq. (55) for the σππ coupling correspond to
disconnected quark diagrams, so they are nonleading

ð1 − c1Þβ0 ¼ Oð1=NcÞ; ð63Þ

and the pre-QCD result [5,6]

Fσgσππ ≈ −m2
σ ð64Þ

is recovered for Nc large. It follows from Eq. (32) that σ
decouples from ππ at large Nc:

gσππ ¼ Oð1=
ffiffiffiffiffiffi
Nc

p
Þ: ð65Þ

Hence, like other qq̄ states, the dilaton σ obeys the narrow-
width rule

FIG. 6. Examples of NLO χPTσ graphs in the chiral-scale
expansion of ππ scattering for OðmKÞ momenta. Each vertex is
generated by the lowest order terms (49) in L. Not shown are
additional diagrams involving the self-energy of the σ propagator
and internal σ lines that connect one external π leg to another.
Similar diagrams are found for the t and u channels.

12Beyond lowest order and in degenerate cases like the KL–KS
mass difference, methods used to estimate corrections at the Z0

peak [90] and the ρ resonance [91] may be necessary.
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Γσππ ¼ Oð1=NcÞ: ð66Þ

The technique used to obtain Eq. (49) from χPT3 works
equally well for higher order terms in strong interactions
and also for external operators induced by electromagnetic
or weak interactions (Secs. VI and VII).
In general, NLO terms in the strong interaction

Lagrangian L are Oð∂4;M∂2;M2Þ. For example, let us
construct Oð∂4Þ terms from the χPT3 operator
ðTr∂U∂U†Þ2. It has dimension 4 already, so it appears
unchanged in the scale-symmetric term

Ld¼4
inv;NLO ¼ fcoefficientgðTr∂U∂U†Þ2 þ � � � ; ð67Þ

i.e., without σ field dependence. The anomalous term has
dimension greater than 4, so it depends on σ:

Ld>4
anom;NLO ¼ fcoefficientgðTr∂U∂U†Þ2eβ0σ=Fσ : ð68Þ

The difference between χPT3 and χPTσ is summarized in
Fig. 7. See Appendix A for a discussion of power counting
for χPTσ loop expansions.

V. RESONANCE SATURATION IN χPTσ

Conventional χPT3 is often supplemented by a technique
[92] in which the coefficients ofOð∂4Þ ¼ Oðm4

KÞ terms are
estimated by saturation with particles or resonances from
the non-NG sector. This scheme can be readily adapted to
χPTσ, provided that the changed role of f0=σ is understood.
Each non-NG particle or resonance of mass Mres gives

rise to a pole factor that carries a linear combination
p ¼ OðmKÞ of the external momenta. The relevant coef-
ficient is obtained from terms ∼p4=M2

res in heavy-particle
expansions of these pole factors

p4=ðp2−M2
resÞ ¼ p2þp4=M2

resþ� � � for Mres ≫ p: ð69Þ

These expansions are nonchiral; i.e., they are not light-
particle, small-momentum expansions of the type (16).
Evidently, this technique assumes a clear scale separation
between the NG and non-NG sectors.

Where does the f0ð500Þ resonance fit into this scheme?
Having it contribute as a light particle in chiral expansions
and a heavy particle in Eq. (69) would be double counting.
In χPT3, the answer is that the f0ð500Þ does not belong

to the NG sector, so it is treated as a heavy resonance. The
obvious lack of scale separation with the K; η NG bosons
(Fig. 4) makes this proposal unworkable.
In χPTσ , the problem disappears because f0=σ is

assigned to the NG sector. Its contributions are already
taken into account in chiral expansions, so logically, it must
be excluded from the saturation procedure of [92]. That is
in line with the requirement that saturation be restricted to
the non-NG sector. Scale separation of the NG and non-NG
sectors works well for χPTσ (Fig. 4), so the heavy-particle
conditions Mres ≫ p for p ¼ OðmKÞ are satisfied.
In practice, χPTσ coefficients such as those in Eqs. (67)

and (68) are not easily evaluated because the analysis
requires data for soft σ as well as soft π; K; η amplitudes.

VI. ELECTROMAGNETIC PROPERTIES
OF MESONS

In χPTσ , the electromagnetic interactions of NG bosons
are of great interest because

(i) The amplitudes for KS → γγ and γγ → ππ can be
used to analyze K → 2π (Sec. VII).

(ii) The electromagnetic trace anomaly (8) and hence
the Drell-Yan ratio can be estimated at the infrared
fixed point αs ¼ αIR.

(iii) In γγ channels, meson loops can produce Li-Pagels
singularities ∼ 1=m2

π;K;σ and hence amplitudes that
compete with σ-pole tree diagrams.

Photon interactions are introduced as in χPT3, with the
added requirement that the chiral singlet field σ is gauge
invariant. So under local Uð1Þ transformations, we have

σ → σ; U → e−iλðxÞQUeiλðxÞQ; ð70Þ

where Q ¼ 1
3
diagð2;−1;−1Þ is the quark-charge matrix.

Gauge invariance can be satisfied minimally by introducing
a covariant derivative for U,

DμU ¼ ∂μU þ ieAμ½Q;U�; ð71Þ

where Aμ is the photon field. However, this is not sufficient:
it does not change the scaling properties of the effective
Lagrangian, and so cannot produce an electromagnetic
trace anomaly (8) proportional to FμνFμν.
The operator FμνFμν has dimension 4, so we need an

action that, when varied, produces a scale-invariant result.
This can happen only if the scaling property is inhomo-
geneous. The σ field has a scaling property (47) of that
type, from which it is evident that the effective Lagrangian
must contain a nonminimal term of the form

FIG. 7. Comparison of χPT3 and χPTσ . The f0=σ pole terms
responsible for the poor convergence of χPT3 are transferred to
LO in χPTσ , where they do not upset convergence.
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Lσγγ ¼
1

4
gσγγσFμνFμν: ð72Þ

This is the effective vertex first considered by Schwinger
[93] in his study of the gauge invariance of fermion triangle
diagrams.
Originally, the electromagnetic trace anomaly (8) was

derived in the context of broken scale invariance (before
QCD and asymptotic freedom), so the ultraviolet limit
defining the Drell-Yan ratio R was nonperturbative. A
comparison of Eqs. (8) and (72) in the tree approximation,
or equivalently σ-pole dominance of θμμ (PCDC), led to the
conclusion [37,38] that the coupling of σ to γγ is propor-
tional to R.
In the current context, there are two important modifi-

cations to this argument.
The first is to identify “R” correctly. In the physical

region 0 < αs < αIR, asymptotic freedom controls the
ultraviolet limit and produces a perturbative answer

RUV¼
X

fquark chargesg2 ¼ 2; Nf ¼Nc ¼ 3 ð73Þ

for Nf ¼ 3 light flavors and Nc ¼ 3 colors. However, the
hard gluonic operator G2 in θμμ prevents PCDC from being
used to relate low-energy amplitudes to asymptotically free
quantities like RUV. Instead, in the lowest order of χPTσ, we
use amplitudes defined at the infrared fixed point where the
gluonic trace anomaly vanishes and so PCDC can be tested.
At the infrared fixed point αs ¼ αIR, there is no asymptotic
freedom, so the UV limit of eþe− → hadrons produces a
nonperturbative value RIR that has to be determined
theoretically. Thus, we expect gσγγ to be related to RIR.
The second modification is a surprise. In γγ channels,

meson-loop integrals produce inverse Li-Pagels singular-
ities ∼M−1 in the chiral limitM ∼ 0, whereM is the π; K; η
ðmassÞ2 matrix (39). These infrared singularities are strong
enough to allow π�; K� one-loop diagrams to have the
same chiral order as tree amplitudes containing the anoma-
lous vertex in (72). This means that naive PCDC (σ-pole
dominance) does not work when γγ channels are present;
for example, the σ → γγ coupling turns out to be propor-
tional to ðRIR − 1=2Þ, not RIR. Similar problems are not
encountered for PCAC, partly because loop corrections to
PCAC are limited by the negative parity of the correspond-
ing NG bosons.
It becomes less surprising when the power-counting

rule (7) for electromagnetic corrections to χPT expansions
is considered.
A standard treatment of χPT [34,35] is to require that

the effective Lagrangian be invariant under local chiral
SUðNfÞL × SUðNfÞR transformations. This requirement is
satisfied minimally by replacing ordinary derivatives ∂μ

acting on U fields with covariant ones

DμU ¼ ∂μU −
i
2
ðvμ þ aμÞU þ i

2
Uðvμ − aμÞ; ð74Þ

where the gauge fields vμðxÞ and aμðxÞ transform inho-
mogeneously under the respective vector and axial-vector
subgroups of SUðNfÞL × SUðNfÞR. In order to match the
chiral counting ∂μU ¼ OðpÞ used by Weinberg [28] to
study pure pion processes in χPT2, Gasser and Leutwyler
proposed the rule [34,35]

aμ ∼ vμ ¼ OðpÞ: ð75Þ

For electromagnetic processes, this requires the photon
field Aμ obtained from

vμ ¼ −2eQAμ and aμ ¼ 0; ð76Þ

to be counted as OðpÞ. As a result, one-loop meson
amplitudes which couple (say) σ to any number of
external photons are of the same chiral order,
namely Oðp4Þ.
In χPTσ , where the global symmetry group includes

dilatations, chiral gauge invariance is not sufficient to
determine the chiral order for nonminimal operators
such as (72). In Appendix B, we generalize the Gasser-
Leutwyler analysis to cover such cases. As a result,
(1) Both Eq. (75) and the rule Aμ ¼ OðpÞ remain valid.
(2) The operator (72) gives rise to a Oðp4Þ vertex

amplitude of the same chiral order as one-loop
meson graphs for σ → γγ.

(3) In the presence of photons, χPTσ corrections to
lowest order tree and loop diagrams still converge:
each additional loop is suppressed by a factor
∼M lnM or M.

In this section, we consider lowest order amendments to
PCDC for the amplitude hγγj~θμμjvaci.
Let γi ¼ γðϵi; kiÞ represent a photon with polarization

ϵi and momentum ki, and let FðsÞ be the form factor
defined by

hγ1; γ2j~θμμð0Þjvaci ¼ ðϵ1 · ϵ2k1 · k2 − ϵ1 · k2ϵ2 · k1ÞFðsÞ:
ð77Þ

The electromagnetic trace anomaly concerns the value of
this form factor at s ¼ 0:

Fð0Þ ¼ −
1

3
πα

Z
d4xd4yx · yThJβðxÞJβð0ÞθμμðyÞivac:

ð78Þ

At the fixed point αs ¼ αIR, we have a theory of broken
scale invariance, so the conditions of the derivations in
[37,38] are satisfied. The leading short-distance behavior
of both hJαJβθμνivac and hJαJβivac is conformal, with no
anomalous dimensions because Jα and θμν are conserved
and the soft d < 4 trace θμμ ensures convergence of Eq. (78)
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at x ∼ y ∼ 0. Therefore, we can write down an exact
anomalous Ward identity13

Fð0Þ ¼ 2RIRα

3π
; αs ¼ αIR: ð79Þ

The calculation of the form factor FðsÞ in χPTσ involves
two classes of diagrams (Fig. 8):
(1) Dilaton pole diagrams (a–e), which produce a

factorized amplitude

F1ðsÞ ¼ Aσγγ
i

s −m2
σ
ð−m2

σFσÞ: ð80Þ

Here Aσγγ includes a contact term −igσγγ from
diagram (a) and contributions from one-loop dia-
grams (b–e) with internal π�; K� lines.

(2) A one-loop amplitude F2ðsÞ from diagrams (f–i)
with internal π�; K� lines coupled to the vacuum
via θμμ.

The σ → γγ amplitude in Eq. (80) can be written

Aσγγ ¼ −igσγγ þ
iα
πFσ

C
X
ϕ¼π;K

m2
ϕ

�
1þ 2Iϕ

s

�
; ð81Þ

where the label ϕ ¼ π� or K� refers to the meson
propagating around the loop in diagrams (b–e). In
Eq. (81), the constant C is a combination of low energy
coefficients

C ¼ 1 − γm − ð1 − c1Þβ0 ð82Þ

and Iϕ is the relevant Feynman-parametric integral

Iϕ ¼ m2
ϕu

ZZ1

0

dz1dz2θð1 − z1 − z2Þ=ðz1z2s −m2
ϕÞ ð83Þ

for on-shell photons k21 ¼ k22 ¼ 0. The constant C and
integral Iϕ also appear in the result for diagrams (f–i):

F2ðsÞ ¼
α

π
ðC − 2Þ

X
ϕ¼π;K

m2
ϕ

�
1þ 2Iϕ

s

�
: ð84Þ

The final step is to compare the answer for

FðsÞ ¼ F1ðsÞ þ F2ðsÞ ð85Þ

with the s ¼ 0 constraint (79). For that, we need the Taylor
expansion

1þ 2Iϕ ¼ −
s

12m2
ϕ

þOðs2Þ: ð86Þ

Summing the π� and K� contributions, we have

X
ϕ¼π;K

m2
ϕ

�
1þ 2Iϕ

s

�
¼ −

1

6
þOðsÞ; ð87Þ

and so find that the terms involving C cancel:

FðsÞ ¼ gσγγFσ þ α=3π þOðsÞ: ð88Þ

Comparison with Eq. (79) yields the desired relation14

gσγγ ¼
2α

3πFσ

�
RIR −

1

2

�
: ð89Þ

Evidently, the one-loop diagrams that produce the term − 1
2

relative to RIR have the same chiral order as the tree
diagram involving gσγγ. This is an explicit demonstration of
the way PCDC is modified by the inverse Li-Pagels
singularities noted above for γγ channels.
An estimate for RIR from Eq. (89) is not straightforward

because dispersive analyses of reactions such as γγ → ππ
yield residues at the f0=σ pole proportional to the full
amplitudeAσγγðs ¼ m2

σÞ of Eq. (81), not gσγγ. Currently, we
have no independent data about the constant C, apart from
the weak constraint (56) for ð1 − c1Þβ0 and the inequality

−1 ≤ 1 − γm < 2 ð90Þ

from Eq. (35). We argue below that numerically, these
corrections are likely to be small compared with the

FIG. 8. Lowest order contributions to hγ1; γ2j~θμμð0Þjvaci in
χPTσ . Diagram (a) is generated by the contact term proportional
to gσγγ , while diagrams (d), (e), (h), and (i) are each accompanied
by an additional crossed amplitude (diagrams not shown). Similar
loop diagrams have been considered in χPT3 for KS → γγ [33],
KL → π0γγ [53], and γγ → π0π0 [55,56].

13There is similar result for 0 < αs < αIR, which involves RUV
but has no practical use (see Appendix C).

14The answer is simple because we chose a σ field with the
scaling property (47). Constants like C can appear if other
definitions of σ are used.
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electromagnetic trace anomaly. First, let us review what is
known about γγ → ππ from dispersion theory.
The residue of the f0ð500Þ pole was first extracted from

the Crystal Ball data [58] by Pennington [63] and sub-
sequently refined in several analyses [94–97]. We use a
recent determination [97] of the radiative width

Γσγγ ¼ 2.0� 0.2 keV ð91Þ

based on fits to data [98] of pion polarizabilities.15

In lowest order χPTσ, the relevant diagrams for the
process σ → γγ are those shown in Figs. 8(a)–8(e), but
with σ treated as an asymptotic state. The narrow width
approximation is valid in lowest order χPTσ, so the
magnitude of the full amplitude Aσγγ at s ¼ m2

σ is deter-
mined by

Γσγγ ¼
m3

σ

64π
jAσγγj2: ð92Þ

Comparison with (91) then gives

jAσγγj ¼ 0.068� 0.006 GeV−1; ð93Þ

where the uncertainties have been added in quadrature.
The presence of lowest order meson loops in γγ channels

implies that numerical results for the contact term depend
on how the scalar field is defined.14 Consequently, care
must be exercised when comparing our value with those
found using χPT3 or dispersion theory—definitions of “the
contact f0γγ coupling” are not necessarily equivalent. For
example, the small values for these couplings reported in
dispersive analyses [103,104] could well be consistent with
each other and with our result for the coupling Lσγγ of
Eq. (72).
In χPTσ we find that for Nc large, it is the contact term

that is the dominant contribution to Aσγγ . This is because,
relative to the single-quark loop diagrams associated with
RIR ¼ OðNcÞ, terms from π�; K� loop graphs involve an
additional quark loop and so are suppressed by a factor
1=Nc. We therefore have

gσγγ ¼ Oð
ffiffiffiffiffiffi
Nc

p
Þ and C ¼ Oð1Þ ð94Þ

in the large-Nc limit and conclude16

Aσγγ ¼ −igσγγ þOð1=
ffiffiffiffiffiffi
Nc

p
Þ: ð95Þ

From Eq. (93) and within the large uncertainty due to
that in Fσ , we estimate

RIR ≈ 5: ð96Þ

This result is a feature of the nonperturbative theory at αIR
(Fig. 9), so it has nothing to do with asymptotic freedom or
the free-field formula (73).

VII. WEAK INTERACTIONS OF MESONS

The most important feature of χPTσ is that it explains the
empirical ΔI ¼ 1=2 rule for nonleptonic kaon decays such
as K → ππ.
Problems explaining the data for nonleptonic kaon and

hyperon decays were first recognized 60 years ago [105].
They became acute with the advent of three-flavor chiral
perturbation theory. For χPT3 applied to kaon decays, the
dilemma is this:
(1) A fit to data in lowest nontrivial order, i.e., forOðp2Þ

amplitudes ALO, would require the ratio of 8 to 27
couplings jg8=g27j to be ≃ 22, much larger than any
of the reasonable estimates in the range (6).

(2) The main alternative is to accept Eq. (6) and argue
that the dominant contribution comes from a NLO
Oðp4Þ term produced by strong final-state inter-
actions in the 0þþ channel, e.g., via a non-NG scalar
boson S [42–45] for which the pole diagram in Fig. 2
is Oðp4=m2

SÞ, with mS ≠ 0. Then the χPT3 expan-
sion diverges uncontrollably,17

jNLO=LOjχPT3
≃ 22; ð97Þ

contradicting the premise that χPT3 is applicable.

FIG. 9. Drell-Yan ratios RUV and RIR associated with the
proposed β=ψ function. For eþe− → hadrons at high energies
with 0 < αs < αIR, the strong coupling αs runs to zero, and the
result RUV is perturbative (asymptotic freedom). However, if αs is
at αIR, it cannot run, so we get a nonperturbative result RIR
associated with short-distance scaling at the infrared fixed point.

15We do not use the alternative estimate [97] Γσγγ ¼ 1.7�
0.4 keV because it depends on scalar meson resonance saturation
for low energy constants of χPT2 expansions [99,100] and also
(tracing back via Appendix D.2.2 of [101] to [102]) χPT3

expansions. As noted in Sec. IV below Eq. (69), that places
f0 in the non-NG sector. It would be inconsistent for us to
combine that with χPTσ .

16This approximation is not required in our analysis of
KS → ππ in Sec. VII. Indeed, gσγγ does not appear anywhere.
The key ingredient is the phenomenological estimate (93) for the
complete amplitude Aσγγ .

17The factor 22 is 70 times larger than the limit ∼ 0.3
prescribed by Eq. (13) for an acceptable fit.
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Let us review option 1 in more detail. In the lowest
order18 of standard χPT3, the effective weak Lagrangian

Lweakjσ¼0 ¼ g8Q8 þ g27Q27 þQmw þ H:c: ð98Þ

contains an octet operator [107]

Q8 ¼ J 13J 21 − J 23J 11; J ij ¼ ðU∂μU†Þij ð99Þ

the U-spin triplet component [31,108] of a 27 operator

Q27 ¼ J 13J 21 þ
3

2
J 23J 11 ð100Þ

and a weak mass operator [109]

Qmw ¼ Trðλ6 − iλ7ÞðgMMU† þ ḡMUM†Þ: ð101Þ

Although Qmw has isospin 1=2, it cannot be used to solve
the ΔI ¼ 1=2 puzzle if dilatons are absent. When Qmw is
combined with the strong mass term Lmassjσ¼0, it can be
removed by a chiral rotation

U → ~U ¼ RUL†; ð102Þ

which aligns the vacuum such that

h ~Uivac ¼ I and M ¼ real diagonal: ð103Þ

Therefore [108] Qmw has no effect on χPT3 low-energy
theorems relating K → ππ and K → π on shell, and so the
conclusion that jg8=g27j is unreasonably large (≈ 22)
cannot be avoided.
In χPTσ , the outcome is entirely different. First, we

adjust the operator dimensions of Q8; Q27, and Qmw by
powers of eσ=Fσ

Lweak ¼ Q8

X
n

g8neð2−γ8nÞσ=Fσ þ g27Q27eð2−γ27Þσ=Fσ

þQmweð3−γmwÞσ=Fσ þ H:c:; ð104Þ

as in Eqs. (49) and (68) for the strong interactions, with
octet quark-gluon operators allowed to have differing
dimensions at αIR. The key point is that the weak mass
operator’s dimension ð3 − γmwÞ bears no relation to the
dimension ð3 − γmÞ of Lmass, so the σ dependence of
Qmweð3−γmwÞ=Fσ cannot be eliminated by a chiral rotation.
Instead, after aligning the vacuum, we find

Lalign
weak ¼ ~Q8

X
n

g8neð2−γ8nÞσ=Fσ þ g27 ~Q27eð2−γ27Þσ=Fσ

þ ~Qmwfeð3−γmwÞσ=Fσ − eð3−γmÞσ=Fσg þ H:c:; ð105Þ

where the tilde indicates that the 8 and 27 operators are
now functions of the rotated field ~U. As a result, there is a
residual interaction LKSσ ¼ gKSσKSσ, which mixes KS and
σ in lowest Oðp2Þ order

gKSσ ¼ ðγm − γmwÞRefð2m2
K −m2

πÞḡM −m2
πgMgFπ=2Fσ

ð106Þ

and produces the ΔI ¼ 1=2 amplitude Aσ-pole of Fig. 2.
At this point, we could simply choose gKSσ to fit the rate

for KS → ππ, knowing that inserting the full KS → ππ
amplitude into the standard loop calculation for KS → γγ
[33] would give agreement with experiment. That would
leave unclear what version of chiral perturbation theory in
Fig. 4 is being used to analyze KS → γγ.
So instead, we first apply χPTσ to KS → γγ and γγ → ππ

in order to determine gKSσ and then show that this gives a
result for KS → ππ that agrees with experiment.
The scalar part AKγγ of the KS → γγ amplitude

Aμν ¼ ðgμνk1 · k2 − k2μk1νÞAKγγ ð107Þ

receives three contributions at lowest order (Fig. 10)

AKγγ ¼ Atree
σ þAloop

σ þAloop
π;K : ð108Þ

The explicit expressions are

Atree
σ þAloop

σ ¼ −2gKSσAσγγ=ðm2
K −m2

σÞ;
Aloop

π;K ¼ −2
α

πF3
π
ðg8 þ g27Þ

×
X
ϕ¼π;K

ðm2
K −m2

ϕÞ
�
1þ 2Iϕ
m2

K

�
; ð109Þ

where the magnitude of Aσγγ is determined from Eq. (93)
and Iϕ is the integral given by Eq. (83). If we neglect the g8
and g27 terms, we find

jgKSσj ≈ 4.4 × 103 keV2 ð110Þ

FIG. 10. Lowest order diagrams for KS → γγ in χPTσ , includ-
ing finite loop graphs [33]. The grey vertex contains π�; K� loops
as in the four χPT3 diagrams to the right. An analogous set of
diagrams contributes to γγ → π0π0.

18Our aim is to solve the ΔI ¼ 1=2 puzzle without using NLO
terms. Weak NLO terms in χPT3 [106], except those depending
on f0=σ (Sec. V), become weak NLO χPTσ terms when
multiplied [as in Eq. (68)] by suitable powers of eσ=Fσ . We
expect these to produce small corrections to our result.
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to a precision ≲ 30% expected for a three-flavor chiral
expansion.
Now consider KS → ππ (Fig. 2). Equation (110) and

data for the f0 width [Eq. (57)] imply that the σ-pole
diagram contributes (very roughly, given12 σ=f0’s width
and near degeneracy with K)

jAσ-polej ¼
����−igKSσgσππ
m2

K −m2
σ

���� ≈ 0.34 keV ð111Þ

to the full I ¼ 0 amplitude19

A0 ¼
ffiffiffi
3

p

F3
π

�
g8 þ

1

6
g27

�
ðm2

K −m2
πÞ þ Aσ-pole: ð112Þ

If the g8;27 contributions are again neglected,

jA0j≃ jAσ-polej; ð113Þ

we see that Eq. (111) accounts for the large magnitude of
A0 [3]:

jA0jexpt ¼ 0.33 keV: ð114Þ

We conclude that the observed ratio jA0=A2j≃ 22 is mostly
due to the dilaton-pole diagram of Fig. 2, that g8 ¼

P
ng8n

and g27 have roughly similar magnitudes as simple calcu-
lations [29–32] indicate and that only g27 can be fixed
precisely (from Kþ → πþπ0).
Consequently, the lowestOðp2Þ order of χPTσ solves the

ΔI ¼ 1=2 problem for kaon decays. The chiral low-energy
theorems that relate the on-shell20 K → 2π and K → π
amplitudes have extra terms due to σ poles, but the
no-tadpoles theorem [108] is still valid:

hKjHweakjvaci ¼ Oðm2
s −m2

dÞ; K on shell: ð115Þ

VIII. REMARKS

Why must the 0þþ particle be a dilaton in order to
explain the ΔI ¼ 1=2 puzzle for K decays? Because the
propertymσ → 0 in the chiral-scale limit (2) is essential. As
is evident from Eq. (97), assuming scalar dominance by a
non-NG particle contradicts the basic premise of chiral
theory that at low energies, the NG sector dominates the
non-NG sector. That is why none of the authors proposing

scalar dominance by a non-NG particle since 1980 [42]
claimed to have solved the puzzle or persuaded others to
stop working on other proposals, such as penguin diagrams
[111], the large-Nc limit [112,113], or QCD sum
rules [114].
Our resolution of the ΔI ¼ 1=2 puzzle is distinguished

by not being ad hoc. It is part of a wider program to obtain
numerically convergent three-flavor chiral expansions
for amplitudes involving 0þþ channels, i.e., where χPT3

clearly fails (Sec. II). So far, we can say only that lowest
order χPTσ appears to be a good approximation. More
stringent tests of convergence have yet to be developed
because loop corrections involve couplings like σσππ for
which we lack data. An important example is the shape of
the σ resonance at NLO (Fig. 11), where the higher order
corrections to (62) have yet to be determined. This will
require explicit calculations which include numerical fits
for the σσσ; σσππ;… couplings.
Another test could be to invent a unitarization procedure

for χPTσ and check whether (unlike χPT3) it produces
small corrections to lowest order results.
The basis of our work on approximate scale and chiral

SUð3ÞL × SUð3ÞR symmetry in QCD should be carefully
distinguished from what is postulated in analyses of
walking gauge theories. As noted by Del Debbio [15],
in such theories, “the infrared fixed point … describes the
physical properties of theories which are scale invariant at
large distances, where the field correlators have power-like
behaviours characterized by the anomalous dimensions of
the fields.” That means that there is no mass gap at the fixed
point: scale condensates are assumed to be absent.
Our view of physics at the infrared fixed point is quite

different. The Hamiltonian becomes scale invariant for
massless u; d; s quarks, but the vacuum is not scale
invariant because of the condensate hq̄qivac ≠ 0. It sets
the scale of the mass gap for hadrons ρ;ω; N; η0;… in the
non-NG sector [Sec. II below Eq. (28)]. For example, at the
infrared fixed point in Fig. 9, eþe− → hadrons at low or
intermediate energies have thresholds and resonances
similar to QCD at similar energies. Scaling behavior sets
in only at high energies.3

FIG. 11. NLO diagrams that contribute to the resonance
structure of f0=σ in χPTσ . Ultraviolet divergences arising from
the loops are absorbed (in the usual way) by counterterms in the
NLO Lagrangian.

19Our convention for the K → ππ isospin amplitudes is that
given in [110].

20Reference [108] followed standard practice in current alge-
bra. It related the amplitude forK → ππ, whereHweak carries zero
four-momentum, to K → π for on-shell kaons and pions, where
the relevant operator ½F5;Hweak� obviously carries nonzero four-
momentum. Reference [108] is often misquoted by authors who
implicitly set the momentum transfer for K → π equal to zero.
In Eq. (115), jvaci refers to the unique state with translation
invariance, so Hweak carries momenta whose square is m2

K .
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A result of this fundamental difference is that our
hypothesis of an infrared fixed point for Nf ¼ 3 is not
tested by lattice investigations done in the context of
walking gauge theories. Those investigations are based
on criteria like Miransky scaling [115], which assume that a
theory cannot have an infrared fixed point if it does not
display the behavior described above in the quote from Del
Debbio.
More generally, our view is that theoretical evidence for

or against our proposal in Fig. 1 is inconclusive. Various
definitions of the QCD running coupling can be be readily
compared in low orders of perturbation theory, but it is
not at all clear which definitions are physically equivalent
beyond that. The key nonperturbative requirements for a
running coupling are that its dependence on the magnitude
of a space-like momentum variable be monotonic and
analytic. Gell-Mann and Low [116] achieved this for QED,
but these properties are hard to establish for QCD running
couplings. A lack of equivalence of these definitions may
explain why differing results for infrared fixed points are
obtained.
Unfortunately, our analysis does not explain the failure

of chiral theory to account for nonleptonic jΔSj ¼ 1
hyperon decays. We have shown that octet dominance is
not necessary forK decays, but that makes no difference for
hyperon decays: the Pati-Woo ΔI ¼ 1=2 mechanism [117]
forbids all contributions from 27 operators.
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Note added.—A similar chiral Lagrangian with a techni-
color “dilaton” has just been published by Matsuzaki and
Yamawaki [118]. They acknowledge our prior work [4] but
say that they do not believe it to be valid for hadronic
physics. The basis for this assertion is the claim (footnote 8
of [16]) that “light” dilatons are forbidden by the one-loop
formula −ð6πÞ−1ð33 − 2NfÞα2s for the QCD β function.
The problems with this are that (a) the relevant limit is
infrared, not ultraviolet, and (b) for αs large, the one-loop
formula violates the analyticity bound [119] β ≳ −αs ln αs.

APPENDIX A: CHIRAL ORDER IN χPTσ

In 1979, Weinberg [28] found that successive terms in
the χPT2 expansion of amplitudes with pionic external
and internal lines and external momenta p ∼mπ obey the
“power counting” rule that each additional loop produces a
factor ∼p2 or, if there is a Li-Pagels singularity [40,41],
p2 lnp. With essentially no change in the analysis, this rule
can be extended to χPT3 for pure π; K; η amplitudes with
p ∼mπ; mK;mη. Here we extend Weinberg’s rule to χPTσ

for amplitudes with internal and external lines restricted to
the corresponding NG sector π; K; η; σ (Fig. 4).
This extension is not entirely straightforward because

χPTσ is really the special case

αs − αIR ¼ OðM or ∂∂Þ for ∂∂ ¼ OðMÞ ðA1Þ

of a double expansion10 in the quark mass matrix M about
zero and the running coupling αs about αIR. In higher
orders, critical exponents such as β0ðαIRÞ and γmðαIRÞ
become leading terms of expansions in M. For example,
when γG2ðαsÞ in Eq. (43) is expanded about the fixed point,
the dimension (44) of the gluonic anomaly is corrected as
follows:

danom → 4þ β0ðαIRÞ þ ðαs − αIRÞγ0G2ðαIRÞ þ � � � ðA2Þ

Then terms in the χPTσ Lagrangian will include corrections
of the form

eβ
0σ=Fσ → eβ

0σ=Fσf1þOg; ðA3Þ

where O accounts for the effects of powers of the QCD
factor αs − αIR. In the effective theory, this factor may
correspond to either an explicit M factor or two derivatives
∂…∂ not necessarily acting on the same field. A power
ðαs − αIRÞp will then produce a superposition of terms

∼ f2k ∂ operators on up to 2k fieldsgMp−k: ðA4Þ

Therefore,O is in general an operator depending on powers
of σ, M, and ∂∂.
So in a higher chiral order, terms in the effective

Lagrangian may involve σ-dependent factors

σinteger>0 expðfconstantgσ=FσÞ; ðA5Þ

which do not scale homogenously under the transforma-
tions (47). Indeed, terms of that type appear as renormal-
ization counterterms for χPTσ loop expansions. The
proliferation of low-energy coupling constants due to
inhomogenous scaling, with constraints between them
possible but not obvious, makes the phenomenology of
higher order χPTσ challenging.
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Fortunately, these complications do not impede the
extension of Weinberg’s rule to χPTσ. Our approach
resembles Sec. 3.4.9 of the review [72].
Let ϕ refer to the spin 0− octet π; K; η. In momentum

space, a general vertex involving σ and ϕ fields produces
terms

∼ pd
vm2k

ϕ m2k0
σ ; integers d; k; k0; ðA6Þ

where pv refers to components of the various vertex
momenta and the product pd

v has degree d when all pv
are scaled to tpv. The aim is to determine the behavior
of Feynman diagrams under the rescaling

pe → tpe; m2
ϕ → t2m2

ϕ; m2
σ → t2m2

σ ðA7Þ

of all external momenta pe and masses mϕ;σ of the NG
bosons ϕ and σ. Note that the dilaton mass mσ scales in
the same way as mϕ, in keeping with the discussion10 of
Eqs. (25), (45), and (A1).
Let Aðpe;mϕ; mσÞ be a connected amplitude given by a

diagram with Iϕ internal ϕ lines, Iσ internal σ lines, and
Ndkk0 vertices of the form (A6). External lines are ampu-
tated (e.g., placed on shell), and the factor δ4ðPpeÞ for
momentum conservation is omitted. Apart from Li-Pagels
logarithms [40,41] produced by loop integrals, each inter-
nal NG boson line

Z
d4k
ð2πÞ4

i
k2 −m2

ϕ;σ þ iϵ
ðA8Þ

contributes a factor t2 under (A7), so A scales with a chiral
dimension or order given by

D ¼ 4þ 2Iϕ þ 2Iσ þ
X
d;m;m0

Ndmm0 ðdþ 2mþ 2m0 − 4Þ:

ðA9Þ

The number of independent loops Nl for a graph is related
to the total number of vertices V ¼ P

dmm0Ndmm0 by the
geometric identity

Nl ¼ Iϕ þ Iσ − V þ 1: ðA10Þ

Substituting this identity into (A9) gives a result

D ¼ 2þ
X
d;m;m0

Ndmm0 ðdþ 2mþ 2m0 − 2Þ þ 2Nl; ðA11Þ

similar to that obtained originally [28] by Weinberg.
The feature of Eq. (A11) worth emphasizing is that the

loop number Nl places a lower bound on D. That is
because the vertex contribution (A6) must have chiral
dimension ≥ 2, i.e.,

dþ 2mþ 2m0 − 2 ≥ 0; ðA12Þ

and so (A11) implies the general inequality

D ≥ 2þ 2Nl: ðA13Þ

The case D ¼ 2 includes and is limited to tree graphs
produced in lowest order, i.e., by vertices (A6) with chiral
dimension 2.
Given that the Li-Pagels infrared singularity for Nl-loop

diagrams is OðlnltÞ at most, we see that each new loop is
suppressed by a factor of at most t2 ln t for small t, as in
χPT2 and χPT3. The extra logarithm is too weak to allow a
given loop diagram to compete with diagrams with a
smaller number of loops. In particular, both σ-pole domi-
nance (PCDC) and ϕ-pole dominance (PCAC) are valid for
pure NG processes in lowest order. This is consistent with
the discussion of the σ width in Sec. IV.
A further result is that higher order versions of the

constraint (45) on Lanom are not needed. Once imposed, it
can be maintained to any order.
Apart from remarks about the σNN coupling in Sec. II,

the analysis in this paper is limited to the NG sector. Chiral
power counting in the presence of baryons and other non-
NG particles is a nontrivial matter even for ordinary
χPT [72].

APPENDIX B: EXTERNAL CURRENTS AND
WILSON OPERATORS IN χPT

This appendix concerns the effect of operators such as
the lowest order ð8; 1Þ and ð1; 8Þ currents

F μ ¼ F2
πe2σ=FσUi∂μU† and F †

μ ¼ F2
πe2σ=FσU†i∂μU

ðB1Þ

on chiral power counting in the NG sector. This arises from
the discussion in Secs. I and VI of the Gasser-Leutwyler
rule (7) and the failure of naive σ-pole dominance (PCDC)
for σ → γγ, where loop diagrams with inverse-power
Li-Pagels singularities compete with the tree diagram.
These singular powers are counted automatically if
Appendix A is extended to include vertices due to external
operators carrying low momenta.
Vertices of the currents (B1) have chiral order 1 because

of the presence of a single derivative ∂ ¼ OðpÞ. At first
sight, counting a single power for the corresponding current
sources (7) and (75) seems obvious. For (say) a photon
insertion in an internal propagator, we have

Oð1=p2Þ → OðA × p=p4Þ; ðB2Þ

with no change in loop number, so the chiral order for
amplitudes with photons can be matched to those without
by choosing Aμ ∼ p.
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What is less obvious is the idea that these rules remain
valid for sources of currents in QCD itself, where they enter
linearly in the action, e.g.,

SQCD → SQCD þ
Z

d4xAμq̄γμQq; ðB3Þ

but give rise to nonlinear polynomial dependence in the
effective theory. For example, in addition to terms linear in
Aμ, the effective theory contains anomalous terms propor-
tional to Fμν ~Fμν for π0 → γγ and FμνFμν for σ → γγ, as well
as nonanomalous powers of Aμ permitted by electromag-
netic gauge invariance. Why should the rule Aμ ∼ p for
linear terms in the effective theory also hold for terms
nonlinear in Aμ?
The reason is that infrared powers in NG-meson loop

integrals are generated by a single mass scale: M.
Therefore, chiral order can be inferred from ordinary
(nonoperator) dimensionality. From Aμ ∼ ðlengthÞ−1, we
can conclude, e.g.,

FμνFμν ¼ Oðp4Þ: ðB4Þ

The extra two derivatives in F2 compared with AμAν are
responsible for the failure of the σ vertex (72) to dominate
one-loop meson contributions to σ → γγ.
When the lowest chiral order for a process induced by

external currents mixes tree and loop diagrams, the rules of
Appendix A must be amended. First, diagrams formed
entirely from current vertices, i.e., with no vertices of the
relevant χPT Lagrangian for strong interactions, should be
classified according to their loop number: tree, one-loop,
and sometimes higher. Then for each class, adding an
internal loop produced by strong-interaction vertices
increases the chiral order by at least two. So the mixing
of loop numbers for a given chiral order persists in higher
orders, but the overall convergence rule that each new
internal loop is suppressed byM2 lnM orM2 is maintained.
Evidently, gauge invariance and the restriction to cur-

rents as external operators is not essential for this dis-
cussion. All we need is a source J of unique (nonoperator)
dimensionality for a QCD Wilson operator. This will
generate a polynomial in J for the effective theory with
a chiral-order rule for J . For example, let S and P be
sources for q̄q and q̄γ5q in QCD corresponding to

fU �U†geð3−γmÞσ ðB5Þ

in lowest order χPTσ. Then insertion of this operator into a
ϕ or σ propagator yields

Oð1=p2Þ → OðfS orPg=p4Þ; ðB6Þ

so keeping the chiral order constant, we rediscover the
rule [34]

S ∼ P ∼Oðp2Þ: ðB7Þ
For a Wilson operator represented by a lowest order χPT
operator whose vertices are of chiral order k, the result is

J ∼Oðp2−kÞ: ðB8Þ

APPENDIX C: ELECTROMAGNETIC TRACE
ANOMALY IN QCD

Originally, before QCD was invented, the electromag-
netic trace anomaly was derived [37,38] assuming a theory
of broken scale invariance for strong interactions [81]:

dim θμμ < 4: ðC1Þ

This anomaly relates the amplitude ThθμμJαJβivac in the
zero-energy limit (78) to the Drell-Yan ratio for the
three-flavor theory at infinite21 center-of-mass energy.
Our application (79) is restricted to αs being exactly at
the fixed point αIR, where broken scale invariance is
still valid.
In the physical region 0 < αs < αIR of QCD, broken

scale invariance, with its anomalous power laws in the
ultraviolet limit for all operators except conserved currents,
is not valid because the gluonic trace anomaly in Eq. (1)
violates Eq. (C1). However, the ultraviolet requirements of
the derivation can be checked directly by using asymptotic
freedom: the leading short-distance behaviors of

ThJαJβθμνivac; ThJαJβθμνivac and ThJαJβθμμivac
ðC2Þ

are given by one-loop amplitudes with massless propaga-
tors, which is a special case of what was assumed for
broken scale invariance. [The last amplitude in (C2) is
needed to ensure convergence of Eq. (78) at x ∼ y ∼ 0.] The
fact that some nonleading terms die off as inverse loga-
rithms instead of inverse powers has no effect on the
derivation.
So we conclude that the derivation can also be carried

through for QCD in the physical region, despite the hard
breaking of scale invariance by the gluonic term in θμμ. The
result is an exact relation

Fð0Þ ¼ 2RUVα

3π
for 0 < αs < αIR ðC3Þ

in terms of the perturbative ratio RUV ¼ 2 of Eq. (73).

21Note that result (79) is exact; it is not due to an estimate at
some large but finite energy. For example, it does not assume
duality [120].
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Comparing Eqs. (79) and (C3), we see that Fð0Þ is discontinuous in αs at αIR. That is not a problem because the σ pole
and charged π�; K� loops can produce singular behaviour such as

∼
q2

m2
σ − q2

for q;mσ ∼ 0: ðC4Þ

However, a relation between RUV and RIR cannot be established because the condition (45) for Lanom is not valid for an
expansion not about αIR.
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