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In a covariant Bethe-Salpeter-equation approach and with a rainbow-ladder truncated model of quantum
chromodynamics (QCD), we investigate the use of an effective interaction with the goal of reproducing
QCD phenomenology. We extend previous studies and present results for ground and excited meson states
in the bottomonium and charmonium systems, where the results are surprisingly good for most states. In
addition, we formulate a critical outlook on states with exotic quantum numbers as well as the light-quark
domain.
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I. INTRODUCTION

One of the challenges of modern standard-model particle
physics is the description of mesons and baryons via the
fundamental degrees of freedom in quantum chromody-
namics (QCD), quarks and gluons. The strong-interaction
sector of the standard model is beautifully accessible via the
asymptotic freedom of QCD [1–3], but the low-energy
properties of hadrons and most prominently confinement
and dynamical chiral symmetry breaking are accessible
from the underlying quantum field theory (QFT) only by
nonperturbative methods; in addition, a thorough under-
standing of these phenomena is paramount for theoretical
hadron physics [4].
The recent renaissance of hadron spectroscopy, in

particular, is due to the fact that this field still offers
immediate and influential open questions, e.g., the exist-
ence, properties, and abundance of hadron states with
exotic quantum numbers. Any modern comprehensive
approach to hadron spectroscopy must therefore go beyond
the conventional states described by the quark model—
in the meson sector by a standard quark-antiquark
configuration—and address these open problems.
Modern approaches to hadron spectroscopy make use of

lattice-regularized QCD techniques on one hand [5–7], and
continuum QFT methods on the other [8–11] (see also
references therein). Our method of choice in the present
work is the coupled Dyson-Schwinger–Bethe-Salpeter-
equation (DSBSE) framework, which has been successfully
applied not only to QCD but also to other strongly coupled
theories, such as QED3 or graphene; see for example
[12–14] for recent reviews.
The DSBSE studies of the past decades have been

undertaken at varying levels of sophistication. Only in a
few particular cases are analytical solutions accessible, such

as the limit of heavy-quark mass, where the system can be
described by a variant of heavy-quark effective theory [15],
or if only the IRbehavior of the theory is considered [16].All
other studies, and ours as well, rely on truncations that
enable numerical investigations. The infinite tower of
coupled Dyson-Schwinger equations (DSEs) is truncated
by restricting the number of equations that are solved self
consistently, and by compensating for the remaining equa-
tions through sound Ansätze for the corresponding Green
functions that are not taken into account explicitly.
In particular, we use a basic but symmetry-preserving

truncation to study mesons by solving the quark DSE
coupled to the meson qq̄ Bethe-Salpeter equation (BSE).
Baryon studies are not performed in the present work, but
such studies can be carried out on an equally consistent
footing using covariant quark-diquark or three-quark-
equation setups; see, e.g., [17–24] and references therein
for details.
Despite the difficulty inherent to nonperturbative meth-

ods, there are also immediate benefits, which present an
advantage compared, e.g., to quark-model studies. An
excellent example is the possibility to prove results
that are exact in QCD. Prominently, chiral symmetry and
its dynamical breaking, along with the corresponding
constraints, are manifested via the axial-vector Ward-
Takahashi identity (AVWTI), which serves as a guide for
the construction of consistent corresponding integration-
equation kernels [25–27]. Furthermore, the AVWTI pro-
vides insight on the properties of pseudoscalar mesons,
which in the chiral limit reduces to the well-known Gell-
Mann–Oakes–Renner relation, but can be formulated on
general grounds. In a symmetry-preserving truncation such
as the one used herein, these statements remainvalid and can
be checked also numerically. More precisely, our numerical
studies of the pion and its radial excitations show the
behavior that is exact in QCD in the chiral limit, namely
a massless pion ground state with a finite decay constant
and massive radially excited pion states with an exactly
zero decay constant each [28,29]. A similar situation is
found with respect to electromagnetic properties, where
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the vector Ward-Takahashi identity (WTI), also satisfied in
rainbow-ladder (RL) truncation, and its effects can be tested
numerically via charge conservation and the behavior of
electromagnetic form factors [21,30–34].
Another important advantage is the manifest covariance

of the DSBSE setup, regardless of the truncation used. It
implies immediate usability of both the quark propagators
as well as the covariant amplitudes obtained as solutions of
the BSE in any calculation of transition amplitudes between
hadrons or currents and dressed vertex functions. Among
the benefits of the covariant four-dimensional setup, one
also gets direct access to meson states with exotic quantum
numbers already at the qq̄ level. As another advantage, we
mention the connection to perturbative QCD via the
effective interaction discussed below.
Due to these advantages, the approach has been success-

fully applied to many individual problems in and beyond
spectroscopy; concrete examples therefore intrinsically
relevant as an outlook of this work are, apart from chiral
and electromagnetic hadron properties already cited above,
strong hadron decay widths [35,36], valence-quark distri-
butions of pseudoscalar mesons [37–40], studies of tensor
mesons [41,42] and extensions of this setup to QCD at
finite temperature [43–45].
While all these individual results and studies provide

quite a wealth of information and a large portion was even
computed with the same model (which is also used here),
there is no comprehensive meson, let alone hadron study
so far, and our work is the first step towards one. At the
level of RL truncation, it remains to be shown what the
range of success of such a comprehensive endeavor can be
or whether it is possible at all. As a final part of our
motivation, it is helpful to mention that even a successful
study of radial meson excitations such as the one presented
herein has been generally doubted and deemed impossible,
which makes our results relevant in the first place and
remarkable at the same time.
We note at this point that our calculations have been

performed using Landau-gauge QCD in Euclidean momen-
tum space. Progress made using the Minkowski-space
formulation of the BSE to study the qq̄ system is ongoing
and can be traced via [46–54]. Calculations in the Coulomb
gauge of QCD are slightly different in terms of numerical
feasibility as well as the particular systems or domains that
are more easily described. For details, see [15,55–60] and
references therein.
The paper is organized as follows: in Sec. II we review

the benefits and caveats of the RL truncation of the DSBSE
system. Section III contains the details on the effective
interaction used. Results and conclusions are presented in
Secs. IV and V, respectively.

II. RAINBOW-LADDER TRUNCATION

For comprehensive phenomenological modeling with a
realistic effective interaction, the truncation of choice

currently is the RL truncation of the quark-DSE–meson-
BSE system.
Studies beyond RL truncation are often exploratory in

nature and use an interaction simple enough to deal with the
complexity of particular aspects of the infinite tower of the
DSEs and the corresponding BSE setup but too simple to
retain all features required for a successful spectroscopy of
hadrons, let alone the calculation of transition matrix
elements [26,27,61].
In more sophisticated settings, the effective interaction is

realistic overall or at least in some particular aspect of the
diagrammatic setup of the truncation scheme [62–71]. As
an alternative, other studies have approached the problem
of constructing a consistent BSE kernel for a given quark-
gluon vertex on a more general footing; see [72,73] and
references therein. However, such investigations have never
been comprehensive due to the numerical and conceptual
difficulty involved. In addition, neither the conceptional
problems of the BSE such as the determination of the
analytic structure of the quark propagator or the possible
spurious nature of some excited states, nor the phenom-
enological problems encountered, e.g., in the description of
axial-vector meson states, were satisfactorily resolved. In
this sense, a RL study can be considered reasonable and
most notably constructive towards the goal of a compre-
hensive phenomenological application of the DSBSE
approach.
It is important to note here again that RL truncation

satisfies the relevant (axial-vector and vector) Ward-
Takahashi identities (see e.g. [25,28,30,74–78]) and thus
remains true to the underlying QCD in the corresponding
respects. A reliable numerical setup (ours is detailed in
[41,79–81]) is important, in particular, with increasing
quark mass.

III. BOUND-STATE EQUATION AND MODEL
INTERACTION

We note at this point that meson studies like ours can be
conducted equally well using the homogeneous BSE or an
analogous but more general inhomogeneous vertex BSE;
see, e.g., [43,82,83]. We employ the homogeneous qq̄ BSE
in RL truncation which reads

Γðp;PÞ ¼ −CF

Z
Λ

q
Gððp − qÞ2ÞDf

μνðp − qÞγμχðq;PÞγν
χðq;PÞ ¼ SðqþÞΓðq;PÞSðq−Þ; ð1Þ

where q and P are the quark-antiquark relative and total
momenta, respectively, and the (anti)quark momenta are
chosen as q� ¼ q� P=2. This equation requires knowl-
edge of the quark propagator SðpÞ, which is obtained from
its DSE (CF ¼ 4=3 is the Casimir color factor)
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SðpÞ−1 ¼ ðiγ · pþmqÞ þ ΣðpÞ;

ΣðpÞ ¼ CF

Z
Λ

q
Gððp − qÞ2ÞDf

μνðp − qÞγμSðqÞγν: ð2Þ

In the above, the effective interaction is denoted by G and
will be specified in detail below. Σ is the quark self energy,
mq is the current-quark mass, Df

μν represents the free gluon
propagator and γν is the bare quark-gluon vertex’s Dirac
structure. Dirac and flavor indices are omitted for brevity.R
Λ
q ¼ R

Λ d4q=ð2πÞ4 denotes a translationally invariant regu-
larization of the integral, with the regularization scaleΛ [84].
The evolution of the RL effective interaction G started

from a Dirac-δ in momentum space, which reduces the
coupled integral equations to a set of coupled algebraic
equations [85]. For several studies on different levels of
sophistication with regard to the numerical treatment of the
evaluation of the quark-propagator dressing functions
needed as input in the BSE, additions and modifications
were made to this term such as a two-loop perturbative-
QCD contribution and an Ansatz for the infrared behavior
[86,87] as well as one-loop perturbative QCD together with
modified [75,88–92] or additional strength in the inter-
mediate-momentum regime both with [84] and without the
δ-term [35,93–95]. Further modifications include a focus
on low and intermediate momenta with less emphasis on
the perturbative part [96] and even an ultraviolet (UV) finite
version [97], which emphasized the importance of the
intermediate-momentum domain for spectroscopy; in addi-
tion, it was shown that the influence of the far-infrared
behavior of the interaction on meson properties is minor
[98] for the concrete case of the ρ meson mass and decay
constant.
In addition, alternative approaches have been proposed,

where the effective coupling is adjusted via the quark-gluon
vertex such that the quark mass function remains indepen-
dent on the normalization point, and the correct asymptotic
behavior is preserved [99,100]. Furthermore, models have
been constructed for the effective interaction such that
gauged lattice quark propagators are reproduced via the
quark DSE solutions [101–105].
We also mention here that corrections to the RL

truncation are expected to diminish with increasing quark
mass, which prompted the investigations in [106,107],
where a quark-mass dependence was introduced in the
main interaction parameters and the setup was tested for
both meson and baryon states. Recently, more evidence
towards the necessity of a quark-mass dependence of a
phenomenologically successful RL study of meson proper-
ties has emerged [70]. In our present work and strategy,
we include this possibility in a natural way, as is
detailed below.
Themodel of Ref. [93] was used extensively in the past to

investigate the meson spectrum and various meson proper-
ties with great success, in particular in the pseudoscalar and

vector channels (see also the references given above) and
this parametrization is our choice as well. It reads

GðsÞ
s

¼ 4π2D
ω6

se−s=ω
2 þ 4πγmπF ðsÞ

1=2 ln½τ þ ð1þ s=Λ2
QCDÞ2�

: ð3Þ

The first term is characterized by the parameters ω (which
corresponds to an effective inverse range of the interaction)
and D (which acts like an overall strength) and determines
the intermediate-momentum part of the interaction, while
the second describes the UV and produces the correct one-
loop perturbative QCD limit. F ðsÞ¼½1−expð−s=½4m2

t �Þ�=s
where mt¼0.5GeV, τ¼e2−1, Nf¼4, ΛNf¼4

QCD ¼0.234GeV,
and γm ¼ 12=ð33 − 2NfÞ, which is left unchanged from
Ref. [93].
In addition to the current-quark masses, ω and D are

those parameters of the interaction whose impact on meson
spectroscopy provides the focus of this work. It was found
already in [93] that pseudoscalar- and vector-meson
ground-state properties remain unchanged for light mesons
if one varies ω in the range ½0.3; 0.5� GeVand determinesD
by keeping their product fixed to the phenomenologically
successful value of D × ω ¼ 0.372 GeV3. Essentially, this
corresponds to the statement that ground states, which in
the quark model have orbital angular momentum l ¼ 0,
have properties that do not depend strongly on the effective
range of the long-range (intermediate-momentum) piece
of the strong effective interaction; this situation was
contrasted by the case of radially excited meson states
[32,94,108] and other types of excitations, most promi-
nently those corresponding to l ≠ 0 in the quark model
[41,109]. These dependences can be used to sufficiently
constrain all parameters of the interaction, in particular both
ω and D. In fact, the more states our model is compared
to, the more difficult it is to achieve a decent overall
description, which is a real challenge both for the model
setup as well as for RL truncation itself.
After a recent quarkonium study (restricted to the

D × ω ¼ const. prescription but still successful for the
ground states in bottomonium and, to some extent, also
charmonium) was presented in [110], we required a more
comprehensively successful description of experimental
data, in particular including radially excited states in each
JPC channel. To attempt such an agreement with experi-
ment, we vary ω and D independently along the lines of a
strategy outlined in detail in [111], where this investigation
was already carried out for bottomonium. In short, the
parameters are fitted to a set of representative experimental
level splittings first; in a second step, the quark mass is
determined by a least-squares fit to the ground-state
bottomonium masses known experimentally.
Here, we add the case of charmonium and discuss

the consequences of our results for states with exotic
quantum numbers as well as a number of states found
experimentally, whose quantum numbers have not yet been
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determined completely. It is noteworthy that we fit the
values of ω and D separately for each current-quark mass,
such that a quark-mass dependence of these parameters will
emerge. The next section reviews the situation in botto-
monium and details our charmonium results.

IV. RESULTS AND DISCUSSION

In [111] we obtained our best fit to the bottomonium
spectrum for mb ¼ 3.635 GeV (given at a renormalization
point μ ¼ 19 GeV) together with ω ¼ 0.7 GeV and
D ¼ 1.3 GeV2. The results are shown as blue boxes in
Fig. 1, together with experimental data [112], shown as red
crosses. In the same way, we fitted the charmonium
spectrum and obtained mc ¼ 0.855 GeV (given at a
renormalization point μ ¼ 19 GeV) together with ω ¼
0.7 GeV and D ¼ 0.5 GeV2; the results are shown in
Fig. 2, together with experimental data [112,113]. We note
that our error bars, where relevant, come from extrapolated
results in situations where propagator singularities prohibit
a direct calculation; details on the source of this problem
and our extrapolation strategy can be found in the
Appendix as well as the appendixes of [41,110,114].
In addition, it is important to note that our results

correspond to bound states and not resonances due to
the effect of the truncation: open hadronic decay channels
are not contained in the RL-BSE interaction kernel.
Hadronic (and other) decay width or properties are com-
puted from the solutions of the BSE as well as the quark
propagators in a semiperturbative fashion. In particular, as
mentioned in the introduction, efforts have been made
towards the calculation of vector to pseudoscalar-

pseudoscalar decays for light and strange mesons [35] as
well as the Δ in the baryon sector [36]. While it is both
natural and desirable for our study to include such results in
the future, the effort to achieve them is clearly beyond the
scope of the present manuscript. For the moment, we can
only caution the reader when comparing our results to
experimental data above the respective open-flavor thresh-
olds. Apparently, this issue is of lesser importance in the
bottomonium case than for charmonium. To illustrate this
and to facilitate the analysis of our results we have marked
the thresholds in our figures by horizontal dotted lines.
We begin the discussion with bottomonium shown in

Fig. 1, where we find very good agreement between our
results and well-established experimental data. Most split-
tings are well reproduced, in particular between ground and
radially excited states in each channel. It is noteworthy that
we find the correct level ordering of the first radially excited
0−þ and 1−− states in the bottomonium system; in a similar
fashion, level orderings are well reproduced with a few
exceptions. In general there is a clear identification of each
ground and first radially excited state known experimen-
tally with one of our results. However, there are a few
caveats. While a slight mismatch for the 2−− ground state is
apparent, we expect on the basis of [110] that this can be
cured by further fine-tuning of model parameters. Higher
radial excitations than the first are mostly unclear at the
moment due to both theoretical and experimental uncer-
tainties overall, except for the vector channel, where the
experimental situation is excellent due to the prominent
coupling to eþe−. We find excellent agreement for the
ϒð3SÞ, but at the same time one lower result without an
experimental match. Further investigations are needed to
clarify the role of this state, and are currently on their way.
A similar situation is encountered in the axial-vector
channels, where one extra calculated result each appears
in between the ground and first radially excited experi-
mental state. At present, however, we have no reliable tools
at hand to determine, e.g., whether or not these extra states
might be spurious solutions of the BSE. Consequently, we
have to defer a more in-depth discussion to a later time. In
the meantime, similarly to the vector case, we will use
means beyond spectroscopy to determine the role of these
states and report the results in future publications.
For charmonium presented in Fig. 2 the state identifi-

cation between experiment and calculation is even better
and much clearer: no extra calculated states are encountered
in the domain of the ground states and first radial
excitations. Again, splittings between radially excited
and ground states in each channel are very well reproduced;
the same is true for the level orderings with the exception of
the ηcð2SÞ, which is too heavy in our study. In addition to
this excellent overall agreement, it is most notable how
closely the radial excitations in the vector channel can be
matched, even beyond the Ψð2SÞ. With regard to the
matching and quality of the description of experimental

FIG. 1 (color online). Bottomonium spectrum: calculated (blue
boxes) versus experimental data (red crosses) [112]. Theoretical
error bars represent uncertainties from extrapolation techniques,
where necessary (see text). The horizontal dotted line marks the
open-flavor threshold.
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data in both bottomonium and charmonium, we note again
that our search for the optimal model parameters was
carried out within the setup of the particular model chosen.
We expect that better agreement can be reached by further
fine-tuning of the shape of the model interaction.
While we defer a detailed discussion of exotic-state

masses in the various JPC channels to future works, we give
a brief outlook already at this point: states with exotic
quantum numbers are generally low in our RL study
compared to expectations from other approaches. More

concretely, we find the 0−− and 1−þ to be lowest in both
bottomonium and charmonium. In the former case, they lie
even below the l ¼ 1 ground states at ∼9.7 GeV, while in
the latter they lie in the same region as the l ¼ 1 ground
states at ∼3.6 GeV.
Before concluding, we present some evidence as to how

feasible a description of both charmonium and bottomo-
nium is with the same set of model parameters. To illustrate
this, we present two more figures analogous to Figs. 1–2,
but with the other set of the model parameters ω and D,
respectively. Thus, the bottomonium spectrum with
ω ¼ 0.7 GeV and D ¼ 0.5 GeV2 is shown in Fig. 3 and
the charmonium spectrum with ω ¼ 0.7 GeV and D ¼
1.3 GeV2 is shown in Fig. 4. We observe that in both cases
the good description of level orderings, radial splittings,
and identification of states is destroyed.

V. CONCLUSIONS AND OUTLOOK

It has been speculated in the past how successful a
comprehensive RL truncated DSBSE model of hadrons,
or at least mesons, can be. The negligence of all but the γμ
component of the quark-gluonvertexwas generally believed
to be too drastic as to still allow for a reasonable phenom-
enological description of the various splittings in the meson
spectrum. These expectations were based on calculations
donemainly with light quarks and on a domain of the model
parameters restricted by anchoring them in the light-quark
domain. In particular, primary anchors were the pion mass
and decay constant as well as the chiral condensate.
However, in this respect it is very important to differentiate
between the light- and heavy-quark cases, since corrections
to RL truncation are expected to diminish with increasing
quark mass. Therefore, only a RL study anchored in the

FIG. 2 (color online). Charmonium spectrum: calculated (blue
boxes) versus experimental data (red crosses) [112,113]. Theo-
retical error bars represent uncertainties from extrapolation
techniques, where necessary (see text). The horizontal dotted
line marks the open-flavor threshold.

FIG. 3 (color online). Bottomonium spectrum cross check, the
same style as Fig. 1, but computed with the optimal parameters
from charmonium (see text).

FIG. 4 (color online). Charmonium spectrum cross check, the
same style as Fig. 2, but computed with the optimal parameters
from bottomonium (see text).

SPECTRA OF HEAVY QUARKONIA IN A BETHE-… PHYSICAL REVIEW D 91, 034013 (2015)

034013-5



heavy-quark domain can be expected to be well suited for
comprehensive purposes. In addition, a quark-mass depend-
ence in the effective interaction may provide a better way
towards a unified description of meson spectra over the
entire range of experimentally available quark masses.
In order to fully establish the DSBSE framework as an

adequate and valuable complementary alternative to the
quark model and other nonperturbative approaches to
QCD, it is imperative to attempt a comprehensive study
of hadrons. As a first step, the requirements for such a study
must be taken beyond a collection of individual results
towards a unified model study with as wide a scope as
possible. We have identified a RL truncated DSBSE setup
with a sophisticated model interaction as a candidate for
such a study and presented the first step here. In our study
of heavy quarkonia we have determined the sets of model
parameters that optimize a RL DSBSE description of the
meson spectrum, including both ground states and radial
excitations for the first time. We found good overall
agreement with experimental data to a degree well beyond
the general expectations regarding the truncation used
herein. Nonetheless, there are caveats, in particular extra
states in the vector (1−−) and axial-vector (1þþ and 1þ−)
channels in bottomonium as well as a lack of clarity in the
computational outcome for the higher radial excitations,
both of which are subjects of ongoing further studies.
The next steps are to extend this study to the light-quark

sector, investigate the role of extra states in the calculated
results as well as attempt to identify experimental states
with undetermined quantum numbers or some of the X, Y,
and Z states, respectively, with appropriate results from our
calculations. The set of results will include masses and
decay constants at first, and later also comprise electro-
magnetic as well as hadronic width and properties. We
emphasize that this includes presenting and discussing
concrete results for states with exotic quantum numbers. In
the course of our studies, we may allow even more free
parameters or a different functional form in the effective
interaction, whose parametric degrees of freedom have
not yet been fully exploited, in order to more effectively
fine-tune the results, if necessary.
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APPENDIX: TECHNICALITIES

In the Euclidean-space formulation of the DSBSE
approach to mesons, the BSE contains two dressed (anti)
quark propagators that depend on the momenta q� as given
in Eq. (1) and below. With a timelike total momentum P
and the integration momentum q being the gluon

momentum, one needs to compute the propagator dressing
functions in a region of the complex q2�-plane that lies
inside a parabolic boundary, stretching towards real pos-
itive infinity, indicated as the light blue area in Fig. 5.
Assuming a real, positive bound-state mass of M with
P2 ¼ −M2 and two equal-mass constituents, the corre-
sponding integration domain can be defined via the three
intersection points of the parabolic boundary with the real
and imaginary axes, at ð−M2=4; 0Þ and ð0;�M2=2Þ,
respectively, marked by the red dots in Fig. 5. In practice,
keeping the numerical setup straightforward [80], this
means that any singular structure in the propagator dressing
functions puts a limit on the maximum bound-state mass
obtainable via standard methods; a typical scenario is
depicted in Fig. 5, where singularity positions are marked
with black crosses. While a ground-state calculation is
mostly safe from such problems, excited states mostly lie
above the mass range obtainable directly. As a simple way
to deal with this, one can resort to extrapolation techniques.
The first steps were taken in [41] and a more sophisticated
setup has been used in [110] and also herein. As a result, the
extrapolation introduces an uncertainty in our calculation,
which we acknowledge by plotting error bars on our
resulting masses. To immediately illustrate typical cases,
we present extrapolations for a pseudoscalar and a scalar
radially excited case in Figs. 6 and 7, respectively. To
understand the curves shown in these figures, consider the

FIG. 5 (color online). Integration domain (light blue area) with
parabolic boundary in the complex q2�-plane, on which the (anti)
quark propagator dressing functions need to be known numeri-
cally. The red dots identify the intersection points with the real
and imaginary axes; the crosses illustrate the typical location of
singularities in the dressing functions limiting the integration
domain (see text).

HILGER, et al. PHYSICAL REVIEW D 91, 034013 (2015)

034013-6



homogeneous BSE as a P2-dependent eigenvalue equation
of the form

λðP2ÞΓðP2Þ ¼
Z

KSðP2ÞΓðP2ÞSðP2Þ; ðA1Þ

where the original BSE is recovered for the eigenvalue
λðP2Þ ¼ 1 (for more details, see [80]). In this fashion,
information about ground- and excited-state solutions can
be extracted also off shell and then extrapolated to the on-
shell point. We use, as provided in [110], the form

~λðP2Þ≔ λðP2Þ
1 − λðP2Þ ¼

r
P2 þM2

þ
XN
i¼1

ðP2Þici ðA2Þ

to fit our results for the eigenvalues λ obtained on a
reasonable and directly accessible range of P2 and straight-
forwardly obtain the bound-state mass M as well as the
other fit constants r and ci. To understand the figures, it is
important to note that, in order to reach λðP2Þ ¼ 1, we
require that ~λðP2Þ ¼ 0. The fits are repeated with different
numbers of correction terms N in Eq. (A2), where we
ensure that the fit results remain stable by a reasonable
choice of the maximum value of N. Different values of N
yield the differently colored curves in Figs. 6–7, while our
calculated points are depicted by black circles and the
dotted line marks zero. We use the arithmetic mean as our
final result and the differences to the largest and smallest
values as the upper and lower error bars, as they are given in
Figs. 1–4.
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