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We present the full OðαsÞ supersymmetric QCD corrections for stop-antistop annihilation into
electroweak final states within the Minimal Supersymmetric Standard Model. We also incorporate
Coulomb corrections due to gluon exchange between the incoming stops. Numerical results for the
annihilation cross sections and the predicted neutralino relic density are presented. We show that the impact
of the radiative corrections on the cosmologically preferred region of the parameter space can become
larger than the current experimental uncertainty, shifting the relic bands within the considered regions of
the parameter space by up to a few tens of GeV.
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I. INTRODUCTION

There exists convincing evidence today for a sizable cold
dark matter (CDM) component in the Universe, stemming
from a large variety of astronomical observations, such as
rotation curves of galaxies, the Bullet Cluster, structure
formation simulations on cosmological scales and the
cosmic microwave background (CMB). The most recent
measurement of the CMB carried out by the Planck
collaboration [1] in combination with WMAP data [2]
has led to a precise determination of the dark matter relic
density

ΩCDMh2 ¼ 0.1199� 0.0027; ð1:1Þ
with h denoting the present Hubble expansion rate in units
of 100 km s−1Mpc−1.
Since within the Standard Model (SM) there is no dark

matter candidate which could solely account for the correct
value of ΩCDMh2, extensions of the SM, which can provide
an adequate dark matter (DM) candidate, are necessary.
Among the most prominent candidates are Weakly
Interacting Massiv Particles (WIMPs). WIMPs naturally
arise within certain theories beyond the standard model,
e.g., the four neutralinos ~χ0i (i ¼ f1;…; 4g) within the
Minimal Supersymmetric Standard Model (MSSM). By
further assuming R-parity conservation, the lightest neu-
tralino ~χ01, which is for many realizations of the MSSM also
the lightest supersymmetric particle (LSP), can become
stable and is therefore a viable DM candidate.

In the following, we will sketch a general way of
calculating the neutralino relic density Ω~χ0

1
h2. We consider

the case of N species of unstable particles χi which are
heavier than the lightest particle denoted here by χ0.
We further assume that the time evolution of their number
densities ni is well described by a system of coupled
Boltzmann equations [3],

dni
dt

¼ −3Hni − hσijviji½ninj − ðneqi neqj Þ�; ð1:2Þ
for i; j ¼ 0; 1;…; N. The first term on the right-hand side of
Eq. (1.2) containing the Hubble parameter H stands for the
dilution of the particle number density due to the expansion
of the Universe, while the second and third terms describe
the creation and (co)annihilation of the particle species χi
and χj. n

eq
i;j stands for the equilibrium number density of

the particle species χi or χj, respectively, and hσijviji is the
thermally averaged (co)annihilation cross section of χi
and χj multiplied by their relative velocity vij.
As all particles will at some point decay into the lightest

particle χ0, the quantity relevant to estimate Ωχh2 is the
total number density nχ ¼

P
N
i¼0 ni. Using ni=nχ ≈ neqi =n

eq
χ

its time dependence can be expressed in the following form:

dnχ
dt

¼ −3Hnχ − hσannvi½n2χ − ðneqχ Þ2�: ð1:3Þ
Here, we have introduced the thermally averaged cross
section [4]

hσannvi ¼
X
ij

hσijviji
neqi
neqχ

neqj
neqχ

¼
R∞
0 dpeffp2

effWeffK1ð
ffiffiffi
s

p
=TÞ

m4
0T½

P
i
gi
g0

m2
i

m2
0

K2ðmi=TÞ�2
; ð1:4Þ
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with Ki being the modified Bessel of the second kind of
order i and

Weff ¼
X
ij

pij

peff

gigj
g20

Wij: ð1:5Þ

In Eq. (1.5), pij stands for the absolute value of the three-
momentum of χi (or χj) in the center-of-mass frame of the
ðχi–χjÞ pair (peff ¼ p00) and

Wij ¼
1

gigjSf

X
internal

d:o:f:

Z
jMj2ð2πÞ4

× δ4
�
pi þ pj −

X
f

pf

�Y
f

d3pf

ð2πÞ32Ef
ð1:6Þ

for a general n-body final state with momenta pf. Finally,
Sf is a symmetry factor, which accounts for identical
particles in the final state, and gi (gj) stands for the number
of internal degrees of freedom of the particular species.
As it will be important in the following analysis, we recall
that the ratios neqi =n

eq
χ in Eq. (1.4) at temperature T are

Boltzmann suppressed via

neqi
neqχ

∼ exp

�
−
mi −m0

T

�
: ð1:7Þ

Thus, only particles with a mass close to m0 can give
important contributions to hσannvi and are able to sizably
alter the time dependence of nχ . After solving the
Boltzmann equation, today’s relic density is given by

Ωχ ¼
mχnχ
ρcrit

; ð1:8Þ

with nχ and ρcrit being today’s particle number density and
the critical density of the Universe, respectively.
For large parts of the MSSM parameter space, an

enhancement of the neutralino annihilation cross section
is necessary to drive the relic density Ω~χ0

1
h2 to the exper-

imentally favored region of Eq. (1.1). One mechanism,
which can yield such an enhancement, is the so-called
coannihilation between the LSP and the next-to-lightest
supersymmetric particle (NLSP); see Eq. (1.4) [5,6].
Over wide ranges of the MSSM parameter space, the

lighter stop ~t1 is the NLSP. Ifm~χ0
1
≈m~t1 , the coannihilations

are no longer suppressed [see Eq. (1.7)], and so the
coannihilations of the lightest neutralino with the light
stop are the leading mechanism which determines the relic
density of neutralino dark matter. This is not the whole
story, though. If the mass difference between the stop and
the lightest neutralino is even smaller, the dominating
processes actually turn out to be the stop-antistop annihi-
lation although they are normally doubly suppressed by the
same factor as the coannihilations given by Eq. (1.7) [7].

Furthermore, it is well known that the (co)annihilation
cross sections can become quite sensitive to higher-order
corrections. Therefore, the impact of next-to-leading-order
(NLO) corrections on the neutralino relic density has been
explored in many previous analyses, e.g., supersymmetric
(SUSY-)QCD corrections to neutralino-pair annihilation
and coannihilation with heavier neutralinos and charginos
into quarks [8–10] or SUSY-QCD corrections to neutralino-
stop coannihilation [11–13]. Electroweak (EW) corrections
to neutralino-pair annihilation and coannihilation with
another gaugino have been investigated in Ref. [14].
Further studies rely on effective coupling approaches to
capture certain classes of corrections to neutralino-pair
annihilation or coannihilation with a tau slepton [15,16].
All these analyses have shown the significance of higher-
order corrections to (co)annihilation channels for a precise
prediction of Ω~χ0

1
h2, which can even by far exceed the

current experimental uncertainty given in Eq. (1.1).1

Motivated by these results, we have calculated the full
OðαsÞ SUSY-QCD corrections to stop annihilation into
electroweak final states (i.e., leptons, vector and Higgs
bosons)

~t1~t�1 → VV; ð1:9Þ

~t1~t�1 → VH; ð1:10Þ

~t1~t�1 → HH; ð1:11Þ

~t1~t�1 → ll̄; ð1:12Þ

with V ¼ γ; Z0;W� and H ¼ h0; H0; A0; H�. The corre-
sponding Feynman diagrams at the tree level are shown in
Fig. 1. We further have taken into account the correspond-
ing Coulomb corrections due to the exchange of soft gluons
between the initial stop-antistop pair. Their importance to
Ω~χ0

1
h2 has been discussed in Refs. [11,18]. Our corrections

to the given channels enter the total cross section σann in the
Boltzmann equation (1.3). They are included in our
computer package called DM@NLO, which can be linked
to public codes like MICROMEGAS [19] or DARKSUSY
[20] to obtain the final corrected relic density. Up to now
both of these codes evaluate the (co)annihilation cross
sections just at an effective tree level such that the results of
this work present a natural extension.
This paper is organized as follows. In Sec. II we specify

the model framework, introduce our reference scenarios
and discuss the phenomenology of stop annihilation into
the electroweak final states mentioned in Eqs. (1.9)–(1.12).
Section III contains technical details about the actual cross
section calculation. There, we discuss in particular our

1See also Ref. [17] for a recent investigation on the appli-
cability of the formalism presented here in the context of NLO
calculations.
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handling of UVand IR divergences as well as the treatment
of the Coulomb corrections. In Sec. IV we present our
numerical results to illustrate the impact of our corrections
on the cross section and the relic density. Finally, our
conclusions are given in Sec. V.

II. PHENOMENOLOGY OF STOP ANNIHILATION

As discussed in Sec. I, we study the impact of higher-
order SUSY-QCD corrections to stop annihilation on the
neutralino relic density Ω~χ0

1
h2. We have already mentioned

above that in order for these processes to become phe-
nomenologically relevant we have to assume the lightest
scalar top to be almost mass degenerate with the lightest
neutralino. This assumption is motivated by the latest LHC
data, where SUSY scenarios with a light third squark
generation are able to reduce fine-tuning while still evading
the LHC exclusion limits [21,22].
The existence of a light stop gets further support from

the LHC discovery of a new boson with a mass of m ≈
125 GeV [23–25]. If we interpret it as the light “SM-like”
Higgs boson h0, its mass has to be enhanced, e.g., by a large
stop loop contribution, which in the decoupling limit
mA0 ≫ mZ0 takes the form [26,27]

m2
h0 ≈m2

Z0cos22β þ 3g2m4
t

8π2m2
W�

�
ln

�
M2

SUSY

m2
t

�

þ X2
t

M2
SUSY

�
1 −

X2
t

12M2
SUSY

��
; ð2:1Þ

where Xt ¼ At − μ tan β and MSUSY ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffim~t1m~t2
p . For these

contributions to become sufficiently large, jXtj ≈ffiffiffi
6

p
MSUSY should be fulfilled, which hints toward a sizable

At and therefore toward a large stop mass splitting
m~t1 ≪ m~t2 driving ~t1 to be rather light.

Throughout this analysis we will work within the
phenomenological MSSM (pMSSM), where the soft break-
ing parameters are fixed at the input scale Q ¼ 1 TeV
according to the supersymmetric parameter analysis con-
vention [28]. Out of the 19 parameters, which usually span
the pMSSM parameter space, we restrict ourselves to the
following set of 11 free parameters: The Higgs sector is
fixed by the Higgsino mass parameter μ, the ratio tan β of
the vacuum expectation values of the two Higgs doublets
and the pole mass mA0 of the pseudoscalar Higgs boson.
For the first- and second-generation squarks, we introduce a
common soft breaking mass parameter M ~q1;2, while the
mass parameters for the third-generation squarks are given
by M ~q3 for sbottoms and left-handed stops as well as M ~u3
for right-handed stops. We further set all trilinear couplings
to zero except for At, the trilinear coupling of the stop
sector. In contrast to the three independent mass parameters
in the squark sector, we only use a single parameterM ~l as a
soft breaking mass for all sleptons. Finally, since we do not
assume gaugino mass unification, the gaugino sector is
defined by three independent parameters M1, M2 and M3,
the bino, wino and gluino masses, respectively.
Phenomenologically interesting scenarios have to fulfill

a certain number of constraints. For our scenario search, we
have considered the following prominent observables:

0.1145 ≤ Ω~χ0
1
h2 ≤ 0.1253; ð2:2Þ

120 GeV ≤ mh0 ≤ 130 GeV; ð2:3Þ

2.56 × 10−4 ≤ BRðb → sγÞ ≤ 4.54 × 10−4; ð2:4Þ
jδaμj < 288 × 10−11: ð2:5Þ

They have been selected for the following reasons.
To work with scenarios, which respect the recent Planck

FIG. 1. Tree-level diagrams contributing to the stop annihilation into electroweak SM final states. Here, V ¼ γ; Z0;W�,
H ¼ h0; H0; A0; H� and l (l̄) can be any (anti)lepton.
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measurements, we require the neutralino relic density to lie
within the limits given in Eq. (2.2) at 2σ confidence level.
This means that we expect the neutralino to account for the
whole amount of dark matter in our Universe today.
Second, we require the mass of the lightest Higgs boson
to agree with the observation at the LHC. However, we
allow for a rather large uncertainty of about 5 GeV on the
Higgs mass value due to large theoretical uncertainties
arising from not yet included higher-order corrections in its
calculation (see, e.g., Ref. [29]). The third bound, Eq. (2.4),
concerns the inclusive branching ratio of the flavor chang-
ing neutral current decay b → sγ. The imposed interval
corresponds to the latest Heavy Flavor Averaging Group
value [30] at 3σ confidence level. The fourth bound limits
the supersymmetric corrections δaμ to the muon g-factor
gμ, where aμ ¼ ðgμ − 2Þ=2 and δaμ ¼ aexpμ − atheoμ is the
discrepancy between experiment and the predicted theo-
retical value. We expect the SUSY corrections to improve
on this discrepancy compared to the SM prediction
(see Ref. [31]).
To illustrate the numerical impact of our derived cor-

rections, we introduce the three reference scenarios given in
Table I, which have been found by performing a random
scan of one million points within the previously defined
pMSSM. Their parameter values are summarized in Table I.
The corresponding particle masses, mixings and further
observables are summarized in Table II.
Throughout our analysis we have used SPHENO 3.2.3

[32] to obtain the physical mass spectrum and related
mixings from the given input parameters. The neutralino
relic density, the contributions of individual (co)annihila-
tion channels and the numerical values of further observ-
ables such as the branching fraction b → sγ have been
obtained by using MICROMEGAS 2.4.1 with the standard
CALCHEP [33] implementation of the MSSM. We only
have introduced slight changes to stabilize the numerical
evaluation of the occurring phase-space integrals (see
Sec. III C). We have checked within our typical scenarios

that these changes do not have a relevant impact on the
predicted relic density. As can be seen in Table II the three
selected scenarios fulfill the demanded constraints given in
Eqs. (2.2)–(2.5).
To better understand the origin of the radiative correc-

tions in our scenarios, we dissect all scenarios and show
which processes are important in which parameter point.
Moreover, we look into each process so that we can identify
the dominating contributions. We start by listing the stop
annihilation processes that we correct and that contribute
more than 1% to hσannvi in Table III. Then, for each process
in Table III, we list the underlying structure of subchannel
contributions in Table IV, i.e., the contributions of different
diagram classes as shown in Fig. 1. We have grouped the
contributions from quartic couplings (contribution denoted
as Q), s-channel scalar exchange (denoted sS) and the
squark exchange in the t and u channels (t=u). The vector
contributions sV to the s channel do not appear in Table IV
as they turn out to be negligible within our reference
scenarios (see below). The contributions from the corre-
sponding squared matrix elements are denoted by Q ×Q,
sS × sS and t=u × t=u, while the interference terms are
denoted by Q × sS, Q × t=u and sS × t=u. Note that
negative values refer to destructive interferences. The
percentages in Table IV are obtained for the center-of-mass
momentum of the incoming particles pcm ¼ 200 GeV,
which is roughly the region where the thermal distribution
in the integrand of Eq. (1.4) peaks for the scenarios
presented here. All calculations are performed in the ’t
Hooft–Feynman gauge. Following the treatment of external
vector bosons presented in Appendix B of Ref. [34], we add
the contributions of Goldstone bosons and Faddeev–Popov
ghosts to the particular vector boson final states.
Note that, as the incoming scalar-antiscalar configuration

is CP even and as all the relevant interactions are CP
conserving, every intermediate and final state has to be CP
even, too. This limits all possible final states such that
pseudoscalar Higgs bosons can appear only in pairs or

TABLE I. Input parameters for three selected reference scenarios in the pMSSM. All values except tan β are given
in GeV.

tan β μ mA0 M1 M2 M3 M ~q1;2 M ~q3 M ~u3 M ~l At

Ia 16.3 2653.1 1917.9 750.0 1944.1 5832.4 3054.3 2143.7 1979.0 2248.3 −3684.1
Ib 16.3 2653.1 1917.9 989.0 1944.1 5832.4 3054.3 2143.7 2159.0 2248.3 −3684.1
II 27.0 2650.8 1441.5 1300.0 1798.4 1744.8 2189.7 2095.3 1388.0 1815.5 −4097.9

TABLE II. Physical squark, neutralino, chargino and Higgs masses; the bino ( ~B) contribution to ~χ01; the decomposition of ~t1 into left-
and right-handed parts; and selected observables corresponding to the reference scenarios of Table I. All masses are given in GeV.

m~χ0
1

m~t1 m~t2 m ~b1
m~χ0

2
m~χ�

1
mh0 mH0 mH� jZ ~χ0;1 ~Bj2 jZ~t;1Lj2 jZ~t;1Rj2 BRðb → sγÞ δaμ Ω~χ0

1
h2

Ia 758.0 826.1 1435.1 1260.5 1986.7 1986.8 128.8 1917.4 1919.6 0.9996 0.27 0.74 3.1 × 10−4 284 × 10−11 0.1146
Ib 999.6 1079.6 1543.4 1265.8 1986.8 1986.9 129.4 1917.9 1919.6 0.9995 0.55 0.46 3.1 × 10−4 284 × 10−11 0.1193
II 1306.3 1363.0 2128.8 2055.2 1826.9 1827.1 124.6 1440.7 1443.6 0.9992 0.08 0.92 3.1 × 10−4 279 × 10−11 0.1209
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together with a suitable vector boson and are otherwise
partial-wave suppressed (see Table III). Moreover, the same
argument prohibits any exchange of pseudoscalars in the s
channel. Finally any s-wave annihilation through the
s-channel exchange of vector bosons is forbidden due to
conservation of total angular momentum (see Table IV).
In scenario Ia, we correct processes which contribute

67.3% toΩ~χ0
1
h2. The scenario is characterized by a dominant

contribution of the h0h0 final state (46.1%), while final
states, which include one or more of the heavier Higgs
bosons H0, A0, H� are too heavy to be kinematically
accessible. One further encounters a relative dominance
of the Higgs-Higgs final state over the vector-vector final
states, where the latter contribute roughly 21% to the relic
density. This can be traced back to an enhancement of the
Higgs coupling to scalar top quarks as compared to all other
relevant couplings, e.g., the gauge interactions of EWvector
bosons to squarks. It is caused by the large top mass and the
large trilinear coupling At needed to achieve a sizable stop-
loop contribution tomh0 . It is especially important in the case
of t and u channels where the enhanced stop-Higgs/
Goldstone-boson coupling enters twice. This results in large

contributions and explains the overall dominance of the t=u
subchannels as can be seen in Table IV. But although the
massive vector final states get contributions from Goldstone
bosons, which give rise to couplings as large as the usual
Higgs couplings, their corresponding t=u channel contri-
butions are further suppressed by large propagators. This is
due to the fact that G0 as a pseudoscalar only couples light
and heavy squark mass eigenstates. Furthermore, the
charged Goldstone boson G� connects up- and down-type
squarks, which leads in scenario Ia to contributions of t- and
u-channel diagrams where the exchanged particle is much
heavier than the lighter stop ~t1 and therefore to an overall
propagator suppression of the Goldstone boson contribu-
tions to vector-vector final states relative to, e.g., the h0h0

final state.
In scenario Ib, we correct diagrams which contribute

77.7% to Ω~χ0
1
h2. The situation is quite similar to scenario Ia

except for the lightest stop being heavy enough so that also
heavier Higgs bosons are kinematically accessible. As the
final state has to be CP even, the only additional sizable
contributions stem from the h0H0, Z0A0 as well as from the
W�H∓ final states (see Table III). Comparing the scenarios
Ia and Ib, one can see a shift of the main contribution to the
relic density away from the h0h0 final state over to the h0H0

final state, which is with 46.6% the most important channel
of scenario Ib. This shift is mainly driven by the dominant
t=u-channel contributions in Table IV. The special feature
of the h0H0 final state is that it is just kinematically allowed
(mh0 þmH0 ≈ 2m~t1), so that the final-state Higgs bosons do
not have large momenta. Furthermore, the dominant con-
tribution to any cross section contribution to Ω~χ0

1
h2 comes

from the region
ffiffiffi
s

p
≈ 2m~t1 , which further limits the

momenta of the incoming and also outgoing particles.

TABLE III. Most relevant stop annihilation channels into EW
final states of the reference scenarios in Table I.

Scenario Ia Scenario Ib Scenario II

~t1~t�1 → h0h0 46.1% 15.9% 11.3%
h0H0 � � � 46.6% 11.1%

~t1~t�1 → Z0A0 � � � 4.0% 7.4%
W�H∓ � � � 4.2% 13.6%

~t1~t�1 → Z0Z0 8.7% 4.3% 7.4%
WþW− 12.5% 2.7% 13.6%

Total 67.3% 77.7% 64.4%

TABLE IV. Subprocesses for the channels of Table III contributing individually at least 0.1% at pcm ¼ 200 GeV.

Q ×Q Q × sS Q × t=u sS × sS sS × t=u t=u × t=u

Scenario Ia
~t1~t�1 → h0h0 0.7% −0.2% −17.5% � � � 2.4% 114.6%

Z0Z0 2.7% −0.3% −37.7% −4.8% 4.2% 135.9%
WþW− 2.2% −0.4% −32.7% −6.1% 6.1% 131.0%

Scenario Ib
~t1~t�1 → h0h0 2.1% −0.2% −32.9% � � � 1.5% 129.6%

h0H0 � � � � � � 0.6% � � � −0.6% 100.0%
Z0A0 � � � � � � 2.3% −21.7% 10.3% 109.0%
W�H∓ � � � � � � 1.8% −35.4% 32.9% 100.8%
Z0Z0 5.1% −0.3% −54.5% −5.3% 4.3% 150.7%
WþW− 6.6% −1.2% −52.4% −19.2% 18.7% 147.7%

Scenario II
~t1~t�1 → h0h0 8.0% −0.4% −72.2% � � � 1.8% 162.7%

h0H0 � � � � � � 2.4% � � � −0.6% 98.2%
Z0A0 � � � � � � 3.0% −2.1% 1.4% 97.7%
W�H∓ � � � � � � 2.9% −1.8% 0.8% 98.1%
Z0Z0 11.9% −0.3% −92.6% −3.5% 3.1% 181.4%
WþW− 11.4% −0.3% −90.1% −3.1% 3.0% 179.2%
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For the h0H0 final states, the t- and u-channel propagators
are therefore close to their mass shells, whereas for the h0h0

final state these propagators are still far off their mass
shells, which translates into the h0H0 final state being the
leading contribution.
In scenario II, 64.4% of all contributions to Ω~χ0

1
h2 are

affected by our corrections. The mass difference between
the squarks and the heavier Higgs boson leads to the same
structure of relevant processes as in scenario Ib, but in
contrast to the two previously encountered scenarios,
scenario II is chosen such that it gets roughly equal
contributions from all possible vector and Higgs boson
combinations in the final state.
It can further be seen in Table III that for all three

scenarios there are no sizable contributions to Ω~χ0
1
h2 from

lepton-antilepton final states. However, our scans over the
pMSSM parameter space will later show that leptonic final
states are indeed important when their contribution is
enhanced by a resonant Higgs exchange. This happens if
2m~t1 ≈mH0 .
The absence of final states in Table III containing one or

more photons is due to the fact that the photon as the
massless gauge boson of the AbelianUð1Þ does not possess
any s-channel contributions. Furthermore, there are no
Goldstone boson contributions to photons in the final state,
which turned out to be the dominant contributions to the
Z0Z0 andWþW− final states as explained above. Finally, as
the photon coupling to sfermions is diagonal in the squark
mass eigenbasis, the ~t1-annihilation lacks all contributions
of photon-Higgs final states, which altogether leads to the
absence of final states containing one or two photons as
encountered in Table III. All other (co)annihilation chan-
nels as, e.g., coannihilation with heavier neutralinos,
charginos, sbottoms, etc., are irrelevant in our scenarios
Ia/b and II as the mass gaps between all these particles and
the lightest neutralino are already too large (see Table II).
This prevents these particles from significantly changing
Ω~χ0

1
h2 due to the Boltzmann suppression of Eq. (1.7).

III. TECHNICAL DETAILS

A. Calculation of OðαsÞ corrections
The NLO cross section

σNLO ¼
Z
2

dσV þ
Z
3

dσR ð3:1Þ

consists of the virtual (dσV) and the real emission con-
tributions (dσR), which are integrated over the two- and
three-particle phase space, respectively. Figures 2 and 3
show the relevant one-loop diagrams for stop annihilation
contributing to the virtual part dσV. In Fig. 4 the corre-
sponding real gluon emission diagrams corresponding to
dσR are depicted.

The virtual SUSY-QCD corrections to stop annihilation
include contributions from the exchange of gluons and
gluinos as well as from pure squark loops. These correc-
tions, calculated using the SUSY-preserving dimensional
reduction (DR) scheme, can be all reduced via the
Passarino–Veltman reduction to the well-known scalar
integrals A0, B0, C0 and D0 [35]. The UV divergences,
which appear in the resulting expressions, can then be
cancelled by properly chosen counterterms.
In our calculation, the latter are defined in a hybrid on-

shell/DR renormalization scheme, where At, Ab, m2
~t1
, m2

~b1
and m2

~b2
are chosen as input parameters along with the

heavy quark massesmb andmt. The strong coupling αs, the
trilinear couplings At, Ab and the bottom quark massmb are
defined in the DR scheme at the scale μR ¼ 1 TeV, which
corresponds to the scale where the soft breaking parameters
are defined. All remaining input masses are defined on
shell. A more detailed discussion of this particular renorm-
alization scheme as well as of our treatment of αs can be
found in Refs. [12,13].
Apart from the UV divergences, one-loop matrix ele-

ments also contain IR divergences which arise due to the
exchange of soft gluons in the loop. These IR divergences
are also dimensionally regularized using the DR scheme.
The associated poles cancel against IR poles of the same
form but opposite sign stemming from the real corrections
shown in Fig. 4 [36]. Since a completely analytic integra-
tion of Eq. (3.1) is in practice impossible for all but the
simplest integrands, one usually makes use of numerical
integration. However, to render Eq. (3.1) numerically inte-
grable, a matching of the IR singularities residing in the
differential cross sections dσV and dσR is necessary. As these
differential cross sections have to be integrated separately
over different phase spaces, one cannot take advantage of
the direct cancellation of the IR divergences between the real
and virtual parts. Especially, as the singularities of the real
corrections actually arise during the integration over the
2 → 3 phase space, whereas the IR singularities of the virtual
corrections can already be separated as poles before perform-
ing any 2 → 2 phase-space integration, this matching is far
from being trivial. Multiple possibilities exist to integrate
Eq. (3.1). One is the dipole subtraction method [37], and a
second one is the so-called phase-space slicing method [35].
In this work we made use of the latter.
The phase-space slicing method isolates the IR diver-

gence in the real corrections by slicing the 2 → 3 phase

space into two parts using a cut ΔE on the energy j~kj of the
additional gluon. In the soft-gluon region, where j~kj ≤ ΔE,
we can approximate the 2 → 3 amplitudes and factorize
them according to�

dσ
dΩ

�
soft

¼ F ×

�
dσ
dΩ

�
tree-level

; ð3:2Þ

where F already contains the integration over the gluon

phase space with j~kj ≤ ΔE and therefore all IR divergences.
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Furthermore, the integration in F can be performed
analytically in D ¼ 4 − 2ϵ dimensions such that a cancel-
lation of the arising singularities against the IR singularities
of the virtual corrections is already possible at the integrand
level. The remaining part of the 2 → 3 phase-space

integration in Eq. (3.1), where j~kj > ΔE, can then be
performed numerically in D ¼ 4 dimensions. Note that
no collinear divergences occur in our case, since the
additional gluon can be radiated only off a massive scalar.
The final sum of the soft-gluon approximation and the

remaining 2 → 3 part should be independent of the
unphysical cutoff ΔE on the gluon energy. In practice
one has to choose a convenient value for ΔE. On the one
hand, it should not be too small, because the phase-space
integration of the real corrections would be numerically
unstable. On the other hand, the cut should also not be too
large, not to invalidate the soft-gluon approximation of the

cross section for j~kj ≤ ΔE. We verified that the full 2 → 3

cross sections are insensitive to a variation of ΔE around
our choice of this cut. In addition, there are logarithms of
the dimensional regularization scale μ, which we set equal
to the renormalization scale μ ¼ μR ¼ 1 TeV. These log-
arithms, which arise in the soft-gluon approximation of the
2 → 3 processes as well as in the corresponding virtual
contributions, can give rise to an enhancement of both
contributions separately but cancel in the final sum of
Eq. (3.1).

B. Coulomb corrections

In the previous subsection, we have discussed the fixed-
order corrections due to the exchange of one gluon, squark
or gluino for the stop-antistop annihilation into electroweak
final states. There are, however, additional potentially
important corrections stemming from the exchange of
multiple gluons between the stops in the initial state, which
will be discussed in the following.
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FIG. 2. Vertex and propagator insertions depicting schematically the one-loop corrections of OðαsÞ to the stop-annihilation processes
shown in Fig. 1. Here, V ¼ γ; Z0; W� and H ¼ h0; H0; A0; H�.
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FIG. 3. Diagrams depicting corrections of OðαsÞ to the stop-annihilation processes shown in Fig. 1. As before, V ¼ γ; Z0;W� and
H ¼ h0; H0; A0; H�. The diagrams in the first row are in the following referred to as box contributions, whereas we subsume the
diagrams of the second and third rows under vertex corrections. u-channel processes are not explicitly shown, as they can be obtained
by crossing from the corresponding t-channel diagrams.
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During the calculation of the OðαsÞ corrections of the
previous subsection, we encounter terms which are propor-
tional to 1=v, where v is the relative velocity of the
incoming stop-antistop pair. It is well known that the
exchange of n gluons generates a correction factor propor-
tional to ðαs=vÞn, within the perturbative expansion in αs.

2

Since during freeze-out the stops are moving slowly
(Ekin;~t1 ≈ Tfreeze-out ≪ m~t1), this fraction can become large,

αs=v≳Oð1Þ; ð3:3Þ

and spoil the convergence of the perturbative series [38,39].
Hence, these so-called Coulomb corrections need to be
resummed to all orders to get a reliable result (see Fig. 5).
This can be done in the framework of nonrelativistic

QCD [40]. Following Ref. [41], the Coulomb-corrected
result can be cast into the form

σCoulð~t1~t�1 → EWÞ ¼ 4π

vm2
~t1

ℑfG½1�ðr ¼ 0;
ffiffiffi
s

p þ iΓ~t1Þg

× σLOð~t1~t�1 → EWÞ; ð3:4Þ
where σLOð~t1~t�1 → EWÞ is the annihilation cross section of
the stop-antistop color singlet into EW final states.
G½1�ðr; ffiffiffi

s
p þ iΓ~t1Þ ¼ G½1�ðr; r0 ¼ 0;

ffiffiffi
s

p þ iΓ~t1Þ stands for
the color-singlet Green’s function of the Schrödinger

FIG. 5. Ladder diagram for a leading-order Coulomb potential.

FIG. 4. Diagrams depicting the real gluon emission corrections ofOðαsÞ to the stop-annihilation processes shown in Fig. 1. As before,
V ¼ γ; Z0;W� andH ¼ h0; H0; A0; H�. The corrections to the u-channel processes are not explicitly shown, as they can be obtained by
crossing from the corresponding t-channel diagrams.

2The divergence at v → 0 is the well-known Coulomb singu-
larity signaling the production of a stop-antistop quasibound
state, called stoponium.
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equation at r0 ¼ 0. It governs the dynamics of the would-be
stoponium evaluated at distance r. More precisely,
G½1�ðr; ffiffiffi

s
p þ iΓ~t1Þ is the solution to

½H½1� − ð ffiffiffi
s

p þ iΓ~t1Þ�G½1�ðr; ffiffiffi
s

p þ iΓ~t1Þ ¼ δð3ÞðrÞ; ð3:5Þ

with H½1� being the Hamilton operator of the stop-antistop
system,

H½1� ¼ −
1

m~t1

Δþ 2m~t1 þ V ½1�ðrÞ: ð3:6Þ

The Fourier transform of the color-singlet Coulomb
potential V ½1�ðrÞ can be written at NLO as [42,43]

~V ½1�ðqÞ ¼ −
4παsðμGÞC½1�

q2

×

�
1þ αsðμGÞ

4π

�
β0 ln

μ2G
q2

þ a1

��
ð3:7Þ

with

C½1� ¼ CF ¼ 4

3
; CA ¼ 3;

a1 ¼
31

9
CA −

20

9
Tfnf;

β0 ¼
11

3
CA −

4

3
Tfnf; ð3:8Þ

and Tf ¼ 1
2

for top squarks. The zero-distance NLO
Green’s function is known in a compact analytic form,

G½1�ð0; ffiffiffi
s

p þ iΓ~t1Þ ¼
C½1�αsðμGÞm2

~t1

4π

×

�
gLO þ αsðμGÞ

4π
gNLO þ…

�
; ð3:9Þ

where its UV divergence at r ¼ 0 has been removed via MS
subtraction [44]. We work with nf ¼ 5 active quark flavors
and with αs, including additional top quark effects. We
further renormalized αs in the MS-scheme. In Eq. (3.9) we
made use of the definitions

gLO ¼ −
1

2κ
þ L − ψ ð0Þ;

gNLO ¼ β0½L2 − 2Lðψ ð0Þ − κψ ð1ÞÞþ κψ ð2Þ þðψ ð0ÞÞ2 − 3ψ ð1Þ

− 2κψ ð0Þψ ð1Þ þ 44F3ð1; 1; 1; 1; 2; 2; 1 − κ; 1Þ�
þ a1½L − ψ ð0Þ þ κψ ð1Þ�; ð3:10Þ

and

κ ¼ iC½1�αsðμGÞ
2v

;

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

p þ iΓ~t1 − 2m~t1

m~t1

s
;

L ¼ ln
iμG
2m~t1v

: ð3:11Þ

Here, ψ ðnÞ ¼ ψ ðnÞð1 − κÞ is the nth derivative of ψðzÞ ¼
γE þ d=dz lnΓðzÞ, and 4F3ð1; 1; 1; 1; 2; 2; 1 − κ; 1Þ� is a
hypergeometric function (for further details see
Appendix A). For the NLO Green’s function in Eq. (3.4),
μG can be chosen independently of the renormalization scale
μR. Since the Coulomb corrections are related to the
exchange of potential gluons with momentum jpj ≈m~t1v,
taking μG of the order

μG ∼m~t1v ∼m~t1αs ð3:12Þ

is expected to be a natural choice [see Eq. (3.3)]. Hence, we
define μG to be [45]

μG ¼ maxfC½1�m~t1αsðμGÞ; 2m~t1vg; ð3:13Þ

where μG ¼ C½1�m~t1αsðμGÞ corresponds to twice the inverse
Bohr radius. It has been shown in Ref. [46] for the color
singlet top-antitop pair production near threshold that, with
μG set to this characteristic (s)quarkonium-energy scale, the
Green’s function possesses a well-convergent perturbative
series.
To avoid double counting of NLO corrections, which are

included in the Green’s function as well as in our full NLO
calculation (see, e.g., the first diagram of Fig. 3), we have to
subtract the one-loop contribution

ℑfG½1�ð0; ffiffiffi
s

p þ iΓ~t1Þg ¼ m2
~t1
ℑ

�
v
4π

�
iþ αsðμGÞC½1�

v

×

�
iπ
2
þ ln

μG
2m~t1v

�
þOðα2s Þ

��

ð3:14Þ

from Eq. (3.9). Equation (3.14) has been obtained by
expanding Eq. (3.9) up to Oðα2sÞ.
Setting μG in Eq. (3.14) to the hard scale μG ¼ 1 TeV

and renormalizing αs according to Sec. III A, we find a
matching between the Coulomb enhanced diagrams of the
full NLO calculation and the Coulomb corrections
expanded up to Oðα2sÞ in the threshold region with a
precision better than 1%.
Another subtlety arises as Eq. (3.10) is only an expan-

sion around the leading-order bound-state poles. It there-
fore induces poles in the Green’s function of the general
form ½αsELO

n =ðELO
n −

ffiffiffi
s

p
− iΓ~t1Þ�k (k ¼ 1; 2 at NLO),
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which differ by an Oðα2sÞ correction from an exact treat-
ment [42,47]. Hence, this difference only becomes relevant
in the vicinity of the associated bound-state poles. But as
their production is suppressed by the nonzero temperature
during freeze-out,3 there is no need for a more elaborated
treatment in terms of a precise calculation of Ω~χ0

1
h2.

Finally note that the approach presented here implicitly
assumes that the amplitudes, which enter σLO in Eq. (3.4),
do not depend on the momenta of the annihilating particles.
In the case of dominant s-wave annihilation in the non-
relativistic limit, this is a well justified approximation but
turns out to be misleading for cross sections dominated by,
e.g., the p-wave contribution. For these cases the Coulomb
corrections for a leading-order Coulomb potential can be
found in Refs. [48,49]. Since we provide a complete NLO
calculation, the error turns out to be of the order Oðα2s Þ for
αs ≪ v and remains of this order relative to the leading
Oððαs=vÞnÞ Coulomb corrections even in the limit αs ≳ v.
Hence, we choose to rely on this simplified treatment.
In Fig. 6, we compare cross sections which include the

Coulomb corrections to the corresponding tree-level cross
sections for two processes of scenario II. We chose scenario
II for presenting our results, but it should be noted that the
basic qualitative behavior is scenario independent. The grey
shaded areas represent the thermal averaging function in
Eq. (1.4) in arbitrary units and indicate the thermal
weighting of the σv contribution to Ω~χ0

1
h2.

We show the stop-annihilation into the h0H0 andWþW−

final state. In both cases a steep rise of the Coulomb-
corrected σv (green line) is observed for low pcm due to the
attractive force felt by the stop-antistop pair [see Eq. (3.7)],
whereas the tree level (orange line), which is dominated by
s-wave annihilation of the ~t1~t�1 pair, is roughly constant.

For higher pcm values, the 1=v enhancement becomes more
and more subdominant, and the Coulomb corrections turn
into a usual perturbative series in αs. Although the
Coulomb corrections become very large only in the region
where the thermal distribution is small, Fig. 6 can still
elucidate the relevance of these corrections for a precision
calculation of Ω~χ0

1
h2.

C. Further subtleties

Some of the 2 → 2 amplitudes, which contribute to the
final neutralino relic density Ω~χ0

1
h2, contain a gluon and an

unstable electroweak particle X, such as a Higgs or a
Z-boson, in their final state. By further adding the 2 → 3
processes as, e.g., the diagrams of the first line of Fig. 4, we
partly double count some of these contributions. The reason
is that in the case of an on-shell Higgs or vector boson
propagator the 2 → 3 amplitude corresponds to the on-shell
production of a gluon and a heavy boson X followed by
its decay, which is already included within the 2 → 2
processes (exemplified in Fig. 7).
To avoid this double counting, we subtract from the

usual 2 → 2 matrix element the 2 → 2 matrix element
weighted by the fraction of the EW decay width ΓX→EW
divided by the total decay width ΓX→tot, both for a two-
particle final state. More precisely, we have introduced the
replacement

FIG. 6 (color online). The leading-order (orange line) and the Coulomb-corrected cross section (green line) multiplied with the relative
velocity v in dependence of the center-of-mass momentum pcm for two selected channels of scenario II. The grey areas indicate the
thermal distribution (in arbitrary units).

FIG. 7. Example for a potential double-counting between
2 → 2 and 2 → 3 amplitudes for a ll̄ final state.

3See also the vanishing weighting factor of the thermal
distribution for v ≈ 0 (m~t1v ≪ Tfreeze-out), e.g., in Fig. 6.
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jM~t1~t�1→Xgj2 →
�
1 −

ΓX→EW

ΓX→tot

�
× jM~t1~t�1→Xgj2: ð3:15Þ

Within our implementation it is in principal possible that in
some rare cases a gluon-X final state is corrected as in
Eq. (3.15)without the corresponding2 → 3 amplitudehaving
been taken into account. But aswe correct all processeswhich
contributemore than1%toΩ~χ0

1
h2,weexpect this tobeaminor

error with respect to the aimed level of precision.
One more comment seems to be in order concerning the

radiation of potentially soft photons. In the case of photons
in the final state, the 2 → 3 real radiation process is IR
divergent as the photon can become soft. As for the gluon,
this soft behavior would cancel if one would take the
corresponding virtual corrections into account. This is,
however, beyond the scope of this work as it would require
the inclusion of EW corrections. To regulate the diver-
gence, we have introduced a lower bound on the photon
energy similar toΔE in Sec. III A, which did not much alter
the final relic density but prevented the integration over the
2 → 3 phase space from becoming numerically unstable.4

Further, we have introduced electron and muon masses,
me ¼ 5.1 × 10−4 GeV and mμ ¼ 0.106 GeV, to keep the
photon propagator in the last diagram of Fig. 4 away from
its mass shell.
For consistency all changes including the associated

lepton-Higgs couplings have been implemented in
CALCHEP and are used by MICROMEGAS in our analysis.
Finally our DM@NLO package includes a lower bound on
the squark widths in order to stabilize the phase-space
integration in the vicinity of squark-propagator poles. We
set this bound to 0.01 GeV. If the value of a particular
squark width, by default taken from MICROMEGAS, drops
below this bound, we set its value to the 0.01 GeVand keep
the MICROMEGAS value otherwise.

IV. NUMERICAL RESULTS

A. Impact on the cross section

We now turn to the discussion of the impact of our full
corrections presented in Sec. III on the processes listed in
Eqs. (1.9)–(1.12). In Fig. 8, we show the cross sections
multiplied by the relative velocity v as a function of the
center-of-mass momentum pcm for selected annihilation
channels of the three reference scenarios presented in
Table I. More precisely, we show the cross section at tree
level (black dashed line), including the full OðαsÞ correc-
tions as discussed in Sec. III A (red solid line), with the full
corrections including the Coulomb corrections of Sec. III B
(blue solid line), and the corresponding value obtained by

MICROMEGAS/CALCHEP (orange solid line). The lower
part of each plot contains different ratios between the four
cross sections (second item in the legend). As before, the
grey shaded regions represent the thermal weighting of the
σv contributions to hσannvi in Eq. (1.4).
The upper left plot of Fig. 8 shows σv for the process

~t1~t�1 → h0h0, which is the dominant subchannel in scenario
Ia. We observe that our prediction for the cross section at
tree level deviates by roughly 45% from the MICROMEGAS

result. This deviation can be traced back to a different
treatment of couplings as well as different input parameters
used within MICROMEGAS. In particular, MICROMEGAS

uses the DR-top mass mDR
t ¼ 161.6 GeV, whereas we take

the on-shell top mass mOS
t ¼ 172.3 GeV. These enter the

Yukawa couplings and in turn alter the important t and u
channels (see Table IV), which is the main reason for
the observed shift between our tree level and the
MICROMEGAS result. Due to the Coulomb corrections
discussed in Sec. III B, the higher-order corrections (red
and blue curves) rise steeply for small velocities (i.e., small
pcm). For larger values of pcm > 400 GeV, the Coulomb
corrections become less relevant, and the full correction
converges against the OðαsÞ correction with growing pcm,
whereas the 2 → 3 processes become more and more
important and already start to significantly alter the pcm
dependence of the NLO and full result. Here, the full
correction leads to a change of around 35% compared to
our tree-level calculation.
Comparing the ratios σfull=σtree (red line) and σNLO=σtree

(orange line) in the lower part of the plot within the most
relevant region for the calculation of Ω~χ0

1
h2 between pcm ¼

50 GeV and pcm ¼ 350 GeV, we observe that the
Coulomb correction significantly contributes even beyond
the NLO. Its contribution at next-to-next-to-leading order
(NNLO) and higher amounts up to about half of the OðαsÞ
contribution. Furthermore, our full result deviates from the
tree level by up to 300% and from the MICROMEGAS result
even by up to a factor 7 to 8 within the interval between
pcm ¼ 50 and 350 GeV.
In the upper right corner of Fig. 8, we show the

analogous plot for the process ~t1~t�1 → Z0Z0 of scenario
Ia. Here, our tree level differs again quite strongly from the
MICROMEGAS result by about 60%. As before this
deviation can be traced back to the different treatment
of couplings and input parameters due to our choice of
the renormalization scheme. For small pcm, however, the
Coulomb enhancement takes over again and results in large
corrections of a factor of 10 and more relative to our tree
level. In the important region between pcm ¼ 50 and
350 GeV, the deviation between our full correction and
our tree level amounts up to a factor 3 or 4, whereas the
ratio between the full result and MICROMEGAS gets even
larger by a factor 3 and more.
With these two final states, h0h0 and Z0Z0, constituting

around 55% of the total annihilation cross section hσannvi

4The 2 → 3 corrections turn out to be only a tiny contribution
to Ω~χ0

1
h2 for most of the relevant channels (see Sec. IVA), and

channels with photon final states are in general less important
(Sec. II).
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FIG. 8 (color online). Tree level (black dashed line), MICROMEGAS (orange solid line), NLO [OðαsÞ] corrections (red solid line) and
full corrections of Sec. III (blue solid line) for selected channels in the scenarios of Table I. The upper part of each plot shows σv in
GeV−2 in dependence of the momentum in the center-of-mass frame pcm. The grey areas indicate the thermal distribution (in arbitrary
units). The lower parts of the plots show the corresponding ratios of the cross sections (second item in the legends).
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(see Table III), the importance of our corrections to the
neutralino relic density is already indicated at this point.
The small kinks in the upper two plots of Fig. 8 around

pcm ¼ 485 GeV are due to a very broad s-channel reso-
nance caused by the heavier CP-even Higgs H0. Even
though the pseudoscalar Higgs boson A0 is similar in mass
(mA0 ≈mH0 ¼ 1917.4 GeV), it does not contribute to the s
channel in the case of ~t1~t�1 annihilation (see Sec. II) as it is
CP odd.
The remaining four plots show ~t1~t�1 → h0H0 and ~t1~t�1 →

Z0A0 for scenario Ib and ~t1~t�1 → WþH− and ~t1~t�1 → WþW−

for scenario II. In all four cases, our tree level differs quite
strongly from the MICROMEGAS result by up to roughly
50%. But although the Z0A0 final state is quite similar to
the Z0Z0 final state, the deviation between our tree level
and MICROMEGAS is in the former case only half as large
as in the latter case. The large difference seen in the case of
the Z0Z0 final state comes, besides the different treatment
of the top mass, from the longitudinal polarized vector
bosons which are in the Feynman gauge represented by the
Goldstone bosons G0. More accurately, it is the coupling
~t1~t2G0 that causes the large difference in Fig. 8. It is treated
differently in MICROMEGAS and enters the t- and
u-channel contributions twice in the case of Z0Z0 but only
once, e.g., if the final state is Z0A0.
In the last four plots, the Coulomb corrections dominate

our higher-order corrections in the region of small pcm. For
large values of pcm, however, the full OðαsÞ corrections
become relevant and give rise to corrections between
roughly 15% and 35%. In the region relevant for Ω~χ0

1
h2,

i.e., in the vicinity of the peak of the thermal distribution,
the deviation between our full result and our tree level
accounts for roughly 50% to 100% and between our full
result and MICROMEGAS for around 200%.
In Fig. 9 we present the decomposition of the absolute

value of the NLO cross section without tree-level contri-
butions σNLO=σtree − 1 (black) into the various types of
UV finite OðαsÞ corrections for each of the processes of
Fig. 8. More precisely, we show the vertex (orange),
propagator (red), box (blue) and real corrections (green),
where the latter also contain the soft gluon contribution as
discussed in Sec. III A. All contributions are normalized to
the tree-level cross section. Although all these contributions
are UV finite, the vertex, box and real corrections are
separately IR divergent as well as dependent on large
logarithms of the regularization scale μ. These logarithms
cancel between the individual contributions of Fig. 9.
Comparing the different contributions for each process,

one can clearly identify the subclasses of OðαsÞ correc-
tions, which are enhanced by the Coulomb corrections of
Sec. III B, namely the vertex and box corrections. Only the
vertex corrections of the processes ~t1~t�1 → h0H0 and ~t1~t�1 →
WþH− show no significant rise at small pcm. This is due to
the dominant t- and u-channel contributions for these cases,

which turn out to be much larger than the Coulomb
enhanced diagrams subsumed under the vertex corrections
(see Table IV). Hence, one has to go to much smaller pcm ∼
Oð10−3 GeVÞ to see a significant rise in the vertex
corrections, which is, however, not shown here.
The sum of box and vertex corrections results in a

positive correction at low pcm. For large pcm, however, the
situation is reversed, and the overall corrections are
negative. The point where the overall correction changes
its sign is clearly visible in each plot and is given by the
point where the box and vertex contributions are roughly
the same. The real emission corrections are subdominant in
all cases and rise only for larger pcm, where the larger
kinematically accessible phase space of the 2 → 3 proc-
esses enhances the associated total cross sections.

B. Impact on the relic density

In this subsection, we investigate the impact of our
corrections on the neutralino relic density Ω~χ0

1
h2. For the

following analysis, we have implemented our results into a
computer code called DM@NLO that can be linked to
MICROMEGAS. In total we correct 24 different final states
of ~t1~t�1 pair annihilation. All other processes, which do not
subsume under the processes listed in Eqs. (1.9)–(1.12) or
the processes named in Sec. III C (see Fig. 7), are provided
by CalcHEP at effective tree level. Although most of them
contribute only marginally to the final relic density, the
relevance of each of the different processes is a priori
unknown as it depends strongly on the specific scenario.
This makes a comprehensive study of each point of the
parameter space necessary.
As the NLO corrections are more time consuming than

the regular tree-level calculation, we optimize our numeri-
cal evaluation by calculating the NLO corrections only for
processes which contribute more than 1% to the total
annihilation cross section. This is in accordance with the
current experimental precision of Ω~χ0

1
h2, which is around

2% at 1σ confidence level. The remaining channels are
either replaced for consistency by our tree level or are left
unchanged.
We present our results in the M1–M ~u3 plane of the

pMSSM parameter space defined in Sec. II. These two
parameters influence directly the masses of the lightest
neutralino and the lightest scalar top quark, respectively,
and thus the mass splitting m~χ0

1
−m~t1 to which ~t1~t�1 pair

annihilation is extremely sensitive with respect to the relic
density. In our scenarios the lightest neutralino is always
binolike, and hence is its mass predominantly determined
by the M1 parameter. The lightest scalar top quark
possesses a large admixture of ~tR, the superpartner of
the right-handed part of the top quark, and so the mass is
also sensitive to the right-handed supersymmetry breaking
parameter M ~u3 (see Table II).
In Figs. 10 and 11, we present scans around our reference

scenarios of Table I. The orange band (ΩMO) refers to the
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FIG. 9 (color online). Results for NLO- (without tree level, black), vertex- (orange), propagator- (red), box- (blue) and real plus soft
photon corrections (green) of Sec. III A for selected channels in the scenarios of Tab. I. The plots show ratios of the different corrections
over tree-level cross sections dependent on pcm. The grey areas indicate the thermal distribution (in arbitrary units).

J. HARZ et al. PHYSICAL REVIEW D 91, 034012 (2015)

034012-14



FIG. 10 (color online). Planck-compatible relic density bands [see Eq. (1.1)] in the M1–M ~u3 plane surrounding scenarios Ia and Ib.
The calculation includes MICROMEGAS (orange), our tree level (grey) and our full corrections (blue). The white and red stars mark
the positions of our reference scenarios Ia and Ib. The black lines in the upper left plot show the deviation between MICROMEGAS and
our full result in percent. In the upper right plot, the black lines stand for the mass of the lightest Higgs boson mh0 in GeV. For further
explanations see the text.

SUSY-QCD CORRECTIONS TO STOP ANNIHILATION … PHYSICAL REVIEW D 91, 034012 (2015)

034012-15



relic densityΩ~χ0
1
h2 obtained by MICROMEGAS/ CALCHEP,

the grey band (Ωtree) indicates the prediction of the relic
density Ω~χ0

1
h2 where our tree-level calculation replaces

the CALCHEP result for the processes specified in

Eqs. (1.9)–(1.12), and the blue band (Ωfull) shows the

neutralinorelicdensityΩ~χ0
1
h2 asaresultofour fullcalculation

discussed in Sec. III. We further added to Fig. (11) in red
the relic density obtained by our NLO calculation.

FIG. 11 (color online). Same as Fig. 10 for scenario II, but here the plot for the ll̄ final states is left out (see the text). We further added
the NLO result in red.
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The experimental 1σ uncertainty is reflected by the width
of the three bands in Figs. 10 and 11. The narrow band
demonstrates how constraining the assumption that the
lightest neutralino ~χ01 accounts for the whole cold dark
matter in the Universe actually is. We encounter a distinct
separation between the bands corresponding to our tree-
level result (grey) and the default result of MICROMEGAS

(orange) in all plots nearly everywhere over the whole
M1 −M ~u3 plane. This separation gets even enhanced if one
takes the NLO (red) or full (blue) corrections into account.
The black contour lines in the top left plots of Figs. 10
and 11 quantify more precisely the magnitude of the
corrections between MICROMEGAS and our full result.
They amount up to roughly 50% in Fig. 11 and reach even
more than 50% in the cosmologically favored region of the
corresponding plot of Fig. 10. Within the same regions, our
fully corrected result deviates from our tree level by up to
25% in Fig. 11 and by nearly 40% in Fig. 10. One can
further see in Fig. 11 the importance of the NNLO
Coulomb corrections for a precise estimation of the relic
density. The full result deviates by far more than one
standard deviation from our NLO result, which is visible in
the splitting of the associated blue and red bands. The
deviation due to Coulomb corrections of NNLO and
beyond even exceeds the size of our full NLO corrections.
Besides the fact that for v ≈ αs the higher order Coulomb
corrections are roughly of the same size as the leading-
order Coulomb corrections, this result can be further traced
back to a cancellation among the NLO contributions to the
relic density. Figure 8 shows that the NLO corrections at
large v tend to lower the tree-level cross section, whereas at
lower v the Coulomb corrections start to alter the cross
section, turning the NLO corrections to positive values.
Since this transition happens to be for certain processes
relatively close to the peak of the thermal distribution, the
associated cancellation significantly lowers the total con-
tribution of the NLO corrections to the relic density and in
turn raises the importance of the throughout positive
higher-order Coulomb corrections.5

Apart from the corrections discussed above, Figs. 10
and 11 highlight several regions of parameter space where
different processes dominate the total annihilation cross
section. The cosmologically preferred region of parameter
space lies along a line of almost constant mass difference
between the LSP and the NLSP. In both scenarios, the
regions where the processes investigated in this analysis are
important stretch along the favored region of parameter
space. For scenarios Ia/b, one observes that for higher
values of M ~u3 (that means for heavier scalar top quarks)
along the favored region the processes with Higgs bosons
in the final state dominate. On the other end of the favored

region where M ~u3 and M1 are smaller, the processes with
a vector boson in the final state take over to be most
important. Here, the stops are lighter, and two Higgs bosons
in the final state are no longer kinematically allowed or are
at least largely suppressed. The same observation but less
pronounced holds for scenario II, where in the last plot of
Fig. 11 one encounters an increasing relevance of vector-
vector final states toward lower values of M ~u3 and M1.
Although both scenarios fulfill the experimental bounds on

the Higgs boson mass, only scenario II falls into the vicinity
of the experimentally favored mass mh0 while the scenarios
Ia and Ib already lie at the edge of the experimental constraint
as given in Eq. (2.3). The mass of the lightest Higgs boson is
mainly driven by theM ~u3 parameter as it determines the mass
m~t1 in our scenarios. The parameterM ~u3 therefore influences
the mass splitting between the top quark and its superpartner
~t1, which in turn enters the mass corrections of the mass of
the lightest Higgs boson [see Eq. (2.1)].
Another interesting contribution with electroweak final

states, which we have not mentioned yet, is the annihilation
of scalar top quarks into lepton-antilepton pairs. Although
this process is not the leading contribution to the total cross
section in any of our scenarios, there is a region in the
M ~u3–M1 plane shown in the bottom-right plot of Fig. 10,
where the process with ττ̄ final state contributes as much as
13%. In Fig. 12 we show a zoom into this area of enhanced
ττ̄ contributions. It can be observed that the enhancement of
the ττ̄ final state is due to an s-channel resonance caused by
the heavier Higgs H0 together with the Yukawa coupling,
which for tan β ¼ 16.3 favors the down-type fermions.
Interestingly, the corrections to this process are significant
enough to cause a shift of the relic density of more than
20% relative to our tree level and even of more than 30%
relative to MICROMEGAS despite the fact that its contri-
bution is comparatively low. The reason is that the
annihilation into ττ̄ proceeds only through an s-channel
exchange of vector and Higgs bosons. As can be seen in
Fig. 9, for all other final states, the corrections from the
vertex and the box diagrams cancel each other and lead to a
reduction in the total correction. This is, however, not the
case for τ leptons in the final state as no box diagrams exist,
and thus this cancellation cannot take place. For further
discussion we introduced a representative scenario Ic
marked by the white star in Fig. 12. The relevant cross
section contributions for this parameter point are shown in
more detail in Fig. 13. We see that the corrections to the
annihilation into ττ̄ are dominated by the vertex corrections
and the real correction with the corresponding large
Coulomb enhancement of the vertex corrections for small
pcm. One observes that starting at the H0 resonance at
around pcm ¼ 80 GeV (first plot of Fig. 13) the corrections
comprise large Coulomb corrections stemming from the
vertex diagrams. Later for larger pcm, the corrections are
dominated by the relatively large contributions of the
2 → 3 processes (see the second plot of Fig. 13) due to the

5Note that this also increases the dependence of the final relic
density on the choice of μG. We postpone a more detailed analysis
to later investigations.
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FIG. 12 (color online). Scan over the scenarios Ia/b plane. The white star marks the position of scenario Ic (M1 ¼ 831 GeV,
M ~u3 ¼ 2057 GeV) further analyzed in Fig. 13.

FIG. 13 (color online). Cross sections and NLO contributions to scenario Ic of Fig. 12.
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phase-space enhancement of the 2 → 3 final states, which
sets in already for much lower pcm because of the small τ
mass. Finally note that the s-wave contribution to the stop-
annihilation cross section into ll̄ final states is suppressed
by a factor ðml=m~t1Þ2. Therefore, a more elaborate treat-
ment, which takes the full Coulomb corrections for the p-
wave into account, may lead to relative corrections on the
particular cross section, which are less suppressed than
Oðα2sÞ compared to the leading order (see Sec. III B).
However, as the leptons unfold their main impact on the
relic density in the vicinity of the H0 resonance, this in
turn decreases the impact of the p-wave contributions (see
the left plot in Fig. 13). Hence, we leave this for further
investigations.

V. CONCLUSIONS

An important mechanism for enhancing the annihilation
cross section of the lightest neutralino in order to meet the
experimentally determined value for the relic densityΩ~χ0

1
h2

is (co)annihilation processes of nearly mass degenerate
particles. A theoretically well-motivated candidate for such
(co)annihilation processes is the lightest stop ~t1. Motivated
by previous analyses [9,10,12], we investigated the impact
of ~t1~t�1 annihilation into electroweak final states on the
neutralino relic density including the fullOðαsÞ corrections
as well as the Coulomb corrections due to the exchange of
soft gluons between the incoming stop-antistop pair.
We further explored their impact on the neutralino relic

density Ω~χ0
1
h2 within the phenomenological MSSM. For

this purpose, we chose three reference scenarios, which are
allowed by current experimental constraints and possess a
rich variety of stop annihilation channels contributing to the
relic density Ω~χ0

1
h2. We performed large scans around these

scenarios and compared the resulting Ω~χ0
1
h2 by using the

public code MICROMEGAS with our results. We found that
within these scenarios our results can change the neutralino
relic density Ω~χ0

1
h2 within the cosmologically favored

region by more than 50%, shifting the relic band by a
few tens of GeV within some of the considered pMSSM
parameters. They are therefore larger than the current
experimental uncertainty coming from the latest Planck
data. In these cases, both the full OðαsÞ corrections as well
as the Coulomb corrections of Oðα2sÞ and beyond turned
out to have a sizable impact on the cross sections within
the kinematically relevant region. Further, we have split the
annihilation cross section into contributions stemming
separately from different types of final states and analyzed

vector-vector, vector-Higgs, Higgs-Higgs and lepton-
antilepton final states. Although the Higgs-Higgs final
states turned out to be enhanced by large couplings due
to a large At favored by scenarios containing a light stop,
we also found regions within the parameter space where
vector-vector and vector-Higgs final states contribute
sizably to Ω~χ0

1
h2. The lepton-antilepton final states do

not contribute as much as the other final states, but
nevertheless their corrections are sizable and can lead to
a significant change in Ω~χ0

1
h2 due to the absence of large

cancellations between box and vertex corrections.
We conclude that the identification of cosmologically

favored regions at the currently available level of precision
requires taking into account the next-to-leading order as
well as the Coulomb corrections including those inves-
tigated in this work.
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APPENDIX: HYPERGEOMETRIC FUNCTION

The hypergeometric function is defined as

pFqða1; a2;…; ap; b1; b2;…; bq; zÞ

¼
X∞
n¼0

ða1Þnða2Þn…ðapÞn
ðb1Þnðb2Þn…ðbqÞn

zn

n!
ðA1Þ

with the restriction bi ≠ 0;−1;… for i ¼ 1; 2;…; q, where
ðxÞn ¼ Γðxþ nÞ=ΓðxÞ are the Pochhammer symbols.
The series defined by Eq. (A1) converges for 4F3ð1; 1; 1;
1; 2; 2; 1 − κ; 1Þ, if

ℜ

�Xq
n¼1

bn −
Xqþ1

n¼1

an

�
> 0: ðA2Þ

To improve on the convergence of this series, we have
repeatedly employed

4F3ð1; 1; 1; 1; a; a; x; 1Þ ¼
1

a2xðx − 2ð2 − aÞÞða − xÞ2 ½a
2ðx − 1Þ44F3ð1; 1; 1; 1; a; a; xþ 1; 1Þ

þ aða − 1Þ3xð3aþ 1 − 4xÞ4F3ð1; 1; 1; 1; aþ 1; a; x; 1Þ
þ ða − 1Þ4xðx − aÞ4F3ð1; 1; 1; 1; aþ 1; aþ 1; x; 1Þ�; ðA3Þ
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4F3ð1; 1; 1; 1;a; b; x; 1Þ ¼
1

aþ bþ x − 4

� ða − 1Þ4
aða − bÞða − xÞ 4F3ð1; 1; 1; 1;aþ 1; b; x; 1Þ

þ ðb − 1Þ4
bðb − aÞðb − xÞ 4F3ð1; 1; 1; 1;a; bþ 1; x; 1Þ þ ðx − 1Þ4

xðx − aÞðx − bÞ 4F3ð1; 1; 1; 1;a; b; xþ 1; 1Þ
�
;

ðA4Þ
which is valid for x ≠ −1;−2;… and a; b ∈ N=f0; 1g, a ≠ b [42,50].
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