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We attempt an extraction of the pretzelosity distribution (h⊥1T) from preliminary COMPASS, HERMES,
and JLAB experimental data on sinð3ϕh − ϕSÞ asymmetry on proton, and effective deuteron and neutron
targets. The resulting distributions, albeit with big errors, for the first time show tendency for up-quark
pretzelosity to be positive and down-quark pretzelosity to be negative. A model relation of pretzelosity
distribution and orbital angular momentum of quarks is used to estimate contributions of up and down
quarks.

DOI: 10.1103/PhysRevD.91.034010 PACS numbers: 13.88.+e, 13.60.-r, 13.85.Ni, 13.85.Qk

I. INTRODUCTION

The proton is a very intricate dynamical system of quarks
and gluons. Spin decomposition and partonic structure of
the nucleon remain key problems of modern nuclear
physics and orbital angular momentum (OAM) of partons
has emerged as an essential part of our understanding of the
internal structure of the nucleon. Studying the structure of
the proton is one of the main goals of many past and present
experimental facilities and experiments such as H1
(DESY), ZEUS (DESY), HERMES (DESY), COMPASS
(CERN), Jefferson Lab, RHIC (BNL), various Drell-Yan
experiments [1], and eþe− annihilation experiments by the
Belle and BABAR collaborations. Future Jefferson Lab 12
[2] and EIC [3] studies are going to provide very detailed
experimental data that will improve our knowledge of
hadron structure in valence and sea regions. Description of
semi-inclusive deep inelastic scattering (SIDIS), eþe−
annihilation to two hadrons, and Drell-Yan process at
low transverse momentum (with respect to the resolution
scale) of observed particles is achieved in terms of the so-
called transverse momentum dependent distribution and
fragmentation functions (collectively called TMDs). TMDs
depend on the longitudinal momentum fraction and on the
transverse motion vector of partons inside of the nucleon
and thus allow for a three-dimensional “3-D” representa-
tion of the nucleon structure in momentum space and are
related to the OAM of partons.
One particular TMD distribution function might play a

particular role in our understanding of the spin of the
nucleon. This distribution is called pretzelosity (h⊥1T), and
its name stems from the fact that a polarized proton is not
spherically symmetric [4]. This function depends on the
fraction of hadron momentum carried by the parton, x, and
the intrinsic transverse momentum of the parton, k⊥, and it
corresponds to a quadrupole modulation of parton density

in the distribution of transversely polarized quarks in a
transversely polarized nucleon [5–7]:

Φ½iσαþγ5�ðx; k⊥Þ ¼ SαTh1ðx; k2⊥Þ þ SL
kα⊥
M

h⊥1Lðx; k2⊥Þ

−
kα⊥k

ρ
⊥ − 1

2
k2⊥g

αρ
T

M2
STρh⊥1Tðx; k2⊥Þ

−
ϵαρT k⊥ρ

M
h⊥1 ðx; k2⊥Þ: ð1Þ

In this formula ST and SL are transverse and longitudinal
components of polarization vector and other functions that
enter in the projection of parton density with σαþγ5 are
transversity [8] (h1), the Boer-Mulders function [9] (h⊥1 ),
and the so-called worm-gear or Kotzinian-Mulders function
[10] (h⊥1L). As one can see, the pretzelosity distribution
enters with the kα⊥k

ρ
⊥ − 1

2
k2⊥g

αρ
T coefficient that corresponds

to a quadrupole modulation of parton density in momentum
space. The pretzelosity distribution in convolution with
the Collins fragmentation function [11] generates
sinð3ϕh − ϕSÞ asymmetry in SIDIS and was studied
experimentally by the COMPASS [12–15] and
HERMES [16–18] collaborations and JLAB [19]. We
attempt the first extraction of pretzelosity from the latest
experimental data [12–19] using the extracted Collins
fragmentation function from Ref. [20] for our analysis.
We are going to use tree level approximation and neglect
possible effects of TMD evolution (such as Sudakov
suppression) in this paper and include only the relevant
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution of collinear quantities. In fact, the span of Q2 in the
experimental data is narrow enough to assume small
possible effects from evolution.
Model calculations of pretzelosity, including the bag and

light-cone quark models, and predictions for experiments
are presented in Refs. [21–27]. Note that most models
predict negative u-quark and positive d-quark pretzelosity.
In a vast class of models with a spherically symmetric

nucleon wave function in the rest frame, the pretzelosity
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distribution is related to the OAM of quarks by the
following relation [22,27,28]:

La
z ¼ −

Z
dxd2k⊥

k2⊥
2M2

h⊥a
1T ðx; k2⊥Þ

¼ −
Z

dxh⊥ð1Þa
1T ðxÞ: ð2Þ

It was shown in Ref. [29] that the relation of Eq. (2) did
not correspond to the intrinsic OAM of quarks. This
relation is valid on the amplitude level and not on the
operator level and may hold only numerically [29], as
OAM is chiral and charge even, but pretzelosity is chiral
and charge odd. We warn the reader that the relation of
Eq. (2) is model dependent and thus one cannot derive solid
conclusions based on it; nevertheless, it appears very
interesting to attempt an extraction of the pretzelosity
distribution (h⊥1T) from the experimental data on
sinð3ϕh − ϕSÞ asymmetry and compare the numerical
results of Eq. (2) with existing calculations of OAM.
Lattice QCD results [30–32] use Ji’s relation of Ref. [33]

of the total angular momentum of the flavor q contribution
to the spin of the nucleon and GPDs Hq and Eq:
Jq ¼ 1

2

R
dxx½Hqðx; 0; 0Þ þ Eqðx; 0; 0Þ�. Contribution of

the quark spin is then subtracted from the result:
Lq
z ¼ Jq − 1

2
Σq. References [30–32] use only the so-called

connected insertions in lattice simulations and find the
following result:

Lu
z < 0; Ld

z > 0; jLuþd
z j ≪ jLu

z j; jLd
z j: ð3Þ

Reference [34] shows that, while jLuþd
z j largely cancels

if only connected insertions are considered, the results
change when disconnected insertions are included: their
contributions are large and positive. Results of Ref. [34] at
Q2 ¼ 4 GeV2 imply that

Lu
z < 0; Ld

z > 0; ð4Þ

thus, the smallness of the total uþ d contribution to the
OAM is not confirmed. The connected insertions do not
affect either the difference Lu

z − Ld
z or the sign of Lu

z , Ld
z .

It is worth mentioning that TMDs exhibit the so-called
generalized universality. Some TMDs may depend on the
process. The most notorious examples are Sivers [9,35] and
Boer-Mulders [9] distributions that have opposite signs in
SIDIS and Drell-Yan [36–38]. Apart from the sign, these
functions are the same and universal; however, it turns out
that there might be several universal functions correspond-
ing to pretzelosity distribution. In particular, it was found in
Ref. [39] that there are three different universal functions
corresponding to pretzelosity. Those functions are in
principle accessible in various processes, but one cannot
distinguish among them in SIDIS; thus, we will use only
one function h⊥1T ≡ h⊥1TSIDIS.

As we mentioned previously, the relation of Eq. (2)
OAM and the pretzelosity function is a model inspired
relation. It was shown that OAM is related to the so-called
generalized transverse momentum dependent distributions
(GTMDs), in particular to one denoted as F1;4 [40]. There
are two ways of constructing the OAM of quarks, depend-
ing on the configuration of the gauge link in the operator
definition: either the canonical OAM of Jaffe-Manohar [41]
in the spin decomposition 1

2
¼ 1

2
ΔΣþ Lq

z þ ΔGþ Lg
z or

the kinetic OAM in the definition of Ji [33] in the spin
decomposition 1

2
¼ 1

2
ΔΣþ Lq

z þ Jg. The definition of
OAM in these two decompositions differs by the presence
of the derivative i∂ in the definition of Jaffe-Manohar [41]
and the covariant derivative iD ¼ i∂ − gA in the definition
of Ji [33]. The presence of gauge field in kinetic OAM
makes it different from canonical OAM. The relation of
F1;4 and OAM of partons in a longitudinally polarized
nucleon was shown in Ref. [42] and model and QCD
calculations of canonical and kinetic OAM were performed
in Refs. [43–45]. Results of Ref. [45] indicate that the total
kinetic OAM in a one-quark model Lq

z ∼ ð−0.04– − 0.1Þ at
Q ¼ 3 GeV. Canonical and kinetic OAM were studied in
Ref. [46] and the model results suggest that for a u quark
canonical Lu

z ¼ 0.11 and kinetic Lu
z ¼ 0.13 at the hadronic

scale. The numerical difference between two definitions is
generated by the presence of the gauge field; in models
without the gauge field term, such as the scalar diquark
model, one obtains the same value for kinetic and canonical
OAM [47]. Model results of Refs. [46,47] are of opposite
sign of the lattice QCD results that suggest Lu

z < 0

and Ld
z > 0.

The rest of the paper is organized as follows: in Sec. II
we will derive a general formula for the Asinð3ϕh−ϕSÞ

UT single
spin asymmetry associated with pretzelosity in TMD
formalism. Formulas for unpolarized and polarized cross
sections will be presented in Secs. II A and II B. We will
calculate the probability that existing experimental data
from COMPASS, HERMES, and JLAB indicate that all
pretzelosity functions are exactly equal to zero, i.e., the so-
called null-signal hypothesis, in Sec. III. Then we attempt a
detailed phenomenological fit of pretzelosity distributions
in Sec. IV, where we present resulting parameters of the fit
of pretzelosity distributions and comparison with existing
data. We will give predictions for future measurements at
Jefferson Lab 12 in Sec. IVA. We will compare resulting
pretzelosity distribution to models in Sec. V and test model
relations on pretzelosity in Sec. VI. Using the model
relation of the OAM of quarks and pretzelosity, we will
calculate the OAM of up and down quarks in Sec. VII.
Finally we will conclude in Sec. VIII.

II. Asinð3ϕh−ϕSÞ
UT SINGLE SPIN ASYMMETRY

The part of the SIDIS cross section we are interested in
reads [5,7,48]
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dσ
dxdydϕSdzdϕhdPhT

¼ α22PhT

xyQ2

��
1 − yþ 1

2
y2
�
ðFUU;T þ εFUU;LÞ þ STð1 − yÞ sinð3ϕh − ϕSÞFsinð3ϕh−ϕSÞ

UT þ � � �
�
; ð5Þ

where one uses the following standard variables,

x ¼ Q2

2P · q
; y ¼ P · q

P · l
;

z ¼ P · Ph

P · q
; ε ≈

1 − y
1 − yþ 1

2
y2

; ð6Þ

where α is the fine structure constant, Q2¼−q2¼−ðl−l0Þ2
is the virtuality of the exchanged photon, PhT is the
transverse momentum of the produced hadron, ST is
transverse polarization, and ϕh;ϕS are the azimuthal angles
of the produced hadron and the polarization vector with
respect to the lepton scattering plane formed by l and l0.
FUU;L ¼ 0 at Oðk⊥=QÞ order of accuracy. Structure func-
tions that we are interested in this study are unpolarized
structure function FUU;T and spin structure function

Fsinð3ϕh−ϕSÞ
UT ; the polarization states of the beam and target

are explicitly denoted in the definition of structure func-
tions as “U” for unpolarized and “T” for transversely
polarized. The ellipsis in Eq. (5) denotes contributions from
other spin structure functions.

In this paper we will use the convention of Refs. [48–50]
for the transverse momentum of an incoming quark with
respect to the proton’s momentum and the hadron momen-
tum with respect to the fragmenting quark:

k⊥; p⊥: ð7Þ

The advantage of this convention is that the fragmentation
function has a probabilistic interpretation with respect to
vector p⊥, i.e.,

Dh=aðzÞ≡
Z

d2p⊥Dh=aðz; p2⊥Þ: ð8Þ

The structure functions involved in Eq. (5) are con-
volutions of the distribution and fragmentation functions f
and D [5,7]:

FAB ¼ C½wfD�; ð9Þ

where A; B indicate the polarization state of the beam and
target U;L; T, and C½…� is defined as

C½wfD� ¼ x
X
a

e2a

Z
d2k⊥d2p⊥δð2Þðzk⊥ þ p⊥ − PhTÞw

�
k⊥;−

p⊥
z

�
faðx; k2⊥ÞDh=aðz; p2⊥Þ; ð10Þ

or integrating over d2p⊥,

C½wfD� ¼ x
X
a

e2a

Z
d2k⊥w

�
k⊥;−

ðPhT − zk⊥Þ
z

�
faðx; k2⊥ÞDh=aðz; ðPhT − zk⊥Þ2Þ: ð11Þ

For the sake of generality we use “f” and “D” functions to
denote distribution and fragmentation TMD in formulas in
this section.
The kinematical functions, w, can be found in

Refs. [5,7,48]. So-called moments of TMDs are defined
accordingly as

fðnÞaðxÞ ¼
Z

d2k⊥
�

k2⊥
2M2

�
n

faðx; k2⊥Þ; ð12Þ

DðnÞ
h=aðzÞ ¼

Z
d2p⊥

�
p2⊥

2z2M2
h

�
n

Dh=aðz; p2⊥Þ: ð13Þ

One also defines the “half” moment by

Dð1=2Þ
h=a ðzÞ ¼

Z
d2p⊥

jp⊥j
2zMh

Dh=aðz; p2⊥Þ: ð14Þ

Single spin asymmetry (SSA) measured experimentally is
defined as

Asinð3ϕh−ϕSÞ
UT ðx; z; y; PhTÞ
≡ h2 sinð3ϕh − ϕSÞi

¼ 2

R
dϕhdϕS sinð3ϕh − ϕSÞðdσ↑ − dσ↓ÞR

dϕhdϕSðdσ↑ þ dσ↓Þ ; ð15Þ

where ↑ð↓Þ denote opposite transverse polarizations
of the target nucleon, U stands for the unpolarized lepton
beam, and T for the transverse polarization of the target
nucleon. The numerator and denominator of Eq. (15) can
be written as
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dσ↑ − dσ↓ ¼ α22PhT

sx2y2
2ð1 − yÞ sinð3ϕh − ϕSÞFsinð3ϕh−ϕSÞ

UT ;

dσ↑ þ dσ↓ ¼ α22PhT

sx2y2
ð1þ ð1 − yÞ2ÞFUU;T: ð16Þ

The final expression for Asinð3ϕh−ϕSÞ
UT asymmetry reads

Asinð3ϕh−ϕSÞ
UT ðx; z; y; PhTÞ

¼
α22PhT
sx2y2

α22PhT
sx2y2

·
2ð1 − yÞ

ð1þ ð1 − yÞ2Þ ·
Fsinð3ϕh−ϕSÞ
UT

FUU;T
: ð17Þ

Note that DNN ≡ 2ð1 − yÞ=ð1þ ð1 − yÞ2Þ is often factored
out from the measured asymmetry.

A. Unpolarized structure function, FUU;T

The partonic interpretation of the unpolarized structure
function FUU;T is the following [5,7,48]:

FUU;T ¼ C½f1D�; ð18Þ

where f1 and D are unpolarized TMD distribution and
fragmentation functions. We have

FUU;T ¼ x
X
a¼q;q̄

e2a

Z
d2k⊥fa1ðx; k2⊥ÞDh=aðz; ðPhT − zk⊥Þ2Þ:

ð19Þ
Following Refs. [20,51,52], we assume Gaussian form for
fa1ðx; k2⊥Þ and D1h=aðz; p2⊥Þ:

fa1ðx; k2⊥Þ ¼ fa1ðxÞ
1

πhk2⊥i
exp

�
−

k2⊥
hk2⊥i

�
;

Dh=aðz; p2⊥Þ ¼ Dh=aðzÞ
1

πhp2⊥i
exp

�
−

p2⊥
hp2⊥i

�
: ð20Þ

Note that this is a correct representation of TMDs at tree
level; as we mentioned in the Introduction we neglect
possible effects coming from resummation of soft gluons.
The collinear distributions fa1ðxÞ and collinear fragmenta-
tion functions Dh=aðzÞ in Eq. (20) will follow the usual
DGLAP evolution in Q2; we omit the explicit dependence
on Q2 in all formulas for simplicity.
Using Eqs. (19), (20) we obtain

FUU;Tðx; z; y; PhTÞ

¼ x
X
a¼q;q̄

e2afa1ðxÞDh=aðzÞ
1

πhP2
hTi

exp

�
−

P2
hT

hP2
hTi

�
; ð21Þ

where

hP2
hTi ¼ hp2⊥i þ z2hk2⊥i: ð22Þ

Experimentally one can access FUU;Tðx; z; y; PhTÞ by
measuring unpolarized multiplicities of hadrons (pions,
and kaons) in SIDIS. Recent analysis of unpolarized
multiplicity data of the HERMES Collaboration [53] is
presented in Ref. [54] and analysis of data of the HERMES
[53] and COMPASS [55] collaborations is presented in
Ref. [56]. Note that, in principle, the widths of distribution
and fragmentation functions hk2⊥i and hp2⊥i can be flavor
dependent and can be functions of x and z correspondingly;
however, for the sake of the present analysis such depend-
encies are not very important and we will use a more
simplified model [49] in which hk2⊥i ¼ 0.25 GeV2 and
hp2⊥i ¼ 0.2 GeV2. In fact, these values were used in
extractions [20,51,52] of the Collins fragmentation func-
tions that we will utilize in this paper.

B. Polarized structure function, Fsinð3ϕh−ϕSÞ
UT

The partonic interpretation [5,7,48] of the structure
function Fsinð3ϕh−ϕSÞ

UT involves the pretzelosity distribution
(h⊥1T) and the so-called Collins fragmentation function
(H⊥

1 ):

Fsinð3ϕh−ϕSÞ
UT ¼ C

�
−2ðĥ · p⊥Þðĥ · k⊥Þ − k2⊥ðĥ · p⊥Þ þ 4ðĥ · k⊥Þ2ðĥ · p⊥Þ

2M2Mhz
h⊥1TH⊥

1

�
; ð23Þ

where ĥ≡ PhT=jPhT j.
There exists a positivity bound [57] for h⊥a

1T :

k2⊥
2M2

jh⊥a
1T ðx; k2⊥Þj ≤

1

2
ðfa1ðx; k2⊥Þ − ga1ðx; k2⊥ÞÞ: ð24Þ

We assume Gaussian form for gq1ðx; k2⊥Þ:

ga1ðx; k2⊥Þ ¼ ga1ðxÞ
1

πhk2⊥i
exp

�
−

k2⊥
hk2⊥i

�
; ð25Þ

where the width hk2⊥i ¼ 0.25 ðGeV2Þ is the same as for fa1.
The widths could in principle be different; however, given
the precision of the experimental data, such an approxi-
mation is a reasonable one. The helicity distributions g1ðxÞ
are taken from Ref. [58], and parton distributions f1ðxÞ are
the GRV98LO PDF set [59].
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We assume the following form of h⊥a
1T , that preserves the

positivity bound of Eq. (24):

h⊥a
1T ðx; k2⊥Þ ¼

M2

M2
T
e−k

2⊥=M2
T h⊥a

1T ðxÞ
1

πhk2⊥i
exp

�
−

k2⊥
hk2⊥i

�
;

ð26Þ

where

h⊥a
1T ðxÞ ¼ eN aðxÞðfa1ðxÞ − ga1ðxÞÞ;

N aðxÞ ¼ Naxαð1 − xÞβ ðαþ βÞαþβ

ααββ
; ð27Þ

where Na, α, β, and MT will be fitted to data, with
−1 ≤ Na ≤ 1.
We use Eq. (12) to calculate the first moment of

h⊥a
1T ðx; p2

TÞ of Eq. (26) and obtain

h⊥ð1Þa
1T ðxÞ ¼ h⊥a

1T ðxÞM2
Thk2⊥i

2ðM2
T þ hk2⊥iÞ2

: ð28Þ

The parametrization of Collins fragmentation functionH⊥q
1

is taken from Refs. [20,51,52]:

H⊥
1h=aðz;p⊥Þ¼

zMh

2p⊥
ΔNDh=a↑ðz;p⊥Þ

¼ zMh

MC
e−p

2⊥=M2
CH⊥

1h=aðzÞ
1

πhp2⊥i
exp

�
−

p2⊥
hp2⊥i

�
;

ð29Þ

with

H⊥
1h=aðzÞ ¼

ffiffiffiffiffi
2e

p
N C

a ðzÞDh=aðzÞ;

N C
a ðzÞ ¼ NC

a zγð1 − zÞδ ðγ þ δÞðγþδÞ

γγδδ
; ð30Þ

where −1 ≤ NC
z ≤ 1 and hp2⊥i ¼ 0.2 ðGeV2Þ. The frag-

mentation functions (FF) Dh=aðzÞ are from the DSS LO
fragmentation function set [60]. Notice that with these
choices the Collins fragmentation function automatically
obeys its proper positivity bound [57]. In the fits we use the
parameters of Collins FF obtained in Ref. [20]. Note that as
in Ref. [20] we use two Collins fragmentation functions,
favored and unfavored ones (see Ref. [20] for details on
implementation), and corresponding parameters NC

a are
then NC

fav and NC
unfav.

According to Eq. (14) we obtain the following expres-
sion for the half moment of the Collins fragmentation
function:

H⊥ð1=2Þ
1h=a ðzÞ ¼ H⊥

1h=aðzÞM2
C

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πhp2⊥i

ðM2
C þ hp2⊥iÞ3

s
: ð31Þ

We also define the following variables:

hk2⊥iT ¼ hk2⊥iM2
T

hk2⊥i þM2
T
;

hp2⊥iC ¼ hp2⊥iM2
C

hp2⊥i þM2
C
;

hP2
hTiCT ¼ hp2⊥iC þ z2hk2⊥iT: ð32Þ

The polarized structure function Fsinð3ϕh−ϕSÞ
UT can be readily

computed and reads (see also Ref. [48])

Fsinð3ϕh−ϕSÞ
UT ðx; z; y; PhTÞ
¼ xz2P3

hT
2

P
a¼q;q̄

e2ah
⊥ð1Þa
1T ðxÞH⊥ð1=2Þ

1h=a ðzÞ C
πhP2

hTi4CT
e−P

2
hT=hP2

hTiCT ;

ð33Þ

where

C ¼ 8hk2⊥iT
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2⊥iC
π

r
: ð34Þ

One can see from Eq. (2) that under these assumptions on
the relation of pretzelosity to OAM we obtain

Fsinð3ϕh−ϕSÞ
UT ∝

X
q

e2qL
q
z ðxÞ: ð35Þ

Note that the model relation of Eq. (2) is found to be valid
only for quarks and not for antiquarks; in this study we will
neglect potential contributions from antiquarks.
The experimental data are presented as sets of projec-

tions on x, z, and PhT . In fact, the three data sets are a
projection of the same data set and not independent; thus, in
principle we should not include all sets in the fit.1 However,
provided that the projections are at different average values
of x, z, and PhT we do gain sensitivity to distribution and
fragmentation functions if we include simultaneously all
three data sets. In the following we will assume them to be
independent and include them into our χ2 analysis.
However, it would be clearly beneficial for the phenom-
enological analysis if experimental data were presented in a
simultaneous 4-D x, z, y, PhT binning. For the asymmetry
as a function of x; z we are using our result of Eq. (17), in
particular, the value of the experimental point’s hPhTi.
We also include a simplified scale dependence in the

asymmetry by using Q2 in the corresponding collinear

distribution. The collinear quantities h⊥ð1Þa
1T ðxÞ and

1We thank Gunar Schnell for discussion on this matter.
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H⊥ð1=2Þ
1h=a ðzÞ in general will be related to the so-called twist-3

matrix elements related to multiparton correlations. Such
matrix elements have a nontrivial QCD evolution (see, for
example, Ref. [61]). The complete solutions of evolution
equations are currently unknown and we substitute them by
DGLAP evolution of corresponding collinear distributions
in the parametrizations of Eqs. (27), (30).
For completeness we also give results for PhT integrated

asymmetry:

Asinð3ϕh−ϕSÞ
UT ðx; z; yÞ

¼
α2

sx2y2 2ð1 − yÞ R dPhTPhTdϕhF
sinð3ϕh−ϕSÞ
UT

α2

sx2y2 ð1þ ð1 − yÞ2Þ R dPhTPhTdϕhFUU;T

: ð36Þ

Using Eqs. (21), (33) we obtain

Z
dPhTPhTdϕhFUU;Tðx; z; y; PhTÞ

¼ x
X
a¼q;q̄

e2afa1ðxÞDh=aðzÞ;
Z

dPhTPhTdϕhF
sinð3ϕh−ϕSÞ
UT ðx; z; y; PhTÞ

¼ xz2

2

X
a¼q;q̄

e2ah
⊥ð1Þa
1T ðxÞH⊥ð1=2Þ

1h=a ðzÞ 3C
ffiffiffi
π

p

4hP2
hTi3=2CT

: ð37Þ

PhT integrated asymmetry was used for comparison with
experimental results in Refs. [22,23]. We checked explicitly
that results of fitting with average values of hPhTi and PhT
integrated ones are consistent with each other.
In the following we will use values of hxi, hyi, hzi, hPhTi

in each experimental point to estimate the asymmetry
using Eq. (33).

III. NULL SIGNAL HYPOTHESIS

Before proceeding to the phenomenology of pretzelosity,
let us try to understand if the experimental data are
compatible with a null hypothesis. We calculate the
probability that h⊥a

1T ðx; p2
TÞ≡ 0 or Fsinð3ϕh−ϕSÞ

UT ≡ 0.
We calculate thus the value of

χ20 ¼
XNdata

n¼1

�
Fsinð3ϕh−ϕSÞ
UT

ΔFsinð3ϕh−ϕSÞ
UT

�2

; ð38Þ

where the experimental error is ΔF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔF2

sys þ ΔF2
stat

q
.

Results are presented in Table I. We see that the total
value of χ2 ¼ 163.48 for Ndata ¼ 175.
The goodness of this fit for a given χ2 is normally

calculated as Pðχ2; nd:o:f:Þ, the integral of the probability
distribution in χ2 for nd:o:f. degrees of freedom, integrated
from the observed minimum χ20 to infinity:

TABLE I. Results of the analysis of the null hypothesis.

Experiment Hadron Target Dependence # ndata χ2 χ2=ndata

COMPASS [12] hþ LiD x 9 2.12 0.23
COMPASS [12] h− LiD x 9 5.66 0.62
COMPASS [12] hþ LiD z 8 15.45 1.93
COMPASS [12] h− LiD z 8 3.64 0.45
COMPASS [12] hþ LiD PhT 9 10.05 1.11
COMPASS [12] h− LiD PhT 9 10.46 1.16
COMPASS [15] hþ NH3 x 9 11.28 1.25
COMPASS [15] h− NH3 x 9 4.30 0.48
COMPASS [15] hþ NH3 z 8 13.76 1.72
COMPASS [15] h− NH3 z 8 1.69 0.21
COMPASS [15] hþ NH3 PhT 9 11.12 1.24
COMPASS [15] h− NH3 PhT 9 8.07 0.90
HERMES [16–18] π0 H x 7 12.29 1.76
HERMES [16–18] πþ H x 7 2.99 0.43
HERMES [16–18] π− H x 7 10.12 1.45
HERMES [16–18] π0 H z 7 2.24 0.32
HERMES [16–18] πþ H z 7 5.14 0.73
HERMES [16–18] π− H z 7 3.68 0.52
HERMES [16–18] π0 H PhT 7 5.74 0.82
HERMES [16–18] πþ H PhT 7 4.92 0.70
HERMES [16–18] π− H PhT 7 12.89 1.84
JLAB [19] πþ 3He x 4 4.35 1.19
JLAB [19] π− 3He x 4 1.52 0.41

175 163.48 0.93
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Pðχ20; nd:o:f:Þ ¼ 1 −
Z

χ2
0

0

dχ2
1

2Γðnd:o:f:=2Þ

×

�
χ2

2

�
nd:o:f:=2−1

exp

�
−
χ2

2

�
: ð39Þ

We obtain Pð163.48; 175Þ ¼ 72%; i.e., there is a good
chance that the quark-charge weighted sums over pretze-
losity are zero or, in particular, all h⊥a

1T ðx; p2
TÞ ¼ 0.

However, we note that Fsinð3ϕh−ϕSÞ
UT ∝ z2P3

h⊥ and thus
asymmetry is suppressed by an additional factor of zP2

h⊥
with respect to Collins asymmetries, which were exper-
imentally found to be nonzero. The latter do not usually
exceed 10%. Assuming that hzi ∼ 0.5, hPh⊥i ∼ 0.5 GeV,
we conclude that even if h⊥a

1T ðx; p2
TÞ is of the same

magnitude as the transversity distribution (that couples
to Collins FF and generates Collins SSA), one would

expect Fsinð3ϕh−ϕSÞ
UT ∼ 1.5% at most. In fact the maximum

asymmetry due to pretzelosity was estimated to be of the
order of ∼5% in Ref. [23]. One can see that preliminary
HERMES and COMPASS data are indeed in the range

jAsinð3ϕh−ϕSÞ
UT j≲ 2%; thus, we will attempt fitting the data.

We emphasize that future JLab 12 [2] data are going to be
of extreme importance for exploring pretzelosity TMD in
the valence quark region.

IV. PHENOMENOLOGY

In our analysis we are going to fit the unknown
parameters for pretzelosity distributions. The precision of
the experimental data is quite low, thus we are going to set
α, β, and MT to be flavor independent. We saw in the
previous section that the data are compatible with zero
pretzelosity and experimental errors are big. Therefore, one
is not able at present to determine all parameters and we
will fix β ¼ 2 as pretzelosity is expected [62–64] to be
suppressed by ð1 − xÞ2 with respect to an unpolarized
distribution. We also assume αu ¼ αd ≡ α. Thus we are
going to fit four parameters: Nu; Nd; α, and M2

T .
We will fit hþ and h− data and on effective deuteron

(LiD) [12] and proton (NH3) [15] targets from the
COMPASS Collaboration; and π0, πþ, and π− data on a
proton (H) target from preliminary HERMES [16–18] and
JLab 6 data [19] on an effective neutron (3He) target.
Note that COMPASS data [12,15] are presented in the

following way:

Asinð3ϕh−ϕSÞ
UT COMPASS ¼

Asinð3ϕh−ϕSÞ
UT

DNNðhyiÞ
; ð40Þ

where

DNNðhyiÞ ¼
2ð1 − hyiÞ

1þ ð1 − hyiÞ2 ð41Þ

and Asinð3ϕh−ϕSÞ
UT is from Eq. (17). In our fitting procedure we

take DNNðhyiÞ into account and use experimental values of
hyi for each bin. The value of Q2 is always set by the
experiment and varies from bin to bin.
Parameters of the Collins fragmentation function are

taken from Ref. [20] and presented in Table II.
The resulting parameters after the fit are presented in

Table III and partial values of χ2 are presented in Table IV.
One can easily see that the modern experimental data do not
allow for a precise extraction of pretzelosity as the errors
reported in Table III are quite big. However, one notes that
positive values for Nu and negative for Nd are preferred by
the data.
In order to check which values of parameters are

preferred by individual data sets we vary Nu ∈ ½−2; 2�
and Nd ∈ ½−2; 2� and fix all other parameters to the best fit
values. We calculate the total χ2 and partial values of
χ2COMPASSD, χ

2
COMPASSP, χ

2
HERMESP, χ

2
JLABN coming from

data sets COMPASS [12,15], HERMES [16–18], and JLab
[19]. We then plot Δχ2 ≡ χ2 − χ2min as a function of Nu in
Fig. 1(a) and as a function of Nd in Fig. 1(b). Here χ2min
corresponds to the best fit. The point where all curves
intersect corresponds to the best fit value for Nu;d.
One can see from Fig. 1 that preliminary HERMES data

prefer positive values forNu and negative values forNd and
this tendency is the most prominent. COMPASS data,
however, prefer negative values for Nu and positive values
for Nd. The fit of all data sets in turn follows preference to
positive values for Nu and negative values for Nd. The
major part of the data comes from the proton target; thus as
expected, we have a better determination of Nu due to up-
quark dominance and Δχ2 in fact is the biggest in this case
[Fig. 1(a)]. We also expect that parameter Nd will be
determined with bigger uncertainty [Fig. 1(b)]. One can
also see from Fig. 1 that we cannot establish that pretze-
losity does not violate positivity bounds; in fact, values
beyond region ½−1; 1� are also possible. We performed a
study of possible positivity bound Eq. (24) violation by
pretzelosity and found no evidence of such a violation in

TABLE II. Parameters of Collins FF (Ref. [20]).

NC
fav ¼ 0.49þ0.2

−0.18 NC
unfav ¼ −1þ0.38

−0

γ ¼ 1.06þ0.45
−0.32 δ ¼ 0.07þ0.42

−0.07

M2
C ¼ 1.50þ2.00

−1.12 ðGeV2Þ)

TABLE III. Fitted parameters of the pretzelosity quark
distributions.

α ¼ 2.5� 1.5 β ¼ 2 fixed
Nu ¼ 1� 1.4 Nd ¼ −1� 1.3
M2

T ¼ 0.18� 0.7 ðGeV2Þ
χ2min ¼ 163.33 χ2min=n:d:o:f ¼ 0.95
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existing experimental data; in other words the fit does not
yield values of Nu, Nd violating the positivity bound if
these parameters are allowed to vary in a bigger region.
The errors of extraction are estimated using the Monte

Carlo method from Ref. [65]. We generate 500 sets of
parameters aj ¼ fαj; Nuj; Ndj;M2

Tjg that satisfy

χ2ðajÞ ≤ χ2min þ Δχ2; ð42Þ
where Δχ2 ¼ 9.72 that corresponds to P ¼ 95.45% of
coverage probability for four parameters. Those parameter
sets are then used to estimate the errors.

Resulting pretzelosity is presented in Fig. 2. One can see
that resulting pretzelosity has a very large error corridor and
diminishes at small x. Future Jefferson Lab 12 GeV data is
going to be crucial for the progress of phenomenology of
the pretzelosity distribution as JLab 12 [2] data will explore
the high-x region. Figure 2 also demonstrates that the best
fit indicates positive pretzelosity for up quarks and negative
pretzelosity for down quarks.
We also plot in Fig. 3 the quadrupole modulation that

corresponds to the pretzelosity distribution with particular
choices of α ¼ 1; ρ ¼ 2 from Eq. (1):
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FIG. 1 (color online). Δχ2 as a function of Nu (a) and Nd (b) for total χ2 and preliminary COMPASS [12,15], HERMES [16–18], and
JLab [19] separately.

TABLE IV. Partial χ2 values of the best fit.

Experiment Hadron Target Dependence # ndata χ2 χ2=ndata

COMPASS [12] hþ LiD x 9 2.11 0.23
COMPASS [12] h− LiD x 9 5.68 0.63
COMPASS [12] hþ LiD z 8 15.45 1.93
COMPASS [12] h− LiD z 8 3.63 0.45
COMPASS [12] hþ LiD PhT 9 10.05 1.12
COMPASS [12] h− LiD PhT 9 10.46 1.16
COMPASS [15] hþ NH3 x 9 11.22 1.25
COMPASS [15] h− NH3 x 9 4.21 0.47
COMPASS [15] hþ NH3 z 8 13.92 1.74
COMPASS [15] h− NH3 z 8 1.67 0.20
COMPASS [15] hþ NH3 PhT 9 11.23 1.25
COMPASS [15] h− NH3 PhT 9 8.04 0.89
HERMES [16–18] π0 H x 7 12.27 1.75
HERMES [16–18] πþ H x 7 3.05 0.44
HERMES [16–18] π− H x 7 10.06 1.44
HERMES [16–18] π0 H z 7 2.23 0.32
HERMES [16–18] πþ H z 7 5.08 0.73
HERMES [16–18] π− H z 7 3.47 0.50
HERMES [16–18] π0 H PhT 7 5.74 0.82
HERMES [16–18] πþ H PhT 7 4.84 0.69
HERMES [16–18] π− H PhT 7 12.93 1.85
JLAB [19] πþ 3He x 4 4.35 1.09
JLAB [19] π− 3He x 4 1.56 0.39

175 163.33 0.93
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−
1

2

k1⊥k2⊥
M2

xh⊥1Tðx; k2⊥Þ: ð43Þ

One can see from Fig. 3 that indeed quadrupole
deformation of the distribution is clearly present due to
pretzelosity.
Results of the description of COMPASS [12,15] data on

h� production are presented in Fig. 4 for a proton (NH3)
target and in Fig. 5 for a deuteron (LiD) target. One can see
that the expected asymmetry is very small especially for z
and PhT dependence; the reason is that COMPASS hxi≃
0.03 is quite small and pretzelosity quickly diminishes at
small x. However, the error corridor is quite large. In
addition, cancellation of u and d pretzelosities makes
asymmetries on the deuteron target vanishing; see
Fig. 5. Indeed for hþ production on a deuteron target,

Fsinð3ϕh−ϕSÞ
UT ∝4ðh⊥u

1T þh⊥d
1T ÞH⊥fav

1 þðh⊥u
1T þh⊥d

1T ÞH⊥unfav
1 ∼0

because our result indicates that h⊥u
1T þ h⊥d

1T ∼ 0. Overall
smallness of asymmetry on the proton target in Fig. 4 is due
to the suppression factor z2P3

hT. Our result also indicates
that pretzelosity diminishes as x becomes smaller; thus, we

have almost vanishing results for small values of x. We
cannot of course exclude possible contribution from sea
quarks or bigger values of pretzelosity in the small-x
region. Note that our results are scaled by DNN in order
to be compared to the COMPASS data.
The results of the description of preliminary experimen-

tal HERMES [16–18] data for πþ and π− production on a
proton target are presented in Fig. 6. Note that schemati-

cally for πþ production on the proton target Fsinð3ϕh−ϕSÞ
UT ∝

4h⊥u
1T H

⊥fav
1 þh⊥d

1T H
⊥unfav
1 and because our result indicates

that h⊥u
1T H

⊥fav
1 >0 and h⊥d

1T H
⊥unfav
1 >0, the asymmetry

is effectively enhanced and positive for πþ. Similarly

for π− we have Fsinð3ϕh−ϕSÞ
UT ∝ 4h⊥ð1Þu

1T H⊥ð1=2Þunfav
1 þ

h⊥ð1Þd
1T H⊥ð1=2Þfav

1 < 0.
The smallness of the asymmetry in Fig. 6 is explained by

suppression factor z2P3
hT, as far as the average values of

HERMES are hzi≃ 0.36 and hPhTi≃ 0.4 ðGeVÞ and thus
z2P3

hT ≃ 0.008 ðGeV3Þ. This makes possible values of the
asymmetry be well below 1%.
Fit of the neutron data on π� production from JLab 6

[19] is shown in Fig. 7. The sign of the asymmetry for πþ is
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FIG. 2 (color online). First moment of the pretzelosity distribution for up (a) and down (b) quarks at Q2 ¼ 2.4 GeV2. The solid line
corresponds to the best fit and the shadowed region corresponds to the error corridor explained in the text.
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negative, as on neutron Fsinð3ϕh−ϕSÞ
UT ∝ 4h⊥d

1T H
⊥fav
1 þ

h⊥u
1T H

⊥unfav
1 < 0, and positive for π−, as Fsinð3ϕh−ϕSÞ

UT ∝
4h⊥d

1T H
⊥unfav
1 þ h⊥u

1T H
⊥fav
1 > 0. Due to kinematical suppres-

sion the resulting asymmetry is very small; the measured
asymmetry has very big errors and is compatible with
our fit.

A. Predictions for Jefferson Lab 12 GeV

We present predictions for future measurements of

Asinð3ϕh−ϕSÞ
UT on a proton target at Jefferson Lab at

12 GeV in Fig. 8. We plot our prediction for πþ production
on a proton target assuming hzi ¼ 0.5 and hPhTi ¼
0.38 GeV. We predict absolute value of the asymmetry
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of order of 1%. Both positive and negative asymmetries are
possible; current data prefer positive asymmetry for πþ on
the proton target (positive u-quark pretzelosity times
positive favored Collins FF) and negative asymmetry for
π− (positive u-quark pretzelosity times negative unfavored
Collins FF). Signs of asymmetries on the neutron target are
reversed with respect to the proton target and absolute
values are slightly higher.

V. COMPARISON WITH OTHER CALCULATIONS

Our results are of opposite sign if compared to model
calculations of [21–27]. Most models predict that h⊥u

1T < 0

and h⊥d
1T > 0 while our best fit indicates that h⊥u

1T > 0 and
h⊥d
1T < 0. However, as can be seen from Fig. 2, our fit does

not give a clear preference on the sign of pretzelosity.

The size of asymmetries is compatible with calculations
of Ref. [22], where asymmetries of order of 1% for πþ and
0.5% for π− were found for JLab kinematics and can be
compared to our findings in Fig. 8. Other calculations, for
example, [21] or [23], suggest bigger asymmetries up to
4%–5% for COMPASS kinematics and 2%–5% for JLab
12 kinematics. In contrast our calculations suggest that
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asymmetry at JLab 12 will be of order of 1% at most.
Future experimental measurements will be very important
to clarify the sign and the size of pretzelosity and

Asinð3ϕh−ϕSÞ
UT asymmetry.

VI. MODEL RELATIONS AND BOUNDS
FOR PRETZELOSITY

Positivity bound for the pretzelosity reads [57]

jh⊥ð1Þa
1T ðxÞj ≤ 1

2
ðfa1ðxÞ − ga1ðxÞÞ: ð44Þ

If the positivity bound is combined with the Soffer bound
ha1ðxÞ ≤ 1=2ðfa1ðxÞ þ ga1ðxÞÞ [66], one obtains [23]

jha1ðxÞj þ jh⊥ð1Þa
1T ðxÞj ≤ fa1ðxÞ: ð45Þ

In a certain class of models including bag models (see, e.g.,
[23]) one obtains also the following model relations for the
pretzelosity and transversity:

2ha1ðxÞ ¼ fa1ðxÞ þ ga1ðxÞ; ð46Þ

h⊥ð1Þa
1T ðxÞ ¼ ha1ðxÞ − fa1ðxÞ ð47Þ

or

h⊥ð1Þa
1T ðxÞ ¼ ga1ðxÞ − ha1ðxÞ: ð48Þ

Let us examine these model relations. Equation (47)
implies that transversity saturates the Soffer bound [66]. In
fact we know that phenomenological extraction of trans-
versity is close to the bound; however, the bound is not
saturated (see, e.g., Ref. [65]). If the bound were saturated,
then Eqs. (47), (48) would simply read

h⊥ð1Þa
1T ðxÞ ¼ 1

2
ðga1ðxÞ − fa1ðxÞÞ; ð49Þ

i.e., the positivity bound for pretzelosity would be saturated
as well.
In order to compare these model predictions with our

results we plot in Fig. 9 the first moment of pretzelosity for
up and down quarks and the results from Eq. (48) using
transversity from Ref. [65] (dotted line) and the positivity
bound (44) (thick dashed line). One can see that if one uses
extracted transversity in Eq. (48), then the resulting
pretzelosity violates the positivity bound. We also plot
fa1ðxÞ − jha1ðxÞj (dot dashed lines). One can see that neither
of the positivity bounds Eqs. (44), (45) is violated by our
extracted pretzelosity. The model relation of Eq. (48) does
violate one of the positivity bounds if transversity does not
saturate the Soffer bound. Numerical comparison of
Eq. (48) with extracted pretzelosity suggests that for up
quarks there is a big discrepancy; in fact, our parametriza-
tion is constructed to satisfy the positivity bound while
Eq. (48) may violate it [compare Eq. (49) that assumes
saturation of bounds and the model relation of Eq. (48)].
For down quarks, comparison is better, numerically results
are similar, in this case the model relation Eq. (48) numeri-
cally satisfies the bound. We also checked that if one fits the
data without imposing positivity constraints when the
extracted first moment of pretzelosity does not violate
the positivity bound in the region of x where experimental
data are available, 0.0065 < x < 0.35. At large values of x
violation is possible; however, this region is not constrained
by the data.

VII. QUARK ORBITAL ANGULAR MOMENTUM

Using the pretzelosity from the previous section, let us
calculate quark OAM in the region of experimental data
0.0065 ≤ x ≤ 0.35:
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FIG. 9 (color online). First moment of the pretzelosity distribution for up (a) and down (b) quarks. The red solid line corresponds to the
best fit and the shadowed region corresponds to the error corridor. The dotted line is the model relation Eq. (48)

h⊥ð1Þa
1T ðxÞ ¼ ga1ðxÞ − ha1ðxÞ, the thick dashed line is the positivity bound Eq. (44) �j 1

2
ðfa1ðxÞ − ga1ðxÞÞj, and the alternating dashed

and dotted line is the bound from Eq. (45) �jfa1ðxÞ − jha1ðxÞjj. Neither of the bounds is violated.
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La½xmin;xmax�
z ¼ −

Z
xmax

xmin

dxh⊥ð1Þa
1T ðx;Q2Þ: ð50Þ

Using the parameters with errors from Table III, we
calculate the following values at Q2 ¼ 2.4 GeV2:

Lu½0.0065;0.35�
z ¼−0.03þ0.25

−0.10 ;

Ld½0.0065;0.35�
z ¼þ0.05þ0.49

−0.34 : ð51Þ

If we integrate over the whole kinematical region
0 < x < 1, then we obtain

Lu½0;1�
z ¼ −0.06þ0.38

−0.10 ;

Ld½0;1�
z ¼ þ0.08þ0.93

−0.60 : ð52Þ

One notes that a substantial value of the integral comes
from unexplored high-x and low-x regions.

VIII. CONCLUSIONS

We performed the first extraction of the pretzelosity
distribution from preliminary COMPASS, HERMES, and
JLab experimental data. Even though the present extraction
has big errors, we conclude that up-quark pretzelosity tends
to be positive and down-quark pretzelosity tends to be
negative. This conclusion is not in agreement with models
[21–27] that predict negative up-quark pretzelosity and

positive down-quark pretzelosity. We note that extracted
pretzelosity has very big errors and allow for both positive
and negative signs. Indeed, a vanishing asymmetry is very
consistent with existing experimental data. Future exper-
imental data from Jefferson Lab 12 [2] will be essential for
determination of the properties of the pretzelosity
distribution.
The extracted pretzelosity can be related in a model

dependent way to quark OAM and at Q2 ¼ 2.4 GeV2

Lu½0;1�
z ¼ −0.06þ0.38

−0.10 , L
d½0;1�
z ¼ þ0.08þ0.93

−0.60 .
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