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We apply the generalized Veneziano model (B5 model) in the double-Regge exchange limit to the
γp → KþK−p reaction. Four different cases defined by the possible combinations of the signature factors
of leading Regge exchanges [ðK�; a2=f2Þ, ðK�; ρ=ωÞ, ðK�

2; a2=f2Þ, and ðK�
2; ρ=ωÞ] have been simulated

through the Monte Carlo method. Suitable event candidates for the double-Regge exchange high-energy
limit were selected employing Van Hove plots as a better alternative to kinematical cuts in the KþK−p
Dalitz plot. In this way we predict and analyze the double-Regge contribution to the KþK−p Dalitz plot,
which constitutes one of the major backgrounds in the search for strangeonia, hybrids and exotics using
γp → KþK−p reaction. We expect that data currently under analysis, and those to come in the future,
will allow verification of the double-Regge behavior and a better assessment of this component of the
amplitude.
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I. INTRODUCTION

A host of new experiments dedicated to precision studies
of the hadron spectrum will begin operations in the near
future. These will complement and extend the reach of
recently completed and other ongoing experiments that,
among other discoveries, found intriguing structures in
the hadron spectrum [1–9]. Existence of these structures
demonstrates that the hadron spectrum is far more complex
than predicted by the valence quark model [10].
Nevertheless, it remains to be seen if these structures are
to be associated with new resonances. This is because
identification of new states requires detailed understanding
of reaction dynamics. The tools that enable us to constrain
and interpret reaction amplitudes are based on principles
of the S-matrix theory, which include analyticity, crossing
relations and unitarity. In practice, rigorous implementation
of these principles is impossible. It would require knowl-
edge of an infinite number of amplitudes describing all
coupled channels for all reactions related by crossing.
Nevertheless, for a given reaction it is possible to kine-
matically isolate regions where specific processes dominate
and use analyticity to constrain amplitudes in other regions
of interest, e.g. to correlate amplitude parametrization in the
low- and the high-energy regions using finite energy sum
rules [11].
It follows from S-matrix principles that in relativistic

scattering resonance formation in the direct channel is dual
to Regge exchanges, also known as Reggeons, in the cross

channels. Leading Reggeons in the cross channel determine
the high-energy behavior of the direct channel. Thus,
because of analyticity, contributions from resonances at
low energies are smoothly connected with Reggeon con-
tributions at the higher energies. Therefore, identification
of resonances has to be made simultaneously with studies
of the high-energy behavior and cross-channel Regge
exchanges [12].
A class of models that incorporates resonance-Regge

duality has been extensively studied in the past [13–16].
These dual models are based on an extension of the
Veneziano [17] approach for amplitudes connecting four
external particles to reactions with an arbitrary number, N,
of external particles [18–20]. The simplest, so-called BN
dual model satisfies crossing and resonance-Regge duality
for linear trajectories. Even though the BN model lacks
proper unitarity, which would require nonlinear trajectories,
it is expected to provide a reasonable description of reaction
amplitudes when averaged over resonance widths. Various
extensions that enable unitarity, and as a consequence
implement complex trajectories [21,22], have been pro-
posed, but they lack the simplicity of the original formu-
lation [23–26].
In this paper we apply the B5 model [27–29] in the

double-Regge exchange limit (DRL) to the reaction
γp → KþK−p. The analysis of this reaction is currently
underway based on the data collected by the CLAS
Collaboration at JLab using the highest-photon-energy
beam, Eγ ≤ 5.5 GeV, delivered to date at CEBAF to
CLAS. The KK̄ spectrum produced in photon dissociation
is expected to be dominated by vector resonances, but*shimeng1031@pku.edu.cn
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higher-spin states are also possible. At present, however,
there is little evidence for KK̄ decay modes of higher-mass
meson resonances [30], suggesting resonance signals in the
KK̄ channel of γp → KþK−p may be weak. This makes
studies of nonresonant processes even more relevant. The
Regge/Pomeron exchange is the dominant process in the
kinematical domain where all subchannel invariants are
large. According to the hypothesis of two-component
duality [31], cross-channel Regge exchanges are dual to
direct channel resonances. Thus, analysis of the KK̄
spectrum in photon production will benefit from an under-
standing of the DRL of this reaction.
Our aim is the construction of a procedure for analyzing

channels with multiparticle final states that allow resonan-
ces in subchannels to be reliably extracted without the
need for poorly justified kinematic cuts and partial wave
truncations. The double Regge regime we study here is an
important building block in this construction. It is this
region that contains higher-spin components in overlapping
subchannels. Here we set up a framework for testing how
resonance-Regge duality allows these higher waves that
produce the “background" to resonance studies in each
subchannel to be normalized, and so render the need for
partial wave truncations and cuts a method of the past.
The rest of the paper is organized as follows: In Sec. II,

we discuss properties of the BN dual models, focusing on
B4 (the Veneziano model) and B5, which are of relevance to
the process of interest here. In Sec. III A, we describe the
double-Regge limit of the B5 amplitude. Once the structure
of the dual amplitude in the double-Regge limit is obtained,
in Sec. III B, we introduce appropriate modifications
related to the presence of external particles with nonzero
spin that make the B5 model more suitable for analysis
of kaon pair photoproduction. There we also present results
of our numerical analysis. The summary and outlook are
given in Sec. V.

II. DUAL AMPLITUDE MODEL

The Veneziano model [17] describes an amplitude of
four external scalar particles. As such, it is a function of the
three Mandelstam variables s; t; u, which are related by

sþ tþ u ¼ Σ; ð1Þ
where Σ is the sum of squares of masses of the external
particles. In the following, all dimensional quantities are
measured in units of GeV. The building block of the
Veneziano model is the B4 amplitude. It is a function of
two variables, e.g. s and t. For four particles, any pair
of Mandelstam variables corresponds to invariant mass
squared in two overlapping channels. The B4 amplitude has
Regge behavior in each channel and for linear trajectories,
αðxÞ ¼ α0 þ α0x, exhibits duality between resonances in
one channel and Reggeons in the overlapping channel.
Assuming for simplicity that the reaction is s↔t

symmetric, i.e. resonance/Regge trajectories in the s and
t channels are identical, a B4 amplitude can be written as

B4ðs; tÞ ¼
Γð−αðsÞÞΓð−αðtÞÞ
Γð−αðsÞ − αðtÞÞ

¼
X∞
n¼0

βnðtÞ
n − αðsÞ ¼

X∞
n¼0

βnðsÞ
n − αðtÞ : ð2Þ

For linear trajectories, the residue function,

βnðxÞ ¼
Γð−αðxÞÞ

Γð−n − αðxÞÞ ; ð3Þ

is a polynomial in x of order n. The two alternative forms
in Eq. (2) represent the amplitudes for spinless particle
scattering in terms of an infinite series of narrow resonances
in either the s or the t channel. The solution of the equation
αðm2

RÞ ¼ n gives the mass mR of the resonances. In the
model, at a given n there are nþ 1 degenerate resonances
with spins ranging from 0 to n. The couplings of these
resonances to the external particles are computed by
expanding the residue function βnðxÞ in terms of
Legendre polynomials. In the Veneziano model, couplings
are fixed and determined by the ratio of Γ functions in
Eq. (3). A model with adjustable couplings may be
obtained by taking combinations of the B4’s with different
parameters, i.e. trajectory intercept α0, slope α0, and the
overall normalization [32,33].
The asymptotic behavior of the amplitude in Eq. (2) in

the limit when one of the channel variables, e.g. s, is taken
to infinity, s → ∞, follows from Stirling’s formula [shown
in Eq. (A4)] and is given by

B4ðs; tÞ → ð−αðsÞÞαðtÞΓð−αðtÞÞ; ð4Þ

which, except for the signature factor, is the behavior
expected for t-channel exchange of a Regge trajectory.
Regge signature factors are recovered by taking appropriate
linear combinations of the B4 amplitudes with different
channel variables as arguments. For example, at fixed t, the
amplitude is symmetric under s↔u crossing, contains only
signature-even t-channel Reggeons and corresponds to a
combination B4ðs; tÞ þ B4ðu; tÞ. The leading behavior in
the s → ∞ limit is then given by

B4ðs; tÞ þ B4ðu; tÞ
→ ½ð−αðsÞÞαðtÞ þ ð−αðuÞÞαðtÞ�Γð−αðtÞÞ: ð5Þ

So far we have assumed that all trajectory functions are
linear. If one also assumes a common slope, then it follows
from Eq. (1) that

αðsÞ þ αðtÞ þ αðuÞ ¼ const; ð6Þ
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and the leading behavior at large s of the combination in
Eq. (5) reduces to

B4ðs; tÞ þ B4ðu; tÞ → ð−αðsÞÞαðtÞξðtÞΓð−αðtÞÞ; ð7Þ

where ξðtÞ ¼ 1þ τeiπαðtÞ with τ ¼ þ1 is the proper sig-
nature factor for the spin-even t-channel Regge exchange.
Thus Eq. (7) is consistent with the expectations from
Regge theory for the contribution of the leading Regge
pole. At fixed t and large and positive s, s → ∞, u → −∞,
the amplitude without t-channel poles, i.e. B4ðu; sÞ,
behaves as

B4ðu; sÞ → eiπαðsÞ ∼ e−iπαðuÞ: ð8Þ

When the simple linear trajectory is replaced with a realistic
one, which has a positive imaginary part that grows as
s → ∞, the B4ðu; sÞ amplitude becomes exponentially
suppressed. Thus, as expected from Regge theory, in the
B4 dual model, out of the three possible diagrams shown in
Fig. 1, only two contribute in the Regge limit, s → ∞ and
t-fixed.
The leading meson trajectory is approximately equal to

αðsÞ ¼ 0.5þ s. Therefore, the first pole in the amplitude of
Eq. (2), which corresponds to α ¼ 0, would correspond to a
resonance of spin-0 and negative mass squaredm2

R ¼ −0.5.
A spurious pole like this is easily removed by replacing −α
with 1 − α in the arguments of the Γ functions. With such a
shift, the first pole in the amplitude corresponds to a spin-1
or spin-0 resonance with mass m2

R ¼ 0.5 GeV2.
The amplitude B4ðx; yÞ in Eq. (2) is identical to Euler’s

beta function. Thus, B4 can also be written using an integral
representation, which is defined for αðsÞ;αðtÞ < 0 to be

B4ðs; tÞ ¼
Z

1

0

du u−αðsÞ−1ð1 − uÞ−αðtÞ−1: ð9Þ

For other values of αðsÞ and αðtÞ, the amplitude is obtained
from Eq. (2), i.e. by analytical continuation. The integral
representation provides the basis for generalization of the
Veneziano amplitude to an arbitrary number of external
particles. In particular, the B5 amplitude can be written as

B5ðsAB; sA1; s12; s23; sB3Þ

¼
Z

1

0

dt
Z

1

0

dut−α12−1u−α23−1ð1 − tÞ−αA1−1ð1 − uÞ−αB3−1

× ð1 − tuÞ−αABþα12þα23 ; ð10Þ

where αij ¼ α0;ij þ α0ijsij and sij ¼ ðpi þ pjÞ2 are the
channel variables. We adopt the labeling convention from
Ref. [29] with all particle momenta pi taken as incoming,
cf. Fig. 2 and i; j ¼ A;B; 1; 2; 3. Using the bar to represent
an antiparticle, the reaction Aþ B → 1̄þ 2̄þ 3̄ corre-
sponds to the physical channel of the reaction of interest,
i.e. γ ¼ A, pðtargetÞ ¼ B, Kþ ¼ 1̄, K− ¼ 2̄, pðrecoilÞ ¼ 3̄.
The reaction amplitude involving five particles depends on
five independent kinematical variables, which we choose as
the consecutive two-body channel invariants sij as shown in
Fig. 2. It follows from the integral representation in Eq. (10)
that B5 is symmetric under cyclic permutation and the
reflection of the arguments. The integral representation in
Eq. (10) is valid when all trajectories are negative, αij < 0,
which is outside the physical region of the reaction of
interest. The amplitude in the physical region is obtained by
analytic continuation. As in the case of the B4 model, the
analytical continuation of Eq. (10) is performed once the
integral is represented in terms of analytical functions. In
particular it can be expressed in terms of Euler beta
functions (B4 amplitudes) and a generalized hypergeomet-
ric function of the unit argument,

B5ðsAB; sA1; s12; s23; sB3Þ
¼ B4ð−α12;−αA1ÞB4ð−α23;−αB3Þ

× 3F2ðαAB − α12 − α23;−αA1;−αB3;

× −α12 − αA1;−α23 − αB3Þ: ð11Þ

FIG. 1. Diagrammatic representation of the three independent
B4 amplitudes. The Mandelstam invariants sij¼ sji¼ðpiþpjÞ2
of the neighboring overlapping pairs are the arguments of the
amplitude. The amplitudes, from left to right, are given by
B4ðs12; s13Þ, B4ðs12; s14Þ and B4ðs13; s14Þ.

FIG. 2. Representation of the B5ðsAB; sA1; s12; s23; sB3Þ ampli-
tude and its kinematics. As in Fig. 1, the Mandelstam invariants
sij ¼ sji ¼ ðpi þ pjÞ2 of the neighboring overlapping pairs are
the arguments of the amplitude.
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The relevant properties of generalized hypergeometric
functions are given in the Appendix. The series
expression for the hypergeometric function of the unit
argument, 3F2ða; b; c; d; eÞ, is convergent provided
Reðaþ bþ c − d − eÞ < 0, which implies that Eq. (11)
is well defined for αAB < 0; ðsAB < 0Þ, but ill defined for
αAB > 0; ðsAB > 0Þ. It is the latter that corresponds to the
physical region of γp → KþK−p. The symmetry properties
of the B5, e.g.

B5ðsAB; sA1; s12; s23; sB3Þ
¼ B5ðsA1; s12; s23; sB3; sABÞ
¼ B4ð−α12;−α23ÞB4ð−αB3;−αABÞ

× 3F2ðαA1 − α23 − αB3;−α12;−αAB;

× −α12 − α23;−αB3 − αABÞ; ð12Þ

enables the analytical continuation of Eq. (11) to the
physical region of Aþ B → 1̄þ 2̄þ 3̄. Alternatively, one
can use the relations between hypergeometric functions
given in the Appendix [cf. Eq. (A3)] [29] to continue to the
region (sAB > 0). Both continuations result in the same
amplitude [34].

III. DOUBLE-REGGE LIMIT OF B5 AMPLITUDE

A. Scalar amplitudes

Taking into account symmetries implied by Eq. (10), out
of 5! permutations of the external particles there are only
twelve independent amplitudes. These are the equivalent to
the three independent B4ðx; yÞ, x; y ¼ s; t; u amplitudes of
the Veneziano model shown in Fig. 1. The twelve ampli-
tudes for the reaction γp → KþK−p, denoted by B5ðiÞ,
i ¼ 1…12, are depicted in Fig. 3. The first six diagrams
have the photon and incident proton next to each other, and
the other six diagrams have one particle between the
incident photon and proton. Before imposing additional
symmetry constraints, e.g. Bose symmetry, the most gen-
eral five-point amplitude is given by a linear combination of
the twelve independent B5 amplitudes.
For a 2-to-3 reaction, the double-Regge limit corre-

sponds to large values of the channel energies and small
momentum transfers,

sAB; s12; s23 → ∞;
s12s23
sAB

¼ fixed;
tA1
sAB

;
tB3
sAB

→ 0; ð13Þ

where tA1 ¼ ðpA − p1Þ2 and tB3 ¼ ðpB − p3Þ2. To com-
pute the double-Regge limit of the B5ð1Þ amplitude we use
the relations (A2) and (A3) in the Appendix to obtain

B5 ¼ B4ð−αAB;−αA1ÞB4ð−α23;−αB3 þ αA1Þ3F2ð−αA1;−α23;−α12 − αA1 þ αB3; 1 − αA1 þ αB3;−αAB − αA1Þ
þ B4ð−αAB;−αB3ÞB4ð−α12;−αA1 þ αB3Þ3F2ð−αB3;−α12;−α23 − αB3 þ αA1; 1 − αB3 þ αA1;−αAB − αB3Þ: ð14Þ

In the above expression three out of the five arguments in the
two hypergeometric functions are large. Using the relation

3F2ða; μ; ν; b; λ; zÞ→1 F1

�
a; b;

μνz
λ

�
; ð15Þ

valid in the limit λ; μ; ν → ∞, Eq. (14) reduces to

B5ð1Þ → B4ð−αAB;−αA1ÞB4ð−α23;−αB3 þ αA1Þ
× 1F1ð−αA1; 1 − αA1 þ αB3;−ηÞ
þ B4ð−αAB;−αB3ÞB4ð−α12;−αA1 þ αB3Þ
× 1F1ð−αB3; 1 − αB3 þ αA1;−ηÞ; ð16Þ

where η ¼ α12α23=αAB. Further simplification is obtained
when in the two limits η → 0 or η → ∞. In the former
(case a) 1F1ða; b;−ηÞ → 1, and Eq. (16) reduces to

B5ð1;aÞ¼B4ð−αAB;−αA1ÞB4ð−α23;−αB3þαA1Þ
þB4ð−αAB;−αB3ÞB4ð−α12;−αA1þαB3Þ: ð17Þ

For η→∞ one can use 1F1ða;b;−ηÞ→ ðηÞ−aΓðbÞ=Γðb−aÞ
and obtain

B5ð1; bÞ ¼ B4ð−α12;−αA1ÞB4ð−α23;−αB3Þ: ð18Þ

In the following we will also take the limit s12; s23 → ∞
in the B4 functions. In the double-Regge limit specified
by Eq. (13), four of the twelve diagrams shown in Fig. 2
dominate. These are the diagrams that have the same
trajectory in the A1 (γKþ) and B3 (pp̄) channels. The
four diagrams are related by exchanging A↔1 or B↔3
and are the diagrams B5ð1Þ; B5ð7Þ; B5ð12Þ; B5ð9Þ in
Fig. 3. The remaining eight diagrams are exponentially
suppressed [35].
We demonstrate this suppression using the diagram

B5ð2Þ as an example. Using the integral representation
for the hypergeometric function, the amplitude B5ð1Þ can
be written as
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B5ð1Þ ¼
Γð−α12ÞΓð−α23Þ

ΓðαAB − α12 − α23Þ

×
1

2πi

Z
i∞

−i∞

Γð−sÞΓðs − αA1ÞΓðs − αB3Þ
Γðs − α12 − αA1Þ

×
Γðsþ αAB − α12 − α23Þð−1Þs

Γðs − α23 − αB3Þ
ds: ð19Þ

The B5ð2Þ amplitude is obtained from B5ð1Þ by exchanging
lines 1↔3,

B5ð2Þ ¼
Γð−α12ÞΓð−α23Þ

ΓðαAB − α12 − α23Þ

×
1

2πi

Z
i∞

−i∞

Γð−sÞΓðs − αA3ÞΓðs − αB1Þ
Γðs − α23 − αA3Þ

×
Γðsþ αAB − α12 − α23Þð−1Þs

Γðs − α12 − αB1Þ
ds; ð20Þ

and one finds in the double-Regge limit that it behaves as

B5ð2Þ → Γð−α12ÞΓð−α23Þ
Z

i∞

−i∞
Γð−sÞ

× ðs − αA3Þα23ðs − αB1Þα12ð−αABÞ−sds: ð21Þ

The amplitude thus contains the factor eiπα12eiπα23. In the
physical region of the reaction considered here, α12’s and
α23’s have positive and increasing imaginary parts, which
makes the amplitude B5ð2Þ exponentially suppressed. This
mechanism is analogous to the suppression of the B4ðu; sÞ
amplitude in the s-channel physical region at large s and
fixed t [cf. discussion following Eq. (8)].
To obtain the DRL of the amplitudes corresponding to

the diagrams B5ð7Þ and B5ð12Þ, one only needs to
exchange A↔1 (upper vertex) and B↔3 (lower vertex),
respectively. The last diagram, B5ð9Þ, is obtained from
B5ð1Þ by exchanging particles in both the upper and the
lower vertex. The combination of the four diagrams
generates the signature factors of the two Reggeons in
channels A1 and B3. The corresponding amplitudes are
given by

B5ð7Þ ¼ B4ð−αB1;−αA1ÞB4ð−α23;−αB3 þ αA1Þ1F1ð−αA1; 1 − αA1 þ αB3;−η7Þ
þ B4ð−αB1;−αB3ÞB4ð−αA2;−αA1 þ αB3Þ1F1ð−αB3; 1 − αB3 þ αA1;−η7Þ;

B5ð12Þ ¼ B4ð−αA3;−αA1ÞB4ð−αB2;−αB3 þ αA1Þ1F1ð−αA1; 1 − αA1 þ αB3;−η12Þ
þ B4ð−αA3;−αB3ÞB4ð−α12;−αA1 þ αB3Þ1F1ð−αB3; 1 − αB3 þ αA1;−η12Þ;

B5ð9Þ ¼ B4ð−α13;−αA1ÞB4ð−αB2;−αB3 þ αA1Þ1F1ð−αA1; 1 − αA1 þ αB3;−η9Þ
þ B4ð−α13;−αB3ÞB4ð−αA2;−αA1 þ αB3Þ1F1ð−αB3; 1 − αB3 þ αA1;−η9Þ; ð22Þ

where η7 ¼ αA2α23=αB1, η12 ¼ α12αB2=αA3 and η9 ¼
αA2αB2=α13. There are new trajectories that appear in these
amplitudes. For example, αB1 inB5ð7Þ originates from αAB in
B5ð1Þ after replacing A with 1. In principle these two
trajectories have different functional dependence on the
channel invariants, since they represent resonances coupled
to a different pair of particles. In B5ð7Þ, αB1 contains

resonances in theK−p channel, while αAB inB5ð1Þ describes
resonances in the γp channel. As discussed in the case of the
Veneziano model, to achieve resonance-Regge duality it is
necessary to use a common slope for all trajectories (see
discussion in Sec. II). In this case, trajectories can be related
to each other using kinematical relations between channel
invariants, analogous to that in Eq. (1), e.g.

FIG. 3. Twelve diagrams involved in the reaction
γp → KþK−p. The diagrams, labeled as B5ðiÞ and distinguished
by the channel invariants they depend upon, are discussed in
Sec. III A and the caption of Fig. 2.
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sAB ¼ s13 þ s12 þ s23 þ const; ð23Þ
where the constant is given by the sum of masses squared. In
particular, one finds

α13 ¼ αAB − α12 − α23 þ const;

αA3 ¼ α12 − αB3 − αAB þ const;

αB1 ¼ α23 − αA1 − αAB þ const;

αA2 ¼ αB3 − αA1 − α12 þ const;

αB2 ¼ αA1 − αB3 − α23 þ const; ð24Þ

which in the double-Regge limit lead to

α13 ∼ αAB − α12 − α23 ∼ αAB;

αA3 ∼ −αAB; αB1 ∼ −αAB;

αA2 ∼ −α12; αB2 ∼ −α23; ð25Þ

and η7 ¼ η12 ¼ η9 → η. Combining the four surviving
amplitudes in the double-Regge limit,

A5 ¼ B5ð1Þ þ τA1B5ð7Þ þ τB3B5ð12Þ þ τA1τB3B5ð9Þ; ð26Þ

with τi ¼ �1, one finds

A5 ¼ ð−αABÞαA1ð−α23ÞαB3−αA1Γð−αA1ÞΓðαA1 − αB3Þð1þ τA1eiπαA1 þ τB3eiπαB3 þ τA1τB3eiπðαB3−αA1ÞÞV1ðtA1; tB3; ηÞ
þ ð−αABÞαB3ð−α12ÞαA1−αB3Γð−αB3ÞΓðαB3 − αA1Þð1þ τA1eiπαA1 þ τB3eiπαB3 þ τA1τB3eiπðαA1−αB3ÞÞV2ðtA1; tB3; ηÞ; ð27Þ

where the functions Vi represent the Reggeon-Reggeon-particle coupling at the middle vertex as shown in Fig. 4. The
equation above has the general structure for the leading Regge pole contributions to the double-Regge limit [36], in which
V1 and V2 are analytical functions of their variables in the kinematical domain of the double-Regge limit. In particular, the
B5 model used gives the following prediction for the middle-vertex functions:

V1ðtA1; tB3; ηÞ ¼ 1F1ð−αA1; 1 − αA1 þ αB3;−ηÞ; V2ðtA1; tB3; ηÞ ¼ 1F1ð−αB3; 1 − αB3 þ αA1;−ηÞ: ð28Þ

In the double-Regge limit, the resonance-trajectories in the production channels, αAB, α12 and α23, are proportional to the
channel variables, αij → sij, and

A5 ¼ ð−sABÞαA1ð−s23ÞαB3−αA1Γð−αA1ÞΓðαA1 − αB3Þð1þ τA1eiπαA1 þ τB3eiπαB3 þ τA1τB3eiπðαB3−αA1ÞÞV1ðtA1; tB3; η0Þ
þ ð−sABÞαB3ð−s12ÞαA1−αB3Γð−αB3ÞΓðαB3 − αA1Þð1þ τB3eiπαB3 þ τA1eiπαA1 þ τA1τB3eiπðαA1−αB3ÞÞV2ðtA1; tB3; η0Þ; ð29Þ

where η0 ¼ s12s23=sAB. We have neglected slowly varying
exponential form factors proportional to expðαi logðα0ÞÞ,
where i ¼ A1; B3, since for leading trajectories the slope
parameter α0 is very close to 1.
We observe that just as in Eq. (2), the above amplitude

also contains ghost poles in the A1 and B3 channels for
positive signatures τi ¼ þ1 when αA1 and αB3 are the
leading trajectories αðsÞ ∼ 0.5þ s. In the present work, we
focus only on the latter case, and the ghost poles have to be

removed. As discussed in the previous section, these can be
eliminated by shifting trajectories, αA1 → αA1 − 1 and
αB3 → αB3 − 1. The replacement guarantees that the dou-
ble-Regge amplitude has no resonances in the A1 and B3
channels in the physical region of the Aþ B → 1̄þ 2̄þ 3̄
reaction, where these are the exchange channels and
αA1;αB3 ≤ 0. Shifting the trajectories and redefining the
signature accordingly, we obtain

A5 ¼ ð−sABÞαA1−1ð−s23ÞαB3−αA1Γð1 − αA1ÞΓðαA1 − αB3Þð1þ τA1eiπαA1 þ τB3eiπαB3 þ τA1τB3eiπðαB3−αA1ÞÞV1ðtA1; tB3; η0Þ
þ ð−sABÞαB3−1ð−s12ÞαA1−αB3Γð1 − αB3ÞΓðαB3 − αA1Þð1þ τB3eiπαB3 þ τA1eiπαA1 þ τA1τB3eiπðαA1−αB3ÞÞV2ðtA1; tB3; η0Þ:

ð30Þ

When αA1 and αB3 are equal to even/odd positive
integers, the amplitude has poles when τA1; τB3 ¼
þ1;−1, respectively. The amplitude in the B3 channel
(lower Reggeon) has the first pole for αB3 ¼ 1. The pole
appears in the amplitude with τB3 ¼ −1 and, depending

on the isospin, corresponds to the ρ or ω meson
exchange.
At αB3 ¼ 2 there is a pole in the right-signature τB3 ¼

þ1 amplitude. It corresponds to the lightest spin-2 tensor
mesons, the a2 and the f2, depending on the isospin.
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In the A1 channel, the leading pole at αA1 ¼ 1 in the
right-signature amplitude (τA1 ¼ −1) corresponds to the
exchange of the lightest strange spin-1 meson, theK�ð890Þ.
The strange tensor meson pole in the right-signature
amplitude at αA1 ¼ 2 corresponds to the K�

2ð1430Þ. The
amplitude in the double-Regge limit is therefore associated
with the exchange of the following meson combinations:
ðK�; ρ=ωÞ, ðK�; a2=f2Þ ðK�

2; ρ=ωÞ, ðK�
2; a2=f2Þ, corre-

sponding to the amplitude with ðτA1; τB3Þ ¼ ð−;−Þ;
ð−;þÞ; ðþ;−Þ; ðþ;þÞ, respectively.
We note that the unnatural parity trajectory in the A1

channel of the K-meson is located below the leading

trajectory. In the double-Regge limit of the B5 model it
is suppressed compared to the exchange of vector and
tensor mesons. Even though the K-meson exchange in the
upper vertex is suppressed, the Pomeron exchange in the
lower vertex, to which it can couple, may dominate over
the leading B3meson Regge exchange. Since the B5 model
does not include the Pomeron exchange, K exchange is not
considered here.
Finally, we also give the expressions for the DRL

amplitudes in the two limiting cases discussed earlier,
η → 0 or η → ∞. One finds

A5 → ð−sABÞαA1−1ð−s23ÞαB3−αA1Γð1 − αA1ÞΓðαA1 − αB3Þð1þ τA1eiπαA1 þ τB3eiπαB3 þ τA1τB3eiπðαB3−αA1ÞÞ
þ ð−sABÞαB3−1ð−s12ÞαA1−αB3Γð1 − αB3ÞΓðαB3 − αA1Þð1þ τA1eiπαA1 þ τB3eiπαB3 þ τA1τB3eiπðαA1−αB3ÞÞ ð31Þ

for η → 0 and

A5 → ð−s12ÞαA1−1ð−s23ÞαB3−1Γð1 − αA1ÞΓð1 − αB1Þ
× ð1þ τA1eiπαA1 þ τB3eiπαB3 þ τA1τB3eiπðαB3þαA1ÞÞ

ð32Þ

for η → ∞.

B. Spin structure

As discussed above, the dual model contains only the
information about the resonance content and not that about
the external particles. In particular, it is agnostic about
external particle spin. The amplitudes of the model should
therefore be used in general to describe the kinematically
free scalar amplitudes appearing in a Lorentz decomposi-
tion of helicity amplitudes [37]. For γp → KþK−p in the
expression for the helicity amplitude M,

M ¼
X
α

ūðp3̄; λ3̄ÞJμuðpB; λBÞϵμðpA; λAÞ; ð33Þ

the current Jμ is given in terms of Dirac matrices
combined with the four independent particle momenta
and multiplied by scalar functions of the invariant
Mandelstam variables. It is these scalar functions which
can be represented by the B5 amplitudes of the dual
model.
In the numerical study that follows, we test a particular

model for the current operator. The model is based on the
analysis of perturbation theory diagrams with the Reggeons
replaced by the lightest-mass particle on the leading
trajectory, i.e. the vector mesons. This is most accurate
for the ðτA1; τB3Þ ¼ ð−;−Þ amplitude, cf. discussion above,
while the other three combinations should include at least
one tensor structure associated with the exchange of a
tensor meson. We note that the exchange of higher-spin
states does not require further modification of the spin
tensors, since as far as the spin structure is concerned,
the only difference between i.e. spin-3 and spin-1 meson
exchange is an analytical function of the channel variables.
The dependence on these variables is already fixed by the
dual Regge limit. In the following, we make a simplifying
approximation and use the same spin structure for all four
signature combinations.

FIG. 4. The four diagrams for double-Regge limit γp →
KþK−p reaction. The diagrams correspond to, from top left to
bottom right, B5ð1Þ; B5ð7Þ; B5ð12Þ; B5ð9Þ in Fig. 3, respectively.
K� and K�

2 are the particles exchanged in the A1 channel, while
ρ=ω and f2=a2 are exchanged in the B3 channel.
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The (upper) vertex representing a coupling of an external
(vector) photon to a (pseudoscalar) kaon, via exchange of a
vector meson in the A1 channel, is given by

VuðλA1Þ ¼ ϵμναβϵμðpA; λAÞϵνðpA1; λA1Þpα
1p

β
A: ð34Þ

Here pA1 ¼ pA þ p1 and λA and λA1 are the helicities of
the photon and the exchanged vector meson, respectively.
Similarly, the bottom vertex represents the coupling of a
vector meson in the B3 channel to the two nucleons and is
given either by

Vl
IðλB3Þ ¼ ϵμðpB3; λB3Þūðp3̄; λ3̄ÞγμuðpB; λBÞ ð35Þ

or by

Vl
IIðλB3Þ ¼ ϵμðpB3; λB3Þūðp3̄; λ3̄Þiσμνpν

B3uðpB; λBÞ;
ð36Þ

with pB3 ¼ pA þ pB and λB3 representing the momentum
and helicity of the exchanged vector meson in the B3
channel. The Vl

I=II vertex represents dominantly the helicity
flip/nonflip amplitude in the s channel, respectively. The ρ
meson exchange, for example, is expected to be dominantly
helicity flip and corresponds to the vertex Vl

II . In the
following, we will use Vl

II for the bottom vertex for the four
Reggeon combinations discussed in the preceding section.
In Eq. (28), the vertex functions Vi describe the middle

vertex, where the A1 and B3 exchanges couple to the
external particle. At the exchanged particle poles, Vi ¼ 1,
the amplitude has to be multiplied by the appropriate
Clebsch-Gordan coefficient representing, in our case, the
coupling of the two exchanged vectors to the pseudoscalar
kaon. This coupling is given by

VmðλA1; λB3Þ ¼ εμναβϵ
μðpA1; λA1ÞϵνðpB3; λB3Þpα

A1p
β
2:

ð37Þ

The final amplitude M is obtained by multiplying A5

by the product of the three vertices, Eqs. (34), (36), (37),
and summing over helicities of the intermediate vector
exchanges,

M ¼ A5

X
λA1;λB3

VuðλA1ÞVmðλA1; λB3ÞVl
IIðλB3Þ: ð38Þ

When the spin is averaged, the spin amplitudes produce
an intensity function that is a regular function of the
Mandelstam variables. The key feature of the double-
Regge limit resides in the predicted dependence of the
subchannel energies, s12; s23 and sAB, which, far away from
the resonance region are quite smooth. In the following we
analyze the limit by studying the Dalitz plot distributions
guided by the selection criteria proposed in Refs. [38,39]

based on the analysis of the longitudinal component of the
momentum, also called longitudinal or Van Hove plots.

IV. DATA SIMULATION

In this section, we use the amplitude obtained above,
Eq. (38), to simulate the γp → KþK−p reaction. We set the
photon energy to Eγ ¼ 5.5 GeV (

ffiffiffi
s

p ¼ 3.5 GeV) in the lab
frame (target rest frame) which corresponds to the highest
photon energy of the KþK− data collected by the CLAS
Collaboration at JLab [40,41]. Once the data are analyzed
they can be compared with the simulations presented
below. We use a standard Monte Carlo (MC) method to
generate the events according to the amplitudes dis-
cussed above.
For the leading trajectories, as discussed in Sec. III A, we

use meson trajectories from [42]

αA1ðtÞ ¼ αK� ¼ 0.318þ 0.839t;

αB3ðtÞ ¼ αρ ¼ 0.456þ 0.887t: ð39Þ

The numerical computation of the A5 amplitude must be
done carefully when evaluating the Regge-Regge-particle
vertices given by Eq. (38). Each term separately is singular
when αA1 and αB3 are not integers, but αA1 − αB3 is an even
integer, although the full amplitude is finite at those points.
To avoid singularities in the Vi we add a small imaginary
part to the αA1 and αB3 Regge trajectories, shifting the
location of the poles outside the real axis where the
amplitude is evaluated.
We study four amplitudes defined by the four possible

combinations of the signature factors, which as discussed in
Sec. III A correspond to the following cases:

(I) τA1 ¼ −1, τB3 ¼ þ1, for (K�; a2=f2);
(II) τA1 ¼ −1, τB3 ¼ −1, for (K�; ρ=ω);
(III) τA1 ¼ þ1, τB3 ¼ þ1, for (K�

2; a2=f2);
(IV) τA1 ¼ þ1, τB3 ¼ −1, for (K�

2; ρ=ω).
In this analysis we do not distinguish between different
isospins, but we do study the spin structure described in
Sec. III B.

A. Data selection and the Van Hove plot

At fixed sAB, we integrate over tA1 and tB3, and the cross
section then becomes a function of s12 and s23 only and
can be represented in a Dalitz plot. The double-Regge
limit corresponds to low values of the momentum transfer
variables, tA1 and tB3. To isolate the corresponding DRL in
the Dalitz variables it is best to employ the procedure
developed by Van Hove [38,39].
For a 2-to-3 process, the Van Hove plot is a two-

dimensional plot of the longitudinal momenta of the three
produced particles. In the center of mass (c.m.) frame, the
incident photon defines the positive-z axis, and the longi-
tudinal components of the outgoing particles are defined by
the projection of the momenta onto the z axis. Longitudinal
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momentum conservation mandates that only two out of
the three particles’ longitudinal momenta are independent.
Furthermore, energy and transverse momentum conserva-
tion require that events be distributed inside a bounded
region of the two-dimensional space defined by the
independent longitudinal momenta. The longitudinal
momenta of the outgoing particles are parameterized using
polar coordinates with radius q ¼ ðp2

KþL þ p2
K−L þ p2

PLÞ12
and a polar angle ω defined as

pKþL ¼
ffiffiffi
2

3

r
q sinω;

pK−L ¼
ffiffiffi
2

3

r
q sin

�
2

3
π þ ω

�
;

pPL ¼
ffiffiffi
2

3

r
q sin

�
4

3
π þ ω

�
: ð40Þ

With the lines corresponding to pKþL ¼ 0, pK−L ¼ 0, and
pPL ¼ 0 drawn at a 60° angle on a two-dimensional plot,
also known as a longitudinal plot, cf. Fig. 5. Each point
satisfies longitudinal momentum conservation. In the limit-
ing case where particle masses and transverse momenta
are ignored, the boundary of the longitudinal plot for γp →
KþK−p corresponds to the hexagon in Fig. 5. Otherwise it
is given by the smooth curve shown by the inner elliptical
line defined by vanishing transverse momenta.

With the parametrization given in Eq. (40), the Dalitz
variables, s12 and s23, and the two momentum transfers,
tA1 and tB3, become functions of ω and the transverse
momenta. For example, given a photon beam energy of
5.5 GeV, which corresponds to sAB ¼ 11.2 GeV2 and
fixing jpKþT j ¼ jpK−T j ¼ jpPT j ¼ 0.6 GeV, the ω depend-
ence of the Dalitz and momentum transfer variables are
shown in Fig. 6.
The longitudinal momentum pKþL is positive for ω ∈

½0∘; 180∘� and pPL is negative for ω ∈ ½60∘; 240∘�; hence,
the events concentrate in the upper-left and center sectors
of the plot in Fig. 5. The overlap of these two regions
ω ∈ ½60∘; 240∘� corresponds to low-momentum transfers in
A1 and B3 channels.
The Dalitz variables s12 and s23 are periodic with a 180°

period, and their minima in the region that overlaps with the
region of small momentum transfer areω ∈ ½110∘; 170∘� for
s12 and ω ∈ ½70∘; 110∘� for s23. These define the single-
Regge limits that correspond to large sAB and small either
s12 or s23. These are labeled as the R12 and R23 wedges
in Fig. 5.
The region where both s12 and s23 are largest that

overlaps with the region of small momentum transfers
corresponds to ω ∈ ½110∘; 130∘�. This is the region which is
closest to the kinematic domain of the double-Regge limit,
and it is marked by the wedge labeled D123 in Fig. 5. In
this region, in the center-of-mass frame, the Kþ and the
recoiling proton have large momentum components in the
þz and −z directions, respectively, while the 3-momentum
components of the K− are small.
To generate events in the double-Regge region we use

the following procedure: First, we generate a large sample
Oð108Þ of events uniformly distributed in the three-particle
phase space. In Fig. 7(a) we show the generated Dalitz plot
and the distribution of the momentum transfer tA1 and tB3.
Next, we limit the momentum transfers by constraining

FIG. 5 (color online). The boundaries of the Van Hove plot for
the γp → KþK−p reaction. The chosen photon energy is
5.5 GeV. The “þ=−” sign stands for either the parallel (þ) or
the antiparallel (−) direction of the outgoing Kþ, K−, or p
momenta compared to the photon momentum in the c.m. frame.

FIG. 6 (color online). The variables s12 (blue), s23 (purple), tA1
(yellow), and tB3 (green) as functions of the polar angle ω for γp →
KþK−p at photon energy 5.5 GeV (sAB ¼ 11.2 GeV2). The trans-
verse momenta are set to jpKþT j ¼ jpK−T j ¼ jpPT j ¼ 0.6 GeV.
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the transverse momenta jpKþT j, jpK−T j, and jpPT j to the
[0, 0.6] GeV range. The center of the longitudinal plot in
Fig. 5 corresponds to vanishing longitudinal momenta q ¼
ðp2

KþL þ p2
K−L þ p2

PLÞ12 ¼ 0 and a maximal value of the
transverse momenta. Because of the cutoff on the value of
transverse momenta, a hole appears in the longitudinal plot
which also shows up in the Dalitz plot in Fig. 7(b). The
middle and right panels in Fig. 7(b) show that, despite the
cuts in transverse momenta, there are still contributions

from large jtA1j and jtB3j that need to be removed. As
discussed above, the contribution from the large momen-
tum transfers is eliminated by restricting ω to the D123
region of ω ∈ ½110∘; 130∘�. After the cut on ω events with
momentum transfers, jtA1j and jtB3j larger than 1.5 GeV2

are removed as shown in Fig. 7(c). The final sample is
reduced to approximately 5 × 106 events. The Dalitz plot
distribution is shown in the left panel in Fig. 7(c), and it
agrees with that of Ref. [43].
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FIG. 7 (color online). (a) Generated phase space events. The three plots depict (from left to right) the Dalitz plot and the tA1 and tB3
distributions. (b) Phase space events after the transverse momenta pTKþ , pTK− , and pPT have been constrained within the [0,0.6] GeV
region. (c) Phase space events for the double-Regge limit after performing the transverse momenta cuts and Van Hove selection
described in Sec. IVA.
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The final amplitude depends on the spin structure of
the external particles as explained in Sec. III B. In order to
study the spin structure, in Fig. 8 we plot the amplitude M
in Eq. (38) with A5 ¼ 1 for the selected events. Comparing
the Dalitz plots in Figs. 7(c) and 8, we notice that event
concentration shifts from the bottom left of the Dalitz plot
to the center. Figure 8 also shows that the kinematical factor
suppressed the events in the forward direction due to the
spin-flip nature of the bottom vertex.

Once we have chosen the kinematical region carefully
and we understand the impact of the spin structure in the
amplitude, we can simulate the full amplitudeM in Eq. (38)
for the four cases described in Sec. IV. The four cases have
similar, but distinguishable, characteristics that are apparent
in Dalitz plots shown in Fig. 9. For instance, in all the cases,
the events are concentrated in the middle of the selected
kinematical region. All four amplitudes share the same spin
structure and the same dependence on s12 and s23 but have

)2) (GeV-K+(K2Mass

1 1.5 2 2.5 3 3.5 4 4.5 5

)2
P

) (
G

eV
-

(K2
M

as
s

2

2.5

3

3.5

4

4.5

5

5.5

6

0

100

200

300

400

500

600

700

Data

)2 (GeVA1t
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

E
ve

nt
s

0

2000

4000

6000

8000

10000

12000
A1t

)2 (GeVB3t
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

E
ve

nt
s

0

2000

4000

6000

8000

10000

12000

B3t

FIG. 8 (color online). Event distribution due to the spin structure after performing the transverse momenta cuts and Van Hove
selection.
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FIG. 9 (color online). Generated MC data for the double-Regge amplitude in Eq. (38) for the four cases described in Sec. IV: case I
(top left), case II (top right), case III (bottom left), case IV (bottom right).
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different combinations of exchanged Reggeons. Because
of the small jtA1j and jtB3j, the signature factors become
approximately constant and therefore do not introduce
significant differences among the four amplitudes, as
shown in Fig. 9.
Finally, we discuss the results for the limits η → 0 and

η → ∞, corresponding to the amplitudes in Eqs. (31)
and (32).
Specifically, we take τA1 ¼ −1 and τB3 ¼ þ1, corre-

sponding to K� and a2=f2, resulting in Fig. 10. As
expected, the limit η → ∞ favors events which maximize
the channel invariants in the middle of the Dalitz plot.

V. CONCLUSIONS AND OUTLOOK

Experiments have been performed and are planned for
the future in which multiparticle final states are produced
with a view to identifying new resonances, as well as
confirming the properties of previously found states.
Having only nucleon targets, these final states inevitably
involve both baryon and meson resonances. A common
analysis procedure adopted is to regard the mesons as an
unwanted background to the study of baryon resonances,
and the N�’s (or here the Λ’s and Σ’s) as an annoying
background to the study of meson resonances. Kinematic
cuts are made to eliminate one or the other, and so enhance
the baryon or meson signal as required. Of course, this
has the deficiency of throwing away not just a “back-
ground,” but part of the signal too, as well as the essence of
the production process. Dalitz plot analyses, together with
analysis of momentum transfer distribution, highlight how
the overlap of kinematic regimes contains valuable infor-
mation that can help to elucidate the signals under study.
Duality between direct and cross channels observed in

strong interactions enables the investigation of resonance not
only in direct production but also through their contribution
to Regge trajectories in exchange channels. In this article we
have studied the double-Regge exchange limit for the γp →
KþK−p reaction employing a generalized Veneziano model
(B5 model). The equations necessary to describe the double-
Regge limit are obtained by taking the high-energy limit,

sAB; s12; s23 → ∞, as well as restricting the momentum
transfers. When the 2-to-3 amplitude is saturated by the
two Regge poles, the dependence on the subchannel energies
is fixed by the Regge pole trajectories and can be tested by
studying the Dalitz plot distributions as a function of the
(small) momentum transfers. We have shown that suitable
event candidates for the double-Regge exchange in the high-
energy limit can be selected by means of longitudinal
momentum distributions which provide the adequate cuts
in the subchannel invariants and momentum transfers. The
importance of the spin structure in the amplitude has been
investigated, and it was found that it may have impact on the
density distribution of the Dalitz plot. We have identified
and simulated four leading two-Regge-pole exchanges
(K�; a2=f2, K�; ρ=ω, K�

2; a2=f2, and K�
2; ρ=ω). Because

of the small range of momentum transfer, the signature
factors become approximately constant and the leading
trajectories are approximately exchange degenerate. Con-
sequently, we find little sensitivity to exchange dynamics.
The Regge limit discussed in this paper represents a very

interesting theoretical prediction on its own. Factorization
of the two Reggeons leads to a unique dependence of
the reaction amplitude on the two subchannel invariants.
Analysis of the cross section on the momentum transfer
variables then enables the extraction of the corresponding
Reggeon-Reggeon-particle coupling.
The double-Regge limit operates in the kinematic regime

where the two subchannel invariants are large and outside
the resonance region in each channel. Analyticity implies
that amplitude in the resonance region in both meson and
baryon channels should connect smoothly to the amplitude
in double-Regge kinematics. This constraint can be for-
malized using finite energy sum rules [44]. Having a
common framework to analyze both baryonic and mesonic
signals is key to making combined multiparticle analyses
tractable. The isolation of the double-Regge limit is a step
in that direction by providing a realistic and accurate
modeling that feeds into the dynamics of both mesons
and baryons. The single-Regge limit and the above men-
tioned analytical continuation for γp → KþK−p will be
presented in future works.
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FIG. 10 (color online). Double-Regge limit amplitudes for case
I under the limits η → 0 (left), η → ∞ (right).
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APPENDIX: USEFUL RELATIONS

Throughout this manuscript we make extensive use of the hypergeometric function defined by

pFqðx1;…; xp; y1;…; yq; zÞ ¼
X∞
k

Γðx1 þ kÞ � � �Γðxp þ kÞΓðy1Þ � � �ΓðyqÞ
Γðx1Þ � � �ΓðxpÞΓðy1 þ kÞ � � �Γðyq þ kÞ

zk

k!
ðA1Þ

and its properties. If we write pFqðx1;…; xp; y1;…; yqÞ ¼ pFqðx1;…; xp; y1;…; yq; 1Þ, for z ¼ 1, the series converges if
ReðP yq −

P
xpÞ > 0. Outside of its domain of convergence, the hypergeometric function is defined by analytical

continuation, which can be performed aided by the following relations:

3F2ða; b; c; d; eÞ ¼
Γð1 − aÞΓðdÞΓðeÞΓðc − bÞ

Γðe − bÞΓðd − bÞΓð1þ b − aÞΓðcÞ × 3F2ðb; 1þ b − d; 1þ b − e; 1þ b − c; 1þ b − aÞ

þ Γð1 − aÞΓðdÞΓðeÞΓðb − cÞ
Γðe − cÞΓðd − cÞΓð1þ c − aÞΓðbÞ × 3F2ðc; 1þ c − e; 1þ c − d; 1þ c − b; 1þ c − aÞ; ðA2Þ

3F2ða; b; c; d; eÞ
ΓðsÞΓðdÞΓðeÞ ¼ 3F2ðd − c; d − b; a; sþ a; dÞ

Γðe − aÞΓðsþ aÞΓðdÞ ¼ 3F2ðs; d − a; e − a; sþ b; sþ cÞ
ΓðaÞΓðsþ bÞΓðsþ cÞ ; ðA3Þ

where s ¼ dþ e − a − b − c. We employ these relations to obtain Eq. (14) from Eq. (11) by substituting Eq. (A2) and then
usingEq. (A3).Another relation thatweuse is theStirling’s formula for theΓðzÞ function in the jzj → ∞ and j arg zj < π limit:

ΓðzÞ →
ffiffiffiffiffiffi
2π

p
e−zzz−

1
2; ðA4Þ

for pole isolation in the B4 and B5 models.
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