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As one of the key components of perturbative QCD theory, it is helpful to find a systematic and reliable
way to set the renormalization scale for a high-energy process. The conventional treatment is to take a
typical momentum as the renormalization scale, which assigns an arbitrary range and an arbitrary
systematic error to pQCD predictions, leading to the well-known renormalization scheme and scale
ambiguities. As a practical solution for such a scale setting problem, the “principle of minimum sensitivity”
(PMS) has been proposed in the literature. The PMS suggests to determine an optimal scale for the pQCD
approximant of an observable by requiring its slope over the scheme and scale changes to vanish. In this
paper, we present a detailed discussion on general properties of the PMS by utilizing three quantities Reþe− ,
Rτ and ΓðH → bb̄Þ up to four-loop QCD corrections. After applying the PMS, the accuracy of pQCD
prediction, the pQCD convergence, the pQCD predictive power, etc., are discussed. Furthermore, we
compare the PMS with another fundamental scale setting approach, i.e. the principle of maximum
conformality (PMC). The PMC is theoretically sound, which follows the renormalization group equation to
determine the running behavior of the coupling constant and satisfies the standard renormalization group
invariance. Our results show that PMS does provide a practical way to set the effective scale for high-
energy process, and the PMS prediction agrees with the PMC one by including enough high-order QCD
corrections, both of which shall be more accurate than the prediction under the conventional scale setting.
However, the PMS pQCD convergence is an accidental, which usually fails to achieve a correct prediction
of unknown high-order contributions with next-to-leading order QCD correction only, i.e. it is always far
from the “true” values predicted by including more high-order contributions.
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I. INTRODUCTION

According to the renormalization group (RG) invariance
[1–6], a physical observable should not depend on any
“unphysical” choices. In other words, the RG invariance
indicates that the dependence of an observable on the
renormalization scheme and scale should vanish. However,
for fixed-order pQCD approximations, the renormalization
scheme and scale dependence from both the running
coupling and the corresponding expansion coefficients at
the same order do not exactly cancel. To deal with a fixed-
order calculation, one usually takes the renormalization
scale as the typical momentum transfer of the process, or a
value to minimize the contributions of large loop diagrams,
and varies it over a certain range to ascertain its uncertainty.
This conventional scale setting procedure leads to well-
known renormalization scheme and scale ambiguities and
assigns an arbitrary range and an arbitrary systematic error
to fixed-order pQCD predictions. To solve such renorm-
alization scheme and scale ambiguities, it is helpful to find
a general way to set the optimal scale and hence the optimal
running behavior of the strong coupling constant for any

processes via a process-independent and systematic way,
cf. a recent review on QCD scale setting [7].
To compare with the conventional scale setting, it has been

suggested by Stevenson [8,9] that one can achieve a good
prediction for an observable by requiring its pQCD approx-
imant to be minimum sensitive to the variations of those
unphysical parameters. This treatment is called as the
principle of minimum sensitivity (PMS) [8–10]. The PMS
admits that different scheme and scale choices do lead to
theoretical uncertainties; however the true prediction of an
observable can only be achieved by using optimal scheme
and scale. The scheme dependence of the PMS predictions
have been analyzed in Refs.[11,12]. It is noted that the PMS
satisfies local RG invariance [13], which provides a practical
approach to systematically fix the optimal scheme and scale
for a high-energy process. It has been noted that after
applying the PMS, the pQCD prediction does show a fast
steady behavior over the scheme and scale changes. As an
example, it has been applied to study the fixed-point behavior
of the coupling constant at the low-energy region [14,15].
On the other hand, it has also been observed that the

PMS does not satisfy the RG properties such as symmetry,
reflexivity, and transitivity [16]. So the relations among
different physical observables depend on the choice of*wuxg@cqu.edu.cn
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intermediate renormalization scheme, leading to residual
scheme dependence. Moreover, the predicted PMS scale
for three-jet production via eþe− annihilation cannot yield
correct physical behavior at the next-to-leading order
(NLO) level, i.e. it anomalously rises without bound for
small jet energy [17,18]. There are even doubts on the
usefulness of the PMS [19]. All those discussions indicate
the necessity of further careful studies on theoretical
principles underlying the PMS and on applications to more
high-loop examples.
Great improvements on understanding the PMS proce-

dures and on applying the PMS scale setting to higher
perturbative orders other than the NLO level have recently
been achieved in Ref. [20]. In recent years, there has been
much progress on studying the two-loop and higher QCD
corrections. For examples, the quantities Reþe− , Rτ and
ΓðH → bb̄Þ have been calculated up to four-loop level
under the MS scheme [21–24]. With all those develop-
ments, it is possible to make a detailed discussion on
general properties of the PMS, and to show to what degree
it can be applied. For the purpose, we shall present the PMS
predictions for Reþe−, Rτ and ΓðH → bb̄Þ up to four-loop
level. General PMS properties, such as the accuracy of the
pQCD prediction, the convergence of the perturbative
series, the predictive power of pQCD theory, etc., shall
be discussed via comparing the predictions with those
under the conventional scale setting.
Recently, another well-known scale setting approach, i.e.

the Brodsky-Lepage-Mackenzie approach suggested by
Brodsky et al. [25], has been developed into a fundamental
one, i.e. the principle of maximum conformality (PMC)
[26–32]. Unlike the PMS scale setting, the PMC states that
we should determine different optimal scales for the high-
energy process under different schemes, and the final
predictions are independent on the scheme choices due
to commensurate scale relations [33] and also the scheme
independence of a conformal series. The running behavior
of the coupling constant is governed by the RG equation
[34–40]. Inversely, the PMC states that the optimal behav-
ior/scale of the coupling constant can be achieved by using
the β terms in perturbative series. The PMC follows
standard RG invariance and satisfies all RG properties
[16]. When one applies the PMC, the scales of the coupling
constant are shifted at each order such that no contributions
proportional to the QCD β function remain. The resulting
pQCD series is thus identical to a scheme-independent
conformal series. Since the resulting series is free of
divergent renormalon terms [41,42], the pQCD conver-
gence can be naturally improved. The PMS and PMC scale
settings have quite different starting points and their
predictions usually have a quite different perturbative
nature; it is thus helpful to present a detailed comparison
of the PMS predictions with the PMC ones.
The remaining parts of the paper are organized as

follows. In Sec. II we first present a short review on local

RG invariance that underlies the PMS; then we present the
PMS formulas up to high-perturbative orders. A tricky way
to derive the PMS RG invariants at high orders is shown in
the Appendix. In Sec. III we investigate the PMS properties
based on three quantities Reþe− , Rτ and ΓðH → bb̄Þ up to
four-loop level. In Sec. IV we present a detailed compari-
son of the PMS and PMC via the quantity Reþe−. Section V
is reserved for a summary.

II. CALCULATION TECHNOLOGY
FOR THE PMS SCALE SETTING

Conventionally, the running behavior of the strong
coupling constant is controlled by the following βR

function or the RG equation,

βR ¼ μ2
∂
∂μ2

�
αRs ðμÞ
4π

�
¼ −

X∞
i¼0

βRi

�
αRs ðμÞ
4π

�
iþ2

; ð1Þ

where μ stands for the renormalization scale, and the
superscript R stands for an arbitrary renormalization
scheme (usually taken as the MS scheme). For convenience
and without introducing any confusion, we shall omit the
superscript R in the following formulas. The first two β
terms, β0 ¼ 11 − 2

3
nf and β1 ¼ 102 − 38

3
nf, are scheme

independent, where nf is the number of active flavors,
while the βn terms with ðn ≥ 2Þ are scheme dependent
[36–40]. The scheme dependence/transformation for high-
order β terms has been discussed in Refs. [43–45].
It is convenient to use τ ¼ lnðμ2= ~Λ2

QCDÞ and βn≥2 to label
a particular choice of renormalization scale and renormal-
ization scheme [8]. Here ~ΛQCD is the reduced asymptotic
scale, which is defined as

~ΛQCD ¼
�
β1
β20

�
−β1=2β20

ΛQCD: ð2Þ

We can study the scale and scheme dependence of the
pQCD predictions via the extended RG equations [8,46].

A. Local RG invariance and the PMS

As an illustration of local RG invariance, we deal with
the perturbative approximant ðϱnÞ for an arbitrary physical
observable ϱ, which can be written as

ϱnðQÞ ¼ C0ðQÞaps ðμÞ þ
Xn
i¼1

CiðQ; μÞaiþp
s ðμÞ; ð3Þ

where Q is the experimental scale at which it is measured,
as ¼ αs=π, and p is the power of coupling constant
associated with tree-level term. The calculation of the
coefficients Ci involves ultraviolet divergences which must
be regulated and removed by a renormalization procedure.
At the finite order, the pQCD predictions depend on the
choice of renormalization scheme and scale, which indi-
cates that
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∂ϱn=∂ðRSÞ ¼ Oðapþn
s Þ; ð4Þ

where RS stands for the scheme or scale parameter,
respectively. Equation (4) shows the self consistency of
a perturbation theory, i.e. the Nn-leading order (LO)
approximate ϱn must agree to Oðapþn

s Þ under different
choices of scheme and scale. The tree-level coefficient C0 is
scheme and scale independent; we set its value to be 1 in
later calculations. When C0 ≠ 1, the results can be obtained
via the transformation, CiðQ;μÞ→ C0iðQ;μÞ ¼ CiðQ;μÞ=C0.
As mentioned in the introduction, there are renormali-

zation scheme and scale ambiguities for the fixed-order
pQCD approximant ϱn. The PMS suggests to eliminate

such scheme and scale ambiguities by finding optimal
scheme and optimal scale of the process, which can be
achieved by requiring ϱn to satisfy the following
equations [8,20]:

∂ϱn
∂τ ¼ 0; ð5Þ

∂ϱn
∂βm ¼ 0: ðm ¼ 2;…; nÞ: ð6Þ

They can be further written as

∂ϱn
∂τ ¼

� ∂
∂τ
����
as

þ βðasÞ
∂

∂ðas=4Þ
�
ϱn ¼ 0; ð7Þ

∂ϱn
∂βm ¼

� ∂
∂βm

����
as

− βðasÞ
Z

as=4

0

d

�
a0s
4

� ða0s=4Þmþ2

½βða0sÞ�2
∂

∂ðas=4Þ
�
ϱn ¼ 0; ðm ¼ 2; 3;…Þ ð8Þ

where the integration in the second equations can be treated via the αs expansion,

βðasÞ
Z

as=4

0

d

�
a0s
4

� ða0s=4Þmþ2

½βða0sÞ�2
¼ −

ðas=4Þjþ1

β0

�
1

j − 1
−
β1
β0

j − 2

jðj − 1Þ
�
as
4

�
þ � � �

�
:

The standard RG invariance states that only the physical
observable ϱ ¼ ϱnjn→∞ agrees with those equations. Thus,
using Eqs. (7)–(8) for the fixed-order approximant is
theoretically unsound, and they instead introduce a kind
of local RG invariance [13]. This provides the reason why
the PMS does not satisfy the basic RG properties [16]. The
PMS, however, provides an intuitive way to set the optimal
scheme and optimal scale, and its resultant tends to be
steady over the scheme and scale changes around the
optimal point.
The running behavior of the strong coupling constant can

be obtained via solving RG equation (1), which can be
rewritten as

τ ¼
Z

as=4

0

d

�
x
4

�
1

βðnÞðxÞ

¼ 4

β0as
þ β1
β20

ln

���� β1as
β1as þ 4β0

���� − ΔðasÞ; ð9Þ

where

ΔðasÞ ¼ β0

Z
as=4

0

dx

�
1

βðnÞðxÞ −
1

βð1ÞðxÞ

�
: ð10Þ

The symbol βðnÞ stands for the cut β function up to anþ2
s .

Equation (9) is the “integrated β-function equation,” or

simply the “int-β equation,” which can be solved
numerically.
In the following, we shall show how the PMS applies

local RG invariance to set the optimal scale and how the
RG-invariant coefficients at each order are derived.

B. PMS procedures up to high orders

For a Nn-LO pQCD approximate (3), we have to
fix totally 2nþ 1 variables for determining optimal
scheme and optimal scale, i.e. ~as; ~τ; ~β2;…; ~βn; ~C1;…; ~Cn.
Those parameters can be fixed by using n local RG
equations (7)–(8), one int-β equation (9), and also n
scheme- and scale-independent RG invariants from the
self-consistency relation (4). To be a useful reference for
applying the PMS scale setting, we take the QCD correc-
tions up to N3-LO level as a detailed explanation.
At the NLO level, the NLO approximate is

ϱ1 ¼ aps ð1þ C1asÞ:

The NLO approximate ϱ1 can be calculated in an initial
choice of scheme (usually the MS scheme) and scale. We
have three parameters ~as, ~τ and ~C1 to be determined.
Differentiating ϱ1 over τ and using the self-consistency

relation (4), i.e. the coefficient at the order of O
�
apþ1
s

�
should be zero, we obtain
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∂C1
∂τ ¼ 1

4
pβ0: ð11Þ

Integrating it over τ, we get one RG-invariant integration
constant ρ1, which can be expressed as

ρ1 ¼
1

4
pβ0τ − C1 ¼

1

4
pβ0~τ − ~C1; ð12Þ

where the second equation is from the RG invariance. As a
tricky point, since ρ1 depends solitarily on Q at which the
observable is measured, one can transform ϱnðQÞ as ϱnðρ1Þ.
The advantage of such a transformation lies in that ϱnðρ1Þ
does not depend on ΛQCD, thus avoiding the uncertainties
from the choice of ΛQCD.
From Eq. (7), we obtain the NLO local RG equation

pβ0 − ½p ~ap−1s þ ðpþ 1Þ ~C1 ~aps �
�
β0 þ

β1 ~as
4

�
¼ 0; ð13Þ

which leads to

~C1 ¼ −
pβ1

ðpþ 1Þð4β0 þ β1 ~asÞ
: ð14Þ

Together with the NLO int-β equation

~τ ¼ 4

β0 ~as
þ β1
β20

ln

���� β1 ~as
β1 ~as þ 4β0

����; ð15Þ

we finally obtain

1

~as
þ pβ1
ðpþ 1Þð4β0 þ β1 ~asÞ

þ β1
4β0

ln

���� β1 ~as
β1 ~as þ 4β0

���� ¼ ρ1:

ð16Þ

From those equations (14)–(16), we can derive ~τ, ~C1, ~as,
and finally get the optimized prediction for ϱ1.
For high-order QCD corrections, we can apply similar

procedures via a step-by-step way for determining all the
parameters.
Using the self-consistency condition (4), the local RG

invariants ρn can be determined via an order-by-order way.
Once a ρn has been determined at a particular perturbative
order, it shallbe fixedforallhigh-orderPMStreatment.Except
for those local RG invariants, all other parameters should be
redetermined when new high-order corrections are included.
At the N2-LO level, we have five parameters to be

determined, i.e. ~as, ~τ, ~β2, ~C1, and ~C2. There are two
equations that can be obtained from the local RG equations
∂ϱ2=∂τ ¼ 0 and ∂ϱ2=∂β2 ¼ 0:

16ð2þ pÞ ~C2β0 þ 4½ð1þ pÞ ~C1 þ ð2þ pÞ ~C2 ~as�β1 þ ½ ~asð ~C1 þ 2~C2 ~asÞ þ pð1þ ~C1 ~as þ ~C2 ~a2sÞ�~β2 ¼ 0; ð17Þ

48½ð1þ pÞ ~C1 þ ð2þ pÞ ~C2 ~as�β0 þ ~as½ ~asð ~C1 þ 2~C2 ~asÞ þ pð1þ ~C1 ~as þ ~C2 ~a2sÞ�~β2 ¼ 0: ð18Þ

At the N3-LO level, we have seven parameters to be determined, i.e. ~as, ~τ, ~β2, ~β3, ~C1, ~C2, and ~C3. There are three local RG
equations that can be obtained from ∂ϱ3=∂τ ¼ 0, ∂ϱ3=∂β2 ¼ 0, and ∂ϱ3=∂β3 ¼ 0:

64ð3þ pÞ ~C3β0 þ 16ðð2þ pÞ ~C2 þ ð3þ pÞ ~C3 ~asÞβ1 þ 4ðð1þ pÞ ~C1 þ ~asðð2þ pÞ ~C2 þ ð3þ pÞ ~C3 ~asÞÞ~β2
þ ðpþ ~C1 ~as þ p ~C1 ~as þ 2~C2 ~a2s þ p ~C2 ~a2s þ ð3þ pÞ ~C3 ~a3sÞ~β3 ¼ 0; ð19Þ

384½ð2þ pÞ ~C2 þ ð3þ pÞ ~C3 ~as�β20 − ~asfpð1þ ~C1 ~as þ ~C2 ~a2s þ ~C3 ~a3sÞ þ ~as½ ~C1 þ ~asð2~C2 þ 3~C3 ~asÞ�gβ1 ~β2
þ fpð1þ ~C1 ~as þ ~C2 ~a2s þ ~C3 ~a3sÞ þ ~as½ ~C1 þ ~asð2~C2 þ 3~C3 ~asÞ�gβ0ð8~β2 þ 3~as ~β3Þ ¼ 0; ð20Þ

96fð1þ pÞ ~C1 þ ~as½ð2þ pÞ ~C2 þ ð3þ pÞ ~C3 ~as�gβ20 − 8fpð1þ ~C1 ~as þ ~C2 ~a2s þ ~C3 ~a3sÞ þ ~as½ ~C1 þ ~asð2~C2 þ 3~C3 ~asÞ�gβ0β1;
þ ~asfpð1þ ~C1 ~as þ ~C2 ~a2s þ ~C3 ~a3sÞ þ ~as½ ~C1 þ ~asð2~C2 þ 3~C3 ~asÞ�gβ21 ¼ 0: ð21Þ

Up to N3-LO level, in addition to ρ1, we need to determine two extra RG invariants ρ2 and ρ3, which can be fixed via a
similar way as the NLO case; detailed procedures can be found in Refs. [13,20,47]. Then we obtain

ρ2 ¼ C2 −
ð1þ pÞC21

2p
−
β1C1
4β0

þ pβ2
16β0

ð22Þ

¼ ~C2 −
ð1þ pÞ ~C21

2p
−
β1 ~C1
4β0

þ p ~β2
16β0

ð23Þ
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and

ρ3 ¼ 2C3 þ
C21β1
4pβ0

−
C1β2
8β0

þ pβ3
64β0

þ 2ð1þ pÞð2þ pÞC31
3p2

−
2ð2þ pÞC1C2

p
ð24Þ

¼ 2~C3 þ
~C21β1
4pβ0

−
~C1 ~β2
8β0

þ p ~β3
64β0

þ 2ð1þ pÞð2þ pÞ ~C31
3p2

−
2ð2þ pÞ ~C1 ~C2

p
: ð25Þ

The first equations (22) and (24) are to set the value of ρ2;3
with the known parameters calculated under the initial
scheme and scale choices; the second equations (23) and
(25) are due to scheme and scale independence of RG
invariants ρ2;3. As a cross check of those formulas, when
setting p ¼ 1, we turn to the same expressions as those of
Ref. [13,20].
As a summary, in combination with all local RG

equations, the known RG invariants, and also the same
order int-β equation (9), we are ready to derive all the
wanted optimal parameters. This can be done numerically
by following the “spiraling” method [13,48,49]. For a
general all-order determination, the procedures of the
spiraling method are the following.

(i) First, one takes an initial value for ~as, which can be
approximated by using an RG equation at the same
order at an arbitrary initial scale. This initial scale
should be large enough to ensure the pQCD calcu-
lation, which can be practically (to short the number
of iterations) taken as the typical momentum flow of
the process.

(ii) Second, for the first iteration, one sets the initial
values for the scheme-dependent ~β2;…; ~βn to be
β2;…; βn that have been calculated under an initial
renormalization scheme. For new iterations their
values are replaced by the ones determined from
the last iteration. Then one solves the local RG
equations, similar to Eqs. (13) and (17)–(21),
for ~C1;…; ~Cn.

(iii) Third, one applies the calculated value of ~C1;…; ~Cn
into the equations on RG invariants ρ1;…; ρn, similar
to Eqs. (12), (23), and (25), for ~as; ~τ; ~β2;…; ~βn.

(iv) Finally, one iterates from the second step until the
results for ϱn converge to an acceptable prediction.

As a remarkable feature of renormalization theory, even
if the coefficients Cn and the β terms βn are separately
different in different schemes, there exist some combina-
tions of them that are RG invariant. The above derived
integration parameters ρn are such kinds of RG invariants,
which are key components to determine the “optimal ϱn.”
Because ρn are RG invariants, one can demonstrate that the
final PMS predictions are independent of any choice of
initial scale, being consistent with one of requirement of
basic RG invariance [7]. Thus, to apply the PMS, one can
simply set the initial scale to be a typical one such as the
typical momentum of the process or the one at which the

observable is measured. This, inversely, provides us a
simpler/tricky way to derive the RG invariants ρn, which
are put in the Appendix.

III. GENERAL PROPERTIES AND APPLICATIONS
OF THE PMS SCALE SETTING

In this section, we shall present a detailed discussion on
general properties of the PMS scale setting by utilizing
three quantities Reþe− , Rτ and ΓðH → bb̄Þ up to four-loop
level. A comparison of the PMS and conventional scale
settings shall also be presented.

A. Reþe− up to four-loop QCD corrections

The eþe− annihilation provides one of the most precise
tests of pQCD theory. Its measurable quantity, i.e. the R
ratio RðQÞ, is defined as

Reþe−ðQÞ ¼ σðeþe− → hadronsÞ
σðeþe− → μþμ−Þ

¼ 3
X
q

e2q½1þ RðQÞ�; ð26Þ

where Q stands for the eþe− collision energy at which the
R ratio is measured. The pQCD approximant for RðQÞ up
to ðnþ 1Þ-loop correction can be written as

RnðQ; μ0Þ ¼
Xn
i¼0

CiðQ; μ0Þaiþ1
s ðμ0Þ; ð27Þ

where μ0 stands for an arbitrary initial scale and as ¼ αs=π.
Under the conventional scale setting, the renormalization
scale shall be fixed to μ0, while for a certain scale setting
approach, the renormalization scale shall be varied from μ0
to a certain degree.
The quantity RnðQ; μ0Þ has been calculated up to four-

loop level under the MS scheme [21,22], whose coeffi-
cients for μ0 ¼ Q read

C0 ¼ 1;

C1 ¼ 1.9857 − 0.1152nf;

C2 ¼ −6.63694 − 1.20013nf − 0.00518n2f − 1.240η;

C3 ¼ −156.61þ 18.77nf − 0.7974n2f þ 0.0215n3f;
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where η ¼ ðPqeqÞ2=ð3
P

qe
2
qÞ, nf and eq stand for the

number and electric charge of the active flavors. Because of
the factorial growth of renormalon terms, the magnitude
of the coefficient Ci generally grows with the increment of
QCD loops, providing the dominant source for lessening
the convergence of pQCD series. By applying the PMS, we
shall show such a kind of factorial growth can be softened
to a certain degree.
To do the numerical calculation, the QCD parameterΛMS

is fixed by using αsðMZÞ ¼ 0.1185� 0.0006 [50]. For self
consistency, the ΛMS for Rn shall be determined by using
ðnþ 1Þth-loop αs-running determined from the RG equa-

tion (1). For example, we obtain Λ
ðnf¼5Þ
MS

¼ 214 MeV for
R3 by using four-loop αs-running. Under the conventional
scale setting, the renormalization scale shall be fixed to μ0,
while for the PMS, the renormalization scale shall be the
optimal one determined from local RG invariance. In the
following discussions, if not specially stated, we shall
take μ0 ¼ Q.
The coefficients C1, C2 and C3 before and after the PMS

scale setting for various flavor numbers, i.e. nf ¼ 3, 4, and
5, are presented in Table I. Three typical scales,Q ¼ 1.2, 3,
and 31.6 GeV, are adopted for various flavor numbers.
After applying the PMS, the magnitude of the coefficients
Ci become smaller than those under the conventional scale
setting, indicating that the divergent renormalon terms have
been suppressed.
As for the conventional scale setting, one usually takes

the same renormalization scale for pQCD predictions up to
any perturbative order. Then, under the conventional scale
setting, the effective coupling ~aðnÞs ≡ aðnÞs , and the slight

differences among ~aðnÞs with various n are directly caused
by the conventional αs behavior up to ðnþ 1Þ loops. After
applying the PMS, we shall have different effective/optimal

coupling ~aðnÞs ðPMSÞ for each Rn. The effective coupling

~aðnÞs for Rn under those two scale settings is shown in
Table II, where n ¼ 1, 2, and 3, respectively. To determine
the PMS effective coupling, one does not need to know the
value of ΛQCD; thus the uncertainties from ΛQCD are

eliminated.1 It is noted that the PMS effective coupling

~aðnÞs ðPMSÞ becomes smaller for a larger n, i.e. ~að1Þs ðPMSÞ >
~að2Þs ðPMSÞ > ~að3Þs ðPMSÞ. This agrees with the previous
observation of Ref. [52] and is consistent with the ''induced
convergence'' [53].
Next, we turn to numerical analysis of Rn under the PMS

and conventional scale settings. For the purpose, we fix
Q ¼ 31.6 GeV, at which the R ratio has been measured [54].
Given a perturbative series, it is important to know how

well it behaves, i.e., how much each loop term contributes.
In Table III, we present the numerical results for the LO,
NLO, N2LO and N3LO loop contributions to R3 separately,
in which the results for the conventional and the PMS scale
settings are given. After applying the PMS, the magnitudes
of the NLO, N2LO and N3LO loop terms become much
smaller than the corresponding ones under the conventional
scale setting. This is due to the combined effect of the
suppression of renormalon terms and the induced con-
vergence. However, this does not mean a more convergent
pQCD series can be achieved. As shown by Table III, the
pQCD series under the conventional scale setting has a
standard perturbative convergence

jRLO
3;Convj ≫ jRNLO

3;Convj > jRN2LO
3;Convj > jRN3LO

3;Convj;

TABLE I. Coefficients for the perturbative expansion of R3ðQÞ
before and after the PMS scale setting, where we have set Q ¼
1.2 GeV for nf ¼ 3, Q ¼ 3 GeV for nf ¼ 4, and Q ¼ 31.6 GeV
for nf ¼ 5.

nf ¼ 3 nf ¼ 4 nf ¼ 5

C1 1.6401 1.5249 1.4097
C2 −10.284 −11.6857 −12.8047
C3 −106.896 −92.9124 −80.0075
CPMS
1

−0.458 −0.1105 0.0479
CPMS
2

−1.1361 0.2103 1.3075
CPMS
3

32.2133 24.9881 16.4108

TABLE II. The effective coupling ~aðnÞs under the conventional
(Conv.) and the PMS scale settings, where n ¼ 1, 2, and 3,
respectively. Here we have set Q ¼ 1.2 GeV for nf ¼ 3, Q ¼
3 GeV for nf ¼ 4, and Q ¼ 31.6 GeV for nf ¼ 5.

nf ¼ 3 nf ¼ 4 nf ¼ 5

~að1Þs ðConvÞ 0.1414 0.0823 0.0450

~að2Þs ðConvÞ 0.1320 0.0814 0.0450

~að3Þs ðConvÞ 0.1370 0.0820 0.0450

~að1Þs ðPMSÞ 0.2156 0.1052 0.0504

~að2Þs ðPMSÞ 0.1265 0.0832 0.0464

~að3Þs ðPMSÞ 0.1212 0.0819 0.0461

TABLE III. The LO, NLO, N2LO and N3LO loop contributions
for the approximant R3 under the conventional and the PMS scale
settings. The total column stands for the sum of all those loop
corrections. Q ¼ 31.6 GeV.

LO NLO N2LO N3LO Total

Conv. 0.04499 0.00285 −0.00117 −0.00033 0.04635
PMS 0.04608 0.00010 0.00013 0.00007 0.04638

1This property has been adopted for dealing with the coupling
constant’s fixed-point behavior at the low-energy region [14,15].
A detailed PMS analysis on physical observables at the low-
energy region in comparison with those of the PMC and
conventional scale settings is in preparation [51].
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which is mainly caused by αs-power suppression. On the
other hand, the PMS prediction shows a quite different
perturbation series, i.e.,

RLO
3;PMS ≫ RNLO

3;PMS ∼ RN2LO
3;PMS ∼ RN3LO

3;PMS

with RN2LO
3;PMS > RNLO

3;PMS. The PMS prediction is determined
by local RG invariance; thus its goal is to achieve the steady
behavior of a perturbative series rather than to improve its
pQCD convergence. For example, the LO term RLO

3;PMS

provides over 99% of contributions to the PMS series, and
the PMS prediction quickly approaches its steady behavior.
However, its pQCD convergence can only be an accidental
or it shall not show pQCD convergence at all.
To show to what degree a low-order prediction can be

improved by a high-order one, we define a ratio

κn ¼
Rn − Rn−1

Rn−1
: n ¼ ð1; 2; 3Þ:

To be a “convergent and accurate” ðnþ 1Þ-loop pQCD
prediction, one would think that the magnitude of κn should
be small enough and also be smaller than κðn−1Þ. Numerical
results for Rn and κn up to four-loop level before and after
the PMS scale setting are presented in Table IV. It shows
that both conventional and PMS scale settings can give
acceptable predictions when more high-order corrections
have been taken into consideration. Up to four-loop level,
the absolute values of κ3 for the conventional and PMS
scale settings are smaller than 1%, indicating that the
pQCD predictions for this case are convergent and accurate
enough, i.e., the four-loop prediction R3 is very close to the
true value of the physical observable R. Following the
trends of those predictions, we can expect that the physical
value of R could be around 0.04635.
Previously, there was a doubt casted on the usefulness of

the PMS [19] because it gives larger κ1 and κ2 than the
conventional scale setting does. However the absolute value
of the PMS κ3 is smaller than its counterpart of the
conventional scale setting by about three times. This
indicates that a larger PMS κ1 and κ2 only reflect the
importance of N3-LO correction for the PMS to achieving a
better prediction than the conventional scale setting. Thus
the available N3-LO correction helps us to clarify such
kinds of doubts on the PMS.

It is helpful to find a way to predict unknown high-order
pQCD corrections. Conventionally, this is done by varying
the renormalization scale over a certain range, e.g.
μ0 ∈ ½Q=2; 2Q�. This conventional error estimate is not
reliable, since it only partly estimates the high-order non-
conformal contribution but not the more important con-
formal one [7]. It is no reason to choose 1=2 or 2 to discuss
the error; why not three times or others? Moreover, for a
scale setting such as PMS or PMC, it is unreasonable to
simply vary their optimal scales via a similar way to predict
unknown high-order pQCD corrections, since this way
breaks the RG invariance and leads to unreliable results.
As a conservative prediction, one can take the perturbative
uncertainty to be one of the last known order [13], i.e. the
unknown high-order pQCD correction is taken as
ð�jCn ~anþ1

s jMAXÞ for a ðnþ 1Þ-loop prediction of Rn, where
jCnanþ1

s j is calculated by varying μ0 ∈ ½Q=2; 2Q�2 and the
symbol “MAX” stands for the maximum jCnanþ1

s j within
this scale region. The error estimates for conventional and
PMS scale settings are displayed in Fig. (1). It shows that the
PMS errors are smaller than those under the conventional
scale setting, which tend to shrink more rapidly with the
increment of pQCD order. It is noted that the PMSR2 andR3

lie well outside the error estimation of R1. Thus the PMS
prediction on R1 alone is not able to predict correct high-
order contributions. Such an improper PMS prediction onR1

also explains why the PMS κ1 and κ2 are so large. However
by including more high-order contributions, the PMS works
better and gives more reliable predictions.
Finally, we discuss the scale dependence of Rn under

different scale settings. We present the scale dependence of
RConv
n ð31.6 GeV; μ0Þ up to four-loop level under the conven-

tional scale setting in Fig. (2). The LO and NLO estimations,
R0 and R1, depend heavily on μ0. When more high-order

TABLE IV. Numerical results for Rn and κn with various QCD
loop corrections under the conventional and PMS scale settings.
The value of R0 ¼ 0.04454 is the same for both scale settings.
Q ¼ 31.6 GeV.

R1 R2 R3 κ1 κ2 κ3

Conv. 0.04786 0.04666 0.04635 7.44% −2.50% −0.66%
PMS 0.04889 0.04644 0.04638 9.76% −5.00% −0.14%

0.04

0.045

0.05

0.055

FIG. 1 (color online). Results for Rn (n ¼ 1; 2; 3) together with
their error estimates ð�j ~Cn ~anþ1

s jMAXÞ. The diamonds and the
crosses are for conventional and PMS scale settings, respectively.
Q ¼ 31.6 GeV.

2As shown by the latter Fig. (3) the PMS prediction is
independent to the choice of μ0; thus such choice of the usual
scale range only leads to a smaller conventional scale error.

GENERAL PROPERTIES ON APPLYING THE PRINCIPLE … PHYSICAL REVIEW D 91, 034006 (2015)

034006-7



corrections have been taken into account, the scale depend-
ence becomes weaker. This agrees with the conventional
wisdom that, by computing high-order enough corrections,
one may get scale-independent predictions. However, not all
quantities in pQCD can be calculated to accurate enough
high orders due to the complexity of high-loop QCD
calculations. As a comparison, we present the scale depend-
ence of RPMS

n ð31.6Þ GeV under the PMS scale setting in
Fig. (3). It shows that the PMS does eliminate the initial scale
dependence even for low fixed-order pQCD predictions,
which is consistent with our previous conclusions drawn
from the properties of RG invariants.

B. Rτ up to four-loop level

The ratio for τ-lepton decays into hadrons is defined as

Rτ ¼
Γðτ → ντ þ hadronsÞ
Γðτ → ντ þ e−ν̄eÞ

; ð28Þ

which provides another fundamental test of pQCD and it
can be calculated from Reþe− [55,56]:

RτðMτÞ ¼ 2

Z
M2

τ

0

ds
M2

τ

�
1 −

s
M2

τ

�
2
�
1þ 2s

M2
τ

�
~Reþe−ð

ffiffiffi
s

p Þ:

Here Mτ ¼ 1.777 GeV [50] is the τ-lepton mass, s stands
for the squared invariant mass of hadrons, and ~Reþe−ð

ffiffiffi
s

p Þ
can be obtained from Reþe− by replacing 3

P
qe

2
q

with 3ðjVudj2 þ jVusj2Þ ≈ 3.
After doing the integration over s and putting the explicit

scale dependence into the expression, we can rewrite Rτ as

RτðMτ; μ0Þ ¼ 3ðjVudj2 þ jVusj2Þð1þ rτnðMτ; μ0ÞÞ; ð29Þ

where the perturbative approximant

rτnðMτ; μ0Þ ¼
Xn
i¼0

C0iðMτ; μ0Þaiþ1
s ðμ0Þ: ð30Þ

μ0 stands for initial renormalization scale. At μ0 ¼ Mτ, the
coefficients of Rτ under the MS scheme up to four-loop
level can be written as [21]

C00 ¼ 1;

C01 ¼ 6.3399 − 0.3791nf;

C02 ¼ 48.5831 − 7.87865nf þ 0.15786n2f;

C02 ¼ 401.54 − 109.449nf þ 6.18148n2f − 0.06366n3f:

We start from the (initial) scale dependence of rτnðMτÞ.
The results for rτn under the conventional scale setting are
put in Fig. (4). It is found that the approximant rτn strongly
depends on μ0 even for the four-loop prediction. This
indicates that we need even more loop terms to make the
final prediction accurate enough. On the other hand, after

20 40 60 80 100 120
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0.044

0.046

0.048

0.05

FIG. 2 (color online). The pQCD prediction RConv
n ðQ ¼

31.6 GeV; μ0Þ up to four-loop level versus the initial scale μ0.
The dotted, the dash-dot, the dashed and the solid lines are for R0,
R1, R2 and R3, respectively.
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FIG. 3 (color online). The pQCD prediction RPMS
n ðQ ¼

31.6 GeV; μ0Þ up to four-loop level versus the initial scale μ0.
The dash-dot, the dashed and the solid lines are for, R1, R2 and
R3, respectively.

1 1.5 2 2.5 3 3.5

0.1

0.15

0.2

0.25

FIG. 4 (color online). The pQCD prediction rτnðMτ; μ0Þ up to
four-loop level versus the initial scale μ0 under the conventional
scale setting. The dotted, the dash-dot, the dashed and the solid
lines are for rτ0, r

τ
1, r

τ
2 and rτ3, respectively.
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applying the PMS, we get the same initial scale independ-
ence at any orders as that of Fig. (3). In the following, we
shall take μ0 ¼ Mτ to do our discussions.
The coefficients C0n before and after the PMS scale

setting are presented in Table V. Again the factorial
renormalon growth of C0n has been suppressed. The

effective couplings ~aðnÞs for rτn under the conventional
and PMS scale settings are presented in Table VI.
Unlike the case of Rn, there is no induced convergence

for rτn, i.e. ~a
ð1Þ
s > ~að2Þs ∼ ~að3Þs . Thus the induced convergence

can only be an approximate property of the PMS.
In Table VII, we present numerical results for the LO,

NLO, N2LO and N3LO loop contributions to rτ3 separately,
in which the results for conventional and PMS scale
settings are presented. The magnitude of the N3-LO term
under the conventional scale is about 7% of rτ3, which
changes down to ∼4% after applying the PMS scale setting.
The pQCD series under the conventional scale setting
shows a standard perturbative convergence similar to the
case of Rn. And the PMS prediction also shows a different
perturbation series, i.e.,

rτ;LO3;PMS ≫ rτ;NLO3;PMS > rτ;N
2LO

3;PMS ∼ jrτ;N3LO
3;PMS j:

Numerical results for rτn and κτn under conventional and
PMS scale settings are presented in Table VIII. The value of
κτ3 under both scale settings is around 10%, indicating the

necessity of calculating more high-order terms before an
accurate pQCD prediction on Rτ can be achieved. κτ3ðPMSÞ
is slightly smaller than κτ3ðConvÞ; thus the PMS can lead to
relatively better four-loop prediction than the conventional
scale setting. The PMS rτ1 is about 2.2 times larger than the
conventional one, which provides the reason for large κτ1
and κτ2.
Results for rτn (n ¼ 1; 2; 3) together with their error

estimates, i.e. the predicted unknown high-order contribu-
tions ð�j ~C0n ~anþ1

s jMAXÞ, are presented in Fig. (5). Similar to
the Reþe− case, rτ2;3 are outside the prediction of rτ1. The
PMS rτ1 is even outside the conventional prediction of rτ1
with large errors. Thus, the PMS prediction on rτ1 alone is
not able to predict correct high-order contributions. But the
PMS provides smaller errors for rτ2 and rτ3 than those given
by the conventional method, and the PMS errors shrink
quickly when more loop corrections are included. Using the
four-loop prediction, we obtain

RτðM; μ0ÞjConv ¼ 3.606� 0.111; ð31Þ

RτðM; μ0ÞjPMS ¼ 3.645� 0.029; ð32Þ

where the errors are predicted high-order contributions for
μ0 ∈ ½M=2; 2M�. Both of them are consistent with the
OPAL measurement [57], Rτ ¼ 3.593� 0.008. These val-

ues strongly depend on the choice of Λ
nf¼3

QCD . Inversely, by

TABLE V. Coefficients for the perturbative expansion of rτ3
before and after the PMS scale setting. μ0 ¼ Mτ.

C01 C02 C03
Conv. 5.2023 26.3659 127.079
PMS 0.3906 1.2380 −6.1747

TABLE VI. The effective couplings ~aðnÞs for rτn under the
conventional and PMS scale settings. μ0 ¼ Mτ.

~að1Þs ~að2Þs ~að3Þs

Conv. 0.1042 0.1015 0.1032
PMS 0.4733 0.1963 0.1994

TABLE VII. The LO, NLO, N2LO and N3LO loop contribu-
tions for the approximant rτ3 under the conventional and the PMS
scale settings. The total column stands for the sum of all those
loop corrections.

LO NLO N2LO N3LO Total

Conv. 0.10320 0.05541 0.02898 0.01441 0.20200
PMS 0.19935 0.01552 0.00981 −0.00975 0.21493

TABLE VIII. Numerical results for rτn and κτn with various QCD
loop corrections under the conventional and PMS scale settings.
The value of rτ0 ¼ 0.0897 is the same for both scale settings.
μ0 ¼ Mτ.

rτ1 rτ2 rτ3 κτ1 κτ2 κτ3

Conv. 0.16064 0.18255 0.20200 79.18% 13.64% 10.66%
PMS 0.36514 0.19781 0.21493 307.29% −45.83% 8.66%
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FIG. 5 (color online). Results for rτn (n ¼ 1; 2; 3) together with
their errors ð�j ~C0n ~anþ1

s jMAXÞ. The diamonds and the crosses are
for the conventional scale setting and the PMS.
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using the OPAL data on Rτ and following the approach

suggested in Ref. [13], we predict Λ
nf¼3

Conv ¼ 340þ4
−5 MeV

and Λ
nf¼3

PMS ¼ 323þ4
−4 MeV.

C. ΓðH → bb̄Þ up to four-loop level

The decay width for Higgs bosons decaying into a bb̄
pair can be written as

ΓðH → bb̄Þ ¼ 3GFMHm2
bðMHÞ

4
ffiffiffi
2

p
π

ð1þ ~RnÞ; ð33Þ

where GF is the Fermi constant, MH is the mass of the
Higgs boson, and mbðMHÞ is the b-quark MS running
mass, and up to ðnþ 1Þ-loop level, we have

~RnðMH; μ0Þ ¼
Xn
i¼0

~C00i ðMH; μ0Þaiþ1
s ðμ0Þ;

where μ0 stands for an arbitrary initial scale. The QCD
corrections for the decay width ΓðH → bb̄Þ have been
calculated up to four-loop level, cf. Refs. [23,24,58,59]; for
μ0 ¼ MH, the four-loop ~R3 reads [23]

~R3 ¼ 5.6667asðMHÞ þ ð35.94 − 1.359nfÞa2sðMHÞ þ ð164.14 − 25.77nf þ 0.259n2fÞa3sðMHÞ
þ ð39.34 − 220.9nf þ 9.685n2f − 0.0205n3fÞa4sðMHÞ: ð34Þ

The initial scale dependence of ~Rn under the conven-
tional scale setting is presented in Fig. (6). The scale
dependence becomes weaker with the increment of high-
loop terms, and the four-loop prediction ~R3 is almost
independent to the scale changes. This is the standard
properties of pQCD prediction from the conventional scale
setting, which however cannot weaken the importance of a
more proper scale setting. For example, after applying the
PMS, we get the same initial scale independence at lower
orders as that of Fig. (3).
The coefficients C00n before and after the PMS scale

setting in Table IX. Because of the renormalon term, the
absolute value of C003 ∼ 826, which changes down to ∼143
by applying the PMS. The effective couplings ~aðnÞs for ~Rn
under conventional and PMS scale settings are presented in
Table X. For the present case, the effective couplings ~as for
the conventional scale setting are almost unchanged, while
the PMS ones decreases with the increment of loop terms.

The LO, NLO, N2LO and N3LO loop contributions for
the approximant ~R3 under conventional and PMS scale
settings are presented in Table XI. The LO term provides
dominant contribution to ~R3. The magnitude of the N3-LO
term under the conventional scale setting provides a smaller
∼0.6% contribution to ~R3, which changes down to 0.2%
after applying the PMS scale setting. The pQCD series
under the conventional scale setting shows a standard
perturbative convergence similar to the case of Rn. And
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FIG. 6 (color online). The pQCD prediction ~RnðMH; μ0Þ up to
four-loop level versus the initial scale μ0 under the conventional
scale setting. The dotted, the dash-dot, the dashed and the solid
lines are for ~R0, ~R1, ~R2, and ~R3, respectively.

TABLE IX. Coefficients for the perturbative expansion of ~R3

before and after the PMS scale setting. μ0 ¼ MH .

C001 C002 C003
Conv. 29.145 41.765 −825.598
PMS 0.34376 21.2286 −142.849

TABLE X. The effective couplings ~aðnÞs for ~Rn under the
conventional and PMS scale settings. μ0 ¼ MH .

~að1Þs ~að2Þs ~að3Þs

Conv. 0.0360 0.0360 0.0359
PMS 0.0465 0.0425 0.0423

TABLE XI. The LO, NLO, N2LO and N3LO loop contributions
for the approximant ~R3 under the conventional and the PMS scale
settings. The total column stands for the sum of all those loop
corrections. μ0 ¼ MH.

LO NLO N2LO N3LO Total

Conv. 0.20371 0.03767 0.00194 −0.00138 0.24194
PMS 0.23967 0.00061 0.00161 −0.00046 0.24144
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the PMS prediction also shows a different perturbation
series, i.e.,

~RLO
3;PMS ≫ ~RNLO

3;PMS; ~R
N2LO
3;PMS; ~R

N3LO
3;PMS

with ~RN2LO
3;PMS > ~RNLO

3;PMS.
Numerical results for ~Rn and ~κn up to four-loop level are

presented in Table XII. Results for ~Rn (n ¼ 1; 2; 3) together
with their prediction of unknown high-order contributions
ð�j ~C00n ~anþ1

s jMAXÞ are presented in Fig. (7). The four-loop ~R3

are nearly the same for conventional and PMS scale
settings, while the PMS ~κ3 is smaller and more close to
its final prediction on the observable ~R. However, the PMS
~R1 also cannot predict the correct high-order contributions,
i.e. both ~R2 and ~R3 are outside its prediction. Such a larger
PMS ~R1 also leads to larger ~κ1 and ~κ2. With those ~R3

results, we present the decay width of a Higgs boson into a
bb̄ pair:

ΓðH → bb̄ÞjConv ¼ 2389.85� 3.85 KeV; ð35Þ

ΓðH → bb̄ÞjPMS ¼ 2388.87� 0.88 KeV; ð36Þ

where the errors are predicted unknown high-order con-
tributions for μ0 ∈ ½MH=2; 2MH�.

IV. A COMPARISON OF THE PMS AND PMC

The running behavior of the coupling constant is con-
trolled by the RG equation. Unlike the local RG invariance
of the PMS, the PMC [26–32] respects the standard RG
invariance and improves the perturbative series by absorb-
ing all β-terms governed by the RG equation into the
coupling constant. The PMC procedure can be advanta-
geously applied to an entire range of perturbatively
calculable QCD and standard model processes. Recently,
many high-order PMC applications have been finished and
the PMC works successfully, cf. Refs. [60–64]. It is helpful
to present a detailed comparison of PMS and PMC
predictions. For the purpose, we take Reþe− as an explicit
example.
After applying the PMC, the coefficients CPMC

n for R3 are
presented in Table XIII. Comparing with Table I, PMC
coefficients are smaller than the conventional ones. The
PMS also leads to such a suppression, but it cannot explain
why. The PMC shows that such suppressions are rightly
due to the elimination of renormalon terms.
A comparison of Rn and κn under PMS and PMC scale

settings is presented in Table XIV. The differences for

TABLE XII. Numerical results for ~Rn and ~κn with various QCD
loop corrections under the conventional and PMS scale settings.
The value of ~R0 ¼ 0.20419 is the same for both scale settings.
μ0 ¼ MH .

~R1
~R2

~R3
~κ1 ~κ2 ~κ3

Conv. 0.24151 0.24333 0.24194 18.28% 0.75% −0.57%
PMS 0.25621 0.24087 0.24144 25.48% −5.99% 0.24%
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FIG. 7 (color online). Results for ~Rn (n ¼ 1; 2; 3) together with
their prediction of unknown high-order contributions
ð�j ~C00n ~anþ1

s jMAXÞ for H → bb̄. The diamonds and the crosses
are for conventional and PMS scale settings, respectively.

TABLE XIII. Coefficients CPMC
n for the perturbative expansion

of R3ðQÞ using the PMC scale setting, where we have set Q ¼
1.2 GeV for nf ¼ 3, Q ¼ 3 GeV for nf ¼ 4, and Q ¼ 31.6 GeV
for nf ¼ 5.

nf ¼ 3 nf ¼ 4 nf ¼ 5

CPMC
1

2.14579 1.99302 1.84024
CPMC
2

3.39697 1.21574 −1.00503
CPMC
3

6.47103 −12.8517 −11.0871

TABLE XIV. A comparison of Rn and κn under the PMS and
PMC scale settings. The value of R0 ¼ 0.04454 is the same for
both scale settings. Q ¼ 31.6 GeV and μ0 ¼ Q.

R1 R2 R3 κ1 κ2 κ3

PMS 0.04889 0.04644 0.04638 9.76% −5.00% −0.14%
PMC 0.04767 0.04667 0.04635 7.03% −2.09% −0.69%

TABLE XV. The LO, NLO, N2LO and N3LO loop contribu-
tions for the approximant R3 under the PMS and PMC scale
settings. The total column stands for the sum of all those loop
corrections. Q ¼ 31.6 GeV and μ0 ¼ Q.

LO NLO N2LO N3LO Total

PMS 0.04608 0.00010 0.00013 0.00007 0.04638
PMC 0.04290 0.00351 −0.00004 −0.00002 0.04635
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three-loop R2 are about 0.5%, which moves down to about
0.05% for four-loop R3. Both the PMS and PMC are based
on RG invariance; it is reasonable that they can give close
numerical predictions at higher orders. The values of the
PMC κ1 and κ2 are smaller than those of the PMS,

indicating that a faster steady behavior can be achieved
by the PMC.3

A comparison of PMS and PMC pQCD series is
presented in Table XV. The PMC pQCD series follows
the standard pQCD convergence but is much more con-
vergent than that of the conventional scale setting, while the
PMS series also becomes more convergent than the conven-
tional ones, but the series does not show the order-by-order
convergence, i.e. RN2LO

3;PMS > RNLO
3;PMS.

In Fig. (8), we present a comparison of PMC and PMS
predictions for Rn (n ¼ 1; 2; 3) together with their pre-
dicted unknown high-order contributions

��j ~Cn ~anþ1
s jMAX

�
.

The large error bar for the PMC R1 shows that the
magnitude of the NLO-conformal terms are large and
we need even high-order terms to achieve an accurate
prediction. In fact, when we have more β-terms to fix the
PMC scales, the PMC prediction together with its predicted
error does become more accurate.
We present a comparison of the PMS and PMC energy

dependence of RnðQÞ in Fig. (9), where we have changed
the argument to ρ1 such as to avoid the uncertainty from
ΛQCD [20]. The present range ρ1 ∈ ð12; 21Þ corresponds to
energy range 9 < Q < 90 GeV. There is a large difference
between RPMS

1 ðρ1Þ and RPMS
n≥2 ðρ1Þ, which is consistent with a

previous observation that RPMS
1 ðρ1Þ alone cannot predict

reasonable unknown high-order contributions. To show the
difference of the predicted Rnðρ1Þ under various scale
settings more accurately, we define a parameter, δn, as

δn ¼
P

ρ1
jRnðρ1Þ − RPMS

n ðρ1ÞjP
ρ1
jRPMS

n ðρ1Þj
× 100%; ð37Þ

where ρ1 ¼ 12; 12.001; 12.002;…; 21. Those differences
are presented in Table XVI. The differences of Rnðρ1Þ
among different scale settings shall be reduced with more
loop corrections being included.

V. SUMMARY

To solve the renormalization scheme and renormaliza-
tion scale ambiguities, one should answer the question of
how to set optimal scale systematically for any physical
processes up to any orders from some basic principle of
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0.055

FIG. 8 (color online). A comparison of PMC and PMS
predictions for Rn (n ¼ 1; 2; 3) together with their predicted
unknown high-order contributions ð�j ~Cn ~anþ1

s jMAXÞ. The dia-
monds and the crosses are for PMC and PMS scale settings,
respectively.
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FIG. 9 (color online). The curves of the function Rnðρ1Þ for the
PMS and PMC scale settings. μ0 ¼ Q.

TABLE XVI. The difference δn for Rnðρ1Þ between the PMC
(or conventional) scale setting and the PMS scale setting.

δ1 δ2 δ3

Conv. 2.24% 0.55% 0.10%
PMC 2.66% 0.61% 0.07%

3The PMS κ3 for Reþe− is accidentally small. We have found
that the PMC κ3 for Rτ and ΓðH → bb̄Þ are smaller than those of
the PMS, following the same trends.
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QCD theory. As a practical solution, the PMS adopts local
RG invariance (7)–(8) to set the optimal scheme and
optimal scale of the process.
Based on the local RG invariance, we have presented

the detailed technology for applying the PMS to high-
perturbative orders. We have investigated the PMS proper-
ties based on three typical physical quantities Reþe− , Rτ and
ΓðH → bb̄Þ up to four-loop QCD corrections. Our analysis
show that even though the PMS is theoretically unsound, it
does provide an effective approach to soften the renorm-
alization scheme and scale ambiguities by including
enough higher-order pQCD contributions. More explicitly,
our results show the following.

(i) After applying the PMS, the magnitudes of pertur-
bative coefficients become smaller than those under
the conventional scale setting, indicting that the
divergent renormalon terms can be suppressed.
The PMS effective coupling approximately satisfies
the induced convergence. As a combined effect, the
magnitudes of NLO and higher-order loop terms
become much smaller than the corresponding ones
under the conventional scale setting.

(ii) The goal of the PMS is to achieve the steady point of
a perturbative series over the renormalization
scheme and scale changes. The PMS predictions
for those three four-loop examples do show such a
steady behavior, i.e. the final PMS predictions are
independent of any choice of initial scale, being
consistent with one of the requirements of basic RG
invariance. Moreover, the LO terms RLO

3;PMS and
~RLO
3;PMS provide ∼99% contributions, and rτ;LO3 pro-

vides ∼89% contribution to Reþe− , ΓðH → bb̄Þ and
Rτ series, respectively. However, the PMS has no
principle to ensure the pQCD convergence; thus the
improved pQCD convergence for some of the high-
energy processes could only be an accidental. In
fact, all those three four-loop examples do not have
standard pQCD convergence, i.e. the magnitudes of
their NLO, N2LO and N3LO terms are usually small
but at the same order.

(iii) We have suggested a conservative way to discuss the
pQCD predictive power, i.e. to show how unknown
high-order terms contribute. It is noted that after the
PMS scale setting, the N2LO and N3LO estimates
are usually outside the predicted errors by using the
terms only up to NLO level. Together with other
lower-order PMS behaviors, such as the large PMS
κ1;2 for the mentioned processes, we may conclude
that the PMS cannot provide correct lower-order
predictions, such as the NLO predictions. In the
literature, most of the doubts on the PMS are rightly
based on lower-order predictions. With more loop
corrections being included, the PMS can achieve a
more accurate prediction than that of conventional
scale setting.

In this paper, we have also presented a comparison of
PMS and PMC predictions. Unlike the PMS, the PMC
satisfies standard RG invariance and follows the RG
equation to fix the running behavior of the coupling
constant; thus it is theoretically sound. The PMC predic-
tions have optimal pQCD convergence due to the elimi-
nation of renormalon terms. The PMS prediction is
independent on the choice of initial scale, while there is
residual scale dependence for PMC predictions due to
unknown high-order β-term; however such residual scale
dependence is highly suppressed, even for lower-order
PMC predictions. In comparison to the conventional and
PMS scale settings, the PMC shows a better predictive
power, and its predictions quickly approach the physical
value of the observable. Moving to high-order pQCD
predictions, the PMS and PMC differences on the pQCD
predictions shall be greatly suppressed, e.g. for the case of
Reþe− , the differences change from larger ∼3% at the NLO
level, to ∼1% at the N2LO level, to less than 0.1% at the
N3-LO level.
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APPENDIX A: A TRICKY WAY TO DERIVE THE
RG INVARIANTS ρn AT HIGH ORDERS

In this Appendix, we present a simpler way to derive the
RG invariants ρn at high orders with n > 1, based on their
properties of RG invariance.
For convenience, we set p ¼ 1 in Eq. (3) and redefine the

βR-function as

βR ¼ μ2
∂
∂μ2

�
αsðμÞ
4π

�
¼ −

X∞
i¼0

biaiþ2
s ; ðA1Þ

where bi ¼ ð1=4Þiþ2βRi and as ¼ αs=π.
A physical observable solitarily defines an effective

charge [65,66], and vice versa. Thus, we can inversely
write down the coupling constant as as an expression over
the approximant ϱn [67], i.e.

asðϱnÞ ¼ ϱn þ
X∞
i¼1

riϱniþ1: ðA2Þ

Substituting the ϱn expression (3) into Eq. (A2), we obtain
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as ¼ asð1þ C1as þ C2a2s þ C3a3s þ � � �Þ½1þ r1asð1þ C1as þ C2a2s þ C3a3s þ � � �Þ
þ r2a2sð1þ C1as þ C2a2s þ C3a3s þ � � �Þ2 þ � � �� ðA3Þ

¼ as½1þ asðr1 þ C1Þ þ a2sð2r1C1 þ r2 þ C2Þ þ a3sðr1C21 þ 2r1C2 þ 3r2C1 þ r3 þ C3Þ þ � � ��; ðA4Þ

where the symbol � � � stands for higher-order terms. The
coefficients for a2s and higher orders should vanish, which
leads to

r1 ¼ −C1; ðA5Þ

r2 ¼ 2C21 − C2; ðA6Þ

r3 ¼ C31 − 3ð2C21 − C2ÞC1 þ 2C1C2 − C3

..

.
: ðA7Þ

As a further step, we introduce a new function

RðQÞ ¼ ∂
∂ lnQ2

ϱnðQÞ ¼ 4βR
∂

∂asðQÞ ϱnðQÞ; ðA8Þ

where Q is the scale at which the observable is measured.
Since ϱn and Q are physical quantities, R can also be
regarded as a physical quantity that does not depend on the
renormalization scheme and scale. Equation (A8) can be
expanded over ϱn in the following form:

R ¼ − ϱ2n½4b0 þ 4ϱnð2r1b0 þ b1 þ 2C1b0Þ þ 4ϱ2nðr21b0 þ 3r1b1 þ 6r1b0C1 þ 2r2b0 þ b2 þ 3b0C2 þ 2b1C1Þ
þ 4ϱ3nð2r1r2b0 þ 2r3b0 þ 3r21b1 þ 3r2b1 þ 4r1b2 þ b3 þ 6r21b0C1 þ 6r2b0C1 þ 8r1b1C1 þ 2b2C1

þ 12r1b0C2 þ 3b1C2 þ 4b0C3Þ þ � � �� ðA9Þ
¼ −ϱ2n½4b0 þ 4ϱnb1 þ 4ϱ2nðb2 − b0C21 − b1C1 þ b0C2Þ
þ 4ϱ3nð4b0C31 − 6b0C1C2 þ 2b0C3 þ b1C21 − 2b2C1 þ b3Þ þ � � ��: ðA10Þ

Both ϱn and R are physical quantities; the expansion
coefficients of R over ϱn should be RG invariants.
Transforming these RG-invariant coefficients back into
the notation used in the body of the text, we get the RG
invariants ρn (n > 1). The first two are

ρ2 ¼
β2
16β0

−
β1C1
4β0

− C21 þ C2; ðA11Þ

ρ3 ¼
β3
64β0

þ β1C21
4β0

−
β2C1
8β0

þ 4C31 − 6C2C1 þ 2C3: ðA12Þ

Finally, by replacing ϱn with ϱ
1
p
n, we can obtain the RG

invariants for any p, the first two of which agree with
Eqs. (22) and (24).
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