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We apply an analysis method previously developed for the extraction of the strong coupling from the
OPAL data to the recently revised ALEPH data for nonstrange hadronic τ decays. Our analysis yields the
values αsðm2

τ Þ ¼ 0.296� 0.010 using fixed-order perturbation theory, and αsðm2
τ Þ ¼ 0.310� 0.014 using

contour-improved perturbation theory. Averaging these values with our previously obtained values from the
OPAL data, we find αsðm2

τ Þ ¼ 0.303� 0.009 and αsðm2
τ Þ ¼ 0.319� 0.012, respectively. We present a

critique of the analysis method employed previously, for example in analyses by the ALEPH and OPAL
collaborations, and compare it with our own approach. Our conclusion is that nonperturbative effects limit
the accuracy with which the strong coupling, an inherently perturbative quantity, can be extracted at
energies as low as the τ mass. Our results further indicate that systematic errors on the determination of the
strong coupling from analyses of hadronic τ-decay data have been underestimated in much of the existing
literature.
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I. INTRODUCTION

Recently, Ref. [1], for the ALEPH collaboration, updated
and revised previous ALEPH results for the nonstrange
vector (V) and axial vector (A) spectral distributions
obtained from measurements of hadronic τ decays. In
particular, Ref. [1] corrects a problem in the publicly
posted 2005 and 2008 versions of the correlations between
different energy bins uncovered in Ref. [2].1 The corrected
data supersede those originally published by the ALEPH
Collaboration [3,4].
One of the hadronic quantities of interest that can be

extracted from these data is the strong coupling αsðm2
τÞ at

the τ mass, through the use of finite-energy sum rules
(FESRs) [5], as advocated long ago [6,7]. Both the ALEPH
and OPAL [8] collaborations have done so by applying an
analysis strategy, developed in Refs. [7,9], in which small,
but non-negligible nonperturbative effects were estimated
using a truncated form of the operator product expansion
(OPE). A feature of the particular truncation scheme
employed is that it assumes that, in addition to contri-
butions which violate quark-hadron duality, also OPE
contributions of dimension D > 8 unsuppressed by non-
leading powers of αs can be safely neglected. Given the
goal of extracting αsðm2

τÞ with the best possible accuracy,

these features of what we will refer to as the “standard
analysis” have been questioned, starting with the work of
Refs. [10,11]. In these works, it was argued that both the
OPE truncation to terms with D ≤ 8 and the neglect of
violations of quark-hadron duality lead to additional
numerically non-negligible systematic uncertainties not
included in the errors obtained on αsðm2

τÞ and the OPE
condensates from the standard-analysis approach. In order
to remedy this situation, in Refs. [12,13], we developed a
new analysis strategy designed to take both OPE and
duality-violating (DV) nonperturbative effects consistently
into account. This strategy was then successfully applied to
the OPAL data [12,13]. In the present article, we apply this
analysis strategy to the corrected ALEPH data, and
compare our results to those obtained from the OPAL data
in Ref. [13] as well as to those of the recent reanalysis
presented in Ref. [1].
The calculation of the order-α4s term [14] in the pertur-

bative expansion of the Adler function in 2008 led to
a renewed interest in the determination of the strong
coupling from hadronic τ decays, with many attempts
to use this new information on the theory side of the
relevant FESRs in order to sharpen the extraction of αsðm2

τÞ
from the data [1,4,10,12–19]. Since the perturbative series
converges rather slowly, different partial resummation
schemes have been considered, leading to variations in
the obtained results. The majority of these post-2007

1The updated and corrected data can be found at http://aleph
.web.lal.in2p3.fr/tau/specfun13.html.
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updates (Refs. [1,4,14–19]), however, were carried out
assuming that the standard-analysis treatment of nonper-
turbative effects was essentially correct, with none of the
references in this subset, with the exception of Refs. [1,4],
redoing the analysis starting from the underlying exper-
imental data (the emphasis, instead, being on the merits of
different resummation schemes for the perturbative expan-
sion). Reference [10], which did revisit the determination
of the higher-D OPE contributions, and performed a more
careful treatment of these contributions, did not, however,
include DV contributions in its analysis framework. While
its results were tested for self-consistency, the absence of a
representation of DV effects meant no estimate of the
residual systematic error associated with their neglect was
possible. The only articles to incorporate both the improved
treatment of higher-D OPE contributions and an imple-
mentation of a physically motivated representation of DV
effects were those of Refs. [12,13], which, due to the
problem with the then-existing ALEPH covariance matri-
ces, were restricted to analyzing OPAL data. Our goal in
this article is to reconsider the treatment of nonperturbative
effects employing the newly released ALEPH data, which
have significantly smaller errors than the OPAL data. We
will present results for the two most popular resummation
schemes for the perturbative (i.e., D ¼ 0 OPE) series:
fixed-order perturbation theory (FOPT) and contour-
improved perturbation theory (CIPT) [20], without trying
to resolve the discrepancies that arise between them (for an
overview of the two methods, see Ref. [21]).
This article is organized as follows. In Sec. II we give a

brief overview of the necessary theory, referring to
Ref. [12] for more details. In Sec. III we discuss the
new ALEPH data set, and check explicitly that the current
publicly posted version of the correlation matrices pass the
test that led to the identification of the problem with the
previous version [2]. We also show the comparison of
the experimental ALEPH and OPAL nonstrange spectral
functions. Section IV summarizes our fitting strategy,
developed in Refs. [12,13]. Sections V and VI present
the details of the fits, and the results we obtain from them
for αsðm2

τÞ and dimension 6 and 8 OPE coefficients in the V
and A channels. We explore the χ2 landscape using the
Markov-chain Monte Carlo code HROTHGAR [22], which in
the case of the OPAL data proved useful in uncovering
potential ambiguities. Also included is an estimate for the
total nonperturbative contribution to the ratio of nonstrange
hadronic and electronic τ branching fractions. In Sec. VI
we check how well the two Weinberg sum rules [23] and
the sum rule for the electromagnetic pion mass difference
[24] are satisfied by our results. Finally, in Sec. VII, we
present a critical discussion of the standard analysis
employed in Refs. [1,3,4,8], focusing on the most recent
of these, described in Ref. [1]. We demonstrate explicitly
the inconsistency of this analysis with regard to the treat-
ment of nonperturbative effects, and conclude that, while

the standard analysis approach was a reasonable one to
attempt in the past, it must be abandoned in current or
future determinations of αsðm2

τÞ from hadronic τ decay
data. In our concluding section, Sec. VIII, we compare our
approach with the standard-analysis method, highlighting
and juxtaposing the assumptions underlying each, and
summarize our results.

II. THEORY OVERVIEW

The sum-rule analysis starts from the correlation
functions

ΠμνðqÞ ¼ i
Z

d4xeiqxh0jTfJμðxÞJ†νð0Þgj0i

¼ ðqμqν − q2gμνÞΠð1Þðq2Þ þ qμqνΠð0Þðq2Þ
¼ ðqμqν − q2gμνÞΠð1þ0Þðq2Þ þ q2gμνΠð0Þðq2Þ;

ð2:1Þ

where Jμ stands for the nonstrange V or A current, uγμd or
uγμγ5d, while the superscripts (0) and (1) label spin. The
decomposition in the third line employs the combinations
Πð1þ0Þðq2Þ and q2Πð0Þðq2Þ, which are free of kinematic
singularities. Defining s ¼ q2 ¼ −Q2 and the spectral
function

ρð1þ0ÞðsÞ ¼ 1

π
ImΠð1þ0ÞðsÞ; ð2:2Þ

Cauchy’s theorem and the analytical properties of
Πð1þ0ÞðsÞ, applied to the contour in Fig. 1, imply the FESR

IðwÞV=Aðs0Þ≡ 1

s0

Z
s0

0

dswðsÞρð1þ0Þ
V=A ðsÞ

¼ −
1

2πis0

I
jsj¼s0

dswðsÞΠð1þ0Þ
V=A ðsÞ; ð2:3Þ

FIG. 1. Analytic structure of Πð1þ0Þðq2Þ in the complex s ¼ q2

plane. There is a cut on the positive real axis starting at s¼q2¼
4m2

π (a pole at s ¼ q2 ¼ m2
π and a cut starting at s ¼ 9m2

π) for the
V (A) case. The solid curve shows the contour used in Eq. (2.3).
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valid for any s0 > 0 and any weight wðsÞ analytic inside
and on the contour [5].
The flavor ud V and A spectral functions can be

experimentally determined from the differential versions
of the ratios,

RV=A;ud ¼
Γ½τ → ðhadronsÞV=A;udντðγÞ�

Γ½τ → eνeντðγÞ�
; ð2:4Þ

of the width for hadronic decays induced by the relevant
current to that for the electron mode. Explicitly [25],

dRV=A;udðsÞ
ds

¼ 12π2jVudj2SEW
1

m2
τ
½wTðs;m2

τÞρð1þ0Þ
V=A;udðsÞ

− wLðs;m2
τÞρð0ÞV=A;udðsÞ�; ð2:5Þ

where SEW is a short-distance electroweak correction
and wTðs; s0Þ ¼ ð1 − s=s0Þ2ð1þ 2s=s0Þ, wLðs; s0Þ ¼
2ðs=s0Þð1 − s=s0Þ2. Apart from the pion-pole contri-

bution, which is not chirally suppressed, ρð0ÞV=A;udðsÞ ¼
O½ðmd∓muÞ2�, and the continuum part of ρð0ÞV=AðsÞ is thus
numerically negligible. As a result, the spectral functions

ρð1þ0Þ
V=A;udðsÞ can be determined directly from dRV=A;udðsÞ=ds.
The FESR (2.3) can thus be studied for arbitrary s0 and
arbitrary analytic weight wðsÞ. From now on, we will
denote the experimental version of the spectral integral on

the left-hand side of Eq. (2.3) by IðwÞV=A;exðs0Þ [generically,
IðwÞex ðs0Þ] and the theoretical representation of the contour

integral on the right-hand side by IðwÞV=A;thðs0Þ [generi-

cally, IðwÞth ðs0Þ].
For large enough jsj ¼ s0, away from the positive real

axis, Πð1þ0ÞðsÞ can be approximated by the OPE

Πð1þ0Þ
OPE ðsÞ ¼

X∞
k¼0

C2kðsÞ
ð−sÞk ; ð2:6Þ

with the OPE coefficientsC2k logarithmically dependent on
s through perturbative corrections. The term with k ¼ 0
corresponds to the purely perturbative, mass-independent
contributions, which have been calculated to order α4s in
Ref. [14], and are the same for the V and A channels. The
C2k with k ≥ 1 are different for the V and A channels, and,
for k > 1, contain nonperturbative D ¼ 2k condensate
contributions. As in Refs. [12,13], we will neglect purely
perturbative quark-mass contributions to C2 and C4, as they
are numerically very small for the nonstrange FERSs we
consider in this article. For the same reason, we will neglect
the s dependence of the coefficients C2k for k > 1. For the
perturbative contribution, C0, we will use the result of
Ref. [14] and extract αsðm2

τÞ in the MS scheme. Since the
coefficient c51 of the order-α5s term has not been calculated

we will use the estimate c51 ¼ 283 of Ref. [15] with a
100% uncertainty. We will also employ both FOPT and
CIPT resummation schemes in evaluating the truncated
perturbative series. For more details on the treatment of the
D > 0 OPE contributions, we refer the reader to Ref. [12].
Perturbation theory, and in general the OPE, breaks

down near the positive real s ¼ q2 axis [26]. We account
for this by replacing the right-hand side of Eq. (2.3) by

−
1

2πis0

I
jsj¼s0

dswðsÞðΠð1þ0Þ
OPE ðsÞ þ ΔðsÞÞ; ð2:7Þ

with

ΔðsÞ≡ Πð1þ0ÞðsÞ − Πð1þ0Þ
OPE ðsÞ; ð2:8Þ

where the difference ΔðsÞ accounts, by definition, for the
quark-hadron duality violating contribution to Πð1þ0ÞðsÞ.
As shown in Ref. [11], Eq. (2.7) can be rewritten as

IðwÞth ðs0Þ ¼ −
1

2πis0

I
jsj¼s0

dswðsÞΠð1þ0Þ
OPE ðsÞ

−
1

s0

Z
∞

s0

dswðsÞ 1
π
ImΔðsÞ; ð2:9Þ

if ΔðsÞ is assumed to decay fast enough as s → ∞. The
imaginary parts 1

π ImΔV=AðsÞ can be interpreted as the DV
parts, ρDVV=AðsÞ, of the V=A spectral functions.
The functional form of ΔðsÞ is not known, even for large

s, and we thus need to resort to a model in order to account
for DVs. Following Refs. [11,27,28],2 we use a model
based on large-Nc and Regge considerations, choosing to
parametrize ρDVV=AðsÞ as3

ρDVV=AðsÞ ¼ e−δV=A−γV=As sin ðαV=A þ βV=AsÞ: ð2:10Þ

This introduces, in addition to αs and the D ≥ 4 OPE
condensates, four new parameters in each channel. As in
Refs. [12,13], we will assume that Eq. (2.10) holds for
s ≥ smin, with smin to be determined from fits to the data.
This, in turn, assumes that we can take smin significantly
smaller than m2

τ , i.e., that both the OPE and the ansatz
(2.10) can be used in some interval below m2

τ.
Let us pause at this point to revisit the basic ideas

underlying the DV ansatz (2.10). Since there exists, as yet,
no theory of DVs starting from first principles in QCD, the
ansatz (2.10) represents simply our best, physically moti-
vated, guess as to an appropriate form of DV contributions
to the V and A spectral functions. The damped oscillatory
form employed is, however, far from arbitrary. First, it
reflects the fact that DVs are expected to produce almost

2See also Refs. [29,30].
3In Ref. [12] we used κV=A ≡ e−δV=A ; in Ref. [13] we switched

to δV=A.

STRONG COUPLING FROM THE REVISED ALEPH DATA … PHYSICAL REVIEW D 91, 034003 (2015)

034003-3



harmonic oscillations around the perturbative continuum,
in line with expectations from Regge theory, in which
resonances occur with equal squared-mass spacings on the
relevant daughter trajectories. Second, the exponential
damping factor in the ansatz reflects the understanding
that the OPE is (at best) an asymptotic, and not a
convergent, expansion. It is certainly the case that the
OPE representation is more successful for Euclidean
Q2 ∼ 2 GeV2 than for comparable Minkowski scales,
q2 ∼ 2 GeV2, where DV contributions are clearly visible
in the spectral functions. Once DVs are identified as
representing the irreducible error present in this asymptotic
expansion, it is natural to assume that their contribution
should exhibit an exponentially suppressed dependence on
s ¼ q2, as in our ansatz (2.10). These qualitative expect-
ations are also reflected in the explicit Regge- and large-Nc-
motivated model discussed in much more detail in
Refs. [11,27–30]. These plausibility arguments aside, we
will use the precise ALEPH data to subject the para-
metrization (2.10) to nontrivial tests described in detail in
Sec. VII.
Several considerations underlie our choice of weight

functions wðsÞ. First, we will choose weight functions
which are likely to be well behaved in perturbation theory,
based on the findings of Ref. [31]. In particular, we will
excludeweight functions with a term linear in s, and require
the ones we use to include a constant term (which we will
normalize to one). Second, because it is not known at which
order the OPE might start to diverge (for the values of s0 of
interest), we wish to avoid terms in Eq. (2.6) with D > 8,
about which essentially nothing is known. That means that
if we do not want to arbitrarily set the coefficients CD with
D > 8 equal to zero, our weight functions are restricted to
polynomials with degree not larger than 3. Combining
these constraints, we are left with the form

wðs; s0Þ ¼ 1þ aðs=s0Þ2 þ bðs=s0Þ3: ð2:11Þ
This allows us at most three independent weight func-

tions, and limits the extent to which we can use sufficiently
pinched weights, i.e., weights with a (multiple) zero at
s ¼ s0, which help to suppress DVs [32,33]. The upshot is
that, if we want to exploit the s0 dependence of the data
(instead of fitting only at s0 ¼ m2

τ , as was done in
Refs. [1,3,4,8]) and treat the OPE consistently, modeling
DVs is unavoidable [12]. We emphasize that the s0
dependence of fit results provides a crucial test of the
validity of FESR fits to the data, as we will see below. As in
Refs. [12,13], we choose to consider the weight functions

ŵ0ðxÞ ¼ 1;

ŵ2ðxÞ ¼ 1 − x2;

ŵ3ðxÞ ¼ð1 − xÞ2ð1þ 2xÞ ¼ 1 − 3x2 þ 2x3 ¼ wTðs; s0Þ;
x≡ s=s0: ð2:12Þ

The first choice, ŵ0, is predicated on the fact that pinching
is known to suppress DV contributions and we need at least
one weight which is sufficiently sensitive to DV contribu-
tions to fix the DV parameters. The remaining two weights
ŵ2 and ŵ3 are singly and doubly pinched, respectively. For
a more detailed discussion of our choices, we refer to
Ref. [12]. An important observation is that these choices for
what goes into the parametrization of IðwÞth ðs0Þ did remark-
ably well in the analysis of the OPAL data. It therefore
makes sense to see what happens if we apply the same
strategy to the ALEPH data.

III. THE ALEPH DATA

In this section, we discuss the revised ALEPH data,
which are available from Ref. [34]. First, we perform a
minor rescaling, in order to account for more precise values
of some “external” quantities (i.e., quantities not directly
measured by ALEPH, but used in their analysis of the data);
this is discussed in Sec. III A, where we also specify our
other inputs. Then, in Sec. III B we apply to the corrected
covariance matrices the test of Ref. [2] that led us to
uncover the problem with the previously published ver-
sions, and verify that the revised covariances pass this test.
Finally, we compare the V and A spectral functions
obtained from the ALEPH data with those from the
OPAL data.

A. Data and normalization

We will use the following input values in our analysis:

mτ ¼ 1.77682ð16Þ GeV;
Be ¼ 0.17827ð40Þ;
Vud ¼ 0.97425ð22Þ;
SEW ¼ 1.0201ð3Þ;
mπ ¼ 139.57018ð35Þ MeV;

fπ ¼ 92.21ð14Þ MeV: ð3:1Þ

Here Be is the branching fraction for the decay τ → eνeντ
and we have used the result of a HFAG fit of the τ
branching fractions which incorporates πμ2 and Kμ2 data
and Standard Model expectations based on these data for
the π and K branching fractions [35]; fπ is the π decay
constant. The value for Vud is from Ref. [36], that for SEW
from Ref. [37], and the values for mτ, mπ and fπ are from
the Particle Data Group [38]. Only the error on Be has a
significant effect in our analysis; errors on the other input
quantities are too small to affect the final analysis errors in
any significant way.
To the best of our knowledge, Ref. [1] uses the values

Be ¼ 0.17818ð32Þ and SEW ¼ 1.0198. This value for Be
we infer from the ALEPH values for RV ¼ 1.782ð9Þ [1]
and the corresponding branching fraction BV ¼ 0.31747
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[34] specified in the publicly posted V data file (no error
quoted). The continuum (pion-less) axial branching frac-
tion BA;cont ¼ 0.19369 with Be ¼ 0.17818 translates into
RA;cont ¼ 1.08705. From these values, and the quoted value
Rud ¼ 3.475ð11Þ [1], it follows that the ALEPH value for
Rπ , the pion-pole contribution to Rud, is Rπ ¼ 0.606.
However, if one employs the very precisely known value
of fπ quoted above, obtained from πμ2 decays, together
with the quoted values for SEW and Vud, one finds instead
the more precisely determined expectation Rπ ¼ 0.6101.
Using this latter value as well as the ALEPH value
Rud ¼ 3.475ð11Þ leads to RV þ RA;cont ¼ 2.865, instead
of the ALEPH value ðBV þ BA;contÞ=Be ¼ ð0.31747þ
0.19369Þ=0.17818 ¼ 2.8688. We employ the more precise
πμ2 expectation for the important A-channel pion-pole
contribution, and take this difference into account by
rescaling the V and continuum A nonstrange spectral
functions by the common factor 2.865=2.8688 ¼ 0.9987,
since we have no information on whether this rescaling
should affect the V and A channels asymmetrically. Our
rescaling is thus imperfect, but it is to be noted that the
effect of this rescaling lowers our value for αsðm2

τÞ by less
than one percent, a much smaller shift than that allowed by
the total error, see Sec. VI.
The new ALEPH data use a variable bin width, with

the highest bin, number 80, centered at sbinð80Þ¼
3.3375GeV2, which is above m2

τ ¼3.1571GeV2. The
next-highest bin, number 79, is centered at sbinð79Þ ¼
3.0875 GeV2, with a width dsbinð79Þ ¼ 0.1750 GeV2, so
that also sbinð79Þ þ dsbinð79Þ=2 > m2

τ . In order to avoid
using values of s larger than m2

τ , we will modify these
values to

sbinð79Þ ¼ 3.07854 GeV2;

dsbinð79Þ ¼ 0.157089 GeV2; ð3:2Þ

so that sbinð79Þ þ dsbinð79Þ=2 ¼ m2
τ .

Finally, ALEPH provides binned spectral data for
sfm2ðsbinÞ, which are related to the spectral functions by

sfm2ðsbinÞ ¼ 100 ×
12π2jVudj2SEWBe

m2
τ

× ΔwTðsbin;m2
τÞρð1þ0ÞðsbinÞ; ð3:3Þ

in which

ΔwTðsbin;m2
τÞ ¼

Z
sbinþdsbin=2

sbin−dsbin=2
dswTðs;m2

τÞ: ð3:4Þ

For infinitesimal dsbin ¼ ds one has ΔwTðs;m2
τÞ ¼

wTðs;m2
τÞds, but for finite bin width we have to make a

choice in how we construct moments with other weights
from the spectral functions obtained from Eq. (3.3). We
choose to use the definition

IðwÞex ðs0Þ ¼
X

sbin≤s0

�Z
sbinþdsbin=2

sbin−dsbin=2
dswðs; s0Þ

�
ρð1þ0ÞðsbinÞ

ð3:5Þ

for all moments considered in this article.

B. Correlations

As shown inRef. [2], therewas a problemwith the publicly
posted 2005 and 2008 versions of the ALEPH covariance
matrices. This problem, since corrected in Ref. [1], turns out
to have resulted froman inadvertent omission of contributions
to the correlations between different bins induced by the
unfolding procedure. The problem was discovered by pro-
ducing fake data sets from a multivariate Gaussian distribu-
tion based on the posted ALEPH data and covariance
matrices, and then comparing the resulting fake data to the
actual ALEPH data. The result of this test is shown in Fig. 2,
which is the sameasFig. 3 ofRef. [2]. The toppanel shows the
experimental data taken from Ref. [4], the bottom panel a
typical fake data set produced using the corresponding
covariance matrix. The absence of the strong correlations
seen in the actual data from the corresponding fake data is
what signals the existence of the problem with the previous
version of the ALEPH covariance matrix. Figure 3 shows the
result of performing the same test on the updated and
corrected results reported in Ref. [1], the top panel again
showing the actual ALEPH data and the bottom panel a
typical fake data set. The fake data (red points) obviously
behave much more like the corresponding real data than was
the case previously.4 We have examined many such fake data

FIG. 2 (color online). Vector spectral function times 2π2. (Top
panel) ALEPH data from 2008 [4]. (Bottom panel) Monte Carlo
sample with 2008 covariance matrix.

4Even though the new wider binning near the kinematic end
point makes it somewhat harder to see such differences in this
region.
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sets with the same conclusion. A similar exercise was, of
course, carried out for the A-channel case.

C. Comparison with OPAL data

In Fig. 4 we show the vector and axial spectral functions
as measured by ALEPH [1,34] and OPAL [8]. The
normalizations of the spectral functions for both experi-
ments have been updated to take into account modern
values for relevant branching fractions; for the normaliza-
tion of ALEPH data, see Sec. III A above, and for the
normalization of OPAL data, see Sec. III of Ref. [13].
While there is in general good agreement between the

ALEPH and OPAL spectral functions, a detailed inspection
reveals some tension between the two, given the size of the
errors, for instance in the regions below 0.5 GeV2 and
around 2 GeV2 in the vector channel, with possibly
anticorrelated tensions in the same regions in the axial
channel. The presence of a large D ¼ 0, 1-loop αs-
independent contribution in the weighted OPE integrals
enhances the impact of such small discrepancies on the
output αsðm2

τÞ. We quantify the impact of these differences
below, showing that they lead to some tension between the
values for αsðm2

τÞ obtained from the two data sets, though
the results turn out to agree within total estimated errors.

IV. FITTING STRATEGY

As already explained in Sec. II, and in more detail in
Refs. [12,13], nonpinched weights are needed in order to
get a handle on the DV parameters of Eq. (2.10). The
simplest and most robust choice of weight allowing us to
extract these parameters is the weight ŵ0ðxÞ ¼ 1. In order
to check the stability of these simple fits, we also perform
simultaneous fits of the weights ŵ0 and ŵ2, and of ŵ0, ŵ2

and ŵ3, as in Refs. [12,13]. This gives us access to the

D ¼ 6 and D ¼ 8 terms in the OPE, but also allows us to
test for the consistency of the values of αsðm2

τÞ and the DV
parameters between our different fits.

The values we obtain for IðwÞex ðs0Þ from the ALEPH data
are highly correlated, both between different values of s0
and between different weight functions. If we consider only

fits using Iðŵ0Þ
ex ðs0Þ for a range of s0 values, it turns out that

fully correlated χ2 fits are possible, but if we also include

Iðŵ2Þ
ex ðs0Þ and Iðŵ3Þ

ex ðs0Þ in the fits, the complete correlation
matrices become too singular. For fits with multiple
weights, we will follow Refs. [12,13], using instead the
block-diagonal “fit quality”

Q2 ¼
X
w

X
si
0
;sj
0

ðIðwÞex ðsi0Þ − IðwÞth ðsi0; ~pÞÞðCðwÞÞ−1ij

× ðIðwÞex ðsj0Þ − IðwÞth ðsj0; ~pÞÞ; ð4:1Þ

where we have made the dependence of IðwÞth on the fit
parameters ~p explicit. The matrix CðwÞ is the (block-
diagonal) covariance matrix of the set of moments with
fixed weight w and s0 running over the chosen fit window
range. The sums over si0 and s

j
0 are over bins i and j, and the
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FIG. 3 (color online). Vector spectral function times 2π2. (Top
panel) ALEPH data from 2013 [1]. (Bottom panel) Monte Carlo
sample with 2013 covariance matrix.
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FIG. 4 (color online). ComparisonofALEPHandOPALdata for
the spectral functions. (Top panel) I ¼ 1 vector channel. (Bottom
panel) I ¼ 1 continuum (pion-pole subtracted) axial channel.
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sum over w is over ŵ0 and ŵ2, or over ŵ0, ŵ2 and ŵ3.
5 The

motivation for this choice is that the cross-correlations
between two moments arise mainly because the weight
functions used in multiple-moment fits appear to be close
tobeing linearlydependent inpractice (even though, as a set of
polynomials, of course they are not). This near-linear depend-
ence ispossiblycausedby the relatively largeerrorson thedata
for values of s towardm2

τ , because it is primarily in this region
that the weights ŵ0, ŵ2 and ŵ3 differ from each other.
An important observation is that we can freely choose

our fit quality Q2, as long as errors are propagated taking
the full data correlation matrix into account. In our case, we
choose to estimate fit errors for fits using Eq. (4.1) by
propagating the data covariance matrix through a small
fluctuation analysis; for details on how this is done, we
refer to the Appendix of Ref. [12]. We note that the fit
quality Q2 does not follow a standard χ2 distribution, so
that no absolute meaning can be attached to the minimum
value obtained in a fit of this type.
The theoretical moments IðwÞth ðs0; ~pÞ are nonlinear func-

tions of (some of) the fit parameters ~p, and it is thus not
obvious what the probability distribution of the model
parameters looks like. As in Ref. [13], we will therefore
also explore the posterior probability distribution of the
model parameters, assuming that the input data follow a
multivariate Gaussian distribution. In order to map out this
probability distribution, we use the same Markov-chain
Monte Carlo code HROTHGAR [22] as was used in Ref. [13],
to which we refer for more details. The distribution
generated by HROTHGAR is proportional to exp½−Q2ð~pÞ=2�
on the space of parameters, given the data.

V. FITS

In this sectionwe present our fits, leaving the discussion of
αs andotherparametersobtained from these fits toSec.VI.We
first present fits to moments constructed from the V spectral
function only, followed by fits using both theV andA spectral

moments. We have considered χ2 fits to Iðŵ0Þ
ex and combined

fits using fit qualities of the form (4.1) to Iðŵ0Þ
ex , Iðŵ2Þ

ex and Iðŵ3Þ
exp .

Belowwewill showonly theχ2 fits to Iðŵ0Þ
ex and theQ2 fits toall

three moments. The results fromQ2 fits to the two moments

Iðŵ0Þ
ex and Iðŵ2Þ

ex are completely consistent with these, and we
therefore omit them below in the interest of brevity.
As reviewed above, and discussed in much more detail in

Refs. [12,13], the necessity to fit not onlyOPE parameters, but
also DV parameters, makes it impossible to fit spectral
moments for the sum of the V and A spectral functions.
AlreadyforIðŵ0Þ

ex thiswouldentailanine-parameter fit, andwith
the existing data such fits turn out to be unstable. Reference [1]
did perform fits to moments of the V þ A spectral function at

the price of neglecting duality violations and contributions
from D > 8 terms in the OPE; we will compare our fits with
those of Ref. [1] in detail in Sec. VII below.
FromFig. 4,we see that the only “feature” in theA channel

is the peak corresponding to the a1 meson. In contrast, theV
channel data indicate the existence of more resonancelike
features than just the ρ meson peak around s ¼ 0.6 GeV2,
even though the resolution is not good enough to resolve
multiple resonances beyond the ρ. If we wish to avoid
making the assumption that already the lowest peak in each
channel is in theasymptotic regime inwhich the ansatz (2.10)
is valid, we should limit ourselves to fits to the V channel
only. However, we will present also fits to the combined V
and A channels below, and see that the results are consistent
with those from fits to only the V channel.
In all cases, we find it necessary to include the moment

ŵ0 in our fits in order to determine both αsðm2
τÞ and the DV

parameters. While one might consider fits to the spectral
function itself, such fits are found to be insufficiently
sensitive to the parameter αsðm2

τÞ, and hence have not been
pursued.6 Fits involving only pinched moments such as ŵ2

5If only one weight is included in the sum, Q2 reverts to the
standard χ2.

6It is important to distinguish fits to the spectral function itself
from fits to the moments of the spectral function; they are quite
different. Even in the case of the ŵ0 moment, the integral Iðŵ0Þ

V;exðs0Þ
contains all the data from threshold to s0 and always includes, in
particular, the ρ peak. On the other hand, a fit of the DV ansatz
(2.10) to the vector spectrum would probably only include data
for s0 between smin and m2

τ , and, since one needs to choose
smin ≫ m2

ρ, the ρ peak is clearly excluded. The change in

Iðŵ0Þ
V=A;exðs0Þ as s0 is increased from the upper edge of bin k to
the upper edge of bin kþ 1 is, of course, equal to the average
value of the relevant spectral function, ρV=A, in bin kþ 1. As
such, in fits which employ all possible s0 ≥ smin, the fact that the
s0 dependence of I

ðŵ0Þ
V=A;exðs0Þ is one of the key elements entering

the fit means that spectral function values in the interval smin ≤
s ≤ m2

τ are part of the input, but clearly not the only input.
Let us be even more specific. First, as already noted, even for
single-weight ŵ0 fits, the integral of the experimental spectral
function over the region from threshold to smin enters the ŵ0

moment for all s0. While this is a region in which the OPE and the
DVansatz are not valid, this additional input turns out to be crucial;
fits for both αsðm2

τ Þ and the DV parameters are not possible
without including it. Second, as seen in our previous analysis
employing the OPAL data, fit results are not changed if, rather than
using integrated data for all available s0 > smin, one instead
employs a winnowed set thereof in the analysis. For such a
winnowed set, it is only the sums of the experimental spectral
function values over the bins lying between adjacent winnowed s0,
and not the full set of spectral function values in all bins in those
intervals, that determine the s0 variation entering the fit. Finally, all
of the multiweight fits we employ involve weights, wðx ¼ s=s0Þ,
which are themselves s0 dependent. This means that the s0
dependence of the DV part of the corresponding theory moments
results not just from the values of ρDVðsÞ in the interval s0 ≤ s ≤
m2

τ (where experimental constraints exist), but also involve s0- and
wðxÞ-dependent weighted integrals of the DV ansatz form in the
interval from m2

τ to ∞. It would thus be incorrect to characterize
the moment-based fit analysis we employ as in any way represent-
ing simply a fit to the experimental spectral functions.
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and ŵ3, on the other hand, are insufficiently sensitive to the
DV parameters. All our fits will thus include the spectral
moments Iðŵ0Þ

ex ðs0Þ, either in the V channel alone or in the
combined V and A channels. In the latter case, there is a
separate set of DV parameters for each of these channels,
but the fit parameter αsðm2

τÞ is, of course, common to both.7

A. Fits to vector channel data

We begin with fits to the single moment Iðŵ0Þ
ex ðs0Þ, as a

function of smin,with smin defined to be theminimumvalueof
s0 included in the fit. Since these are χ2 fits, onemay estimate
thep-values for these fits; they are shown in the third column
ofTable I.Wenote that thep-values are not large, but they are
not small enough to exclude the validity of our fit function
based on the ALEPH data. Judged by p-value, the fits with
smin ¼ 1.55 and 1.575 GeV2 are the best fits, and we thus
take the average value of the central values for the fit
parameters from these two fits as our best value, with a

statistical error that is the larger of the two (noting that these
are essentially equal in size). For the strong coupling, we find

αsðm2
τÞ ¼ 0.296ð11Þ ðFOPTÞ;

¼ 0.310ð14Þ ðCIPTÞ: ð5:1Þ

The difference between the FOPT and CIPT results reflects
the well-known fact that the two prescriptions show no sign
of converging to one another as the truncation order is
increased [14,15]. We observe that the p-value starts to
decrease again from smin ¼ 1.6 GeV2, indicating that the
data become too sparse for an optimal fit.We investigated the
sensitivity of these fits to omitting the data in up to four bins
with the largest values of s, and found no significant
difference. This is no surprise, given the errors shown in
Fig. 5. For illustration, we show the parameter correlation
matrix for the FOPT fit with smin ¼ 1.55 GeV2 in Table II.
In Fig. 5 we show the results of CIPT and FOPT fits to

Iðŵ0Þ
ex ðs0Þ for smin ¼ 1.55 GeV2. The left panel shows the
results of the fits for the moment, the right-hand panel the
OPEþ DV versions of the spectral functions resulting from
these fits.

TABLE I. V channel fits to Iðŵ0Þ
ex ðs0Þ from s0 ¼ smin to s0 ¼ m2

τ . FOPT results are shown above the double line, CIPT below; noD > 0
OPE terms included in the fit. γV and βV in units of GeV−2.

smin (GeV2) χ2=dof p-value (%) αs δV γV αV βV

1.425 33.0=21 5 0.312(11) 3.36(36) 0.66(22) −0.33ð61Þ 3.27(33)
1.475 29.5=19 6 0.304(11) 3.32(41) 0.70(25) −1.21ð73Þ 3.72(39)
1.500 29.5=18 4 0.304(11) 3.32(41) 0.70(25) −1.19ð87Þ 3.71(45)
1.525 29.0=17 3 0.302(11) 3.37(43) 0.68(26) −1.49ð94Þ 3.86(48)
1.550 24.5=16 8 0.295(10) 3.50(50) 0.62(29) −2.43ð94Þ 4.32(48)
1.575 23.5=15 8 0.298(11) 3.50(47) 0.62(28) −2.1ð1.0Þ 4.15(53)
1.600 23.4=14 5 0.297(12) 3.50(48) 0.62(28) −2.1ð1.1Þ 4.16(56)
1.625 23.4=13 4 0.298(13) 3.47(50) 0.63(28) −2.0ð1.2Þ 4.12(62)
1.675 23.1=11 2 0.301(15) 3.35(60) 0.68(31) −1.7ð1.4Þ 3.96(70)

1.425 33.2=21 4 0.331(15) 3.20(34) 0.74(21) −0.30ð61Þ 3.24(33)
1.475 29.5=19 6 0.320(14) 3.16(40) 0.78(24) −1.20ð73Þ 3.70(39)
1.500 29.5=18 4 0.320(15) 3.16(40) 0.78(24) −1.19ð87Þ 3.69(45)
1.525 28.9=17 4 0.317(14) 3.22(42) 0.75(25) −1.51ð93Þ 3.85(48)
1.550 24.3=16 8 0.308(13) 3.36(49) 0.69(28) −2.48ð93Þ 4.33(48)
1.575 23.3=15 8 0.311(14) 3.35(46) 0.69(27) −2.2ð1.0Þ 4.17(52)
1.600 23.3=14 6 0.311(15) 3.36(47) 0.69(27) −2.2ð1.1Þ 4.19(56)
1.625 23.2=13 4 0.312(16) 3.33(49) 0.70(28) −2.1ð1.2Þ 4.15(62)
1.675 23.0=11 2 0.314(19) 3.23(58) 0.74(30) −1.8ð1.5Þ 4.02(74)

TABLE II. Parameter correlation matrix for the V channel ŵ0

FOPT fit with smin ¼ 1.55 GeV2 shown in Table I.

αs δV γV αV βV

αs 1 0.600 −0.606 0.689 −0.653
δV 0.600 1 −0.994 0.310 −0.297
γV −0.606 −0.994 1 −0.330 0.315
αV 0.689 0.310 −0.330 1 −0.996
βV −0.653 −0.297 0.315 −0.996 1

7The D > 2 OPE coefficients are also generally different
between the V and A channels [7]. In the case of C4 (which,
due to the absence of terms linear in x, does not enter for the
weights we employ, in the approximation of dropping contribu-
tions higher-than-leading order in αs) the full gluon condensate
and leading-order quark condensate contributions are the same
for the V and A channels. For polynomial weights with a term
linear in x, D ¼ 4 contributions would be present, and one could
impose the resulting near equality of C4 in the V and A channels.
This was done in the version of the analysis performed by OPAL
but not in the analyses of the ALEPH Collaboration, including
Ref. [1]. The fact that the fitted value of the gluon condensate
obtained from independent V and A channel fits in Ref. [1] is not
close to agreeing within errors is, in fact, a clear sign of the
unphysical nature of these fits, see Sec. VII below.
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As in Ref. [13], we studied the posterior probability
distribution, using the same Markov-chain Monte Carlo
code, HROTHGAR [22]. We remind the reader that it is not
obvious what this distribution looks like, even if we assume
that the data errors follow a multivariate Gaussian distri-
bution. For the fits of Table I, this code generates points in
the five-dimensional parameter space, and computes the χ2

value associated with each of these points. These points are
distributed as exp½−χ2ð~pÞ�, with ~p the parameter vector,
and χ2 evaluated on the ALEPH data (including the full
covariance matrix) and the values of the parameters at these
points.
In Fig. 6 we show χ2 as a function of αsðm2

τÞ, choosing
the FOPT fit with smin ¼ 1.55 GeV2. Since for each αsðm2

τÞ
points with many different values for the other four
parameters are generated stochastically, the distribution
appears as the cloud shown in the figure. This distribution
shows a unique minimum for the value of χ2, at approx-
imately αsðm2

τÞ ¼ 0.295, consistent with Table I. The width
of the distribution is also roughly consistent with the error
of �0.010, but we see that the distribution of points is not
entirely symmetric around the minimum. There is no
alternative (local) minimum, as was the case with the
OPAL data [13].
We also find the parameters δV and γV to be much better

constrained than was the case for the corresponding fits to
the OPAL data in Ref. [13]. The distributions in the δV −
αsðm2

τÞ and δV − γV planes are shown in the left and right
panels of Fig. 7.8 Since for all other fits presented in the rest
of this article the conclusions about the posterior proba-
bility distribution found with HROTHGAR are similar, we
will refrain from showing the analogues of Figs. 6 and 7 for
those fits.

Next, we consider simultaneous fits to the moments

Iðŵ0Þ
ex ðs0Þ, Iðŵ2Þ

ex ðs0Þ and Iðŵ0Þ
ex ðs3Þ; results for the same

values of smin as before are given in Table III. These fits
are performed by minimizing Q2 as defined in Eq. (4.1),
with correlations between different moments omitted.
However, the full correlation matrix, including correla-
tions between different moments, has been taken into
account in the parameter fit error estimates shown in the
table. These errors were determined by linear propagation
of the full data covariance matrix; for a detailed explan-
ation of the method, we refer to the Appendix
of Ref. [12].
Judging by the values of Q2=dof,9 again the two fits

for smin ¼ 1.55 and 1.575 GeV2 are the optimal ones.
Averaging parameter values between these two fits, we
find

1.0 1.5 2.0 2.5 3.0
0.026

0.028

0.030

0.032

0.034

0.036

0.038

0.040

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

s0 GeV2s0 GeV2

FIG. 5 (color online). (Left panel) Comparison of Iðŵ0Þ
ex ðs0Þ and Iðŵ0Þ

th ðs0Þ for the smin ¼ 1.55 GeV2 V channel fits of Table I. (Right
panel) Comparison of the theoretical spectral function resulting from this fit with the experimental results. CIPT fits are shown in red
(dashed lines) and FOPT in blue (solid lines). The (much flatter) black curves in the left panel represent the OPE parts of the fits, i.e., the
fit results with the DV parts removed. The vertical dashed line indicates the location of smin.

FIG. 6. χ2 versus αsðm2
τ Þ, FOPT, smin ¼ 1.55 GeV2, 1250000

points.

8Note that the vertical axis covers the interval δV ∈ ½2; 5�, to be
compared with the significantly larger interval δV ∈ ½−2; 5� in
Fig. 2 of Ref. [13].

9Which, given the fact that Q2 is not equal to χ2 for these fits,
cannot easily be translated into p-values.
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αsðm2
τÞ ¼ 0.296ð10Þ ðFOPTÞ;

¼ 0.310ð14Þ ðCIPTÞ; ð5:2Þ

in excellent agreement with Eq. (5.1). We have also
considered fits involving only the two moments Iðŵ0Þ

ex ðs0Þ
and Iðŵ2Þ

ex ðs0Þ, and find results very similar to those
contained in Tables I and III. In Fig. 8 we show the
quality of the fits of Table III for smin ¼ 1.55 GeV2.
We end this subsection with several comments. First,

we see that pinching indeed serves to suppress the role
of DV contributions. The upper right panel in Fig. 8
shows the singly pinched ŵ2 case and the lower left
panel shows the doubly pinched ŵ3 case. There is also a
significant difference between the colored and black

curves in all panels, though with the onset of this
difference shifting to lower s0 as the degree of pinching
is increased. The existence of these differences implies
that, with the errors on the ALEPH data, the presence of
duality violations is evident for all three moments. This,
in turn, implies that omitting duality violations from the
theory side of the corresponding FESRs has the poten-
tial to produce a significant additional systematic error
on αsðm2

τÞ (and the higher-D OPE coefficients) that
cannot be estimated if only fits without DV parameters
are attempted. We will return to this point in Sec. VII
below. Second, we note that the spectral function itself
below s ¼ smin is not very well described by the curves
obtained from the fits. While the form of Eq. (2.10)
constitutes a reasonable assumption for asymptotically

FIG. 7 (color online). Two-dimensional contour plots showing δV versus αsðm2
τ Þ (left panel) and δV versus γV (right panel) for the V

channel ŵ0 FOPT, smin ¼ 1.55 GeV2 fit. Blue (darker) areas and green (lighter) areas contain 68% and 95%, respectively, of the
distribution. γV in units of GeV−2.

TABLE III. V channel fits to Iðŵ0Þ
ex ðs0Þ, Iðŵ2Þ

ex ðs0Þ and Iðŵ0Þ
ex ðs3Þ from s0 ¼ smin to s0 ¼ m2

τ , FOPT results are shown above the double
line, CIPT below; D ¼ 6; 8 OPE terms included in the fit. γV and βV in units of GeV−2, C6V in units of GeV6 and C8V in units of GeV8.

smin (GeV2) Q2=dof αs δV γV αV βV 102C6V 102C8V

1.425 106.0=71 ¼ 1.49 0.305(10) 3.02(38) 0.87(24) −0.68ð56Þ 3.43(31) −0.59ð17Þ 0.94(29)
1.475 93.3=65 ¼ 1.43 0.302(10) 3.07(44) 0.85(27) −1.41ð68Þ 3.81(36) −0.71ð16Þ 1.19(28)
1.500 93.2=62 ¼ 1.50 0.302(10) 3.08(45) 0.85(27) −1.40ð77Þ 3.80(40) −0.71ð18Þ 1.19(30)
1.525 85.6=59 ¼ 1.45 0.298(10) 3.21(49) 0.78(29) −1.96ð78Þ 4.08(41) −0.79ð16Þ 1.36(27)
1.550 76.3=56 ¼ 1.36 0.295(10) 3.30(52) 0.74(30) −2.48ð81Þ 4.33(41) −0.86ð14Þ 1.50(24)
1.575 74.5=53 ¼ 1.41 0.297(10) 3.29(51) 0.74(29) −2.25ð87Þ 4.22(44) −0.83ð16Þ 1.43(27)
1.600 74.2=50 ¼ 1.48 0.297(11) 3.31(51) 0.73(30) −2.27ð92Þ 4.23(47) −0.83ð16Þ 1.44(29)
1.625 73.8=47 ¼ 1.57 0.298(11) 3.28(54) 0.74(31) −2.16ð99Þ 4.18(50) −0.81ð18Þ 1.40(32)
1.675 72.0=41 ¼ 1.76 0.299(12) 3.28(63) 0.74(34) −2.1ð1.1Þ 4.13(57) −0.80ð21Þ 1.37(39)

1.425 98.6=71 ¼ 1.39 0.328(16) 3.17(39) 0.77(25) −0.43ð61Þ 3.30(32) −0.60ð19Þ 0.83(35)
1.475 89.5=65 ¼ 1.38 0.319(14) 3.11(44) 0.81(27) −1.24ð71Þ 3.72(37) −0.76ð16Þ 1.18(31)
1.500 89.4=62 ¼ 1.44 0.319(15) 3.11(44) 0.81(27) −1.20ð81Þ 3.70(42) −0.76ð18Þ 1.16(34)
1.525 82.1=59 ¼ 1.39 0.314(14) 3.22(48) 0.77(28) −1.81ð80Þ 4.00(42) −0.85ð15Þ 1.37(28)
1.550 73.7=56 ¼ 1.32 0.309(13) 3.28(51) 0.74(30) −2.39ð82Þ 4.28(42) −0.93ð13Þ 1.53(25)
1.575 71.8=53 ¼ 1.35 0.311(14) 3.28(50) 0.74(29) −2.12ð89Þ 4.15(45) −0.89ð15Þ 1.45(28)
1.600 71.7=50 ¼ 1.43 0.311(14) 3.28(51) 0.74(29) −2.16ð94Þ 4.17(48) −0.90ð15Þ 1.46(29)
1.625 71.5=47 ¼ 1.52 0.312(15) 3.24(53) 0.75(30) −2.0ð1.0Þ 4.11(51) −0.88ð17Þ 1.42(34)
1.675 69.8=41 ¼ 1.70 0.313(16) 3.22(63) 0.76(33) −1.9ð1.2Þ 4.04(59) −0.86ð20Þ 1.38(42)
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large s, we do not know a priori what a reasonable
value of smin should be. It is clear, however, that our
ansatz works reasonably well for s≳ 1.5 GeV2, but that
the asymptotic regime definitely does not include the
region around the ρ peak.

B. Combined fits to vector and axial channel data

We now consider fits analogous to those of the preceding
subsection, involving simultaneous fitting of the V and A
spectral moments as a function of smin. The fit parameter
αsðm2

τÞ is common to the two channels, while the D > 0
OPE and DV parameters are distinct for each. Fits to

Iðŵ0Þ
ex;Vðs0Þ and Iðŵ0Þ

ex;Aðs0Þ are shown in Table IV; we displayed
fewer values of smin for the sake of brevity.
Fits with smin ¼ 1.55 and 1.575 GeV2 have the highest

p-values, as before. Averaging the parameter values for
these fits, we find

αsðm2
τÞ ¼ 0.299ð12Þ ðFOPTÞ;

¼ 0.313ð15Þ ðCIPTÞ; ð5:3Þ

slightly higher values than those of Eqs. (5.1) and (5.2),
but consistent within errors. The errors are χ2 errors,
since all correlations were taken into account in the fit;
they are slightly larger than those found in the V-
channel fits.

For smin ¼ 1.55 GeV2 we show the quality of the fits
in the left panels of Fig. 9 and the V and A spectral-
function comparisons obtained using parameter values
from the fit in the corresponding right-hand panels. We
note that the fit curves in the axial case are essentially
determined by the shoulder of the a1 resonance, in
contrast to what happens in the vector case, where the
ρ peak is well away from the region relevant for the
shape of the fit curves.
Table V shows the results of the combined V and A

channel fits to the three moments Iðŵ0Þ
ex ðs0Þ, Iðŵ2Þ

ex ðs0Þ and

Iðŵ0Þ
ex ðs3Þ. Judging by the values of Q2=degrees of freedom
(dof), the best fits are again those with smin ¼ 1.55 and
1.575 GeV2, leading to

αsðm2
τÞ ¼ 0.293ð9Þ ðFOPTÞ;

¼ 0.313ð13Þ ðCIPTÞ: ð5:4Þ

These values are in good agreement with those of the other
fits reported above. As before, fits to just the pair of

moments Iðŵ0Þ
ex ðs0Þ and Iðŵ2Þ

ex ðs0Þ do not lead to any
surprises. We show the quality of the fits of Table V for

the moments Iðŵ0Þ
ex ðs0Þ and the comparison of the resulting

spectral functions to the experimental ones for both
channels in Fig. 10. The fits for the other two moments
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FIG. 8 (color online). (Upper left panel) Comparison of Iðŵ0Þ
ex ðs0Þ and Iðŵ0Þ

th ðs0Þ for the smin ¼ 1.55 GeV2 V channel fits of Table III.
(Lower left and upper right panels) Analogous comparisons for Iðŵ2Þðs0Þ (upper right panel) and Iðŵ3Þðs0Þ (lower left panel). CIPT fits are
shown in red (dashed) lines and FOPT in blue (solid) lines. (Lower right panel) Comparison of the theoretical spectral function resulting
from this fit with the experimental results. The black curves (which are much flatter for the ŵ0 case) represent the OPE parts of the fits.
The vertical dashed line indicates the location of smin.
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FIG. 9 (color online). (Left panels) Comparison of Iðŵ0Þ
ex ðs0Þ and Iðŵ0Þ

th ðs0Þ for the smin ¼ 1.55 GeV2 combined V and A channel fits of
Table IV (V top, A bottom). (Right panels) Comparison of the theoretical spectral function resulting from this fit with the experimental
results (V top, A bottom). CIPT fits are shown in red (dashed) lines and FOPT in blue (solid) lines. The (much flatter) black curves on the
left represent the OPE parts of the fits. The vertical dashed line indicates the location of smin.

TABLE IV. Combined V and A channel fits to Iðŵ0Þ
ex ðs0Þ from s0 ¼ smin to s0 ¼ m2

τ . FOPT results are shown above the double line,
CIPT below; no D > 0 OPE terms are included in the fit. γV;A and βV;A in units of GeV−2.

δV γV αV βV

smin (GeV2) χ2=dof p-value (%) αs δA γA αA βA

1.500 49.8=37 8 0.310(14) 3.45(40) 0.62(24) −1.0ð1.0Þ 3.60(53)
1.85(38) 1.38(20) 4.5(1.2) 2.46(59)

1.525 48.6=35 6 0.309(15) 3.53(42) 0.59(25) −1.2ð1.2Þ 3.71(60)
1.99(40) 1.31(20) 4.4(1.2) 2.49(62)

1.550 40.0=33 19 0.297(11) 3.57(48) 0.58(28) −2.33ð97Þ 4.27(50)
1.56(49) 1.44(22) 5.43(89) 1.99(46)

1.575 38.7=31 16 0.300(12) 3.57(45) 0.58(26) −1.9ð1.1Þ 4.08(55)
1.67(51) 1.41(23) 5.22(94) 2.10(48)

1.600 37.2=298 14 0.300(12) 3.56(46) 0.59(27) −2.0ð1.2Þ 4.10(59)
1.41(57) 1.52(25) 5.4(1.0) 2.01(52)

1.625 35.4=27 13 0.300(13) 3.50(48) 0.62(27) −1.9ð1.3Þ 4.07(64)
0.90(72) 1.73(29) 5.8(1.2) 1.82(60)

1.500 49.7=37 8 0.327(18) 3.29(39) 0.70(24) −1.0ð1.0Þ 3.59(53)
1.92(39) 1.35(20) 4.5(1.1) 2.50(60)

1.525 48.5=35 6 0.326(19) 3.37(40) 0.66(24) −1.2ð1.2Þ 3.70(60)
2.06(41) 1.28(21) 4.4(1.2) 2.54(62)

1.550 39.7=33 20 0.311(13) 3.43(47) 0.65(27) −2.38ð96Þ 4.28(49)
1.61(49) 1.43(22) 5.36(87) 2.04(45)

1.575 38.4=31 17 0.315(15) 3.42(44) 0.65(26) −2.0ð1.1Þ 4.10(56)
1.72(52) 1.39(24) 5.15(92) 2.14(48)

1.600 36.9=29 15 0.314(15) 3.41(45) 0.66(26) −2.1ð1.2Þ 4.13(59)
1.46(58) 1.50(25) 5.33(98) 2.06(51)

1.625 35.1=27 14 0.314(16) 3.36(48) 0.68(27) −2.0ð1.3Þ 4.11(64)
0.96(72) 1.71(29) 5.7(1.1) 1.87(58)
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look very similar to those in Fig. 8 for the V channel, and
show a similar quality in the A channel.

VI. TESTS AND RESULTS

There are a number of consistency checks that can be
applied once values for αsðm2

τÞ as well as the D > 0 OPE
and DV parameters have been obtained from a fit. We will
present some of these in Sec. VI A. Then, in Sec. VI B, we
will present our final number for αsðm2

τÞ, following this in
Sec. VI C by a determination of the nonperturbative
contribution to RVþA;ud and a comparison of the D ¼ 6
OPE coefficients with the results of estimates based on the
vacuum saturation approximation (VSA). In Sec. VI D we
will compare the present results with those from our fits to
the OPAL data.

A. Tests

We consider first the comparison of the experimental
value of

Iðŵ3Þ
ex;Vðs0Þ þ Iðŵ3Þ

ex;Aðs0Þ ¼
m2

τ

12π2jVudj2SEW
RVþA;udðs0Þ ð6:1Þ

with the function obtained from the fit. In Fig. 11 we show
this comparison, using the parameter values for smin ¼
1.55 GeV2 from Table V. The fitted curves are in good
agreement everywhere above s0≈1.3GeV2 (s0≈1.5GeV2)
for the FOPT (CIPT) fits.10 We include this test because (in
rescaled form) it was originally advocated as an important
confirmation of the analysis of Ref. [3]. One can see that our
fits satisfy this test at least as well (see e.g. Fig. 73 of
Ref. [3]). In other words, this test is not able to discriminate
between the results of our analysis and those Refs. [1,3,4].
Formore discussion on the comparison betweenour analysis
and that of Refs. [1,3,4] we refer to Sec. VII.
As in Ref. [12], we may also consider the first and

second Weinberg sum rules (WSRs) [23], as well as the
Das-Guralnik-Mathur-Low-Young (DGMLY) sum rule for
the pion electromagnetic mass splitting [24]. These sum
rules can be written as

TABLE V. Combined V and A channel fits to Iðŵ0Þ
ex ðs0Þ, Iðŵ2Þ

ex ðs0Þ and Iðŵ3Þ
ex ðs0Þ from s0 ¼ smin to s0 ¼ m2

τ . FOPT results are shown
above the double line, CIPT below;D ¼ 6; 8 OPE terms included in the fit. γV;A and βV;A in units of GeV−2, C6V;A in units of GeV6 and
C8V;A in units of GeV8.

smin (GeV2) Q2=dof αs δV;A γV;A αV;A βV;A 102C6V;A 102C8V;A

1.475 182=131 ¼ 1.39 0.297(7) 2.90(42) 0.95(26) −1.61ð65Þ 3.91(35) −0.78ð13Þ 1.31(23)
2.26(35) 1.13(18) 4.92(58) 2.25(30) −0.08ð35Þ 1.12(96)

1.500 160=125 ¼ 1.28 0.297(8) 2.92(43) 0.94(26) −1.62ð73Þ 3.91(39) −0.78ð14Þ 1.31(25)
1.90(44) 1.29(21) 5.26(69) 2.08(36) −0.26ð44Þ 1.8(1.4)

1.525 149=119 ¼ 1.25 0.294(8) 3.08(48) 0.86(28) −2.16ð75Þ 4.18(40) −0.85ð13Þ 1.46(23)
1.86(48) 1.30(22) 5.38(72) 2.02(37) −0.38ð49Þ 2.1(1.6)

1.550 126=113 ¼ 1.11 0.292(9) 3.19(51) 0.80(30) −2.65ð79Þ 4.42(41) −0.90ð13Þ 1.57(22)
1.53(56) 1.42(24) 5.73(84) 1.84(43) −0.63ð61Þ 3.0(2.2)

1.575 124=107 ¼ 1.16 0.293(9) 3.18(51) 0.81(29) −2.47ð84Þ 4.33(43) −0.88ð14Þ 1.52(24)
1.57(61) 1.41(26) 5.67(86) 1.87(44) −0.57ð61Þ 2.8(2.2)

1.600 116=101 ¼ 1.15 0.293(9) 3.20(52) 0.80(30) −2.51ð89Þ 4.35(46) −0.89ð14Þ 1.53(25)
1.14(74) 1.59(29) 6.0(1.0) 1.72(53) −0.73ð72Þ 3.6(2.7)

1.625 112=95 ¼ 1.18 0.294(10) 3.20(55) 0.79(31) −2.43ð95Þ 4.31(48) −0.87ð15Þ 1.50(28)
0.85(92) 1.71(34) 6.2(1.2) 1.61(63) −0.80ð80Þ 4.0(3.2)

1.475 159=131 ¼ 1.21 0.338(13) 3.45(32) 0.61(20) −0.63ð67Þ 3.42(35) −0.58ð16Þ 0.83(31)
2.23(33) 1.25(21) 3.45(81) 3.02(42) 0.59(25) −0.64ð58Þ

1.500 146=125 ¼ 1.17 0.328(15) 3.26(39) 0.72(24) −0.92ð79Þ 3.56(41) −0.67ð18Þ 1.00(35)
1.96(41) 1.34(22) 4.41(89) 2.53(46) 0.25(40) 0.3(1.0)

1.525 136=119 ¼ 1.14 0.320(13) 3.35(44) 0.69(26) −1.59ð79Þ 3.90(41) −0.80ð15Þ 1.26(29)
1.93(46) 1.32(23) 4.76(83) 2.35(43) 0.05(43) 0.78(12)

1.550 118=113 ¼ 1.04 0.312(13) 3.35(49) 0.70(29) −2.28ð81Þ 4.23(42) −0.90ð13Þ 1.48(25)
1.59(55) 1.44(25) 5.37(89) 2.03(46) −0.33ð56Þ 2.0(1.8)

1.575 115=107 ¼ 1.07 0.315(13) 3.35(48) 0.70(28) −1.98ð88Þ 4.09(45) −0.86ð15Þ 1.39(29)
1.65(59) 1.42(27) 5.23(92) 2.11(47) −0.22ð55Þ 1.6(1.7)

1.600 108=101 ¼ 1.07 0.314(14) 3.33(49) 0.71(29) −2.04ð93Þ 4.12(47) −0.87ð15Þ 1.41(30)
1.23(70) 1.60(30) 5.6(1.1) 1.95(55) −0.37ð64Þ 2.2(2.2)

1.625 105=95 ¼ 1.10 0.315(15) 3.28(53) 0.73(30) −1.9ð1.0Þ 4.06(51) −0.85ð17Þ 1.37(34)
0.96(85) 1.71(35) 5.7(1.2) 1.87(63) −0.42ð71Þ 2.4(2.5)

10We recall that even though correlations between different
spectral moments are not included in the fit quality Q2, those
between bins within one spectral moment are included, making
these fits strongly correlated.
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Z
∞

0

dsðρð1þ0Þ
V ðsÞ − ρð1þ0Þ

A ðsÞÞ ¼
Z

∞

0

dsðρð1ÞV ðsÞ − ρð1ÞA ðsÞÞ − 2f2π ¼ 0;
Z

∞

0

dssðρð1þ0Þ
V ðsÞ − ρð1þ0Þ

A ðsÞÞ ¼
Z

∞

0

dssðρð1ÞV ðsÞ − ρð1ÞA ðsÞÞ − 2m2
πf2π ¼ 0;

Z
∞

0

dss log ðs=μ2Þðρð1ÞV ðsÞ − ρð1ÞA ðsÞÞ ¼ 8πf20
3α

ðm2
π� −m2

π0
Þ; ð6:2Þ

where f0 is the pion decay constant in the chiral limit, and α
is the fine-structure constant. For the second WSR we
assume that terms of order mimj, i; j ¼ u; d can be
neglected. Without this assumption, the integral is linearly
divergent, forcing us to cut it off. If we cut off the integral at
s0, there would be an extra contribution proportional to
mimjα

2
ss0 in this sum rule. This contribution is still very

small at s0 ¼ m2
τ (of order a few percent of the contribution

2m2
πf2π), allowing us to assume that we are effectively in the

chiral limit with regard to the second WSR. Even the term
2m2

πf2π, while dominating the term proportional to
mimjα

2
ss0, vanishes in the chiral limit, and itself turns

out to be numerically negligible within errors. Also the
DGMLY sum rule holds only in the chiral limit, and in that
limit the integral on the left-hand side is independent of μ
because of the second WSR.
In Fig. 12 we show the first integral in Eq. (6.2) as a

function of the “switch” point ssw below which we use the
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FIG. 11 (color online). The rescaled version of RVþA;udðs0Þ [the
rhs of Eq. (6.1)] as a function of s0. Theory curves from smin ¼
1.55 GeV2 entries of Table V; CIPT (red, dashed line) and FOPT
(blue, solid line).

1.0 1.5 2.0 2.5 3.0
0.026

0.028

0.030

0.032

0.034

0.036

0.038

0.040

s0 GeV2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

s0 GeV2

1.0 1.5 2.0 2.5 3.0

0.024

0.026

0.028

0.030

0.032

0.034

s0 GeV2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

s0 GeV2

FIG. 10 (color online). (Left panels) Comparison of Iðŵ0Þ
ex ðs0Þ and Iðŵ0Þ

th ðs0Þ for the smin ¼ 1.55 GeV2 combined V and A channel fits of
Table V (V top, A bottom). (Right panels) Comparison of the theoretical spectral function resulting from this fit with the experimental
results (V top, A bottom). CIPT fits are shown in red (dashed) lines and FOPT in blue (solid) lines. The (much flatter) black curves on the
left represent the OPE parts of the fits. The vertical dashed line indicates the location of smin.
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experimental data, and above which we use the DV ansatz
(2.10) with parameters from the CIPT fit with smin ¼
1.55 GeV2 of Table V in order to evaluate the integral.
Using parameter values from Table IVor FOPT fits leads to
almost identical figures.11 The figure on the left includes
the contribution from Eq. (2.10), while the figure on the
right omits such contributions. The latter is equivalent to
the upper right panel of Fig. 8 in the first paper in Ref. [3].
Clearly, the first WSR is very well satisfied by our fits, but
only if duality violations are taken into account. We do not
show similar figures for the second WSR and the DGMLY
sum rule, because our conclusions for these sum rules
are very similar. Just as in Ref. [12,13], these sum rules are
satisfied within errors, but only if duality violations are
taken into account. In particular, within errors, one may
assume that our representation of the spectral functions is in
the chiral limit, for the purpose of these three sum rules.

B. The strong coupling

The presence of duality violations forces us to make
several assumptions in order to extract a value for αsðm2

τÞ.
These assumptions have been checked against the data,
cf. Figs. 5 and 8–12. First, we need to assume that
Eq. (2.10) provides a satisfactory description of duality
violations for asymptotically large s. Second, we need to
assume that s≳ 1.5 GeV2 is already in the asymptotic
region. And, finally, if wewish to also use the axial data, we
need to assume that this is true both in the V and A
channels. As already discussed above, this would amount
to the assumption that the upper shoulder of the a1
resonance is already more or less in the asymptotic region.
Using only the V-channel fits, we avoid having to make this
latter assumption, and doing so we find, from the results
quoted in Eq. (5.2),

αsðm2
τÞ ¼ 0.296ð10Þð1Þð2Þ ¼ 0.296� 0.010 ðMS; nf ¼ 3; FOPTÞ;

¼ 0.310ð14Þð1Þð1Þ ¼ 0.310� 0.014 ðMS; nf ¼ 3;CIPTÞ; ð6:3Þ

where the first error is the statistical fit error already given in
Eq. (5.2), while the second represents half the difference
between the smin ¼ 1.55 and 1.575 GeV2 results of
Table III from which the average is derived. The third error
represents the change induced by varying the estimated
6-loop D ¼ 0 coefficient c51 ¼ 283 [15] by the assumed
100% uncertainty about its central value, as in Refs. [12,13].
The error from this latter uncertainty would be about
�0.004 for both FOPT and CIPT if it were estimated from
fits using only the moment with weight ŵ0; this would raise
both final errors by 0.001. We observe that the final errors

we find are of the same order of magnitude as the difference
between the FOPT and CIPT values of αsðm2

τÞ. We also
note that in all tables the value of αsðm2

τÞ is very stable as a
function of smin for all values of smin included in these
tables, except for possibly the lowest smin shown.
Equation (6.3) constitutes our final result for αsðm2

τÞ
from the revised ALEPH data. Converting these results into
values for αs at the Z mass using the standard self-
consistent combination of 4-loop running with 3-loop
matching at the flavor thresholds [39], we find

αsðm2
ZÞ ¼ 0.1155� 0.0014 ðMS; nf ¼ 5; FOPTÞ;

¼ 0.1174� 0.0019 ðMS; nf ¼ 5;CIPTÞ:
ð6:4Þ
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FIG. 12. The first Weinberg sum rule, with DVs (left panel) and without DVs (right panel), both in GeV2. Data have been used for
s < ssw, while the DVansatz (2.10) with parameter values obtained from the smin ¼ 1.55 GeV2 fit has been used for s > ssw. The figures
shown use CIPT fits.

11The contribution from OPE terms to the spectral functions
ρV;A is suppressed by an extra power of αs, and small enough to
be negligible [11,12].
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C. Nonperturbative quantities

As in Ref. [13], we would like to estimate the relative
deviation of the aggregate dimension-6 condensates C6;V=A
from the values given by the VSA. We express these
condensates in terms of the VSA-violating parameters ρ1
and ρ5 by [7]

C6;V=A ¼ 32

81
παsðm2

τÞhqqi2
�
2ρ1 − 9ρ5

11ρ1

�
; ð6:5Þ

with VSA results for C6;V=A corresponding to ρ1 ¼ ρ5 ¼ 1.
Using hqqðm2

τÞi ¼ ð−272 MeVÞ3 [40], and the averages of
the results for C6;V and C6;A from the smin ¼ 1.55 and
1.575 GeV2 fits of Table V, we find12

ρ1 ¼ −4� 4; ρ5 ¼ 5.9� 0.9 ðFOPTÞ;
ρ1 ¼ −2� 3; ρ5 ¼ 5.9� 0.8 ðCIPTÞ: ð6:6Þ

While no conclusion can be drawn about the accuracy of
the VSA for ρ1, it is clear that the VSA is a poor
approximation for ρ5. The value for ρ5 is consistent with
the one we found from OPAL data in Ref. [13].
It is conventional to characterize the size of nonpertur-

bative contributions to the ratio RVþA;ud ¼ RV;ud þ RA;ud of
the total nonstrange hadronic decay width to the electron
decay width, where RV=A;ud have been defined in Eq. (2.5),
by the parametrization

RVþA;ud ¼ NcSEWjVudj2ð1þ δP þ δNPÞ; ð6:7Þ

where δP stands for the perturbative, and δNP for the
nonperturbative contributions beyond the parton model.
If one knows δNP, the quantity δP, and hence αsðm2

τÞ, can be
determined from the experimental value of RVþA;ud. In such
an approach, the error on αsðm2

τÞ is thus directly correlated
with that on δNP. As in Ref. [13], our fits give access to the
values of δNP, as well as those of δð6Þ, δð8Þ and δDV, the

contributions to δNP from theD ¼ 6 andD ¼ 8 terms in the
OPE as well as the DV term. From the smin ¼ 1.55 GeV2

fits of Table V, we find

δð6Þ ¼ 0.058� 0.026; δð8Þ ¼ −0.036� 0.017;

δDV ¼ −0.0016� 0.0011 ðFOPTÞ;
δð6Þ ¼ 0.040� 0.024; δð8Þ ¼ −0.024� 0.015;

δDV ¼ −0.0009� 0.0009 ðCIPTÞ: ð6:8Þ

The FOPT and CIPT estimates for these quantities are
consistent with each other. There is a strong correlation
between δð6Þ and δð8Þ, about −0.97 in the FOPT case.
The values for δNP derived from these results are

δNP ¼ 0.020� 0.009 ðFOPTÞ;
δNP ¼ 0.016� 0.010 ðCIPTÞ; ð6:9Þ

which differ by 1.6 and 1.2σ, respectively, from the
values found using the OPAL data in Ref. [13]. With the
value RVþA;ud ¼ 3.475ð11Þ quoted in Ref. [1], one finds
δP ≈ 0.18, an order of magnitude larger than δNP, indicating
that RVþA;ud is a dominantly perturbative quantity.
However, as in Ref. [13], we find an error on δNP much
larger than that reported by standard analyses in the
literature, almost an order of magnitude so, for example,
when compared to Ref. [1]. The result is that the error on
αsðm2

τÞ is underestimated in the standard analysis; for
further discussion, we again refer to Sec. VII below.

D. Comparison with the fits of Ref. [13] to OPAL data

A particularly interesting check is to look for consistency
of the results from our fits to the ALEPH data with those we
obtained by fitting the OPAL data in Ref. [13]. For the
strong coupling, our results from OPAL data were

αsðm2
τÞ ¼ 0.325� 0.018 ðMS; nf ¼ 3; FOPT;OPAL;Ref½13�Þ;

¼ 0.347� 0.025 ðMS; nf ¼ 3;CIPT;OPAL;Ref½13�Þ: ð6:10Þ

The values (6.3) we find from the ALEPH data are 1.4 and
1.3σ, respectively, lower than the OPAL values, assuming
that the errors on the ALEPH and OPAL values are
independent. We also note that the fits in Ref. [13] were
not entirely unambiguous; a choice about the preferred
range for δV had to be made. The fact that the difference
between our central ALEPH- and OPAL-based values, as
well as that between our central CIPT- and FOPT-based
results, is, in each case, comparable in size to the error

obtained in any of these analyses supports the notion that
any improvement in the precision with which αsðm2

τÞ can
be determined from hadronic τ decays will require signifi-
cant improvements to the data. Of course, this assumes that
the fit ansatz employed is valid in the region of s0 larger
than about 1.5 GeV2. We will return to this point in
Sec. VII below, as well as in the Conclusion.
The coupling αsðm2

τÞ is, of course, not the only fit
parameter. One may for instance compare the values of the
OPE and DV parameters between Table III above and
Table 4 of Ref. [13] for smin ≈ 1.5 GeV2, and conclude that12We neglected the smaller errors on αs and hqqi.
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they agree between the ALEPH and OPAL fits within
(sometimes fairly large) errors. However, comparing
Table V above with Table 5 of Ref. [13], one observes
that the OPE and DV parameters for the axial channel agree
less well between the ALEPH and OPAL fits. This may be
an indication that it is safer to restrict our fits to the vector
channel. Results for αsðm2

τÞ are, nevertheless, found to be
consistent between pure-V and combined V and A fits, both
in this article and in Ref. [13].

E. Final results for the strong coupling from
ALEPH and OPAL data

To conclude this section, we present our best values for
the strong coupling at the τ mass extracted from the
ALEPH and OPAL data for hadronic τ decays, and based
on the assumptions that underlie our analysis. The FOPT
and CIPT averages, weighted according to the errors in
Eqs. (6.3) and (6.10), are

αsðm2
τÞ ¼ 0.303� 0.009 ðMS; nf ¼ 3;FOPT;ALEPHandOPALÞ;

¼ 0.319� 0.012 ðMS; nf ¼ 3;CIPT;ALEPHandOPALÞ: ð6:11Þ

These convert to the values

αsðm2
ZÞ ¼ 0.1165� 0.0012 ðMS; nf ¼ 5; FOPT;ALEPHandOPALÞ;

¼ 0.1185� 0.0015 ðMS; nf ¼ 5;CIPT;ALEPHandOPALÞ: ð6:12Þ

VII. THE ANALYSIS OF REF. [1]

We now turn to a discussion of what we have referred to
as the standard analysis, which was used in Refs. [1,3,4,8],
and is based on Ref. [9]. We begin with a brief overview of
what is done in this approach. One considers spectral
moments with the weights

wklðxÞ ¼ ð1 − xÞ2ð1þ 2xÞð1 − xÞkxl;
x ¼ s=s0; ð7:1Þ

choosing ðk;lÞ ∈ fð0; 0Þ; ð1; 0Þ; ð1; 1Þ; ð1; 2Þ; ð1; 3Þg, and
evaluating these moments at s0 ¼ m2

τ only. Ignoring
logarithms,13 terms in the OPE contribute to these weights
up to D ¼ 16. The five s0 ¼ m2

τ moment values are, of
course, insufficient to determine the eight OPE parameters
αsðm2

τÞ, hαsπ GGi, C6, C8, C10, C12, C14 and C16, so some
truncation is necessary. The standard analysis approach to
this problem is to assume the OPE coefficients CD¼2k for
D > 8 are small enough that they may all be safely
neglected in all of the FESRs under consideration, despite
numerical enhancements of their contributions via larger
coefficients in some of the higher degree weights. Duality
violations are, similarly, assumed to be small enough that
ΔðsÞ in Eq. (2.8) can be ignored as well, at least for s0 close
to m2

τ . With these assumptions, the remaining OPE param-
eters αsðm2

τÞ, hαsπ GGi, C6 and C8 are fitted using the s0 ¼
m2

τ values of the fivewkl spectral moments noted above, for
each of the channels V, A and V þ A. The central values
and errors for αsðm2

τÞ are taken from the fits (FOPT and

CIPT) to the V þ A channel, based on the VSA-motivated
expectation of significant D ¼ 6 cancellation and the hope
of similar strong DV cancellations in the V þ A sum.
However, as we have seen in Eq. (6.6), VSA is a rather poor
approximation. Furthermore, the fact that the spectral
function for the V þ A combination is flatter in the region
between 2 and 3 GeV2 than is the case for the V or A
channels separately may mislead one into believing that
DVs are already negligible at these scales for the V þ A
combination. In actual fact, however, though somewhat
reduced in the V þ A sum, DVoscillations are still evident
in the ALEPH V þ A distribution. In addition, since we
have a good representation of the individual V and A
channels, we also have a good representation of their sum.
The fact that our fits yield results for γA significantly larger
than those for γV implies that the level of reduction of DV
contributions in going from the separate V and A channels
to the V þ A sum is accidental in the window between 2
and 3 GeV2, and does not persist to higher s, where the
stronger exponential damping in the A channel would drive
the result for the V þ A sum towards that for the V
channel alone.
These assumptions should be compared with those that

have to be made in order to carry out the analysis presented
in this article (as well as in the OPAL-based analyses of
Refs. [12,13]). DVs are unambiguously present in the
spectral functions, as can be seen, for example, in the
relevant panels of Figs. 5, 8, 9 and 10. In the standard
analysis, the hope is that the double or triple pinching of the
weights in Eq. (7.1) is sufficient to allow DVs to be ignored
altogether, and indeed, for example Fig. 8, shows that
pinching significantly reduces the role of DV contributions,
especially near s0 ¼ m2

τ. However, if, as in the standard
analysis, one restricts one’s attention to s0 ¼ m2

τ , and
13Which appear in subleading terms in αs at each order in the

OPE.
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wishes to employ only weights which are at least doubly
pinched, the number of OPE parameters to be fit will
necessarily exceed the number of weights employed,
making additional assumptions, such as the truncation in
dimension of the OPE described above, unavoidable.14

With the standard-analysis choice of the set of weights
of Eq. (7.1), one finds that the OPE must be truncated at
dimension D ¼ 8 in order to leave at least one residual
degree of freedom in the fits. In our analysis, in contrast, we
choose not to ignore DVs a priori. This requires us to
model their contribution to the spectral functions [as we did
through Eq. (2.10)], and to use not just the single value
s0 ¼ m2

τ , but rather a range of s0 extending down from m2
τ .

The one assumption we do have to make is that the ansatz
(2.10) provides a sufficiently accurate description of DVs
for values of s0 between approximately 1.5 GeV2 and m2

τ .
Clearly, whatever choice is made, it needs to be tested.

For our analysis framework, we have presented detailed
tests already above. In this section we consider primarily
the standard analysis, most recently used in Ref. [1]. Our
conclusion, from what follows below, is that the assump-
tions made in this framework do not hold up to quantitive
scrutiny, and hence that the standard analysis approach
should no longer be employed in future analyses.15

The results presented in Table 4 of Ref. [1] already
indicate that there are problems with the standard analysis.
Let us consider the values obtained for the gluon con-
densate, hαsπ GGi, in the different channels, together with
the χ2 value for each fit (recall that for each of these fits
there is only one degree of freedom):

�
αs
π
GG

�
¼ ð−0.5� 0.3Þ × 10−2 GeV4; χ2 ¼ 0.43 V;

ð−3.4� 0.4Þ × 10−2 GeV4; χ2 ¼ 3.4 A;

ð−2.0� 0.3Þ × 10−2 GeV4; χ2 ¼ 1.1 V þ A:

ð7:2Þ

The χ2 values correspond to p-values of 51%, 7% and 29%,
respectively, indicating that all fits are acceptable. For these
fits to be taken as meaningful, however, their results should
satisfy known physical constraints. One such constraint is
that there is only one effective gluon condensate, whose
values should therefore come out the same in all of the V, A
and V þ A channels. This is rather far from the case for the
results quoted in Eq. (7.2), where, for example, the V and
V þ A channel fit values differ very significantly. It is,
moreover, problematic to accept the V þ A channel value

and ignore the V channel one when the p-value of the V-
channel fit is, in fact, larger than that of the V þ A channel.
There can be several reasons for the inconsistencies in

the results of Ref. [1]. One possibility is that some of the
weights (7.1) have theoretical problems already in pertur-
bation theory, as argued in Ref. [31]. Another possibility is
that the assumptions underlying the standard analysis do
not hold. Whatever the reason, the discrepant gluon
condensate values point to a serious problem with the
standard analysis framework.16

We now turn to quantitative tests of the OPE fit results
reported in Ref. [1]. We focus on the V þ A channel, where
DVs and D > 4 OPE contributions were expected to play a
reduced role, and on the CIPT D ¼ 0 treatment, since this
is the only case for which the OPE fit parameter values are
quoted in Ref. [1]. The tests consist of comparing the
weighted OPE and spectral integrals for the weights wkl
employed in the analysis of Ref. [1], not just at s0 ¼ m2

τ ,
but over an interval of s0 extending below m2

τ. If the
assumptions made aboutD > 8 OPE and DV contributions
being negligible are valid at s0 ¼ m2

τ they should also be
valid in some interval below this point. A good match
between the weighted spectral integrals and the correspond-
ing OPE integrals, evaluated using the results for the OPE
parameters quoted in Ref. [1], should thus be found over an
interval of s0. If, on the other hand, these assumptions are
not valid, then the fit parameter values will contain
contaminations from DV contributions and/or contributions
with higher D, both of which scale differently with s0 than
do the D ¼ 0, 4, 6 and 8 contributions appearing in the
truncated OPE form. Such contamination will show up as a
disagreement between the s0 dependence of the fitted OPE
representations and the experimental spectral integrals.
It is worth expanding somewhat on this latter point since

the agreement of the OPE and spectral integrals at s0 ¼ m2
τ

for the weights wkl employed in the standard analysis is
sometimes mistakenly interpreted as suggesting the validity
of the assumptions underlying the standard analysis at
s0 ¼ m2

τ . However, while the agreement is certainly a
necessary condition for the validity of these assumptions,
it is not in general a sufficient one. This caution is
particularly relevant since four parameters are being fit
using only five data points, making it relatively easy for the
effects of neglected, but in fact non-negligible, higher-D
and/or DV contributions to be absorbed, at a fixed s0, into
the values of the four fitted lower-D parameters. That this is
a realistic possibility is demonstrated by the alternate set of
OPE fit parameters obtained in the analysis of Ref. [10],
which neglected DV contributions, but not OPE

14For a detailed discussion of this point, see Ref. [12].
15We point out that the inadequacy of the standard analysis

framework was already demonstrated in Refs. [10–13], but it
appears important to reemphasize this point in view of the
continued use of this framework in the literature, in particular
in the updated analysis of Ref. [1].

16This problem already existed in earlier ALEPH analyses
[3,4], but in principle it might have been due to the problem with
the data itself. Note that OPAL enforced equality of the gluon
condensate between various channels, and were able to obtain
reasonable fits as judged by the χ2, possibly because of the larger
data errors.
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contributions with D > 8. The results of this fit, including
nonzero CD with D > 8 and an αsðm2

τÞ significantly
different from that obtained via the standard analysis of
the same data [4], produced equally good agreement
between the s0 ¼ m2

τ OPE and spectral integral results
for all the wkl employed in the standard analysis fit of
Ref. [4], conclusively demonstrating that this agreement
does not establish the validity of the standard analysis
assumptions. So long as one works at fixed s0 ¼ m2

τ , there
is no way to determine whether the results of the standard
analysis are, in fact, contaminated by neglected higher-D
OPE and/or DV effects or not. One may, however, take
advantage of the fact that different contributions to the
theory sides of the various FESRs scale differently with s0,
with integrated DV contributions oscillatory in s0 and
integratedD ¼ 2kOPE contributions scaling as 1=sk0. If the
D ¼ 0, 4, 6 and 8 parameters obtained from the fixed-s0 ¼
m2

τ standard analysis fit have, in fact, absorbed the effects of
D > 8 and/or DV contributions, the fact that the nominal
lower-D s0 scaling does not properly match that of the
higher-D and/or DV contaminations will be exposed when
one considers the same FESR, with the same standard
analysis OPE fit parameter values, at lower s0. A break-
down of the standard analysis assumptions will thus be
demonstrated by a failure of the agreement of the OPE and
spectral integrals observed at s0 ¼ m2

τ to persist over a
range of s0 below m2

τ. Such s0-dependence tests represent
important self-consistency checks for all FESR analyses.
Before carrying out these self-consistency tests on the

results of the standard analysis, it is useful to make explicit
the relative roles of the various different D contributions
entering the s0 ¼ m2

τ results for the wkl-weighted OPE
integrals employed in the V þ A CIPT fit of Ref. [1]. For
the D ¼ 0 contributions, it is important to remember that
the leading 1-loop contribution is independent of both s0
and αs. It is thus the difference of the full D ¼ 0
contribution and this leading term which determines the
αs dependence of the D ¼ 0 contributions, and which is
relevant to the determination of αsðm2

τÞ. Table VI shows the
s0 ¼ m2

τ results for (i) the αs-dependent D ¼ 0 contribu-
tions and (ii) the D ¼ 4, 6 and 8 contributions correspond-
ing to the CIPT fit results of Table 4 of Ref. [1], for each of
the wkl employed in that analysis. The sum of the D ¼ 6

and 8 contributions, which is ∼1%–2% of the αs-dependent
D ¼ 0 contribution for w00 and w10, is, in contrast,
∼10%–25% of the corresponding D ¼ 0 contributions
for the w11, w12 and w13 cases. Furthermore, for w11, the
D ¼ 4 contribution is essentially the same size as the
αs-dependent D ¼ 0 one.
It is clear from these observations that it is the w11, w12

and w13 moments which dominate the determinations of the
D ¼ 4; 6 and 8 OPE parameters in the analysis of Ref. [1].
Bearing in mind the very slow variation with s0 of the
D ¼ 0 contributions to the dimensionless OPE integrals
and the 1=sk0 scaling of the D ¼ 2k contributions, it is,
moreover, clear that the relative roles of the nonperturbative
contributions will grow significantly relative to the αs-
dependent D ¼ 0 ones as s0 is decreased. Studying the s0
dependence of the match of the OPE to the corresponding
spectral integrals for the w11, w12 and w13 spectral weights
thus provides a particularly powerful test of the reliability
of the values for the D ¼ 4; 6 and 8 parameters obtained in
the fits of Ref. [1].
The results of these tests are shown in Fig. 13. It is clear

that the s0 dependence of the experimental spectral inte-
grals and fitted OPE integrals is very different, demonstrat-
ing conclusively the unreliability of the D ¼ 4; 6 and 8 fit
parameter values obtained in Ref. [1]. Changes in the
values of the D ¼ 6 and 8 parameters, which enter the w00

FESR, would of course also force a change in the αsðm2
τÞ

required to produce a match between the s0 ¼ m2
τ w00-

weighted OPE and spectral integrals.
It is worth expanding somewhat on these observations

for the w13 case, where the source of the problem with the
fit of Ref. [1] becomes particularly obvious. Because of the
x3 factor present in w13ðxÞ, the D ¼ 2 and 4 contributions
to the OPE part are completely negligible numerically,
leaving the standard-analysis version of the w13-weighted
OPE integral entirely determined by the parameters αsðm2

τÞ
and C8;VþA. With the results and errors for these quantities
from Tables 4 and 5 of Ref. [1], one finds that, as s0 is
decreased fromm2

τ to e.g. 2 GeV2, the αs-dependentD ¼ 0
contribution decreases by 0.000001(0), while the D ¼ 8
contribution increases by 0.000086(20). This is to be
compared to the increase in the corresponding spectral
integral, which is 0.000028(8). Evidently the disagreement
between the w13-weighted OPE and spectral integral results
seen in Fig. 13 results from a problem with the fit value for
C8;VþA. Trying to fix the problem with the w13 FESR
through a change in C8;VþA alone turns out to exacerbate
the problem with the w12 FESR. Working backward, one
finds that attempting to change C4;VþA, C6;VþA and C8;VþA
so as to improve the match between the s0 dependences of
the OPE and spectral integrals for the w11, w12 and w13

FESRs without any change in αsðm2
τÞ produces changes in

the D ≥ 4 contributions to the w10 and w00 FESRs that can
only be compensated for by a decrease in αsðm2

τÞ. The
problem of the discrepancies between the s0 dependences

TABLE VI. The D ¼ 4, 6 and 8 and αs-dependent D ¼ 0
contributions to the s0 ¼ m2

τ , V þ A, wkl moments correspond-
ing to the V þ A OPE fit parameter results of Table 4 of Ref. [1].

ðk; lÞ
αs-dependent

D ¼ 0 D ¼ 4 D ¼ 6 D ¼ 8

(0,0) 0.005173 −0.000008 −0.000117 0.000033
(1,0) 0.004399 −0.000361 −0.000117 0.000082
(1,1) 0.000365 0.000350 −0.000039 −0.000049
(1,2) 0.000208 0.000002 0.000039 −0.000016
(1,3) 0.000081 0.000000 0.000000 0.000016
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of the OPE and spectral integrals in the w11, w12 and w13

FESR parts of the standard analysis can thus not be
resolved simply through shifts in C4;VþA, C6;VþA and
C6;VþA which leave the target of the analysis, namely
the output αsðm2

τÞ value, unchanged.
A natural question, given the discussion above, is

whether our approach produces a better match between
experiment and theory for the higher spectral weights. The
answer, as we will see below, is yes. Before embarking on
this investigation, however, it is important to emphasize the
nonoptimal nature of the FESRs with weights w10, w11, w12

and w13. First, all of these weights contain a term linear in
the variable x, a fact which, according to the arguments of
Ref. [31], should make standard methods of estimating the
uncertainty associated with truncating the integrated per-
turbative series for these weights much less reliable than is
the case for the weights employed in our analysis. Second,
the values of the CD with D > 8 obtained from the fits
reported in Ref. [10] were found to produce very strong
cancellations amongst higher-D OPE contributions when
employed in the higher ðk;lÞ wkl FESRs, making these
FESRs particularly sensitive to any shortcomings in the
treatment of higher-D OPE contributions, as well as a poor
choice for use in attempting to fit the values of CD with
D > 8. The strong cancellation amongst higher-D OPE
contributions for the higher-ðk;lÞ wkl moments turns out
to be also a feature of the results of our extended analysis
below, and hence not attributable to the neglect of DV

contributions in Ref. [10]. Because of these strong can-
cellations, the use of the higher-ðk;lÞ wkl should be
avoided in future analyses, and we consider them below
only for the sake of comparison with the results of the
analysis of Ref. [1]. In making this comparison, we will
focus on the CIPT resummation of perturbation theory,
with the CIPT version of the standard analysis being the
only one for which quantitative fit results are reported
in Ref. [1].
To evaluate the OPE contributions to the w10, w11, w12

and w13 FESRs requires knowledge of five new quantities,
C4;VþA, C10;VþA, C12;VþA, C14;VþA and C16;VþA, in addition
to the OPE and DV parameters already obtained in our
analysis. We estimate these using the wðsÞ ¼ ðs=s0Þk−1
versions of the FESR Eq. (2.9), neglecting, as before,
subleading contributions at each order D > 2 in the OPE.
This yields, for D ¼ 2k > 2,

ð−1Þkþ1C2k;VþA ¼ 2f2πm
2ðk−1Þ
π þ

Z
s0

0

dssk−1ρð1ÞVþAðsÞ

þ
Z

∞

s0

dssk−1ρDVVþAðsÞ

þ 1

2πi

I
jzj¼s0

dzzk−1ΠPT
VþAðzÞ; ð7:3Þ

where ΠPT is the perturbative contribution to ΠðzÞ, corre-
sponding to the D ¼ 0 term in Eq. (2.6). The choices
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FIG. 13 (color online). Comparisons of the s0 dependence of the wkl ¼ w11, w12 and w13 V þ A spectral integrals to that of the
corresponding OPE integrals evaluated employing as input the results of the CIPT fit for the OPE parameters from Table 4 of Ref. [1].
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k ¼ 2; � � � ; 8 yield C4; � � � ; C16, respectively. With αsðm2
τÞ

and the V and A channel DV parameters from the smin ¼
1.55 GeV2 combined V and A CIPT fit of Table V, we find,
for the central values,

C4;VþA ¼ 0.00268 GeV4;

C6;VþA ¼ −0.0125 GeV6;

C8;VþA ¼ 0.0349 GeV8;

C10;VþA ¼ −0.0832 GeV10;

C12;VþA ¼ 0.161 GeV12;

C14;VþA ¼ −0.191 GeV14;

C16;VþA ¼ −0.233 GeV16: ð7:4Þ

For C6;VþA and C8;VþA the agreement with the values in
Table V is excellent. With such values of the CD, D > 8
contributions are far from negligible compared to the D ¼
6 and 8 ones for the wkl spectral weights with degree higher
than three; the maximum scale,m2

τ , accessible in hadronic τ
decays is not, it turns out, high enough to ensure that the
OPE series is rapidly converging in dimension.
The theory parts IðwklÞ

th ðs0Þ of the w10, w11, w12 and w13

FESRs produced by the results of Eq. (7.4) and Table Vare
compared to the corresponding spectral integrals in Fig. 14
as a function of s0. The agreement is obviously excellent,

and far superior to that obtained from the standard analysis
of Ref. [1]. This excellent agreement, over the whole range
of s0 shown, is completely destroyed if one removes the
D > 8 contributions from the theory sides of the w10, w11,
w12 and w13 FESRs. We emphasize again that the aim here
is not a reliable determination of the OPE coefficients
C4−16, but a proof of existence of a set of values which,
combined with our values for αsðm2

τÞ and the DV param-
eters, give an excellent representation of the s0 dependence
of the moments with the weights w10, w11, w12 and w13 (in
addition, of course, to the weights included in our fits, in
particular w00 ¼ ŵ3).
The problems demonstrated above with the standard

analysis results of Ref. [1] could be a consequence of the
neglect of non-negligible DVs, the breakdown of the
assumption that D > 8 OPE contributions are negligible
for all of the wkl employed or both. In an attempt to clarify
the situation, it is useful to consider a fit in which the
potentially dangerous assumption about D > 8 OPE con-
tributions is avoided. As an example, we consider a fit to
the doubly pinched ŵ3 ¼ w00 FESR in the V þ A channel
ignoring DV contributions. Since the weight is doubly
pinched, one expects DV contributions to be significantly
suppressed, though the actual amount of suppression is not
clear a priori. Since the OPE integrals still depend on three
parameters, αsðm2

τÞ, C6;VþA and C8;VþA, it is, of course,
necessary to consider the fit over a range of s0. To be
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FIG. 14 (color online). Comparison of IðwklÞ
th ðs0Þ [cf. Eq. (2.9)] for wkl ¼ w10, w11, w12 and w13 with IðwklÞ

ex ðs0Þ for the V þ A channel
using the results of the smin ¼ 1.55 GeV2, combined V and A CIPT fit of Table Vand Eq. (7.4). (Top left panel) The w10 case. (Top right
panel) The w11 case. (Bottom left panel) The w12 case. (Bottom right panel) The w13 case.
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specific, we focus on fits employing the FOPT resumma-
tion of perturbation theory. This exercise results in appa-
rently perfectly acceptable fits, with p-values 10% and
higher for smin ≥ 1.95 GeV2. The fit quality drops dra-
matically as s0 is lowered beyond this point, with p-values
already at the 0.2% level for smin ¼ 1.90 GeV2. The highest
p-value, 57%, occurs for smin ¼ 2.2 GeV2, and corre-
sponds to

αsðm2
τÞ ¼ 0.330� 0.006;

C6;VþA ¼ 0.0070� 0.0022 GeV6;

C8;VþA ¼ −0.0088� 0.0042 GeV8: ð7:5Þ

The quality of the resulting match between the fitted
OPE and spectral integrals for smin ¼ 2.2 GeV2, shown in
the left panel of Fig. 15, is excellent. Despite this good
quality match, the results of Eq. (7.5) are incomplete, in the
sense that, in addition to the fit error induced by the
covariances of the V þ A spectral data, there is an unspeci-
fied (and hence unquantified) systematic error associated
with the neglect of DV contributions in the fit. Since the DV
contribution to the FESR (2.9) involves the weighted
integral of the DV component of the spectral function in
the interval s ≥ s0, neglecting this systematic error would
be reasonable if the V þ A spectral distribution showed no
signs of DVs in the region s > 2.2 GeV2. This is, however,
rather far from being the case, making the absence of an
estimate for the residual systematic error associated with
neglecting DV contributions problematic. One internally
consistent way to test whether DV contributions are
sufficiently small to be neglected for the ŵ3 FESR is to
demonstrate that they are already small for the singly
pinched ŵ2 FESR. Whether or not this is the case can be
investigated by comparing the ŵ2-weighted OPE and
spectral integrals, in the same s0 range, using parameters
obtained from the no-DV fit to ŵ3, Eq. (7.5). The results of
this test are shown in Fig. 15 (right panel). The agreement
between the OPE and spectral integrals is clearly not good,
indicating the presence of significant DV contributions in

the ŵ2 FESR. This, together with the rapid deterioration of
the ŵ3 no-DV fit quality for smin ≤ 1.95 GeV2, suggests
that neglecting DV contributions to the ŵ3 FESR is also
dangerous.
The hope underlying existing FESR analyses which

ignore DV effects is that the double pinching of the weight
w00 ¼ ŵ3 is sufficient to make the residual DV contribu-
tions very small. While the arguments above make this
possibility unlikely, it is still logically possible that,
although DVs cannot be ignored in the singly pinched
ŵ2 FESR, they can be ignored in the doubly pinched ŵ3

FESR. Let us therefore consider again the FOPT version of
the ŵ3 FESR in the V þ A channel, but now, rather than
ignoring DVs, taking as external input the results for the
DV parameters from the smin ¼ 1.55 GeV2 FOPT fit of
Table Vand fitting the remaining OPE parameters, αsðm2

τÞ,
C6;VþA and C8;VþA, to the ŵ3-weighted spectral integral in
the V þ A channel in the presence of this estimate of the
DV contributions. The results of this exercise, which are to
be compared with Eq. (7.5), are

αsðm2
τÞ ¼ 0.301� 0.006� 0.009;

C6;VþA ¼ −0.0127� 0.0020� 0.0066 GeV6;

C8;VþA ¼ 0.0399� 0.0040� 0.021 GeV8; ð7:6Þ

where the first error is statistical and the second is that
induced by the correlated uncertainties of the external input
DV parameters. The inclusion of the DV contributions
induces a significant decrease in the value of αsðm2

τÞ and
significant changes in the results for C6;VþA and C8;VþA
(including changes in sign for both) as compared to the no-
DV fit results of Eq. (7.5). The fit parameters are all
changed in the direction of the results of the more detailed
combined V and A fits discussed in Sec. V. This exercise
clearly demonstrates that the effects of DVs on the
parameters obtained from the V þ A ŵ3 FESR analysis
are much larger than the nominal errors obtained on those
parameters from the no-DV fit. This provides a further
indication of the necessity of modeling DV effects in
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FIG. 15 (color online). Comparison of the ŵ3 ¼ w00–weighted spectral integrals (left panel) and ŵ2-weighted spectral integrals (right
panel) with the corresponding OPE integrals evaluated using the results of the no-DV fit given in Eq. (7.5).

BOITO, et al. PHYSICAL REVIEW D 91, 034003 (2015)

034003-22



analyses attempting to extract αsðm2
τÞ from hadronic

τ-decay data.

VIII. CONCLUSION

In this article, we reanalyzed the recently revised
ALEPH data [1] for nonstrange hadronic τ decays, with
as primary goal the extraction of the strong coupling αs at
the scale mτ. The rather low value of mτ raises the question
of to what extent the determination of a perturbative
quantity like αs in such an analysis might be “contami-
nated” by nonperturbative effects. Our specific aim was to
take all known nonperturbative effects into account and
arrive at a realistic estimate of the systematic error on the
value of αs extracted using hadronic τ data. This is
important for three reasons. First, the value of αs from τ
decays, evolved to the Z mass, has long been claimed to be
one of the most precise values available. Second, because
the τ mass is so much smaller than other scales at which the
strong coupling has been determined, αsðm2

τÞ provides a
powerful test of the QCD running of the strong coupling,
with the corresponding β function known to 4-loop order.
Finally, there continues to be some tension between the
values of the nf ¼ 5 coupling αsðM2

ZÞ obtained from
different sources. Lattice determinations involving analyses
of small-size Wilson loops [41,42], cc pseudoscalar corre-
lators [43], the relevant combination of ghost and gluon
two-point functions [44, 45], andemploying theSchrödinger
functional scheme [46], for example, yield values, 0.1183(8)
[41], 0.1192(11) [42], 0.1186(5) [43], 0.1196(11) [45], and
0.1205(20) [46], compatible both amongst one another and
with the central value of the global electroweak fit result,
αsðM2

ZÞ ¼ 0.1196ð30Þ [47]. Lower values, however, have
beenobtained in a number of other analyses, e.g., 0.1174(12)
from lattice analyses of fπ=ΛQCD [48], 0.1166(12) from an
analysis of the static quark energy [49], 0.1118(17) from the
recently revised JLQCD lattice determination from current-
current two-point functions [50], and values in the range
0.1130–0.1160 from analyses of DIS data and shape observ-
ables in eþe− [51].
We have employed our analysis method previously

[12,13], using the OPAL data [8], but the revised
ALEPH data have significantly smaller errors, and thus
provide a more stringent test of our analysis method.
The fact that at such low scales nonperturbative effects are

not negligible has of course been long known, and has been
taken into account in the analysis of hadronic τ decays
through the inclusion of higher-dimension condensate terms
in the OPE. However, the experimental data are provided in
the form of spectral functions, i.e., as functions of s ¼ q2

with q denoting momentum in Minkowski space. Such
values of q2, viewed as a complex variable, are outside the
domain of validity of the OPE. While this is well known, it
can also easily be inferred from the form of the vector
spectral function in Fig. 4, which clearly shows oscillations
that cannot be represented by the OPE. These oscillations

lead unavoidably to the conclusion that violations of quark-
hadron duality are, in general, significant at the scales
accessible through experimental hadronic τ-decay data.
It follows that in order to investigate the effect of duality

violations on the extraction of αs from τ-decay data, they
need to be taken into account. Unfortunately, a model is
needed in order to parametrize the oscillations in the spectral
functions, and this modeling necessitates making some
assumptions on which to base the analysis. This is, however,
true for any such analysis: the assumption that duality
violations can be ignored in a given analysis amounts to
assuming a model as well; in terms of the ansatz (2.10) it
corresponds to taking the parameters δV;A to ∞. We have,
instead, assumed that this ansatz (with finite δ) provides a
reasonable model of the resonance features present in the
spectral functions for values of s in some region belowm2

τ in
which perturbation theory is still meaningful.17 As much as
our aim is to find the most accurate value of αsðm2

τÞ possible
given the data, an equally important goal was to test the
validity of our approach, with the increased precision of the
ALEPH data as compared to the OPAL data being particu-
larly useful in this regard. This increased precision is,
moreover, found to produce unique fit minima in the
HROTHGAR studies of the multidimensional fit parameter
space, improving the situation found for the corresponding
fits to the OPAL data, and confirming that the precision of
the ALEPH data is more than good enough to support fits
incorporating an explicit representation of DV contributions.
Despite the recent resurgence of interest in this problem,

triggered by the completion of the 5-loop calculation of the
Adler function in Ref. [14], very few investigations have
carried out a complete analysis starting from the data. In
essence, only two methods have been proposed through
which to investigate nonperturbative effects, with the first
being the method based on Refs. [7,9], which was employed
by Refs. [1,3,4,8], and the second being the method we
employed in this article, applying and extending ideas
proposed in earlier work [10,12,13,31]. In the absence of
a detailed theoretical understanding of duality violations, it is
important to test for the self-consistency of either analysis
method using the data employed in the analysis.
In Sec. VII we demonstrated that the first method, used

in Ref. [1], does not pass such tests. Indications supporting
this conclusion have been published in earlier work, but
now that the revised data are available, and in view of our
critique in Sec. VII, we conclude that this method suffers
from numerically significant systematic uncertainties not
quantifiable within the analysis framework employed in
Ref. [1], and hence must be discarded. The second method,
employed in this article, does a much better job in fully
describing the data, as we have shown in great detail in
Secs. V, VI and VII above. However, there are some signs
that also the limits of this method may be in view. Fit

17Up to the order considered [14].
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qualities are typically larger than in the case of our analysis
of the OPAL data [13], and a comparison of results based
on ALEPH and OPAL data also shows some tension, even
though errors are too large to say anything more conclusive.
While these tensions may be caused by imperfections in the
data (for instance slight discrepancies in the spectral
function data visible in Fig. 4), it is by no means excluded
that they point to shortcomings of the theory description
as well.
We briefly reviewed, in Sec. II, why we consider the DV

parametrization in Eq. (2.10) a physically sensible one.
However, it remains relevant to test this form more quanti-
tatively using experimental data. In this regard, we would
like to stress that the exercise involving the xN FESRs
leading to the results of Eq. (7.4) represents a highly
nontrivial test of this type. This follows from the fact that
DV contributions to the xN FESRs are generally not small,
and oscillate with s0. The D ¼ 0 OPE and DV contributions
to the theory side of the xN FESR for each N are, in this
exercise, fixed by the results of the earlier fits involving the
ansatz (2.10), leaving only a D ¼ 2N þ 2 OPE contribution
controlled by C2Nþ2 to complete the theory side of the
FESR. The different xN considered provide very different
weightings on the interval from s0 to∞, and the different s0
considered represent integration over different portions of
the oscillations in the experimentally accessible region.
Therefore, a problem with the DVansatz would be expected
to show up as an inability to successfully fit, with the single
parameter C2Nþ2, the s0-dependent difference between the
experimental spectral integrals and the sum of the previously
fixed D ¼ 0 OPE and DV theory integral contributions. In
fact, as we have seen, a set of C2Nþ2 exist which produce
excellent matches to the experimental spectral integrals over
a sizeable range of s0 for all N (N ¼ 1; � � � ; 7) required to
generate the results, shown in Fig. 14, for the weights wkl
employed in Ref. [1]. The fact that the form (2.10) conforms
to the qualitative features expected of the contribution
representing the residual error of an asymptotic series,
and the success of the detailed self-consistency tests just
described, confirms that the ansatz (2.10) provides a good
representation of DV effects in the channels of interest.
Possible residual inaccuracies in this representation should,
in any case, not be turned into an argument to not include
DVs at all, since that strategy would lead to the presence of
unquantifiable systematic errors which use of our ansatz
strongly indicates are unlikely to be small.
It is interesting to compare the values of αsðm2

τÞ from the
various analyses. First, the half differences between our
ALEPH- and OPAL-based values are 0.015 (FOPT) and
0.019 (CIPT), while the average (between FOPTand CIPT)
fit errors is about 0.012 for fits to ALEPH data [cf.
Eq. (6.3)], and about double that for fits to OPAL data.
Finally, the difference between the FOPT and CIPT values
is 0.014 for the ALEPH-based values, and 0.022 for the
OPAL-based values. These differences and errors are all

comparable in size, and it appears reasonable to conclude
that they reflect both the data and theory limitations on the
accuracy with which αsðm2

τÞ can be obtained from analyses
of hadronic τ decay, at least at present. We do not believe
that it is meaningful to condense these results in the form of
one central value and one aggregate error for αsðm2

τÞ.
Clearly, our ALEPH-based values are not in agreement
with the value obtained in Ref. [1], despite using the same
data. Averaging the values of Eq. (6.3) and adding half the
difference between the two values as an error estimate for
the CIPT/FOPT perturbative uncertainty, we would find a
value αsðm2

τÞ ¼ 0.303� 0.014, to be compared with the
value 0.332� 0.012 quoted in Ref. [1]. It should be
emphasized again that the error in the latter value does
not include a component accounting for the systematic
problems identified in Sec. VII.
One may ask whether one can do better. First, it would be

interesting to apply our analysis method to data with better
statistics, and such data are in principle available from the
BABAR and Belle experiments. Such data would allow us to
scrutinize our theoretical understanding in more detail and
would, as can be seen from Fig. 4, be especially useful in
the upper part of the spectrum. However, to date the
analyses required to produce inclusive hadronic spectral
functions from these data are not complete, and thus such
an investigation must be postponed until they become
available. Second, it would be nice to develop a deeper
insight into the theory itself, or, lacking that, to develop
new tools for testing any given model for duality violations.
A recent idea in this direction based on functional analysis
can be found in Ref. [52]. Finally, we note that the
difference between the results for αsðm2

τÞ obtained using
the FOPT and CIPT resummation schemes represents, at
present, an important limitation on the accuracy with which
αs can be obtained at a scale as low as m2

τ ; further progress
will require an improved understanding of this issue.
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