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This paper presents a detailed account of the evaluation of the electron anomalous magnetic moment
ae which arises from a gauge-invariant set, called Set V, consisting of 6354 tenth-order Feynman
diagrams without closed lepton loops. The latest value of the sum of Set V diagrams evaluated by the
Monte Carlo integration routine VEGAS is 8.726 ð336Þðα=πÞ5, which replaces the very preliminary value
reported in 2012. Combining it with 6318 previously published tenth-order diagrams, we obtain 7.795
ð336Þðα=πÞ5 as the complete mass-independent tenth-order term. Together with the improved value of
the eighth-order term this leads to aeðtheoryÞ ¼ 1 159 652 181.643 ð25Þð23Þð16Þð763Þ × 10−12, where
the first three uncertainties are from the eighth-order, tenth-order, and hadronic and elecroweak terms. The
fourth and largest uncertainty is from α−1 ¼ 137.035 999 049 ð90Þ, the fine-structure constant derived
from the rubidium recoil measurement. Thus, aeðexperimentÞ − aeðtheoryÞ ¼ −0.91 ð0.82Þ × 10−12.
Assuming the validity of the standard model, we obtain the fine-structure constant α−1ðaeÞ ¼
137.035 999 1570 ð29Þð27Þð18Þð331Þ, where uncertainties are from the eighth-order, tenth-order, and
hadronic and electroweak terms, and the measurement of ae. This is the most precise value of α available at
present and provides a stringent constraint on possible theories beyond the standard model.
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I. INTRODUCTION AND SUMMARY

The anomalous magnetic moment of the electron,
ae ≡ ðg − 2Þ=2, has played an important role in testing
the validity of QED and the standard model of particle
physics. The latest measurement of ae by the Harvard
group has reached a precision of 0.24 × 10−9 [1,2]:

aeðHV08Þ ¼ 1 159 652 180.73 ð0.28Þ × 10−12 ½0.24 ppb�:
ð1Þ

A new apparatus for measuring g − 2 of the electron and
positron with even higher precision is being constructed by
the same group [3]. In order to test QED to such a precision
it is necessary to have a theoretical value of the tenth-order
term since

ðα=πÞ5 ∼ 0.07 × 10−12; ð2Þ
where α is the fine-structure constant.
In the standard model the contribution to ae comes from

three types of interactions—electromagnetic, hadronic, and
electroweak—which may be written as

ae ¼ aeðQEDÞ þ aeðhadronicÞ þ aeðelectroweakÞ; ð3Þ

although aeðhadronicÞ contains contributions from the
electromagnetic interaction and aeðelectroweakÞ contains
contributions from the electromagnetic and hadronic inter-
actions in higher orders. In the framework of the standard
model the dominant contribution comes from aeðQEDÞ.
aeðhadronicÞ and aeðelectroweakÞ provide only small
corrections; however, they cannot be ignored when com-
paring theory with measurements.
The QED contribution can be evaluated by the pertur-

bative expansion in α=π,

aeðQEDÞ ¼
X∞
n¼1

�
α

π

�
n
að2nÞe ; ð4Þ

where að2nÞe is finite due to the renormalizability of QED
and may be written in general as

að2nÞe ¼ Að2nÞ
1 þ Að2nÞ

2 ðme=mμÞ þ Að2nÞ
2 ðme=mτÞ

þ Að2nÞ
3 ðme=mμ; me=mτÞ ð5Þ

to exhibit the dependence on the muon and tau-particle
masses. We use the electron-muon mass ratio me=mμ ¼
4.836 331 66 ð12Þ × 10−3 and the electron-tau mass ratio
me=mτ ¼ 2.875 92 ð26Þ × 10−4 [4].
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The first three terms of Að2nÞ
1 are known analytically

[5–8]. Their numerical values are

Að2Þ
1 ¼ 0.5;

Að4Þ
1 ¼ −0.328 478 965 579 193…;

Að6Þ
1 ¼ 1.181 241 456…: ð6Þ

The value of Að8Þ
1 , which has contributions from 891

Feynman diagrams, is obtained mostly by numerical
integration [9]. It is being improved continually by further
numerical work. The latest value

Að8Þ
1 ¼ −1.912 98 ð84Þ; ð7Þ

obtained by a substantial increase in the sampling statistics
of VEGAS [10] calculations, is a factor 2.4 improvement
over the published result [9].

The term Að10Þ
1 has contributions from 12 672 vertex

diagrams, which may be classified into six gauge-invariant
sets, and further subdivided into 32 gauge-invariant subsets
depending on the type of lepton loop subdiagrams. Thus
far, the results of the numerical evaluation of 31 gauge-
invariant subsets, which consist of 6318 vertex diagrams,
have been published [11–20]. The results of all ten subsets
of Set I, consisting of 208 vertex diagrams, have been
confirmed by Ref. [21]. All these diagrams have closed

lepton loops and thus also contribute to Að10Þ
2 and/or Að10Þ

3 .
The remaining set, called Set V, consists of 6354

Feynman diagrams that do not have closed lepton loops
(denoted as q-type diagrams). It is the largest and most
difficult set to evaluate. This paper presents a detailed
account of the evaluation of Set V diagrams, and gives the
latest numerical value. The presented value is more
accurate and reliable than the preliminary one reported
in Ref. [9], not only because of the increase of the statistics
of Monte Carlo integration, but also due to the incorpo-
ration of the qualitative improvements explained in Sec. IV.
Integrals of Set V are huge and complicated, and thus

their evaluation requires an enormous amount of work. A
systematic and fully automatic approach is an absolute
necessity to carry out such a project. To meet this challenge
we have developed an algorithm and its implementation,
GENCODEN [22,23], which automatically converts the
diagrammatic information, specifying how virtual photon
lines are attached to the lepton lines, into a FORTRAN code
free from ultraviolet and infrared divergences.
The evaluation of the tenth-order diagrams boils down to

the numerical integration on a 13-dimensional unit cube
onto which a hyperplane of 14 Feynman parameters is
mapped. The integrals are evaluated by the adaptive-
iterative Monte Carlo integration routine VEGAS [10].
For this calculation, the RIKEN Supercomputing Systems
RSCC and RICC are used intensively. The results are

summarized in Table I. Auxiliary quantities required for
restoring the standard on-shell renormalization are listed in
Table II. From these tables we obtain

Að10Þ
1 ½Set V� ¼ 8.726 ð336Þ: ð8Þ

Adding this to the values of the other 31 gauge-invariant
sets, which were evaluated and published previously
[11–20], we now have an improved value of the sum of
all 12 672 diagrams of tenth-order,

Að10Þ
1 ¼ 7.795 ð336Þ; ð9Þ

which replaces the very preliminary value reported
in Ref. [9].
The mass-dependent terms A2 and A3 of the fourth and

sixth orders are known [24–29],

Að4Þ
2 ðme=mμÞ ¼ 5.197 386 67 ð26Þ × 10−7;

Að4Þ
2 ðme=mτÞ ¼ 1.837 98 ð34Þ × 10−9;

Að6Þ
2 ðme=mμÞ ¼ −7.373 941 55 ð27Þ × 10−6;

Að6Þ
2 ðme=mτÞ ¼ −6.583 0 ð11Þ × 10−8;

Að6Þ
3 ðme=mμ; me=mτÞ ¼ 1.909 ð1Þ × 10−13; ð10Þ

and those of the eighth- and tenth-order terms can be found
in Refs. [11–20,30]:

Að8Þ
2 ðme=mμÞ ¼ 9.161 970 703 ð373Þ × 10−4;

Að8Þ
2 ðme=mτÞ ¼ 7.429 24 ð118Þ × 10−6;

Að8Þ
3 ðme=mμ; me=mτÞ ¼ 7.4687 ð28Þ × 10−7;

Að10Þ
2 ðme=mμÞ ¼ −0.003 82 ð39Þ: ð11Þ

Our evaluation of Að8Þ
2 ðme=mμÞ and Að8Þ

2 ðme=mτÞ has been
confirmed by the analytic calculations of Refs. [30,31].1

Recently, the possible nonperturbative effect of QED to
the order of α5 of the electron g − 2 was pointed out
[32,33], but it was then shown to be absent [33–35] in
accord with the earlier studies of Refs. [36,37] applied to
the electron g − 2. Reference [38] presented a different
approach from those of Refs. [33–35].
The latest values of the leading-order and next-to-

leading-order (NLO) contributions of the hadronic vacuum
polarization (v.p.) are given in Refs. [39,40],

1There is a typo in Table I of Ref. [9] for the contribution from
Group I (d) to Að8Þ

2 ðme=mτÞ in which the actual value is
0.8744ð1Þ × 10−8, as pointed out in Ref. [30].

AOYAMA et al. PHYSICAL REVIEW D 91, 033006 (2015)

033006-2



aeðhad v:pÞ ¼ 1.866 ð10Þexp ð5Þrad × 10−12;
aeðNLOhad v:pÞ ¼ −0.2234 ð12Þexp ð7Þrad × 10−12;

aeðNNLOhad v:pÞ ¼ 0.028 ð1Þ × 10−12; ð12Þ

and the hadronic light-by-light-scattering (l-l) term is given
in Ref. [41],

aeðhad l-lÞ ¼ 0.035 ð10Þ × 10−12: ð13Þ
The electroweak contribution has been obtained from the
analytic form of the one-loop [42] and two-loop [43–45]
electroweak effects on the muon g − 2, adapted for the
electron. We quote the value summarized and updated in
Ref. [4]:

aeðelectroweakÞ ¼ 0.0297 ð5Þ × 10−12: ð14Þ
To compare the theoretical prediction with the measure-

ment (1), we need the value of the fine-structure constant α
determined by a method independent of g − 2. The best α
available at present is the one derived from the precise value
of h=mRb, which is obtained by the measurement of the
recoil velocity of rubidium atoms on an optical lattice [46],
combined with the very precisely known Rydberg constant
and mRb=me [4]:

α−1ðRb10Þ ¼ 137.035 999 049 ð90Þ ½0.66 ppb�: ð15Þ
With this α the theoretical prediction of ae becomes

aeðtheoryÞ¼1159652181.643ð25Þð23Þð16Þð763Þ×10−12;
ð16Þ

where the first, second, third, and fourth uncertainties come
from the eighth-order term (7), the tenth-order term (9), the
hadronic (12)–(13) and electroweak (14) corrections, and
the fine-structure constant (15), respectively. This is in
good agreement with the experiment (1):

aeðHV08Þ − aeðtheoryÞ ¼ −0.91 ð0.82Þ × 10−12: ð17Þ
The intrinsic theoretical uncertainty (∼38 × 10−15) of

aeðtheoryÞ is less than 1=20 of the uncertainty due
to the fine-structure constant (15). This means that a more
precise value of α than Eq. (15) can be obtained assuming
that QED and the standard model are valid and solving the
equation aeðtheoryÞ ¼ aeðexperimentÞ for α:

α−1ðaeÞ¼137.0359991570ð29Þð27Þð18Þð331Þ ½0.25 ppb�;
ð18Þ

where the uncertainties are from the QED terms (7), (9), the
combined hadronic (12), (13) and electroweak (14) terms,
and the measurement (1) of aeðHV08Þ, in that order. This
provides a stringent constraint on possible theories beyond
the standard model. It can be made even more stringent by
improved measurements of ae.

Section II describes how we organized diagrams of Set V
into a smaller number of independent integrals. Section III
describes the steps involved in the automatic code gen-
eration by GENCODEN. Section IV discusses computational
problems encountered in the numerical integration.
Section V is devoted to the discussion of some technical
problems encountered in our work.
Appendix A describes how the K-operation, R-subtrac-

tion, and I-operation [22,23,47] introduced in Sec. III
work, using the diagram X253 as an example. Actually,
X253 is one of the exceptional diagrams (the other is X256)
for which the implementation of I-operation in GENCODEN
requires a slight modification according to the definition of
the residual part of a vertex renormalization constant with
an insertion of a two-point vertex LR

n� , which has been
treated manually. This is manifested first at these two
diagrams at tenth order, while it is absent in the eighth- and
lower-order diagrams. Thus, the evaluation of the eighth-
order diagrams (called Group V) that relies on GENCODEN
is correct. The details will be fully discussed. Appendix B
describes our approach to summing up the residual
renormalization terms of Set V.

II. REDUCING THE NUMBER OF INTEGRALS

Our evaluation of the tenth-order diagrams of Set V
relies on numerical integration. The combined uncertainty
σN of N independent integrals grows roughly as

ffiffiffiffi
N

p
. Thus

σN becomes large for large N even if each integral has a
small uncertainty. This can be a particularly big headache
for Set V, for which N ¼ 6354.
It is thus important to reduce the number of independent

integrals as much as possible. For this purpose the
technique based on the Ward-Takahashi identity developed
previously [47] is quite useful. It is based on the obser-
vation that a set of nine vertex diagrams, which are derived
from the self-energy-like diagram G of Fig. 1 as the
coefficients of terms linear in the external magnetic field,
share features which enable us to combine them into a
single integral. Let Λνðp; qÞ be the sum of these nine vertex
diagrams, where p − q=2 and pþ q=2 are the 4-momenta
of incoming and outgoing lepton lines, respectively, and
ðp − q=2Þ2 ¼ ðpþ q=2Þ2 ¼ m2. The number of such
sums is 6354=9 ¼ 706. By taking time-reversal symmetry
into account, the total number of independent integrals is
reduced further to 389. This is still large but far more
manageable.
Let ΣðpÞ be the integral representing the self-energy part

of a diagram G of Fig. 1 (namely, the part independent of
the magnetic field). With the help of the Ward-Takahashi
identity, we can rewrite Λνðp; qÞ as

Λνðp; qÞ≃−qμ
�∂Λμðp; qÞ

∂qν
�
q¼0

− ∂ΣðpÞ
∂pν

ð19Þ
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in the small-q limit. The g − 2 term MG is projected out
from either the lhs or the rhs of Eq. (19). Considerable
numerical cancellation is expected among the nine terms on
the lhs of Eq. (19). In fact, the rhs exhibits the consequence
of such a cancellation at the algebraic level. Thus starting
from the rhs enables us to reduce the amount of computing
time substantially (by at least a factor 5), and also to
significantly improve the precision of numerical results.
Since these integrals have UV-divergent subdiagrams,

they must be regularized by some means. For the diagrams
of Set V the Feynman cutoff, which is a sort of “mass” for
the virtual photons, works fine as the regulator. We suppose
that all of the integrals, including renormalization terms, are
initially regularized by the Feynman cutoff. Of course, the
final renormalized result is finite and well defined in the
limit of infinite cutoff mass.

III. FORMULATION

Most of these diagrams are so huge and complicated that
numerical integration is currently the only viable option.
However, in order to evaluate them on a computer, which
requires that every step of the computation is finite, it is
necessary to remove all sources of divergence of an
integrand before carrying out the integration. This is
achieved by the introduction of K-operation that deals
with the UV divergences [22,47], and R-subtraction and

I-operation that deal with the IR divergences [23,47]. See
Secs. III D and III E for more details.
In practice, it is very difficult to carry out such a

calculationwithout makingmistakes because of the gigantic
size of the integrals and the large number of terms required
for renormalization. To deal with this problem, we devel-
oped an automatic code-generating algorithm, GENCODEN
[22,23], in which N implies that it works for the q-type
diagrams of any order N in the perturbation theory of QED.

A. Diagram generation

TheFeynmandiagramsof SetVhave the structure that ten
vertices along the electron line are connected by the virtual
photonsa,b, c,d, and e, and thus are specified by the pairing
patterns of how these vertices are connected. Excluding
patterns that are not one-particle irreducible, and taking
time-reversal invariance into account, we obtain 389 differ-
ent patterns which are represented by the diagrams of Fig. 1.
They are denoted by Xnnn, nnn ¼ 001; 002;…; 389.
The diagramX001 represents the diagram in the upper left

corner of Fig. 1. Subsequent expressions represent diagrams
placed belowX001 until X025, andX026 corresponds to the
diagram placed to the right of X001, and so on. Diagrams
X001 to X072 are time-reversal symmetric and diagrams
X073 to X389 are asymmetric. Within each group they are
arranged in a lexicographical order.

FIG. 1. Overview of 389 diagrams which represents 6354 vertex diagrams of Set V. The horizontal solid lines represent the electron
propagators in a constant weak magnetic field. Semicircles stand for photon propagators. The left-most figures are denoted as X001–
X025 from the top to the bottom. The top figure in the second column from the left is denoted as X026, and so on.
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Each of these patterns can be expressed by a “one-line”
statement of an ordered sequence of tenvertices labeled by the
attached photon-line indices. The diagram X001 is identified
by the pairing-pattern sequence abacbdcede, which means
that the first and third vertices from the left end of the electron
line are connected by thevirtual photona, the second and fifth
vertices are connected by the virtual photon b, and so on.
All Feynman diagrams of Set V have a common feature

except for the pattern of pairing of vertices. The integral of
Set V can thus be generated from a single master code by
providing the simple diagram-specific information Xnnn as
the input. It is important to note that this pairing pattern not
only specifies completely the structure of the unrenormal-
ized diagram, but it also represents the structure of all
UV-divergent and IR-divergent subdiagrams required for
renormalization.

B. Construction of the unrenormalized integral

From a one-line statement specifying the diagram
G≡ Xnnn, the rhs of Eq. (19) is translated into a
momentum-space integral applying the Feynman-Dyson
rule (assuming the Feynman cutoff). Introducing Feynman
parameters z1; z2;…; z9 for the electron propagators, where
zi is for the ith electron line from the left end of the
diagram, and za, zb, zc, zd, and ze for the photon
propagators, we can carry out the momentum integration
exactly using a homemade table written in FORM [48]. This
leads to an integral of the form

MG ¼
�−1

4

�
5

4!

Z
ðdzÞG

�
1

4

�
E0 þ C0

U2V4
þ E1 þ C1

U3V3
þ � � �

�

þ
�
N0 þ Z0

U2V5
þ N1 þ Z1

U3V4
þ � � �

��
; ð20Þ

where En; Cn; Nn, and Zn are functions of the Feynman
parameters zi and “symbolic” building blocks Ai; Bij; Cij

for electron lines i; j ¼ 1; 2;…; 9. n is the number of
contractions (see Refs. [47,49] for definitions). See, for
example, Ref. [22] for definitions of Bij and Cij. U is the
Jacobian of transformation from the momentum variables
to Feynman parameters. ðdzÞG is defined by

ðdzÞG ¼
Y
k∈G

dzkδ

�
1 −X

k∈G
zk

�
: ð21Þ

Ai is the scalar current, which satisfies an analogue of
Kirchhoff’s laws for electric current, and has the form

Ai ¼
1

U

X9
j¼1

ðδijU − zjBijÞ: ð22Þ

V is obtained by combining all denominators of propa-
gators into one with the help of the Feynman parameters.
It has a form common to all diagrams of Fig. 1:

V ¼
X9
i¼1

zið1 − AiÞm2 þ
Xe
κ¼a

zκλ2; ð23Þ

wherem and λ are the restmasses of the electron and photon,
respectively. Of course, λ must be sent to 0 in the end.
The explicit forms of U and Bij as functions of Feynman

parameters depend on the structure of the diagram G. Once
they are determined, Ai and V have a common expression
for all diagrams of Set V. The individual integral is denoted
as MG and the sum of all MG in Set V is denoted as M10.

C. Construction of building blocks

The conversion of the momentum integral into a
Feynman-parametric integral involves the inversion of a
large matrix, which is performed using MAPLE. This
enables us to obtain explicit forms of Ai; Bij; Cij, and U
as homogeneous functions of z1; z2;…; z9; za; zb;…; ze. V
has the form given in Eq. (23), which is common to all
diagrams of Set V.

D. Construction of UV-divergence subtraction terms

The renormalization of UV divergence is carried out by a
subtractive method. AUV divergence of a diagram of Set V
arises from a subdiagram S, which is of vertex type or
self-energy type. Set V has no subdiagrams of vacuum-
polarization type or light-by-light-scattering type.
Suppose MG diverges when all loop momenta of a

subdiagram S consisting of NS lines and nS closed loops
go to infinity. In the Feynman-parametric formulation, this
corresponds to the vanishing of the denominatorU when all
zi ∈ S vanish simultaneously. To find a criterion for a UV
divergence from S, consider the part of the integration
domain where zi satisfies

P
i∈Szi ≤ ϵ. In the limit ϵ → 0,

one finds

V ¼ Oð1Þ; U ¼ OðϵnSÞ;
Bij ¼ OðϵnS−1Þ if i; j ∈ S;

Bij ¼ OðϵnSÞ otherwise: ð24Þ

From this we can obtain a simple UV power-counting rule
for identifying UV-divergent terms. Based on this infor-
mation we can construct an integral that has the same UV
divergence as MG but has features that are suitable for the
UV-divergence counterterm. The K-operation KS [22,47]
on MG that creates such a counterterm has the following
properties.

(i) The integral KSMG subtracts the UV divergence
arising from the subdiagram S of MG point by point
in the same Feynman-parametric space.

(ii) By construction, the subtraction term factorizes into
pieces of magnetic moments and renormalization
constants of lower order, which are known from
lower-order calculations.
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For a vertex-type subdiagram S the K-operation
KS on MG factorizes exactly into the product of
lower-order quantities as

KSMG ¼ LUV
S MG=S; ð25Þ

where G=S is the reduced diagram obtained by
shrinking S in G to a point, and LUV

S is the leading
UV-divergent part of the vertex renormalization
constant LS.
For a self-energy-type subdiagram S, connected

to the rest of G by electron lines i and j, the
K-operation KS on MG gives two terms of the form

KSMG ¼ dmUV
S MG=Sði�Þ þ BUV

S MG=½S;j�: ð26Þ

Here, MG=Sði�Þ is the reduced diagram obtained by
shrinking S to a point and i� indicates that the two-
point mass vertex is inserted in the line i of the
diagram MG=S. The second term comes from the
diagram obtained by shrinking both S and j to a
point. This term, which is written as G=½S; j�, where
½S; j� denotes the sum of two sets, can be trans-
formed into a more convenient form using integra-
tion by parts with respect to zi. dmUV

S and BUV
S are

the leading UV-divergent parts of the mass renorm-
alization constant dmS and wave-function renorm-
alization constant BS. See Ref. [49] for more details.

(iii) The K-operation generates only the leading UV-
divergent parts of renormalization constants. Thus
an additional finite renormalization (called a residual
renormalization) is required to recover the standard
on-shell renormalization.

In general the subtracting integrand is derived from the
original integrand by applying several K-operations on the
Zimmermann’s forest of subdiagrams [50]. Suppose KS is
the K-operator associated with a subdiagram S of a
diagram G. Then the UV-finite amplitude MR

G is obtained
from the unrenormalized amplitude MG by the forest
formula of the form [22]

MR
G ¼

X
f∈FðGÞ

�Y
Si∈f

ð−KSiÞ
�
MG; ð27Þ

where the sum is taken over all forests f, including an
empty forest, of the diagram G. The order of operation in
the product is arranged so that operations for the outer
subdiagrams are applied first.

E. Construction of IR-divergence subtraction terms

The IR divergence has its origin in the singularity caused
by the vanishing mass of virtual photons. However, this is
just a necessary but not a sufficient condition. In order for
this singularity to cause the actual IR divergence of the
integral it must be enhanced by a vanishing of the

denominators of two or more electron propagators (called
enhancers) due to kinematic constraints. Such a situation
arises in the diagrams that have self-energy subdiagrams.
It is associated with the vanishing of the V function of the
denominators in Eq. (20) in the integration domain char-
acterized by [47,49]

zi ¼ OðδÞ if i is an electron line inR; where R≡ G=S;

zi ¼ Oð1Þ if i is a photon line inR;

zi ¼ OðϵÞ; ϵ ∼ δ2; if i ∈ S: ð28Þ

The origin of linear or higher-power IR divergence is
easy to identify diagrammatically. It is caused in such a case
that the diagram has two or more disconnected self-energy-
like subdiagrams and one of the self-energy-like subdia-
grams behaves as a self-mass, when the photon momenta of
the diagram outside the self-energy-like subdiagram vanish
and the electron lines attached to it go on shell.
Our treatment of the self-energy subdiagram by means of

the K-operation subtracts only the UV-divergent part of the
self-mass, as shown in Eq. (26). The unsubtracted remain-
der of the self-mass term is proportional to MG=Sði�Þ, which
contains an IR divergence. (In the case of the second-order
self-mass this problem does not arise since the entire self-
mass term is removed by the K-operation.)
In order to avoid this problem we developed a method,

called R-subtraction [51], which removes the finite remnant
of the self-mass term completely wherever it arises in a
diagram. For a formal treatment, we introduce the R-
subtraction operator RS,

RSMG ¼ dmR
SM

R
G=Sði⋆Þ; ð29Þ

where dmR
S is the UV-finite part of the mass renormaliza-

tion constant defined by

dmR
S ¼ dmS − dmUV

S þ
X
f

Y
S0∈f

ð−KS0 ÞfdmS; ð30Þ

andMR
G=Sði⋆Þ is the UV-finite part extracted by means of the

K-operation on the magnetic-moment amplitude of the
residual diagram G=S,

MR
G=Sði⋆Þ ¼

X
f

Y
S0∈f

ð−KS0 ÞMG=Sði⋆Þ; ð31Þ

in which the leading UV-divergent part dmUV
S is entirely

removed from the renormalization constant dmS and the
UV divergence in the remainder fdm≡ dm − dmUV is
subtracted away by applying the K-operation associated
with the forest f.
The R-subtraction removes the power-law IR divergen-

ces as well as logarithmic divergences related to the self-
mass. Another type of logarithmic IR divergence occurs,
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however, when the self-energy-like subdiagram S behaves
as a lower-order magnetic moment and the residual factor
G=S contains an IR singularity analogous to the vertex
renormalization constant of the diagram G=S.
By construction, the resulting integral is factorizable into

the product of the magnetic moment MS defined on the
subset S and the UV-finite part LR

G=S of the vertex
renormalization constant LG=S defined by

LR
G=S ¼ LG=S − LUV

G=S þ
X
f

Y
S0∈f

ð−KS0 ÞeLG=S; ð32Þ

in which the leading UV-divergent part LUV
G=S and the UV-

divergent parts associated with the forests
Q

S0∈fð−KS0 ÞeLG=S

are subtracted away, where eL≡ L − LUV.
The I-subtraction operator IS acting on the unrenormal-

ized amplitude MG is defined by

ISMG ¼ LR
G=SM

R
S : ð33Þ

N. B. The IR power-counting rule only identifies the
IR-divergent part; it does not specify how to handle the
IR-finite part. The I-subtraction operation defined by
Eq. (33) handles the IR-finite terms in a different manner
from that of the old subtraction method [47,49]. Note also

that the “new” I-subtraction operation applies only to the
self-energy-like subdiagram S.
The whole set of IR-subtraction terms can be obtained by

the combination ofR- and I-operation, both ofwhich belong
to annotated forests [23]. An annotated forest is a set of
self-energy-like subdiagrams, to each element of which
the distinct operation of I-subtraction or R-subtraction is
assigned. The IR-subtraction term associated with an
annotated forest is constructed by successively applying
operators I or R, and takes the form

ð−ISi
Þ…ð−RSj

Þ…MG; ð34Þ

where the annotated forest consists of the subdiagrams
Si;… and Sj;….

F. Residual renormalization

The output of the steps A through E, which has been
made UV-finite by K-operation and IR-finite by R- and
I-operation, is not the standard renormalized integral. Thus
an additional finite renormalization is required to obtain the
standard result of on-shell renormalization.
The sum of residual renormalization terms of all dia-

grams of Set V is shown in Appendix B. The result can be
written as the sum of terms, all of which are free from UV
and IR divergences:

Að10Þ
1 ½Set V� ¼ ΔM10½SetV� þ ΔM8ð−7ΔLB2Þ þ ΔM6f−5ΔLB4 þ 20ðΔLB2Þ2g

þ ΔM4f−3ΔLB6 þ 24ΔLB4ΔLB2 − 28ðΔLB2Þ3 þ 2ΔL2�Δdm4g
þM2f−ΔLB8 þ 8ΔLB6ΔLB2 − 28ΔLB4ðΔLB2Þ2 þ 4ðΔLB4Þ2 þ 14ðΔLB2Þ4 þ 2Δdm6ΔL2�g
þM2Δdm4ð−16ΔL2�ΔLB2 þ ΔL4� − 2ΔL2�Δdm2�Þ; ð35Þ

where ΔMn, ΔLBn, Δdmn, ΔLn� , and Δdm2� are finite
quantities of lower orders obtained in our calculation of
lower-order ae. (All of these are quantities of q-type
diagrams since subdiagrams of Set V are all q-type.) See
Appendix B for precise definitions.

IV. NUMERICAL INTEGRATION

We evaluate individual integrals by numerical integration
using the iterative-adaptive Monte Carlo routine VEGAS
[10]. A typical integrand consists of about 90 000 lines of
FORTRAN code occupying more than 6 megabytes. The
domain of integration is a 13-dimensional unit cube
(0 ≤ xi ≤ 1, i ¼ 1; 2;…; 13), onto which the hyperplane
of 14 Feynman parameters [see Eq. (21)] is mapped.
In order to assure the credibility of the results it is

important to understand the nature of the error estimate
generated by VEGAS. An important feature of VEGAS is
that its sampling points for the integrand tend to accumulate

after several iterations in the region where it gives large
contributions to the integral. Errors encountered in our
work arise primarily from the following three features of
our integrands.
(a) Our integrands are singular on some boundary surface of

the unit cube because of the vanishing of the denomi-
natorsU and/or V, whether or not they are renormalized.

(b) Our renormalization is performed numerically on a
computer, which results in the mutual cancellation of
infinities at every singular point in the domain of
integration.

(c) The sheer size of the integrands makes it difficult to
accumulate a sufficient amount of sampling data with
the limited computing power available.

A. Steep landscape of integrands and stretching

At first sight, the feature (a) seems to indicate that it is
hopeless to obtain a reliable result for such a singular
integrand. However, the measure of the immediate
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neighborhood of the singularity is small enough so that the
integral itself is well defined and convergent because of
renormalization.
Nevertheless, the steep landscape of the integrandmay be

a cause for concern since the grid adjustment by VEGAS
might not reach the optimal stage as rapidly as one would
wish. This problemmay be alleviated, however, by “stretch-
ing” the integration variables (see Sec. 6.3 of Ref. [49]).
Suppose that after several iterations VEGAS finds that

sampling points are highly concentrated at one end of the
integration domain, say xi ¼ 0, where xi is one of the axes
of the hypercube. In such a case, if one maps xi into x0i as

xi ¼ x0i
ai ; ð36Þ

where ai is some real number greater than 1, the neighbor-
hood of xi ¼ 0 is stretched out and random samplings in x0i
give more attention to the region near xi ¼ 0 from the
beginning of iteration. Also the Jacobian aix0i

ai−1 of the
transformation (36) has the effect of reducing the peak of
the integrand. Similarly, the singularity at xi ¼ 1 can be
weakened by the stretching

xi ¼ 1 − ð1 − x0iÞbi ; ð37Þ
where bi is some real number greater than 1.
Stretching may be applied to all integration variables

independently. By an appropriate choice of parameters
a1; a2;… and b1; b2;… the convergence of the iteration
can be accelerated considerably.
Note that the stretching is not an attempt to simulate the

integrand itself. It is designed to reduce the size of peaks
indicated by preceding iterations so that the sampling
points become more evenly distributed throughout the
transformed domain of integration. It is easy to implement
since it is applied to each axis independently. Since there is
no constraint on the choice of ai and bi, except that they
must be real numbers larger than 1, one can try various
stretches and choose the most efficient one. Since different
stretches are nothing but the evaluation of the same integral
with different distributions of sampling points, they can
also be used to check the consistency of the calculation.

B. Extended numerical precision

Concerning the feature (b), the integrals are made
convergent by the point-by-point cancellation of divergen-
ces using carefully tailored counterterms created by the
intermediate renormalization procedure. All of this would
pose no problem if each step of the computation were
carried out with infinite precision. In practice, however, we
have to perform calculations with only finite precision. The
intended cancellation may fail occasionally because can-
celing terms have only a finite number of significant digits,
and their difference, which is supposed to vanish at the
singular point, might be dominated near the singularity by
rounding errors, causing uncontrolled fluctuation. This

problem can be reduced to a manageable level by adopting
higher-precision arithmetics which will reduce the size of
the dangerous integration volume, although it slows down
the computation severely.
In our calculation, some of the diagrams are evaluated in

the double-double (pseudoquadruple)-precision arithmetic
using the library written by one of the authors, which is the
arrayed version of the algorithm presented in the qd library
[52]. For the diagram X008 that exhibits even more severe
digit deficiency, the most singular part of the integral is
evaluated with quadruple-double (pseudooctuple) precision
and the remaining part is evaluated with the double-double
precision.

C. Intensive computation

The feature (c), i.e., the huge size of our integrands,
means that the integration requires a large amount of
computing time in order to accumulate sufficient sampling
statistics. Indeed, this, combined with the difficulty in
accessing adequate computing resources, has been the main
cause of delay in obtaining high-accuracy result thus far.

D. Numerical integration process and the result

All integrals are evaluated initially in double precision
using 107 sampling points per iteration, iterated 50 times,
followed by 108 points per iteration, iterated 50 times. This
step is to confirm that our renormalization scheme actually
works and gives finite results.
The output of GENCODEN, being a universal code,

employs a generic mapping of the Feynman parameters
(denoted as the default mapping), and is not optimized for
the individual diagrams.
The first thing we must do to improve the convergence of

the iteration is to note that diagrams containing ns subdia-
grams of self-energy type require only (13 − ns) indepen-
dent integration variables. The reduction of integration
variables helps improve the convergence of VEGAS iter-
ations.We shall call the class of these diagramsXB. It consists
of 236 diagrams. The remainder, which consists of 153
diagramswithout self-energy subdiagrams,will be calledXL.
Another improvement takes account of the fact that the

iteration of VEGAS converges better if singular behavior of
the integrand is confined to one axis. For instance, we may
choose the largest sum of Feynman parameters that
vanishes at the singularity of the integrand as the one that
will be mapped onto an integration variable [see the
discussion around Eq. (24)]. This is not always possible
for our integrands which may have multiple sets of singular
axes, but it still helps.
After these adjustments are made, each integral is

evaluated in double-precision arithmetic with 109 sampling
points, which takes 1 to 3 hours on 32 cores of RICC
(RIKEN Integrated Clusters of Clusters). Evaluation in
double-double (pseudoquadruple) precision is about 60
times slower. Some large runs in double-double precision
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with 109 sampling points per iteration, iterated 80 times,
took about 65 days on the 128 cores of RICC.
Thus far, XL integrals were evaluated in two ways.
(1) Primary runs with the default mapping in double-

precision arithmetic [XL1].
(2) Second runs with the adjusted mapping in double-

precision arithmetic [XL2].
XB integrals were evaluated in three ways:
(1) Primary runs with the default mapping in double-

precision arithmetic [XB1].
(2a) Second run with the adjusted mapping in double-

double-precision arithmetic. There are 162 inte-
grals [XB2a].

(2b) The remaining 74 integrals evaluated after the
preliminary result was published [XB2b].

(3) Third run in double precision for 176 of 236
integrals, and double-double precision for the re-
maining 60 integrals [XB3].

By early 2012 we managed to reduce the uncertainties of
all individual integrals to less than 0.05. The value of Að10Þ

1

[Set V] was obtained by combining XL1, XB1, and XB2a.

The combined uncertainty of Að10Þ
1 [Set V] was about 0.57.

This was reported as a very preliminary value [9]:

Að10Þ
1 ½Old Set V� ¼ 10.092 ð570Þ: ð38Þ

Since the preliminary result was published, we have
reevaluated all tenth-order integrals for various choices of
mapping. The new result consists of XL2, XB2a, XB2b,
and XB3, and excludes XL1 and XB1. They are summa-
rized in Table I. Auxiliary quantities required for the
residual renormalization are listed in Table II. Combining
all of these integrals, we obtain

Að10Þ
1 ½Set V� ¼ 8.726 ð336Þ: ð39Þ

The difference between the new and old results is 1.366,
which is twice as large as the combined uncertainty 0.662.
Another point to notice is that, in spite of the far greater
numbers of sampling points, the uncertainty of Eq. (39) is
only 1.7 times smaller than the uncertainty of the very
preliminary result (38).

E. Remarks

In order to understand the possible cause of these results
it is necessary to examine the behavior of individual
integrals. VEGAS subdivides the integration domain into
a grid, from which sampling points of the integrand are
taken. The grid is adjusted adaptively based on the results
of previous iterations so that the importance sampling is
achieved. If the absolute value of the integrand has a peak,
sampling points will accumulate in that neighborhood as
the iteration progresses to accelerate the convergence.
For the multivariate integration, the grid adjustment

relies on the profile of the integral projected along each

axis. It is monitored by the information that VEGAS
provides after each iteration by printing out the values of
the integrand at ten points along each axis integrated
over the remaining variables, in addition to the value
and error of the integral itself. However, some integrands
may have several competing peaks. In such a case, VEGAS
might initially find only one peak, being unaware of the
presence of other peaks, if the number of sampling points is
too small, and might be lead to an unstable convergence, a
misleading value, or an unreliable error estimate.
It may occur that the grid adjustment does not work well

when the peaks or singularities of the integrand are not
localized along an axis, but rather are located, for instance,
in the diagonal region over several axes.2 In our calculation,
the singular behavior of the integrand associated with the
divergences lies at the boundaries of the integration
domain. It should be desirable to choose integration
variables so that the singularities are concentrated on one
end of the axis, e.g., xi → 0 rather than the situation where
they emerge, e.g., when the variables xi and xj go to zero
simultaneously.
We may note that 14 Feynman parameters zi of tenth-

order diagrams satisfying
P

zi ¼ 1 are mapped to the
integration domain of a 13-dimensional unit cube. The
choice of mapping is arbitrary, and thus the appropriate
mapping should be applied that takes account of the above
considerations, reflecting the substructure of the diagram.
In general, the default mapping adopted in the output of
GENCODEN, being the universal code, is not optimal in
this sense.
The calculation runs XL1 and XB1 contributing to the

preliminary result [9] rely on the default mapping. Several
integrals seem to suffer from some of the problems
described above. By using the different mappings that
are tailored for individual diagrams, especially for the
diagrams of XL1 containing several second-order vertex
subdiagrams, the convergence rates of the integral have
been much improved and the reliable error estimates are
obtained. This observation suggests that in the numerical
integration of the tenth-order diagrams, when the number
of sampling points is not large enough, the inappropriate
mapping would lead to some underestimate of the error
because the evaluated integrands over the sampling points
do not obey a Gaussian distribution. The uncertainty of
Ref. [9] was thus not reliable and needed to be enlarged
substantially. On the other hand, integrals contributing to
the new result behave much better, presumably because of
the new mappings. The values and the error estimates are

2A new version of VEGAS provided by P. Lepage in 2013
overcomes this known weakness of the original version of
VEGAS [10]. The new VEGAS can be obtained from https://
github.com/gplepage/vegas. We have not used the new VEGAS
algorithm, since it was released after we had carried out most of
the integration of Set V over several years.
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also reliable because of the substantially increased sam-
pling statistics.
Now that the improved values of all diagrams of Set V

are obtained, we have a complete evaluation of 12 672
diagrams of tenth order [11–20]. Taking Eq. (39) into
account, we report

Að10Þ
1 ¼ 7.795 ð336Þ ð40Þ

as the new tenth-order term. It is about 14 times more
precise than the crude estimate jAð10Þ

1 j < 4.6 [53] and
makes the overall theoretical uncertainty about 7.5 times
smaller than the current experimental uncertainty [1,2].

V. DISCUSSION

In view of the enormous size and complexity of the
integrals of Set V, it is unlikely that the validity of our
results can be tested by an independent method any time
soon. We are thus obliged to establish their validity to the
best of our capability.
First of all, we have to make sure that our formulation is

analytically exact. FORTRAN codes of all integrals of Set V
are created by the code-generating algorithm GENCODEN,
which has been tested extensively by applying it to the
creation of lower-order diagrams of q-type. Recall that N of
GENCODEN represents the number of vertices of q-type
diagrams where virtual photons are attached. For N ¼ 10 it
generates a complete set of distinct irreducible diagrams of
Set V automatically. Similarly, complete sets of distinct q-
type diagrams of sixth or eighth order are generated by
GENCODEN for N ¼ 6 or 8. Since these integrals have been

thoroughly tested by comparison with previous formula-
tions, we may expect that GENCODEN works correctly for
N ¼ 10 as well. We have found, however, that the
implementation of GENCODEN for constructing some IR-
subtraction terms of the diagrams X253 and X256 requires
modifications according to the definition of the renormal-
ization constants with a two-point vertex insertion. Since
these exceptions are minor, we have corrected them
manually instead of rewriting GENCODEN itself. This
problem and its correction is discussed in full detail in
Appendix A. With this modification the FORTRAN codes of
389 integrals, including residual renormalization terms,
give a fully renormalized and analytically exact formula of

Að10Þ
1 for Set V.
The only uncertainty of our results thus arises from the

numerical integration by the Monte Carlo integration
routine VEGAS [10]. The reliability of VEGAS has been
tested thoroughly by applying it to the evaluation of
thousands of complicated integrals of sixth and eighth
orders. In all these cases the error estimates obtained by
VEGAS, based on random sampling of the integrand, are
found to be very reliable, provided that a sufficiently large
amount of sampling data is accumulated. This is helped
significantly by stretching. Double-double-precision arith-
metic is used whenever a problem caused by digit defi-
ciency is suspected. Of course, because of their gigantic
size, numerical integration is extremely time consuming and
the accumulation of sampling statistics is a slow process. An
inspection of Table I suggests that some of the integrals may
benefit frommore extensive samplings. There is an ongoing
effort to improve the sampling statistics.

TABLE I. VEGAS integration results of X001 − X389 of the tenth-order Set V diagrams. The superscript dd in the first column means
that the integrand was evaluated with the double-double (pseudoquadruple) precision. The superscript qd on X008 indicates that the
most singular part of the integral X008 is evaluated with quadruple-double (pseudooctuple) precision and the remaining part is evaluated
with the double-double precision. Other integrals without the superscript were evaluated with the double precision. The second column
shows the symbolic representation of the diagram. The third column counts the number of subtraction terms. The fourth column presents
the value of the integral with the error in the last few digits in the parentheses. The fifth column lists the total number of iterations
evaluated with 109 sampling points per iteration.

Diagram Vertex repr.
No. of subtr.

terms
Value (error)
including nF

No. of iterations
with 109 sampling
points per iteration

X001 abacbdcede 47 −0.1724 (91) 20
X002dd abaccddebe 47 −5.9958 (333) 13
X003 abacdbcede 19 −0.1057 (52) 10
X004dd abacdcdebe 71 5.1027 (339) 9
X005 abacddbece 43 1.1112 (168) 20
X006 abacddcebe 59 −5.2908 (245) 9
X007 abbcadceed 47 −3.4592 (254) 25
X008qd abbccddeea 47 −16.5070 (289) 11
X009 abbcdaceed 19 −3.1069 (71) 24
X010dd abbcdcdeea 83 11.2644 (342) 124
X011dd abbcddaeec 43 6.0467 (338) 22

(Table continued)
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TABLE I. (Continued)

Diagram Vertex repr.
No. of subtr.

terms
Value (error)
including nF

No. of iterations
with 109 sampling
points per iteration

X012dd abbcddceea 67 −9.3328 (267) 26
X013 abcabdecde 7 −1.3710 (31) 2
X014 abcacdedbe 31 0.8727 (42) 10
X015 abcadbecde 2 2.1090 (8) 2
X016 abcadcedbe 2 −0.9591 (7) 2
X017 abcaddebce 6 0.5146 (13) 20
X018 abcaddecbe 6 0.0309 (13) 20
X019 abcbadeced 31 1.2965 (48) 10
X020dd abcbcdedea 134 −8.1900 (318) 43
X021 abcbdaeced 11 −0.2948 (15) 10
X022 abcbdcedea 79 0.8892 (226) 22
X023 abcbddeaec 27 0.4485 (55) 25
X024 abcbddecea 75 −6.0902 (246) 23
X025 abccadeebd 39 −0.7482 (194) 20
X026dd abccbdeeda 95 −7.8258 (277) 8
X027 abccdaeebd 15 −2.3260 (54) 13
X028dd abccdbeeda 71 4.5663 (342) 49
X029dd abccddeeab 35 6.9002 (233) 1
X030dd abccddeeba 67 −12.6225 (342) 34
X031 abcdaebcde 2 2.3000 (14) 4
X032 abcdaecdbe 2 −0.2414 (6) 2
X033 abcdaedbce 2 −1.3806 (7) 2
X034 abcdaedcbe 2 1.2585 (9) 4
X035 abcdbeaced 2 −0.5899 (3) 2
X036 abcdbecdea 11 0.2318 (11) 30
X037 abcdbedaec 2 −0.7407 (5) 2
X038 abcdbedcea 11 −0.2927 (14) 20
X039 abcdceaebd 11 0.3292 (12) 10
X040 abcdcebeda 47 1.3397 (50) 12
X041 abcdcedeab 63 3.1076 (94) 25
X042 abcdcedeba 119 −4.1353 (192) 20
X043 abcddeeabc 15 −2.9620 (29) 21
X044dd abcddeebca 59 4.4121 (281) 4
X045 abcddeecab 43 3.4331 (212) 20
X046dd abcddeecba 95 −7.7564 (339) 15
X047 abcdeabcde 2 −4.4496 (40) 8
X048 abcdeacdbe 2 −0.8061 (8) 2
X049 abcdeadbce 2 −0.0278 (7) 2
X050 abcdeadcbe 2 −1.2213 (9) 4
X051 abcdebaced 2 −0.1776 (6) 2
X052 abcdebcdea 11 1.0293 (17) 20
X053 abcdebdaec 2 0.3699 (4) 2
X054 abcdebdcea 11 −0.5174 (11) 20
X055 abcdecaebd 2 −0.3673 (4) 2
X056 abcdecbeda 11 −0.2650 (27) 20
X057 abcdecdeab 23 2.7370 (31) 30
X058 abcdecdeba 44 −5.2510 (70) 12
X059 abcdedeabc 23 2.1866 (28) 30
X060 abcdedebca 92 −3.2089 (188) 22
X061 abcdedecab 68 −3.7724 (137) 20
X062 abcdedecba 161 5.9174 (262) 26
X063 abcdeeabcd 6 3.4295 (14) 20
X064 abcdeeacbd 6 −0.2772 (8) 20
X065 abcdeebadc 6 0.1551 (13) 20

(Table continued)
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TABLE I. (Continued)

Diagram Vertex repr.
No. of subtr.

terms
Value (error)
including nF

No. of iterations
with 109 sampling
points per iteration

X066 abcdeebcda 26 −3.6145 (45) 21
X067 abcdeecdab 50 −1.6761 (85) 25
X068 abcdeecdba 98 2.7855 (217) 22
X069 abcdeedabc 18 −1.2627 (31) 11
X070 abcdeedbca 70 3.2149 (144) 20
X071 abcdeedcab 54 3.7025 (96) 20
X072 abcdeedcba 134 −5.5704 (208) 15
X073 abacbdceed 47 3.4114 (254) 24
X074 abacbddece 47 4.4104 (251) 49
X075dd abacbddeec 47 −8.1138 (340) 33
X076 abacbdecde 19 −5.3405 (74) 26
X077 abacbdeced 39 3.5459 (86) 56
X078 abacbdedce 39 1.1666 (80) 56
X079 abacbdedec 71 5.3956 (305) 41
X080 abacbdeecd 43 0.4597 (257) 28
X081 abacbdeedc 59 −5.6566 (248) 26
X082dd abaccdbeed 47 −8.5156 (348) 92
X083dd abaccddeeb 47 18.7464 (346) 117
X084 abaccdebde 19 8.9888 (129) 20
X085 abaccdebed 39 −2.2833 (197) 20
X086 abaccdedbe 39 0.5180 (223) 20
X087dd abaccdedeb 77 −16.5849 (349) 160
X088dd abaccdeebd 43 −5.2606 (340) 58
X089dd abaccdeedb 63 12.6789 (341) 59
X090 abacdbceed 19 1.5206 (130) 20
X091 abacdbdece 39 −1.6355 (97) 56
X092 abacdbdeec 39 2.1303 (218) 15
X093 abacdbecde 7 −1.7594 (42) 10
X094 abacdbeced 15 −1.0419 (66) 10
X095 abacdbedce 7 0.5838 (35) 6
X096 abacdbedec 31 1.3458 (73) 10
X097 abacdbeecd 17 5.0319 (89) 24
X098 abacdbeedc 33 −1.9806 (183) 20
X099 abacdcbeed 39 3.0771 (187) 20
X100dd abacdcdeeb 77 −15.2919 (331) 244
X101 abacdcebde 15 −0.2462 (64) 12
X102 abacdcebed 31 −1.2883 (75) 26
X103 abacdcedbe 31 0.9424 (74) 10
X104 abacdcedeb 79 6.4131 (298) 42
X105 abacdceebd 35 3.0503 (215) 21
X106 abacdceedb 71 −11.5662 (344) 48
X107dd abacddbeec 43 −4.6573 (345) 77
X108dd abacddceeb 63 12.9775 (341) 58
X109 abacddebce 17 −0.0860 (85) 25
X110 abacddebec 35 1.9248 (204) 20
X111 abacddecbe 33 3.3578 (132) 24
X112 abacddeceb 71 −11.8998 (332) 53
X113dd abacddeebc 39 −4.3847 (322) 16
X114dd abacddeecb 63 11.0641 (343) 54
X115 abacdebcde 7 −0.5974 (52) 12
X116 abacdebced 7 1.8362 (28) 10
X117 abacdebdce 7 0.3292 (27) 10
X118 abacdebdec 15 −3.2721 (55) 10
X119 abacdebecd 15 −0.0751 (53) 10

(Table continued)
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TABLE I. (Continued)

Diagram Vertex repr.
No. of subtr.

terms
Value (error)
including nF

No. of iterations
with 109 sampling
points per iteration

X120 abacdebedc 31 1.8769 (72) 10
X121 abacdecbde 7 −0.8549 (43) 6
X122 abacdecbed 7 −0.7337 (42) 6
X123 abacdecdbe 15 −3.3559 (67) 12
X124 abacdecdeb 29 11.5746 (106) 26
X125 abacdecebd 31 0.8677 (64) 10
X126 abacdecedb 59 −1.5696 (162) 26
X127 abacdedbce 15 1.1412 (46) 10
X128 abacdedbec 31 0.6493 (59) 10
X129 abacdedcbe 31 1.4833 (70) 10
X130 abacdedceb 59 −1.5696 (180) 20
X131 abacdedebc 59 3.1060 (287) 33
X132dd abacdedecb 101 −8.8300 (337) 43
X133 abacdeebcd 17 2.7263 (88) 24
X134 abacdeebdc 33 −0.6712 (123) 23
X135 abacdeecbd 33 0.9256 (153) 22
X136 abacdeecdb 65 −7.5256 (305) 46
X137 abacdeedbc 45 −2.3541 (233) 23
X138 abacdeedcb 85 10.1610 (284) 38
X139dd abbcaddeec 47 14.8650 (348) 104
X140 abbcadeced 39 −2.7901 (206) 21
X141dd abbcadedec 74 −12.5567 (350) 261
X142dd abbcadeecd 43 −1.5767 (341) 66
X143dd abbcadeedc 61 10.3225 (341) 58
X144dd abbccdedea 83 23.7239 (368) 230
X145dd abbccdeeda 67 −18.6212 (349) 115
X146dd abbcdadeec 39 −2.2990 (335) 25
X147 abbcdaeced 15 1.1243 (55) 20
X148 abbcdaedec 31 −1.4150 (76) 21
X149 abbcdaeecd 17 −8.3898 (139) 19
X150dd abbcdaeedc 33 2.8758 (260) 2
X151dd abbcdcedea 87 −10.9362 (344) 68
X152dd abbcdceeda 77 14.6793 (345) 113
X153dd abbcddecea 77 14.8936 (343) 80
X154dd abbcddeeca 67 −20.6285 (342) 90
X155 abbcdeadec 15 5.0341 (46) 20
X156 abbcdeaedc 31 −0.8277 (69) 14
X157 abbcdecdea 32 −11.8490 (252) 18
X158dd abbcdeceda 65 0.4607 (329) 6
X159 abbcdedcea 65 0.4435 (351) 27
X160dd abbcdedeca 116 14.0724 (349) 176
X161dd abbcdeecda 71 7.8073 (342) 68
X162dd abbcdeedca 95 −12.8293 (339) 43
X163 abcabdceed 19 6.8168 (202) 21
X164dd abcabddeec 19 −12.8880 (208) 3
X165 abcabdeced 15 −2.1661 (76) 10
X166 abcabdedce 15 −2.3080 (70) 10
X167 abcabdedec 29 12.1361 (150) 20
X168 abcabdeecd 17 3.4447 (120) 24
X169 abcabdeedc 25 −6.9379 (108) 20
X170 abcacdbeed 39 0.2635 (288) 36
X171dd abcacddeeb 39 −2.5229 (313) 7
X172 abcacdebed 31 1.5601 (76) 26
X173 abcacdedeb 59 0.0193 (298) 48

(Table continued)
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TABLE I. (Continued)

Diagram Vertex repr.
No. of subtr.

terms
Value (error)
including nF

No. of iterations
with 109 sampling
points per iteration

X174 abcacdeebd 35 1.7158 (191) 25
X175 abcacdeedb 51 −1.8253 (175) 19
X176 abcadbceed 7 0.7450 (35) 20
X177 abcadbdeec 15 0.0079 (81) 21
X178 abcadbeced 5 0.7159 (28) 2
X179 abcadbedce 2 −0.4377 (8) 4
X180 abcadbedec 11 0.0284 (25) 4
X181 abcadbeecd 6 −4.4372 (28) 30
X182 abcadbeedc 12 1.2822 (43) 20
X183 abcadcbeed 7 −0.0791 (29) 20
X184 abcadcdeeb 31 0.1973 (134) 25
X185 abcadcebed 5 −0.1269 (16) 10
X186 abcadcedeb 23 1.1883 (21) 10
X187 abcadceebd 6 1.2699 (27) 20
X188 abcadceedb 24 1.7966 (36) 11
X189 abcaddbeec 17 −3.7500 (105) 20
X190 abcaddceeb 33 −2.4966 (217) 20
X191 abcaddebec 13 0.1892 (62) 11
X192 abcaddeceb 25 2.3868 (91) 24
X193 abcaddeebc 15 −4.2570 (84) 19
X194 abcaddeecb 27 −0.6785 (102) 25
X195 abcadebcde 2 −1.0708 (19) 10
X196 abcadebced 2 −2.0432 (20) 6
X197 abcadebdce 2 −0.3848 (8) 2
X198 abcadebdec 5 −2.3533 (26) 2
X199 abcadebecd 5 1.0636 (26) 2
X200 abcadebedc 11 0.0266 (26) 4
X201 abcadecbde 2 −0.4897 (18) 6
X202 abcadecbed 2 1.9313 (17) 6
X203 abcadecdbe 2 0.9061 (10) 4
X204 abcadecdeb 11 −1.9485 (26) 2
X205 abcadecebd 5 −0.9039 (13) 10
X206 abcadecedb 23 1.6836 (23) 10
X207 abcadedbce 5 0.2908 (23) 2
X208 abcadedbec 11 0.5283 (28) 2
X209 abcadedcbe 5 0.1496 (19) 2
X210 abcadedceb 23 0.7803 (19) 10
X211 abcadedebc 23 5.1339 (90) 12
X212 abcadedecb 41 −0.4617 (138) 25
X213 abcadeebcd 6 −2.4516 (29) 20
X214 abcadeebdc 12 0.6801 (39) 20
X215 abcadeecbd 6 0.0724 (24) 20
X216 abcadeecdb 24 −1.3029 (42) 12
X217 abcadeedbc 18 −2.2261 (71) 15
X218 abcadeedcb 30 −1.6396 (84) 25
X219dd abcbaddeec 39 1.3579 (311) 5
X220 abcbadedec 59 −2.5734 (222) 27
X221 abcbadeecd 35 0.6650 (161) 20
X222 abcbadeedc 51 0.8293 (178) 20
X223dd abcbcdeeda 116 17.5168 (349) 128
X224 abcbdadeec 31 2.4729 (110) 20
X225 abcbdaedec 23 0.3434 (39) 10
X226 abcbdaeecd 13 1.0443 (58) 11
X227 abcbdaeedc 25 0.5835 (97) 21

(Table continued)
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TABLE I. (Continued)

Diagram Vertex repr.
No. of subtr.

terms
Value (error)
including nF

No. of iterations
with 109 sampling
points per iteration

X228 abcbdceeda 75 −6.8113 (333) 52
X229dd abcbddaeec 35 −1.9843 (323) 11
X230dd abcbddeeca 71 15.6844 (350) 115
X231 abcbdeadec 11 −0.7737 (28) 10
X232 abcbdeaedc 23 0.4608 (38) 10
X233 abcbdecdea 31 8.6698 (116) 25
X234 abcbdeceda 63 −2.5793 (179) 21
X235 abcbdedaec 23 0.7486 (35) 10
X236 abcbdedcea 63 2.0560 (180) 20
X237 abcbdedeca 113 −12.9913 (363) 154
X238 abcbdeeadc 25 1.2747 (45) 21
X239 abcbdeecda 69 −2.8075 (345) 49
X240 abcbdeedca 93 10.9428 (298) 55
X241dd abccaddeeb 43 13.8142 (357) 134
X242 abccadedeb 68 −10.4867 (377) 183
X243dd abccadeedb 57 3.8891 (336) 44
X244dd abccdadeeb 35 −3.3041 (334) 10
X245 abccdaedeb 27 0.0658 (83) 12
X246 abccdaeedb 29 −0.3959 (174) 20
X247dd abccddaeeb 39 15.9539 (344) 43
X248dd abccddeaeb 31 −1.9165 (278) 2
X249 abccdeadeb 13 4.0116 (46) 20
X250 abccdeaedb 27 −1.0558 (68) 24
X251 abccdedaeb 27 −1.3906 (76) 12
X252dd abccdedeab 56 −10.9091 (343) 31
X253dd abccdedeba 113 17.8437 (352) 221
X254 abccdeeadb 29 2.2265 (175) 20
X255dd abccdeedab 43 8.1598 (340) 6
X256dd abccdeedba 93 −14.0405 (342) 81
X257 abcdabceed 7 5.7475 (51) 11
X258 abcdabdeec 7 −0.5254 (39) 20
X259 abcdabeced 5 0.0053 (27) 10
X260 abcdabedec 5 −0.3958 (20) 2
X261 abcdabeecd 6 6.4046 (30) 20
X262 abcdabeedc 6 −2.2854 (24) 20
X263 abcdacbeed 7 −2.8330 (35) 20
X264 abcdacdeeb 15 4.8826 (64) 12
X265 abcdacebed 5 −0.6756 (20) 2
X266 abcdacedeb 11 0.1206 (23) 10
X267 abcdaceebd 6 −0.6608 (19) 20
X268 abcdaceedb 12 0.1185 (31) 20
X269 abcdadbeec 15 −0.7190 (56) 12
X270 abcdadceeb 31 −1.6881 (97) 25
X271 abcdadebec 11 0.2492 (23) 10
X272 abcdadeceb 23 −0.7285 (32) 10
X273 abcdadeebc 13 −2.0474 (45) 11
X274 abcdadeecb 25 0.8675 (72) 24
X275 abcdaebced 2 −0.7496 (12) 10
X276 abcdaebdce 2 −0.5547 (10) 4
X277 abcdaebdec 2 2.7936 (10) 4
X278 abcdaebecd 5 −0.1577 (23) 10
X279 abcdaebedc 5 0.8399 (15) 2
X280 abcdaecbed 2 −1.0127 (8) 10
X281 abcdaecdeb 5 −1.3732 (25) 2

(Table continued)

TENTH-ORDER ELECTRON ANOMALOUS MAGNETIC … PHYSICAL REVIEW D 91, 033006 (2015)

033006-15



TABLE I. (Continued)

Diagram Vertex repr.
No. of subtr.

terms
Value (error)
including nF

No. of iterations
with 109 sampling
points per iteration

X282 abcdaecebd 5 0.4907 (18) 2
X283 abcdaecedb 11 −0.0427 (23) 2
X284 abcdaedbec 2 −0.2670 (9) 2
X285 abcdaedceb 5 0.0271 (16) 2
X286 abcdaedebc 11 0.8014 (21) 2
X287 abcdaedecb 23 0.2013 (19) 10
X288 abcdaeebcd 6 4.2112 (28) 20
X289 abcdaeebdc 6 −1.5651 (19) 20
X290 abcdaeecbd 6 −3.7763 (23) 20
X291 abcdaeecdb 12 1.5957 (32) 20
X292 abcdaeedbc 12 0.9114 (36) 20
X293 abcdaeedcb 24 −1.2653 (41) 11
X294 abcdbaceed 7 −3.3891 (25) 20
X295 abcdbadeec 7 1.7883 (26) 20
X296 abcdbaeced 5 0.5511 (13) 10
X297 abcdbaedec 5 −0.4696 (16) 10
X298 abcdbaeecd 6 −1.9142 (28) 20
X299 abcdbaeedc 6 −0.2907 (22) 20
X300 abcdbceeda 29 −9.4327 (194) 28
X301 abcdbdaeec 31 −1.3351 (81) 22
X302 abcdbdeeca 59 −1.8294 (223) 30
X303 abcdbeadec 2 0.3341 (7) 2
X304 abcdbeaecd 5 −0.3397 (16) 10
X305 abcdbeaedc 5 0.4715 (14) 2
X306 abcdbeceda 23 0.1228 (55) 20
X307 abcdbedeca 47 −0.3071 (59) 21
X308 abcdbeeadc 6 1.8122 (22) 20
X309 abcdbeecda 26 −4.2448 (173) 20
X310 abcdbeedca 50 0.2490 (191) 21
X311 abcdcabeed 15 −0.5291 (58) 12
X312 abcdcadeeb 31 −1.2454 (139) 14
X313 abcdcaebed 11 0.9660 (38) 4
X314 abcdcaedeb 23 0.8266 (29) 10
X315 abcdcaeebd 13 −1.3728 (43) 20
X316 abcdcaeedb 25 0.0094 (39) 12
X317 abcdcbeeda 59 1.4535 (221) 23
X318dd abcdcdaeeb 62 −8.7568 (343) 59
X319 abcdcdeaeb 47 0.6801 (179) 25
X320 abcdceadeb 11 0.5627 (17) 10
X321 abcdceaedb 23 −0.9005 (26) 10
X322 abcdcedaeb 23 0.9338 (23) 2
X323 abcdceeadb 25 −0.0053 (40) 12
X324 abcdceedab 53 −8.8058 (243) 23
X325 abcdceedba 107 11.5958 (343) 51
X326 abcddabeec 17 −9.0047 (145) 24
X327 abcddaceeb 33 1.5517 (229) 29
X328 abcddaebec 13 −0.2781 (42) 20
X329 abcddaeceb 25 −0.9627 (67) 11
X330 abcddaeebc 15 −4.9591 (88) 14
X331 abcddaeecb 27 4.7241 (127) 25
X332 abcddbaeec 33 3.0539 (161) 25
X333dd abcddbeeca 65 6.8088 (341) 49
X334dd abcddcaeeb 47 5.1727 (340) 23
X335 abcddceaeb 37 −2.0294 (132) 25

(Table continued)
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TABLE I. (Continued)

Diagram Vertex repr.
No. of subtr.

terms
Value (error)
including nF

No. of iterations
with 109 sampling
points per iteration

X336 abcddeabec 6 −0.7685 (20) 20
X337 abcddeaceb 12 −1.2039 (32) 20
X338 abcddeaebc 13 −1.8505 (38) 20
X339 abcddeaecb 25 0.4111 (40) 12
X340 abcddebeca 53 −2.1543 (202) 25
X341 abcddecaeb 24 1.7815 (33) 20
X342dd abcddeeacb 27 2.6063 (125) 0
X343 abcdeabced 2 3.8873 (30) 6
X344 abcdeabdce 2 3.4223 (18) 6
X345 abcdeabdec 2 −1.0075 (18) 4
X346 abcdeabecd 2 0.2864 (20) 6
X347 abcdeabedc 2 −2.6846 (21) 6
X348 abcdeacbed 2 −0.4899 (15) 4
X349 abcdeacdeb 5 2.0800 (36) 2
X350 abcdeacebd 2 1.4643 (11) 4
X351 abcdeacedb 5 0.2554 (20) 2
X352 abcdeadbec 2 −0.1260 (8) 2
X353 abcdeadceb 5 0.1950 (16) 2
X354 abcdeadebc 5 −2.0503 (20) 2
X355 abcdeadecb 11 −1.0738 (25) 2
X356 abcdeaebcd 5 2.0684 (24) 10
X357 abcdeaebdc 5 0.3746 (16) 2
X358 abcdeaecbd 5 0.0463 (16) 2
X359 abcdeaecdb 11 −0.1396 (17) 10
X360 abcdeaedbc 11 −0.4604 (37) 2
X361 abcdeaedcb 23 2.5600 (26) 10
X362 abcdebadec 2 −0.5714 (12) 4
X363 abcdebaecd 2 −2.3442 (19) 4
X364 abcdebaedc 2 2.3957 (18) 4
X365 abcdebceda 11 0.4177 (30) 20
X366 abcdebdeca 23 5.6759 (43) 20
X367 abcdebeadc 5 −0.7176 (12) 10
X368 abcdebecda 23 −0.3404 (45) 20
X369 abcdebedca 47 −3.3812 (59) 21
X370 abcdecadeb 5 −1.4763 (12) 10
X371 abcdecaedb 5 0.0045 (10) 2
X372 abcdecdaeb 11 −1.2900 (33) 2
X373 abcdeceadb 23 0.5851 (24) 2
X374 abcdecedab 47 0.9188 (266) 18
X375 abcdecedba 89 1.0991 (163) 25
X376 abcdedabec 5 1.0484 (16) 2
X377 abcdedaceb 11 0.4264 (27) 2
X378 abcdedaebc 11 1.3196 (21) 2
X379 abcdedaecb 23 −0.3201 (17) 10
X380 abcdedbeca 47 −1.0268 (48) 21
X381 abcdedcaeb 23 1.0861 (29) 2
X382 abcdedeacb 41 −1.7712 (80) 21
X383 abcdeeabdc 6 −4.8034 (22) 20
X384 abcdeeacdb 12 1.9266 (31) 20
X385 abcdeeadbc 12 −0.7427 (19) 20
X386 abcdeeadcb 24 0.6887 (38) 11
X387 abcdeebdca 50 1.9508 (152) 21
X388 abcdeecadb 24 −0.4349 (40) 20
X389 abcdeedacb 30 −0.0433 (68) 25
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APPENDIX A: K-OPERATION, R-SUBTRACTION,
AND (MODIFIED) I-OPERATION ON THE

DIAGRAM X253

This appendix is devoted to the discussion of the diagram
X253 shown in Fig. 2. We describe in some detail the
relation between the standard on-shell renormalization and
the renormalization method adopted by GENCODEN based
on K-operation, R-subtraction, and I-subtraction, using
X253 as an example. Actually, both X253 and X256 are not

entirely typical in the sense that they require a slight
modification of one of the I-subtraction operations encoded
in GENCODEN. The reason why this modification is
required and its resolution will be discussed in detail.
In this appendix, we adopt the following notations.

Internal lepton lines are numbered 1, 2, 3, 4, 5, 6, 7, 8,
9 from left to right, and internal photon lines are numbered
a, b, c, d, e as shown in Fig. 2. Subdiagrams are
represented by the set of indices enclosed in braces. The
subtraction operators are labeled by the indices of the
lepton lines of the subdiagrams: for example, K-operation
applied to the self-energy subdiagram f3; cg is denoted as
K3; R-subtraction applied to the self-energy-like subdia-
gram f5 6 7; d eg is denoted as R567; I-subtraction applied
to the self-energy-like subdiagram f2 3 4 5 6 7 8; b c d eg is
denoted as I19 using the indices of the residual diagram
f1 9; ag, which is obtained by reducing the subdiagram to a
point. For the nested I-subtractions applied to subdiagrams
S1 and S2 where S1 ⊃ S2, the operators are labeled by the
indices in the reduced subdiagrams G=S1 and S1=S2,
respectively. Other cases are denoted in a similar manner
accordingly.

1. Standard renormalization

The diagram X253 has UV divergences arising from the
following subdiagrams: f3; cg, f5 6 7; d eg, f5 6; dg,
f6 7; eg, f2 3 4 5 6 7 8; b c d eg. Recalling that Fig. 2 actually
represents the sumof nine vertex diagrams containing various
subdiagrams of vertex type and self-energy type,we canwrite
the standard renormalization of X253 as follows:

aX253 ¼ MX253 þM30 ð−2L2Þ þM42 ð−B2Þ þM42ð2�Þ ð−dm2Þ þM6b ð−B4a þ 4 L2B2Þ þM6bð2�Þ ð−dm4a þ 4L2 dm2Þ
þM4b fB4a B2 − 2 L2 ðB2Þ2g þM4bð2�Þ fdm4aB2 þ dm2 ðB4a − 4L2 B2Þg þM4bð2��Þ dm2 ðdm4a − 2L2 dm2Þ
þM2 ½−B16 þ 2B6a L2 þ B6c B2 þ B4a fB4b − ðB2Þ2g − 4B4b L2 B2 þ 2 L2 ðB2Þ3 þ dm4a ðB4bð1�Þ − B2 B2�Þ�
þM2 dm2 fB6cð1�Þ − 4L2 B4bð1�Þ − B2�� dm4a − B2� B4a þ 2 L2 ðdm2 B2�� þ 2B2B2� Þg
þM2� dm2 ½dm6cð1�Þ − B4aðdm2� þ B2Þ − dm2�� dm4a − 4L2dm4bð1�Þ þ 2L2fðB2Þ2 þ 2B2 dm2� þ dm2 dm2��g�
þM2� f−dm16 þ 2 dm6a L2 þ dm6c B2 þ dm4a ðdm4bð1�Þ − B2 dm2� Þ þ dm4b ðB4a − 4 L2 B2Þg; ðA1Þ

TABLE II. Residual renormalization constants used to calculate

að10Þe [Set V]. The notation is the same as in Eq. (35).

Integral Value (error)

ΔM10 3.468 (336)
ΔM8 1.738 12 (85)
ΔM6 0.425 8135 (30)
ΔM4 0.030 833 612 � � �
M2 0.5
ΔLB8 2.0504 (86)
ΔLB6 0.100 801 (43)
ΔLB4 0.027 9171 (61)
ΔLB2 0.75
ΔL4� −0.459 051 ð62Þ
ΔL2� −0.75
Δdm6 −2.340 815 ð55Þ
Δdm4 1.906 3609 (90)
Δdm2� −0.75

X253

1 2 3 4 5 6 7 8 9

a

b

c

d e

FIG. 2. Diagram X253.
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where the suffixes 16, 30, and 42 are those identifying
eighth-order subdiagrams [11]. The suffixes 6a, 6b, and 6c
refer to the sixth-order subdiagrams, and 4a and 4b refer to
the fourth-order subdiagrams. The symbols ði�Þ in the
suffixes refer to the diagrams derived by the insertion of a
two-point vertex in the lepton line i. ði��Þ corresponds to
two insertions of vertices. For second-order diagrams, the
parentheses and the index i are omitted for simplicity. See
Ref. [11] for an explanation of other notations. All terms on
the right-hand side of Eq. (A1) contain UV-divergent parts,
and thus some regularization is assumed.

2. Separation of UV divergences by K-operation

The first step is to separate UV-divergent parts of all
terms on the right-hand side of Eq. (A1) from their UV-
finite parts. We carry out this separation by means of
K-operation, starting with MX253.

MX253 has no overall UV divergence. It has only UV
divergences from some subdiagrams. The UV-divergence-
free part MR

X253 of MX253 is defined by the K-operations
as

MR
X253 ¼

X
f∈FðGÞ

�Y
Si∈f

ð−KSi
Þ
�
MX253; ðA2Þ

where the sum is over 24 forests constructed from
the five subdiagrams including the empty forest. Note
that the forest corresponding to K56K67 is absent since
the subdiagrams f5 6; dg and f6 7; eg overlap each
other.
Carrying out the K-operations explicitly (see Sec. III D),

and rewriting the result as an expression of MX253, we
obtain

MX253 ¼MR
X253þM30 ð2LUV

2 ÞþM42 ðBUV
2 ÞþM42ð2�Þ ðdmUV

2 ÞþM6b ðBUV
4a − 4LUV

2 BUV
2 Þ

þM6bð2�Þ ðdmUV
4a − 4LUV

2 dmUV
2 ÞþM4b f−BUV

4a BUV
2 þ 2LUV

2 ðBUV
2 Þ2g

þM4bð2�Þf−dmUV
4a BUV

2 þdmUV
2 ð−BUV

4a þ 4BUV
2 LUV

2 ÞgþM4bð2��Þ dmUV
2 ð−dmUV

4a þ 2LUV
2 dmUV

2 Þ
þM2½BUV

16 − 2BUV
6a LUV

2 −BUV
6cð10ÞB

UV
2 þBUV

4a ð−BUV
4bð10Þ þBUV

2 BUV
200 Þ þ 4BUV

4bð10ÞL
UV
2 BUV

2 − 2LUV
2 ðBUV

2 Þ2BUV
200 �

þM2� ½dmUV
2 f−dmUV

6cð1�Þ þBUV
4a dmUV

2�0 þ 4LUV
2 dmUV

4bð1�Þ− 4LUV
2 BUV

2 dmUV
2�0 gþdmUV

200 fBUV
4a BUV

2 − 2LUV
2 ðBUV

2 Þ2g�
þM2� fdmUV

16 − 2dmUV
6a LUV

2 −dmUV
6cð10ÞB

UV
2 þdmUV

4a ð−dmUV
4bð1�Þ þBUV

2 dmUV
2�0 ÞþdmUV

4bð10Þð−BUV
4a þ 4LUV

2 BUV
2 Þg:

ðA3Þ

Here, the symbol with a primed suffix i0 represents
a quantity obtained by differentiating the amplitude
with respect to zi. For the second-order case the index
is omitted for simplicity (see Ref. [49] for further
explanations).

The next step is to substitute Eq. (A3) into Eq. (A1).
Since the result of this substitution contains eighth-order
terms M30, M42, etc., which are UV-divergent, we must
substitute them by the K-operation results of M30, M42,
etc., listed below:

M30 ¼ MR
30 þ 2dmUV

2 M6bð2�Þ þ 2BUV
2 M6b þ dmUV

6a M2� þ BUV
6a M2 − dmUV

2 ðdmUV
2 M4bð2��Þ þ BUV

2 M4bð2�ÞÞ
− BUV

2 ðdmUV
2 M4bð2�Þ þ BUV

2 M4bÞ − 2dmUV
2 dmUV

4bð1�ÞM2� − 2BUV
2 ðdmUV

4bð10ÞM2� þ BUV
4bð10ÞM2Þ

þ 2dmUV
2 BUV

2 dmUV
2�0 M2� þ ðBUV

2 Þ2ðdmUV
200 M2� þ BUV

200 M2Þ; ðA4Þ

M42 ¼ MR
42 þ 2LUV

2 M6b þ dmUV
4a M4bð2�Þ þ BUV

4a M4b þ dmUV
6c M2� þ BUV

6c M2 − 2LUV
2 ðdmUV

2 M4bð2�Þ þ BUV
2 M4bÞ

− 2LUV
2 ðdmUV

4b M2� þ BUV
4b M2Þ − dmUV

4a dm
UV
2� M2� − BUV

4a ðdmUV
20 M2� þ BUV

20 M2Þ þ 2LUV
2 dmUV

2 dmUV
2� M2�

þ 2LUV
2 BUV

2 ðdmUV
20 M2� þ BUV

20 M2Þ; ðA5Þ

B16¼BUV
16 þBR

16þ2LUV
2

fB6aþdmUV
2 B6cð1�Þ þBUV

2
gB6cð10Þ þ ðdmUV

4a −4dmUV
2 LUV

2 ÞB4bð1�Þ þðBUV
4a −4LUV

2 BUV
2 Þ gB4bð10Þ

þ ð−BUV
2 dmUV

4a −dmUV
2 BUV

4a þ4dmUV
2 LUV

2 BUV
2 ÞB2�0 −dmUV

2 ðdmUV
4a −2LUV

2 dmUV
2 ÞB2�� −BUV

2 ðBUV
4a −2LUV

2 BUV
2 ÞfB200 ;

ðA6Þ
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dm16 ¼ dmUV
16 þ dmR

16 þ 2LUV
2

gdm6a þ dmUV
2

gdm6cð1�Þ þ BUV
2

gdm6cð10Þ þ ðdmUV
4a − 4dmUV

2 LUV
2 Þ gdm4bð1�Þ

þ ðBUV
4a − 4LUV

2 BUV
2 Þ gdm4bð10Þ þ ð−BUV

2 dmUV
4a − dmUV

2 BUV
4a þ 4dmUV

2 LUV
2 BUV

2 Þ gdm2�0

− dmUV
2 ðdmUV

4a − 2LUV
2 dmUV

2 Þdm2�� − BUV
2 ðBUV

4a − 2LUV
2 BUV

2 Þ gdm200 ; ðA7Þ

and so on, where fB6a ≡ B6a − BUV
6a , etc. Note that M30 and M42 have UV divergences coming from subdiagrams but no

overall UV divergences, whereas the renormalization constants B16 and dm16 have overall UV divergences.
Since after the substitution Eq. (A7) still contains M6a, etc., which have UV-divergent subdiagrams, it is necessary to

separate their UV-divergent parts using

M6b ¼ MR
6b þ dmUV

2 M4bð2�Þ þ BUV
2 M4b þ ðdmUV

4b − dmUV
2 dmUV

2� ÞM2� þ BUV
4b M2 − BUV

2 ðdmUV
20 M2� þ BUV

20 M2Þ;
M6bð2�Þ ¼ MR

6bð2�Þ þ dmUV
2 M4bð2��Þ þ BUV

2 M4bð2�Þ þ dmUV
4bð1�ÞM2� − dmUV

2�0 B
UV
2 M2� ; ðA8Þ

B6a ¼ BUV
6a þ BR

6a þ 2ðdmUV
2 B4bð1�Þ þ BUV

2
gB4bð10ÞÞ − dmUV

2 ðdmUV
2 B2�� þ BUV

2 B2� Þ − BUV
2 ðdmUV

2 B2� þ BUV
2

fB200 Þ;
B6c ¼ BUV

6c þ BR
6c þ 2LUV

2
fB4b þ dmUV

4a B2� þ BUV
4a

fB20 − 2LUV
2 ðdmUV

2 B2� þ BUV
2

fB20 Þ; ðA9Þ

dm6a ¼ dmUV
6a þ dmR

6a þ 2ðdmUV
2

gdm4bð1�Þ þ BUV
2

gdm4bð10ÞÞ − dmUV
2 ðdmUV

2 dm2�� þ BUV
2

gdm2�0 Þ
− BUV

2 ðdmUV
2

gdm2�0 þ BUV
2

gdm200 Þ;
dm6c ¼ dmUV

6c þ dmR
6c þ 2LUV

2
gdm4b þ dmUV

4a
gdm2� þ BUV

4a
gdm20 − 2LUV

2 ðdmUV
2

gdm2� þ BUV
2

gdm20 Þ;
ðA10Þ

followed by

M4b ¼ MR
4b þ dmUV

2 M2� þ BUV
2 M2;

M4bð2�Þ ¼ MR
4bð2�Þ þ dmUV

2� M2� ; ðA11Þ

B4a ¼ BUV
4a þ BR

4a þ 2LUV
2 BR

2 ;

B4b ¼ BUV
4b þ BR

4b þ dmUV
2 B2� þ BUV

2 BR
20 ;

B4bð1�Þ ¼ BR
4bð1�Þ þ dmUV

2 B2�� þ BUV
2 B2� ;

dm4a ¼ dmUV
4a þ dmR

4a;

dm4b ¼ dmUV
4b þ dmR

4b þ dmUV
2 dmR

2� þ BUV
2 dmR

20 ;

dm4bð1�Þ ¼ dmUV
4bð1�Þ þ dmR

4bð1�Þ þ dmUV
2 dm2�� þ BUV

2
gdm2�0 ; ðA12Þ

L2 ¼ LUV
2 þ LR

2 ;

B2 ¼ BUV
2 þ BR

2 ;

dm2� ¼ dmUV
2� þ dmR

2� : ðA13Þ

After all UV divergences are separated out by successive K-operations, we can at last express aX253 in terms of UV-finite
quantities only:

aX253 ¼ MR
X253 þMR

30 ð−2LR
2 Þ þMR

42 ð−BR
2 Þ þMR

6b ð−BR
4a þ 4LR

2 B
R
2 Þ þMR

6bð2�Þ ð−dmR
4aÞ

þMR
4b fBR

4a B
R
2 − 2LR

2 ðBR
2 Þ2g þMR

4bð2�Þ dm
R
4a B

R
2

þM2½−BR
16 þ 2BR

6a L
R
2 þ BR

6c B
R
2 þ BR

4a fBR
4b − ðBR

2 Þ2g − 4BR
4b L

R
2 B

R
2 þ 2LR

2 ðBR
2 Þ3 þ dmR

4a ðBR
4bð1�Þ − B2� BR

2 Þ�
þM2�f−dmR

16 þ 2 dmR
6a L

R
2 þ dmR

6c B
R
2 þ dmR

4a ðdmR
4bð1�Þ − BR

2 dm
R
2� Þ þ dmR

4b ðBR
4a − 4LR

2 B
R
2 Þg: ðA14Þ

Note that Eq. (A14) has exactly the same structure as Eq. (A1) but looks simpler because dmR
2 ≡ dm2 − dmUV

2 ¼ 0.
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3. Separation of IR divergences by R-subtraction
and I-subtraction

The integrands of MR
X253, etc., are singular at vanishing

momenta of virtual photons because of the vanishing photon
mass. When the integrands are integrated over all momenta,
these singularities give rise to logarithmic IR divergences (if
enhanced by vanishing denominators of two lepton propa-
gators which are adjacent to the external lines) or linear IR
divergences (if enhanced by three lepton propagators).
To prepare for the numerical integration it is necessary to

separate the IR-divergent parts from the IR-finite parts, and
integrate only the latter parts. Since the sum of all diagrams
of Set V is gauge invariant and finite, IR-divergent parts
cancel out when summed over all diagrams of Set V.
As we have discussed in Ref. [23] and Sec. III E, the IR

divergences in the amplitude MR
X253 can be handled com-

pletely by looking at the self-energy-like subdiagram S of
X253. They areS1¼f2345678;bcdeg,S2 ¼ f5 6 7; d eg,
and S3 ¼ f3; cg. There are two subtraction schemes:
R-subtraction to deal with the linear IR divergence, and
I-subtraction to deal with the logarithmic IR divergence.

(i) R-subtraction annotates M and dm to the whole
diagram G and some of the subdiagrams S, respec-
tively. Following the procedure built into GEN-

CODEN, R-subtraction RS is applied to the
subdiagram S. The reduced diagram G=S gives rise
to a magnetic-moment amplitude of lower order.

(ii) I-subtraction annotates I and M to the whole
diagram G and some of the subdiagrams S, respec-
tively. Then I-subtraction IS is applied to the reduced
diagram G=S, and the subdiagram S gives rise to a
magnetic-moment amplitude of lower order.

(iii) In addition, there are cases where R-subtraction and
I-subtraction occur together.

The diagram X253 has 11 annotated forests. GENCODEN
generates IR-subtraction terms as follows, whereR2−8 is an
abbreviation of R2345678:

annotation subtraction expression

G → M, S1 → dm R2−8 dmR
16M2�

G → M, S2 → dm R567 dmR
4aM

R
6bð2�Þ

G → M, S1 → dm, S2 → dm R2−8R567 dmR
4bð1�Þdm

R
4aM2�

G → I, S1 → M I19 LR
2M

R
16

G → I, S2 → M I123489 LR
6bð2ÞM

R
4a

G → I, S3 → M I12456789 LR
42ð2ÞM2

G → I, S1 → I, S2 → M I19I2348 LR
2L

R
4b1M

R
4a

G → I, S1 → I, S3 → M I19I245678 LR
2L

R
6cð1ÞM2

G → I, S1 → M, S2 → dm I19R567 LR
2 dm

R
4aM

R
4bð1�Þ

G → I, S3 → M, S2 → dm I12489R567 LR
4b2ð2�Þdm

R
4aM2

G→ I, S1→ I, S3→M, S2→dm I19I248R567 LR
2L

R
2�dm

R
4aM2

In the diagram MR
X253, one of the linear IR divergences

occurs when the momentum of the outermost photon a
vanishes. The self-energy-like subdiagram f2 3 4 5 6 7 8;
b c d eg behaves as a self-mass term, because the adjacent
lepton propagators 1 and 9 are almost on the mass shell
in this limit. The reduced diagram f1 9; ag then gives rise to
a magnetic moment M2� , which is linearly IR divergent
because of a two-point vertex insertion.
In K-operation, however, only the UV-divergent part of

the mass renormalization term is subtracted. This is why
Eq. (A14) contains the unsubtracted UV-finite parts of mass-
renormalization terms, such as dmR

16, which gives rise to a
linearly IR-divergent term proportional to M2� . To remove
this linear IR divergence3 we have only to complete the
standard mass renormalization by also subtracting the
remaining part of the mass-renormalization term. This is
the procedure called R-subtraction. For instance, the oper-
ation of R2−8 onMR

X253, implemented in GENCODEN, yields

R2−8MR
X253 ¼ M2�dmR

16; ðA15Þ

where dmR
16 is defined in Eq. (A7).

Once all linear IR divergences are removed by R-sub-
tractions we are left with logarithmic IR divergences. When
the self-energy-like subdiagram S behaves as a magnetic-
moment amplitude of lower order and can be mimicked by a
point (vector) vertex, the outer residual diagram R ¼ G=S
behaves like a vertex diagram and its IR behavior is exactly
the same as that of the vertex renormalization constant
extracted from R. We find several residual diagrams:
f1 9;ag for the residual diagram of S1, f1 2 3 4 8 9; a b cg
for S2, and f1 2 4 5 6 7 8 9;ab d eg for S3, as well as the
combinations of f1 9;ag with the other two.
For R ¼ f1 9; ag, the IR divergence can be extracted by

the I-subtraction

I19MR
X253 ¼ LR

2M
R
16; ðA16Þ

where LR
2 , which is logarithmically IR divergent, is the

UV-finite part of the second-order vertex renormalization
constant L2, and MR

16 is the UV-divergence-free part of the
eighth-order magnetic moment M16.
In addition, I-subtraction works on the linearly IR-

divergent terms such as R567MR
X253. The IR-divergence

subtraction scheme in GENCODEN will give rise to

I19R567MR
X253 ¼ dmR

4aL
R
2M

R
4bð1�Þ; ðA17Þ

I12489R567MR
X253 ¼ dmR

4aL
R
4b2ð2�ÞM2; ðA18Þ

3The linear IR-divergent terms in M2� exactly cancel out
within M2� itself and the analytic value of M2� ¼ 1 is finite. The
cancellation, however, does not occur in the numerical integration
of our parametric integral formula M2� and it suffers from the
linear IR divergence.
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I19I248R567MR
X253 ¼ dmR

4aL
R
2L

R
2�M2: ðA19Þ

It is easy to check that Eq. (A17) gives a correct
IR-divergent term, as expected. It turns out, however, that
the prescription encoded in GENCODEN for the construction
of the subtraction terms (A18) and (A19) has some dis-
crepancy from the formulation that stems from the choice
in the separation of the finite and divergent parts of the term
L�, and it actually induces IR divergence in Eq. (A19).
To understand the reason for this, let us recall the order

of IR divergence I19I248R567MR
X253. The IR divergence

associated with S1 (which corresponds to I19) is a necessary
condition of the IR divergence associated with S3 (which
corresponds to I248), since the reduced subdiagram f1 9; ag
is included in the reduced subdiagram f1 2 4 5 6 7 8 9;
a b d eg. Similarly, the simultaneous IR divergence of I19
and I248 is the necessary condition of the self-mass term of
dmR

4a. This suggests that the diagram X253 should have an
IR divergence of the form

LR
2 ð1; 9ÞL2� ð2; 4; 8Þdm4að5; 6; 7ÞM2ð3Þ; ðA20Þ

where we indicate the lepton lines consisting of each
term in the parentheses. The mass-renormalization term
dm4að5; 6; 7Þ can be exactly removed by K-operation and
R-subtraction as described before.
The I-operation encoded in GENCODEN creates an

IR-subtraction term of the form

LR¼L−LUV−UVdivergencesof subdiagrams ðA21Þ
for the vertex renormalization constant L [see Eq. (32) for
the precise definition]. By the construction of K-operation,
LUV is identified as the maximally contracted term (see
Ref. [22]). When I-subtraction is accompanied by R-
subtraction from the inner part of the diagram, it yields
a term of the form L�, where � stands for the insertion of a
two-point vertex in one of the lepton lines of L. GENCODEN
ignores this difference in the IR-subtraction step and
applies the same rule to L� and L, constructing an IR-
subtraction term of the form

~L�R ¼ L� − L�jmax: contr: − UV divergences of subdiagrams:

ðA22Þ

Note that ~L�R is distinguished from L�R ¼ L�−
ðUV divergences of subdiagramsÞ, where L� does not

suffer from an overall UV divergence as is easily seen
by UV power counting. We may use ~L�R instead of L�R in
order to subtract an IR divergence. The difference simply
results in the additional and finite residual renormalization
terms proportional to ΔL�Δdm that have been correctly
incorporated in our calculation.
For some specific diagrams in which the structure L�

appears inside of another IR-divergent structure LR, the
finite contribution of L�jmax: contr: induces a spurious IR
divergence. To see this, let us go back to our case of X253
and express the contraction structure of L4b2ð2�Þ in
Eq. (A18) symbolically as L4b2ð2�Þ ≡ F0 þ F1 þ F2, where
Fi is the term with i contractions. F2 corresponds to
L4b2ð2�Þjmax . contr: and F0 þ F1 corresponds to ~L4b2ð2�Þ.
The IR-divergence structure of L4b2ð2�Þ can be isolated
by the I19 operation as

I19LR
4b2ð2�Þ ¼ LR

2L2� : ðA23Þ

After the extraction of LR
2 by the I19 operation, the

remaining factor has the contraction structure F0 þ F1,
where F0 and F1 correspond to ~LR

2� and ΔL2� , respectively.
Substituting Eq. (A23) into Eq. (A18), one finds that the
result is different from Eq. (A19) by

LR
2ΔL2�dmR

4aM2; ðA24Þ

which is logarithmically IR divergent due to the presence of
LR
2 . Since L2� is UV finite, there is no LUV

2� to be subtracted
by K-operation. Thus I-operation as defined in GENCODEN
yields a spurious IR divergence forMX253. At present this is
corrected by adding Eq. (A24) to Eq. (A19) manually. This
modification had been adopted in the calculation presented
in Ref. [9].
Note that the spurious divergent term in GENCODEN

emerges first at tenth order. It occurs when there are nested
I-operations and the inner part also involves self-mass
subtraction. Since R-subtractions are applied to fourth- or
higher-order self-energy-like subdiagrams, the total order
of a diagram should be at least ten. There are only two
diagrams in tenth order: X253 and X256.
To summarize, the IR divergences of MR

X253 can be
separated by considering all combination of R- and I-
subtractions. After separating IR-divergent and IR-finite
parts of other terms of Eq. (A14) in the same fashion, we
obtain

aX253 ¼ ΔMX253 þ ΔM16 LR
2 − ΔM42 BR

2 − 2ΔM30 LR
2 − 2ΔM6a ðLR

2 Þ2 þ ΔM6b ð4LR
2 B

R
2 − BR

4aÞ − ΔM6c LR
2 B

R
2

þ ΔM4a f−BR
2 L

R
4b2 þ LR

6bð2Þg þ ΔM4bf−2LR
2 ðBR

2 Þ2 þ 4 ðLR
2 Þ2 BR

2 þ BR
4a ðBR

2 − LR
2 Þg

þM2 dmR
4að− ~LR

4b2ð2�Þ þ BR
4bð1�Þ − B2� BR

2 Þ þM2 ½LR
42ð2Þ − BR

16 þ BR
6c B

R
2 þ 2BR

6a L
R
2 − 4LR

6bð2Þ L
R
2

þ 4LR
4b2 L

R
2 B

R
2 þ BR

4a fBR
4b − LR

4b2 − ðBR
2 Þ2 þ LR

2 B
R
2 g − 4BR

4b L
R
2 B

R
2 þ 2LR

2 ðBR
2 Þ2ðBR

2 − LR
2 Þ�: ðA25Þ
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APPENDIX B: SUMMING UP RESIDUAL
RENORMALIZATION TERMS

OF SET V

1. Preliminary remarks

The total number of residual renormalization terms
contributing to Set V of the tenth-order g − 2 exceeds
11 000. Evaluating these integrals individually and then
combining them into one could become intractable unless
they are organized systematically. Fortunately, it is possible
to express them in terms of lower-order g − 2 and finite
parts of lower-order renormalization constants. In this
appendix we will present our result following the pattern
described for lower-order cases in Appendix A of Ref. [19].
Throughout this article we are concerned only with the

diagrams of q-type, namely, diagrams without closed
lepton loops. Mn, n ¼ 2; 4;…, refers to the magnetic-
moment projection of the sum of the set of unrenormalized
vertex amplitudes transformed by means of the Ward-
Takahashi identity (19), given in the form

M10 ¼
X389
α¼001

ηαMα; M8 ¼
X47
α¼01

ηαMα;

M6 ¼
XH
α¼A

ηαMα; M4 ¼ M4a þM4b; ðB1Þ

where ηα ¼ 1 for the time-reversal-symmetric diagrams
and ηα ¼ 2 otherwise. Quantities, such as Ln, Bn, and dmn,
refer to the on-shell renormalization constants of vertex,
wave-function, and mass-renormalization types. The quan-
tity L2� means a diagram derived from L2 by the insertion

of a two-point vertex in the lepton line. L4� represents the
set of diagrams obtained by the insertion of a two-point
vertex in the lepton lines of L4 in all possible ways. Mn� ,
Ln� , Bn� , and dmn� are defined similarly. Mn�� , Ln�� , Bn�� ,
and dmn�� are the insertion of two two-point vertices in the
lepton lines of Mn, Ln, Bn, and dmn, and so on.
The UV-divergent part of quantities defined by

K-operation is identified by the superscript UV.
Quantities with the superscript R are the UV-finite parts
that remain after all UV-divergent parts, including UV
divergences of subdiagrams, are subtracted out. Symbols
with the prefix Δ mean UV- and IR-finite quantities.
In order to make the process of residual renormalization

transparent it is useful to treat UV-divergence subtraction,
R-subtraction, and IR-divergence subtraction separately,
since K-operation and I-operation correspond to different
divergence structures. Diagrams X253 and X256 require
some modification of I-operation. This is discussed in
Appendix A.

2. Standard on-the-mass-shell renormalization
of Að10Þ

1 [Set V]

The tenth-order magnetic moment Að10Þ
1 [Set V] has

contributions from 389 Ward-Takahashi-summed diagrams
(shown in Fig. 1). In the standard renormalization it can be
written in terms of unrenormalized amplitudes (M10, M8,
M6, etc.) and various renormalization constants as follows:

Að10Þ
1 ½SetV� ¼ Ξ1 þ Ξ2 þ Ξ3 þ Ξ4 þ Ξ5; ðB2Þ

where

Ξ1 ¼ M10 þM8ð−7B2 − 8L2Þ þM6ð−5B4 − 6L4 þ 20B2
2 þ 52B2L2 þ 33L2

2Þ
þM4ð−3B6 − 4L6 þ 24B4B2 þ 32B4L2 þ 34B2L4 þ 44L2L4 − 28B3

2 − 128B2
2L2 − 187B2L2

2 − 88L3
2Þ

þM2ð−B8 − 2L8 þ 8B6B2 þ 12B6L2 þ 16B2L6 þ 22L6L2

þ 4B2
4 − 28B4B2

2 − 96B4B2L2 þ 14B4L4 − 77B4L2
2

þ 14B4
2 þ 112B3

2L2 − 56B2
2L4 þ 308B2

2L
2
2 − 176B2L2L4

þ 352B2L3
2 þ 11L2

4 − 132L4L2
2 þ 143L4

2Þ; ðB3Þ

Ξ2 ¼ M8�dm2ð−1Þ þM6�dm2ð7B2 þ 8L2Þ þM4�dm2ð5B4 þ 6L4 − 20B2
2 − 52B2L2 − 33L2

2Þ
þM2�dm2ð3B6 − 32L2B4 þ 88L3

2 − 44L4L2 þ 4L6 − 24B2B4

þ 187B2L2
2 − 34B2L4 þ 128B2

2L2 þ 28B3
2Þ

þM6dm2ð5B2� þ 12L2�Þ þM4dm2ð3B4� þ 4L4� − 24B2B2� − 68B2L2� − 32L2B2� − 88L2L2� Þ
þM2dm2ðB6� þ 2L6� − 8B2B4� − 16B2L4� þ 28B2

2B2� þ 112B2
2L2� þ 96B2L2B2�

þ 352B2L2L2� − 12L2B4� − 22L2L4� þ 77L2
2B2�

þ 264L2
2L2� − 8B2�B4 − 14B2�L4 − 28L2�B4 − 44L2�L4Þ; ðB4Þ
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Ξ3 ¼ M6�dm4ð−1Þ þM6�dm2dm2� þM4�dm4ð7B2 þ 8L2Þ þM4�dm2dm2�ð−7B2 − 8L2Þ
þM2�dm4ð5B4 þ 6L4 − 20B2

2 − 52B2L2 − 33L2
2Þ þM2�dm2dm2� ð−5B4 − 6L4 þ 20B2

2 þ 52B2L2 þ 33L2
2Þ

þM4dm4ð3B2� þ 8L2� Þ þM4dm2dm2� ð−3B2� − 8L2�Þ
þM2dm4ðB4� þ 2L4� − 8B2B2� − 32B2L2� − 12L2B2� − 44L2L2� Þ
þM2dm2dm2� ð−B4� − 2L4� þ 8B2B2� þ 32B2L2� þ 12L2B2� þ 44L2L2� Þ þM6��dm2

2 þM4��dm2
2ð−7B2 − 8L2Þ

þM2��dm2
2ð−5B4 − 6L4 þ 20B2

2 þ 52B2L2 þ 33L2
2Þ þM4�dm2

2ð−5B2� − 12L2� Þ
þM2�dm2

2ð−3B4� − 4L4� þ 24B2B2� þ 68B2L2� þ 32L2B2� þ 88L2L2� Þ þM4dm2
2ð−3B2�� − 4L2��Þ

þM2dm2
2ð−B4�� − 2L4�� þ 8B2B2�� þ 44L2

2� þ 16B2L2�� þ 12L2B2�� þ 22L2L2�� þ 4B2
2� þ 28B2�L2�Þ; ðB5Þ

Ξ4 ¼ M4�dm6ð−1Þ þM4�dm2dm4� þM4�dm4dm2� þM4�dm2dm2
2� ð−1Þ þM4�dm2

2dm2��ð−1Þ
þM2�dm6ð7B2 þ 8L2Þ þM2�dm2dm4� ð−7B2 − 8L2Þ þM2�dm4dm2�ð−7B2 − 8L2Þ
þM2�dm2dm2

2� ð7B2 þ 8L2Þ þM2�dm2
2dm2��ð7B2 þ 8L2Þ þM2dm6ðB2� þ 4L2�Þ

þM2dm2dm4� ð−B2� − 4L2� Þ þM2dm4dm2� ð−B2� − 4L2� Þ þM2dm2dm2
2� ðB2� þ 4L2� Þ

þM2dm2
2dm2��ðB2� þ 4L2� Þ þM4��dm2dm4ð2Þ þM4��dm2

2dm2� ð−2Þ
þM2��dm2dm4ð−14B2 − 16L2Þ þM2��dm2

2dm2�ð14B2 þ 16L2Þ þM2�dm2dm4ð−8B2� − 20L2�Þ
þM2�dm2

2dm2� ð8B2� þ 20L2�Þ þM2dm2dm4ð−2B2�� − 4L2��Þ
þM2dm2

2dm2� ð2B2�� þ 4L2��Þ þM4���dm3
2ð−1Þ þM2���dm3

2ð7B2 þ 8L2Þ
þM2��dm3

2ð5B2� þ 12L2�Þ þM2�dm3
2ð3B2�� þ 4L2��Þ þM2dm3

2ðB2��� þ 2L2���Þ; ðB6Þ

Ξ5 ¼ M2�dm8ð−1Þ þM2�dm2dm6� þM2�dm4dm4� þM2�dm2dm2�dm4� ð−2Þ þM2�dm2
2dm4��ð−1Þ

þM2�dm6dm2� þM2�dm4dm2
2�ð−1Þ þM2�dm2dm3

2� þM2�dm2
2dm2�dm2��ð3Þ þM2�dm2dm2��dm4ð−2Þ

þM2�dm3
2dm2��� þM2��dm2dm6ð2Þ þM2��dm2

2dm4� ð−2Þ þM2��dm2
4 þM2��dm2dm2�dm4ð−4Þ

þM2��dm2
2dm

2
2� ð3Þ þM2��dm3

2dm2��ð2Þ þM2���dm2
2dm4ð−3Þ þM2���dm3

2dm2� ð3Þ þM2����dm4
2: ðB7Þ

Terms containing self-mass subdiagrams are numerous but can be readily identified since they always accompany some
Bn. For instance, −M8�dm2 accompanies −7M8B2.

3. Treatment of UV divergences by K-operation

Terms listed in Eqs. (B3), (B4), (B5), (B6), and (B7) are all UV divergent. The application of K-operations to each of
these integrals extracts UV-divergent parts. The resulting UV-finite part will be denoted asMR

n , etc. [see Eqs. (27), (30), and
(32)]. K-operations applied to M10, the first term of Eq. (B3), give rise to MR

10:

MR
10 ¼ M10 þM8ð−7BUV

2 − 8LUV
2 Þ þM6ð−5BUV

4 − 6LUV
4 þ 20ðBUV

2 Þ2 þ 52BUV
2 LUV

2 þ 33ðLUV
2 Þ2Þ

þM4ð−3BUV
6 − 4LUV

6 þ 24BUV
4 BUV

2 þ 32BUV
4 LUV

2 þ 34BUV
2 LUV

4 þ 44LUV
2 LUV

4

− 28ðBUV
2 Þ3 − 128ðBUV

2 Þ2LUV
2 − 187BUV

2 ðLUV
2 Þ2 − 88ðLUV

2 Þ3Þ þ � � � ; ðB8Þ

where the remaining terms are not shown explicitly, but can be readily found since the coefficients of all UV-divergent terms
of Eq. (B8) are the same as those of the standard renormalization formula (B2).
Solving Eq. (B8) for M10 and substituting these terms into Eq. (B2), one can express Að10Þ

1 [Set V] in terms of MR
10,

M8, M6, etc. Next, we replace M8 by MR
8 , etc., using Eq. (A24) of Ref. [19]. The result still contains M6, which can be

replaced by MR
6 using Eq. (A14) of Ref. [19], and so on. We also have to extract UV-finite parts of the renormalization

constants Ln, Bn, dmn, etc. In this way we arrive at the expression of Að10Þ
1 [Set V] as the sum of UV-finite

quantities only:
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Að10Þ
1 ½Set V� ¼ MR

10 þMR
8 ð−7BR

2 − 8LR
2 Þ þMR

6 ð−5BR
4 − 6LR

4 þ 20ðBR
2 Þ2 þ 52BR

2L
R
2 þ 33ðLR

2 Þ2Þ
þMR

4 ð−3BR
6 − 4LR

6 þ 24BR
2B

R
4 þ 32LR

2B
R
4 þ 34BR

2L
R
4 þ 44LR

2L
R
4 − 28ðBR

2 Þ3 − 128ðBR
2 Þ2LR

2

− 187BR
2 ðLR

2 Þ2 − 88ðLR
2 Þ3Þ þM2ð−BR

8 − 2LR
8 þ 8BR

6B
R
2 þ 12LR

2B
R
6 þ 16BR

2L
R
6 þ 22LR

2L
R
6

þ 4ðBR
4 Þ2 − 28ðBR

2 Þ2BR
4 − 96BR

2L
R
2B

R
4 þ 14LR

4B
R
4 − 77ðLR

2 Þ2BR
4 þ 14ðBR

2 Þ4 þ 112ðBR
2 Þ3LR

2 − 56ðBR
2 Þ2LR

4

þ 308ðBR
2 Þ2ðLR

2 Þ2 − 176BR
2L

R
2L

R
4 þ 352ðLR

2 Þ3BR
2 þ 11ðLR

4 Þ2 − 132ðLR
2 Þ2LR

4 þ 143ðLR
2 Þ4Þ

þMR
4 dm

R
4 ð3B2� þ 8L2� Þ þM2dmR

4 ðBR
4� þ 2LR

4� Þ þM2dmR
4 ð−12B2�LR

2 − 8BR
2B2� − 44L2�LR

2 − 32BR
2L2� Þ

þM2dmR
6 ðB2� þ 4L2� Þ þM2dmR

4 dm
R
2� ð−B2� − 4L2� Þ þMR

6� ð−dmR
4 Þ þMR

4�dm
R
4 ð7BR

2 þ 8LR
2 Þ

þM2�dmR
4 ð−52LR

2B
R
2 − 33ðLR

2 Þ2 − 20ðBR
2 Þ2 þ 5BR

4 þ 6LR
4 Þ þMR

4� ð−dmR
6 þ dmR

4 dm
R
2� Þ

þM2�dmR
6 ð7BR

2 þ 8LR
2 Þ þM2�dmR

4 dm
R
2�ð−7BR

2 − 8LR
2 Þ þM2� ð−dmR

8 Þ
þM2� ðdmR

4 dm
R
4� þ dmR

2�dm
R
6 − ðdmR

2�Þ2dmR
4 Þ þM2��ðdmR

4 Þ2: ðB9Þ

Note that Eq. (B9) has exactly the same structure as
Eq. (B2). The apparent dramatic simplification of Eq. (B9)
is a consequence of the fact that dmR

2 vanishes according to
the definition of K-operation. This is what one would
expect since all UV-divergent quantities in Eq. (B2) must
cancel out after K-operation is carried out, leaving only
UV-finite pieces with their original numerical coefficients
unchanged.

4. R-subtraction

Eight of the last nine terms of Eq. (B9) containing M2� ,
MR

4� , and MR
6� are linearly IR divergent. The last term

proportional to M2�� is even more singular, being quad-
ratically IR divergent. They are all characterized by the fact
that they contain one of the factors dmR

4 , dm
R
6 , or dm

R
8 ,

which are UV-finite remnants of dm4, dm6, or dm8, after
their UV-divergent parts are removed by K-operation.

Since Að10Þ
1 [Set V] as a whole is IR finite, these IR-

divergent terms must cancel linear or quadratic IR diver-
gences hidden inMR

8 andMR
10. R-subtraction is a procedure

to combine and cancel out corresponding IR divergences of
MR

8 or MR
10 with those of the last nine terms of Eq. (B9),

which amounts to redefining MR
8 and MR

10. The last nine
terms of Eq. (B9) must be dropped after MR

8 and MR
10 are

redefined. This procedure is incorporated into GENCODEN
as its integral part.

5. Separation of IR divergences by I-operation

After linear IR divergences are removed by R-subtrac-
tion we still have to deal with logarithmic IR divergences.
This can be readily handled by I-operation. However, the I-
operation incorporated into the program GENCODEN
requires a slight modification for the diagrams X253 and
X256, which is described in Appendix A.
The result of I-operation can be factorized analytically

into the product of UV-finite parts of the lower-order
renormalization constant and anomalous magnetic
moment, as shown in Eq. (33). The individual UV-finite
terms of Eq. (B9) are expressed as sums of IR-divergent
parts and IR-finite parts (which are indicated by the
prefix Δ). The sums of the finite magnetic-moment
amplitudes of the nth order are given in terms of UV-finite
quantities as follows:

ΔM10 ¼ MR
10 −MR

8L
R
2 −MR

6 ðLR
4 − ðLR

2 Þ2Þ −MR
4 ðLR

6 − 2LR
2L

R
4 þ ðLR

2 Þ3 − 2 ~LR
2�dm

R
4 Þ −M2ðLR

8 − 2LR
2L

R
6 − ðLR

4 Þ2
þ 3ðLR

2 Þ2LR
4 − ðLR

2 Þ4 − 2 ~LR
2�dm

R
6 þ 2 ~LR

2�dm
R
2�dm

R
4 þ 2 ~LR

2�L
R
2 dm

R
4 þ 2LR

2L2�dmR
4 − ~LR

4�dm
R
4 Þ −MR

6�dm
R
4

−MR
4� ðdmR

6 − dmR
4L

R
2 − dmR

2�dm
R
4 Þ −M2� ðdmR

8 − dmR
4�dm

R
4 þ ðdmR

2� Þ2dmR
4 − dmR

2�dm
R
6 − dmR

6L
R
2

þ dmR
2�dm

R
4L

R
2 − dmR

4L
R
4 þ dmR

4 ðLR
2 Þ2Þ þM2��ðdmR

4 Þ2; ðB10Þ

ΔM8 ¼ MR
8 −MR

6L
R
2 −MR

4 ðLR
4 − ðLR

2 Þ2Þ
−MR

2 ðLR
6 − 2LR

4L
R
2 þ ðLR

2 Þ3 − 2 ~LR
2�dm

R
4 Þ

−M2� ðdmR
6 − dmR

2�dm
R
4 − dmR

4L
R
2 Þ

−MR
4�dm

R
4 ; ðB11Þ

ΔM6¼MR
6 −MR

4L
R
2 −M2ðLR

4 −ðLR
2 Þ2Þ−M2�dmR

4 ; ðB12Þ

ΔM4 ¼ MR
4 −M2LR

2 : ðB13Þ

The finite integrals derived from the renormalization
constants are as follows:
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ΔLB8 ¼ LR
8 þ BR

8 − fLR
6 − 2LR

4L
R
2 þ ðLR

2 Þ3gðLR
2 þ BR

2 Þ − fLR
4 − ðLR

2 Þ2gðLR
4 þ BR

4 Þ − LR
2 ðLR

6 þ BR
6 Þ

− fdmR
6 − ðLR

2 þ dmR
2� ÞdmR

4 gð2L2� þ B2� Þ þ 2 ~LR
2�dmR

4 ðLR
2 þ BR

2 Þ − dmR
4 ðLR

4� þ BR
4� Þ;

ΔLB6 ¼ LR
6 þ BR

6 − fLR
4 − ðLR

2 Þ2gðLR
2 þ BR

2 Þ − LR
2 ðLR

4 þ BR
4 Þ − dmR

4 ð2L2� þ B2� Þ;
ΔLB4 ¼ LR

4 þ BR
4 − LR

2 ðLR
2 þ BR

2 Þ;
ΔLB2 ¼ LR

2 þ BR
2 ;

Δdm6 ¼ dmR
6 − LR

2 dm
R
4 ;

Δdm4 ¼ dmR
4 : ðB14Þ

(See Appendix A for the quantities ~LR
2� and ~LR

4� .)

Substituting Eqs. (B10)–(B14) into Eq. (B9), we can transform Að10Þ
1 [Set V] into the sum of terms which are completely

free from UV and IR divergences:

Að10Þ
1 ½Set V� ¼ ΔM10 þ ΔM8ð−7ΔLB2Þ þ ΔM6ð20ðΔLB2Þ2 − 5ΔLB4Þ þ ΔM4ð24ΔLB2ΔLB4 − 28ðΔLB2Þ3 − 3ΔLB6Þ

þM2ð8ΔLB2ΔLB6 − 28ðΔLB2Þ2ΔLB4Þ þM2ð14ðΔLB2Þ4 þ 4ðΔLB4Þ2 − ΔLB8Þ þ 2ΔM4ΔL2�Δdm4

þ 2M2ΔL2�Δdm6 þM2ΔL4�Δdm4 − 16M2ΔL2�ΔLB2Δdm4 − 2M2ΔL2�Δdm2�Δdm4; ðB15Þ

where ΔL4� ¼ LR
4� − ~LR

4� , and ΔL2� ¼ L2� − ~LR
2� . The

values of ΔL2� , ΔL4� , Δdm6, and Δdm2� are listed in
Table II.
Note that the last five terms of Eq. (B15), even though

they contain factors such as Δdm4 and Δdm6, are not
removed by R-subtraction. This is because the factors
ΔL2� and ΔL4� are not IR divergent and thus the R-
subtraction rule does not apply to them. As a matter of
fact, they are indefinite, although finite, since they
depend on how the IR-divergent parts I2� and I4� are

defined. However, this does not cause difficulty since
these terms must be canceled by the corresponding terms
hidden in ΔM10 and ΔM8. Actually, this is an artifact
caused by our definition of R-subtraction and I-operation
adopted in the program GENCODEN, which subtracts only
the IR-divergent parts I2� and I4� instead of the full L2�

and L4� . The value of Að10Þ
1 [Set V] is unambiguous as

long as I-operation is carried out consistently throughout
the calculation.
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