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Magnetic fields produced in collisions of electrically charged particles at relativistic energies are strong
enough to affect the dynamics of the strong interactions. In particular, it induces radiation of vector bosons
by relativistic fermions. I calculate the corresponding spectrum in constant magnetic field and analyze its
angular distribution and mass dependence. As an application, synchrotron radiation of vector bosons by
relativistic plasmas is considered.
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I. INTRODUCTION

It has been known since the pioneering paper of Ambjorn
and Olesen [1] that extremely strong electromagnetic fields
are produced in high energy collisions of charged particles.
In recent years it was realized that these fields have an
important impact on the dynamics of the strong inter-
actions, though their precise structure and dynamics are
being debated [2–7]. In this paper we focus on vector boson
radiation by relativistic particles in an external magnetic
field. In particular, we are interested in real and virtual
photon production, which has important applications to the
phenomenology of heavy-ion collisions [8–10], astrophys-
ics [11] and the physics of intense laser pulses [12].
The real photon radiation rate in vacuum was calculated

in [13] and is given by an infinite sum over the Landau
levels. Based on this result synchrotron radiation from
electromagnetic plasmas was calculated in [14–16]. Pair
production by a photon in an external magnetic field is a
cross channel of the synchrotron radiation. The most
general expression for the pair production probability by
a virtual photon in vacuum is derived in [17]. The results of
[13,17] are especially useful in very strong fields (defined
below) when only a few lowest Landau levels contribute to
the radiation rate. At not-so-strong fields and at ultra-
relativistic energies, summation over the Landau levels is
slowly convergent and is not convenient to deal with (in the
context of heavy-ion physics see [8] for a detailed dis-
cussion of this issue). An alternative efficient method to
calculate the scattering matrix in the ultrarelativistic
approximation was developed by Baier and Katkov (see
e.g. [18] and references therein) and is described in [19].
It is based on the quasiclassical approximation and allows
one to perform explicit summation over the Landau levels
yielding rather simple formulas that are convenient in
numerical and analytical calculations; see e.g. [16].
While synchrotron radiation of real photons is of great
interest in astrophysics, radiation of massive vector bosons
is of interest in heavy-ion collisions and in high intensity
laser physics. Thus, in view of possible applications, it is
very useful to have a compact expression for the synchrotron

radiation of vector bosons. The goal of this paper is to feel
the gap in the literature by calculating the synchrotron
radiation of massive vector bosons and in particular virtual
photons using the quasiclassical method.
In order to calculate the vector meson production rate

we need to know their coupling to quarks. A simple model
inspired by the vector meson dominance is to assume that
coupling of different vector mesons to quarks has the same
structure as the coupling of the photon. The corresponding
terms in the Lagrangian are

Lγ ¼ eq̄γμQqAμ;

Lρ ¼ gρq̄γμτq · ρμ;

Lω ¼ gωq̄γμqωμ; ð1Þ

where q is the SU(2) doublet of u and d quarks, τ are
symmetry generators and Q ¼ diagðqu; qdÞ. Equations (1)
constitute a part of the quark-meson coupling model
[20,21], which is used to describe the nuclear matter. A
similar approach is successfully used for calculation of the
vector meson production at high energy in perturbative
QCD [22,23].
Throughout the paper we employ the ultrarelativistic

approximation that requires the fermion and the vector
boson to be relativistic and assume that the magnetic field
is adiabatic. Let p ¼ ðε; pÞ be the initial fermion four-
momentum and k ¼ ðω; kÞ the vector boson four-
momentum, with m and M their respective masses.
Ultrarelativistic approximation requires that fermion
energy before and after the vector boson emission satisfies
ε ≫ m and ε0 ¼ ε − ω ≫ m. This implies that ε0=ε ≫ m=ε
meaning that the vector boson does not carry away all the
fermion energy. Another implication of the ultrarelativistic
approximation, which is instrumental for the spectrum
derivation in the next section, is that the angular distribution
of the vector boson spectrum is concentrated inside a
narrow solid angle with the opening angle θ around the
fermion direction. This can be seen by examining the
denominator of the outgoing fermion propagator
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ðp − kÞ2 −m2 ≈ −εω
�
m2

ε2
þM2

ω2

ε0

ε
þ θ2

�
: ð2Þ

The same expression appears in the argument of the Airy
function in the formulas for the spectrum (27),(28). Thus,
the radiation cone is determined by the largest among the
small ratios m=ε and

ffiffiffiffiffiffiffiffiffiffi
M2ε0

p
=
ffiffiffiffiffiffiffiffi
ω2ε

p
< M=ω.

The distance between the energy levels of a fermion in a
magnetic field is of the order of eB=ε. If eB ≪ ε2 the
spectrum can be considered as approximately continuous.
This is always true in fields weaker than the Schwinger
field BS ¼ m2=e. In the following I will assume that the
magnetic field strength is such that the quasiclassical
approximation holds, i.e. eB ≪ ε2 (but not necessarily
B < BS).
The paper is structured as follows: In Sec. II A I derive

the vector boson spectrum radiated by a fast fermion
moving in a plane perpendicular to the direction of a
magnetic field and in Sec. II B I analyze its mass depend-
ence. In Sec. III the spectrum is boosted to an arbitrary
frame. Section III is dedicated to synchrotron radiation
from plasma. Conclusions are presented in Sec. V.

II. VECTOR BOSON RADIATION IN THE
REACTION PLANE p · B ¼ 0

A. Calculation of the spectrum

For the calculation of the vector boson spectrum I
employ the method described in [18,19]. I follow the
notations of [19] apart from minor changes. The calculation
is convenient to do in the frame K0 where the fermion’s
momentum is perpendicular to the direction of the magnetic
field. The emission probability per unit time reads [19]

d _w ¼ α

ð2πÞ2
d3k
ω

Z
∞

−∞
dτhR�

2R1ieiΦ; ð3Þ

where α ¼ g2=4π (g stands for e, gρ, or gω), hR�
2R1i denotes

the average over the initial fermion polarization and
summation over the final fermion and boson polarization
and

Φ ¼ ε

ε0
½k · r2 − k · r1 − ωτ� þM2τ

2ε0
; ð4Þ

R ¼ −
ūðp0Þffiffiffiffiffiffi
2ε0

p γ · ϵ�
uðpÞffiffiffiffiffi
2ε

p : ð5Þ

Indexes 1 and 2 are a shorthand notation meaning that the
corresponding quantity is taken at time t1 ¼ tþ τ=2 or
t2 ¼ t − τ=2. The bispinor is normalized as follows:

uðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p
� ðεþmÞφp

ðp · σÞφp

�
; ð6Þ

where φp is a two-component spinor and σ are Pauli
matrices. The four-momentum of the incident fermion can
be written as p ¼ εð1; vÞ. Similarly, I denote

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M2

ω2

s
; ð7Þ

so that the vector boson four-momentum can be written
as k ¼ ðω; kÞ ¼ ωð1; snÞ, where n is a unit vector.
Substituting (6) into (5) I obtain for the transversely
polarized boson

RT ¼ φ�
p0ϵ�T · ðAþ iB × σÞφp; ð8Þ

where the following auxiliary vectors are introduced:

A ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

ε0 þm
εþm

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
εþm
ε0 þm

r � ffiffiffi
ε

pffiffiffiffiffiffi
2ε0

p v; ð9Þ

B ¼
�� ffiffiffiffiffiffiffiffiffiffiffiffiffi

ε0 þm
εþm

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
εþm
ε0 þm

r �
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
εþm
ε0 þm

r
k

�
1

2
ffiffiffiffiffiffi
εε0

p ;

ð10Þ

and ε0 ¼ ε − ω. Multiplying (8) by its complex conjugate
and averaging using the formula hϵT;jϵT;ki¼ðδjk−njnkÞ=2
we get

hR�
T;2RT;1i ¼ A1 · A2 − ðA1 · nÞðA2 · nÞ þ B1 · B2

þ ðB1 · nÞðB2 · nÞ: ð11Þ

Expanding (9),(10) in m2=ε2 and M2=ω2 yields

A ≈
�
1þ ε

ε0

�
v
2
; ð12Þ

B ≈
ω

2ε0

�
−vþ nþm

ε
nþ ðs − 1Þn

�
: ð13Þ

Terms like v1 · n arising in (11) can be simplified using
integration by parts in (3) as follows [19]:

v1 · neiΦ ¼ v2 · neiΦ ¼
�
1þ ωðs2 − 1Þ

2sε

�
eiΦ; ð14Þ

where terms proportional to the total time derivative with
respect to t1, which vanish upon integration over time in
(3), are dropped. Substituting (12),(13) into (11) I derive

hR�
T;2RT;1i ¼

ε02 þ ε2

2ε02
ðv1 · v2 − 1Þ

þ M2

2ω2

ω

ε0

�
ε

ε0
þ ε0

ε

�
þ ω2m2

2ε2ε02
: ð15Þ
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An explicit expression for the fermion trajectory in a plane
perpendicular to the magnetic field yields at small τ:

v1 · v2 ¼ 1 −
m2

ε2
−
1

2
ω2
Bτ

2; ð16Þ

where ωB ¼ eB=ε is the synchrotron frequency. Thus, (15)
takes the form

hR�
T;2RT;1i ¼ −

ε02 þ ε2

2ε02
ω2
Bτ

2 þ M2

2ω2

ω

ε0

�
ε

ε0
þ ε0

ε

�
−
m2

εε0
:

ð17Þ

The longitudinal polarization is described by the four-
vector ϵL ¼ ðs; n̂Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p
, which satisfies ϵ · k ¼ 0 and

ϵ2 ¼ 1. Writing R ¼ −j · ϵ and using the Ward identity
j · k ¼ 0 we have j0 ¼ sj · n implying that

j · ϵL ¼ j0s − j · nffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p
j · n: ð18Þ

Using (6) and (5) produces

RL ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
φ�
p0 ðF þ iσ · GÞφp ð19Þ

and

hR�
L;2RL;1i ¼ ð1 − s2ÞðF2F1 þ G2 · G1Þ; ð20Þ

where

F ¼ 1

2
ffiffiffiffiffiffi
εε0

p ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0 þm

p ½ðε0 þmÞðn · pÞ

þ ðεþmÞðp0 · nÞ�; ð21Þ

G ¼ 1

2
ffiffiffiffiffiffi
εε0

p ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0 þm

p ½ðε0 þmÞðn × pÞ

þ ðεþmÞðn × p0Þ�; ð22Þ

with p0 ¼ p − k. In view of a small factor 1 − s2 in the
right-hand side of (20) we only need to keep terms of the
order 1 in expansion of F and G in powers of m2=ε2 and
M2=ω2. Thus, in view of (14) p · n ≈ ε, p0 · n ≈ ε0 and we
have F ≈ 1, G ≈ − ω

2ε0 n × v. This implies that G1 · G2 ∝
1 − v1 · v2 ∼m2=ε2 can be neglected and we derive

hR�
L;2RL;1i ≈

M2

ω2
: ð23Þ

The expression in the exponent of (3) upon expansion in
τ and then in M=ω becomes

Φ ¼ −
ε

ε0
ωτ

�
1 − sn · vþ ω

2ε
ðs2 − 1Þ þ sω2

B
τ2

24

�

≈ −
ε

ε0
ωτ

�
1 − n · vþ M2

2ω2

ε0

ε
þ ω2

B
τ2

24

�
: ð24Þ

Substituting (17), (23) and (24) into (3) we obtain for the
transverse and longitudinal vector boson production rates

d _wT ¼ α

ð2πÞ2
d3k
ω

×
Z

∞

−∞
dτ exp

�
−
iε
ε0
ωτ

�
1− n · vþ M2

2ω2

ε0

ε
þω2

B
τ2

24

��

×
�
−
ε02 þ ε2

4ε02
ω2
Bτ

2 þ M2

2ω2

ω

ε0

�
ε

ε0
þ ε0

ε

�
−
m2

εε0

�
; ð25Þ

d _wL ¼ α

ð2πÞ2
d3k
ω

M2

ω2

Z
∞

−∞
dτ exp

�
−
iε
ε0
ωτ

�
1 − n · v

þ M2

2ω2

ε0

ε
þ ω2

B
τ2

24

��
: ð26Þ

One can do integrals over τ using Eqs. (A1) and (A3) which
yields the angular distribution of the spectrum

d _wT

dωdΩ
¼ α

π
ω

�
ε0

εωω2
B

�
1=3
�
M2

2ω2

�
ε

ε0
þ ε0

ε

�
εþ ε0

ε0
−
m2

εε0

þ 2ð1 − n · vÞ ε
02 þ ε2

ε02

�

× Ai

�
2

�
εω

ε0ωB

�
2=3
�
1 − n · vþM2ε0

2ω2ε

��
; ð27Þ

d _wL

dωdΩ
¼ α

π
ω

�
ε0

εωω2
B

�
1=3M2

ω2
Ai

�
2

�
εω

ε0ωB

�
2=3

×

�
1 − n · vþM2ε0

2ω2ε

��
; ð28Þ

where we used d3k ¼ sω2dωdΩ ≈ ω2dωdΩ. Notice the
following expression

2

�
1 − n · vþM2ε0

2ω2ε

�
≈ θ2 þm2

ω2
þM2ε0

2ω2ε
; ð29Þ

which appears in the argument of the Airy function. It is
proportional to the denominator of the outgoing fermion
propagator (2) and guarantees emission of the vector boson
into a narrow cone.
Integration over the photon directions is convenient to

do in (25),(26) followed by integration over τ [19].
The result is
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d _wT

dω
¼ −

αm2

ε2

��
1 −

M2

2ωε0
ε2 þ ε02

m2

�

×
Z

∞

z
Aiðz0Þdz0 þ

�
ε

ε0

�
1=3
�
ωB

ω

�
2=3

×
ε2 þ ε02

m2
Ai0ðzÞ

�
; ð30Þ

d _wL

dω
¼ αM2ε0

ω2ε

Z
∞

z
Aiðz0Þdz0; ð31Þ

where

z ¼
�
ε

ε0

�
2=3
�
ω

ωB

�
2=3
�
m2

ε2
þM2

ω2

ε0

ε

�
: ð32Þ

B. Analysis of the spectrum

The vector boson spectrum (30),(31) is a function of ω
and ε. Instead, we can express the spectrum in terms of
the boost-invariant dimensionless quantities X and ξ
defined as follows:

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
e2

m6
ðFμνpνÞ2

s
≈
ωBε

2

m3
¼ eBε

m3
ð33Þ

and

ξ ¼ ω

ωc
; ð34Þ

where

ωc ¼
εX

2
3
þ X

ð35Þ

is the characteristic frequency of the classical photon
spectrum. It is also convenient to denote μ ¼ M=m.
In terms of these variables we can write

z¼ ξ2=3

½2
3
þXð1−ξÞ�2=3þμ2

½2
3
þXð1−ξÞ�1=3ð2

3
þXÞ

X2ξ4=3
; ð36Þ

ε0 ¼ ωc½23 þ Xð1 − ξÞ�
X

: ð37Þ

Because ε0 ≥ 0, it follows from (37) that

ξ ≤
2

3X
þ 1: ð38Þ

When multiplied by ω, (30),(31) yield the radiation power.
Dividing it by 3=2 of the total classical photon radiation
power αm2X2 we represent the spectrum in terms of the
dimensionless quantities

Jλðξ; X; μÞ ¼
ω

αm2X2

d _wλ

dξ
; λ ¼ L; T: ð39Þ

Their explicit form reads as follows:

JT ¼ −
ξ

ð2
3
þ XÞ2

��
1 − μ2

�2
3
þ X

ξX
þ ξX

4
3
þ 2Xð1 − ξÞ

��

×
Z

∞

z
Aiðz0Þdz0

þ ð2
3
þ XÞ2 þ ½2

3
þ Xð1 − ξÞ�2

ξ2=3½2
3
þ Xð1 − ξÞ�1=3ð2

3
þ XÞAi

0ðzÞ
�
; ð40Þ

JL ¼ μ2½2
3
þ Xð1 − ξÞ�

X2ξð2
3
þ XÞ

Z
∞

z
Aiðz0Þdz0: ð41Þ

The Airy function exponentially decays at large values of
its argument, hence the spectrum is suppressed at z ≫ 1.
Variable z as a function of ξ has a minimum z0 at ξ0 that
depends on the values of X and μ. The main contribution to
the spectrum comes from the kinematic region z < 1 which
exists only if z0 < 1. To determine z0 and ξ0 it is convenient
to use instead of ξ an auxiliary variable u:

u ¼ 1

ξ

�
2

3
þ Xð1 − ξÞ

�
; ð42Þ

z ¼ 1

u2=3
þ μ2u1=3ðuþ XÞ

X2
: ð43Þ

The minimum of z as a function of u is located at

u0 ¼
X
8

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32

μ2

s
− 1

!
: ð44Þ

The corresponding value of ξ reads

ξ0 ¼
2
3
þ X

u0 þ X
¼

2
3
þ X

X
8

7þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32

μ2

q : ð45Þ

At μ ≪ 1, corresponding to an almost real photon,

u0 ≈
Xffiffiffi
2

p
μ
; ξ0 ≈ μ

ffiffiffi
2

p 2
3
þ X

X
; μ ≪ 1: ð46Þ

Replacing X ¼ ffiffiffi
2

p
u0μ in (43) we get

z0 ≈
3

2u2=30

; μ ≪ 1: ð47Þ

Thus, the condition z0 < 1 is satisfied only if X > 2.6μ.
Otherwise, the spectrum is exponentially suppressed.
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In the opposite case, which is realized e.g. in production
of high invariant mass dileptons, μ2 ≫ 32 we have

u0 ≈
2X
μ2

; ξ0 ≈
2
3
þ X

X
; μ ≫ 4

ffiffiffi
2

p
: ð48Þ

Comparing with (38), we observe that in this case the
minimum of z is very close to the upper cutoff of the boson
spectrum (i.e. when the boson takes nearly all energy of the
fermion). Using X ¼ u0μ2=2 in (43) we have

z0 ≈
3

u2=30

; μ ≫ 4
ffiffiffi
2

p
: ð49Þ

In this case z0 < 1 is satisfied if X > 2.6μ2 which is a much
stronger condition than in the previous case.
The main contribution to the spectrum arises from z ∼ 1,

which for X and μ satisfying the above constraints and
taking (43) into account happens when u ∼ 1 fairly inde-
pendently from the value of μ. This statement has been
verified numerically. In particular, according to (42) u ∼ 1

means that ξ ∼ 2
3
þ Xð1 − ξÞ. In weak fields X ≪ 1, ξ ∼ 1

and so ω ∼ ωc ∼ εX, while in strong fields X ≫ 1,

ξ ∼ Xε0=ωc [see (37)] implying that ε0 ∼ ω=X ∼ ε=X ∼
m3=eB [19].
These features of the spectrum are seen in Figs. 1–3.

In Fig. 1 the transverse vector boson spectrum as a function
of ξ is shown at different values of X and μ. The transverse
bosons are much more abundantly produced than the
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JT

FIG. 1. Spectrum of transversely polarized vector bosons JT as a function of ξ. (a) μ ¼ 0 and X ¼ 0 (solid line), X ¼ 0.3 (dashed line),
X ¼ 3 (dash-dotted line). (b) μ ¼ 0.3 and X ¼ 0.15 (solid line), X ¼ 0.3 (dashed line), X ¼ 1 (dash-dotted line), X ¼ 10 (dotted lines).
(c) μ ¼ 3 and X ¼ 3 (solid line), X ¼ 10 (dashed line), X ¼ 30 (dash-dotted line), X ¼ 100 (dotted lines). (d) μ ¼ 10 and X ¼ 100
(solid line), X ¼ 400 (dashed line), X ¼ 1000 (dash-dotted line). Notice the different scales of the x and y axes.
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0.020
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FIG. 2. Spectrum of longitudinally polarized vector bosons JL
as a function of ξ at μ ¼ 0.3 and X ¼ 0.15 (solid line), X ¼ 0.3
(dashed line), X ¼ 1 (dash-dotted line), X ¼ 10 (dotted lines).
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longitudinal ones, which can be seen by comparing
Figs. 1(b) and 2. Therefore, Fig. 1 represents approximately
the total spectrum. The general trend observed in all figures
is that the spectrum decreases with increase of μ. At larger μ
it tends to peak around ξ ¼ 1. This is because with an
increase of μ, X also increases, see the text after (48),(49); it
follows from (48) that once X ≫ 1, the typical ξ is about 1.

III. VECTOR BOSON SPECTRUM IN AN
ARBITRARY FRAME

Consider now a reference frame K where fermions have
an arbitrary direction of momentum. It is convenient to
change our notations. We will append a subscript 0 to all
quantities pertaining to the reference frame K0. Thus, for
example, ε0 and ω0 are the fermion and vector boson
energies in K0, whereas ε and ω are the fermion and vector
boson energies in K. Let the y axis be in the magnetic field
direction B ¼ Bŷ and V ¼ Vŷ be the velocity of K with
respect to K0. Then the Lorentz transformation reads

px0 ¼ px; 0 ¼ py0 ¼ γðpy þ VεÞ;
pz0 ¼ pz; ε0 ¼ γðεþ VpyÞ; ð50Þ

kx0 ¼ kx; ky0 ¼ γðky þ VωÞ;
kz0 ¼ kz; ω0 ¼ γðωþ VkyÞ; ð51Þ

B0 ¼ B; ð52Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
. It follows from the second equation

in (50) that

V ¼ −
py

ε
ð53Þ

and

ε0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − p2

y

q
; ω0 ¼

ωε − pykyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − p2

y

q : ð54Þ

Using the boost invariance of k · p we get

1 − n0 · v0 ¼
ωε

ω0ε0
ð1 − n · vÞ; ð55Þ

accurate up to the terms of the order m2=ε2 and M2=ω2.
The transformation of the photon emission rate reads [9]

d _w
dΩdω

¼ 1

γ2ð1þ V cos θÞ
d _w0

dΩ0dω0

¼ ωε0
εω0

d _w0

dΩ0dω0

; ð56Þ

where θ is the angle between the photon momentum k and
the magnetic field, i.e. cos θ ¼ ny. In the last step we used
(53) and (54). d _w0 in the right-hand-side of (56) is given by
(27) and (28) with the replacements ε → ε0, ω → ω0 etc.

IV. VECTOR BOSON RADIATION BY A PLASMA

A system of electrically charged particles in thermal
equilibrium in an external magnetic field radiates vector
bosons at the following rate per unit interval of vector
boson energy dω into a solid angle dΩ:

dN
dtdΩdω

¼2Nc

X
f

Z
dVd3p
ð2πÞ3 fðεÞ½1−fðε0Þ� d _w

dΩdω
; ð57Þ

where the sum runs over all charged particle species in
plasma, and fðεÞ are their distribution functions.
Integration over the fermion momentum can be done using
a Cartesian reference frame span by three unit vectors
e1; e2; n, such that vector B lies in plane span by e1; n.
In terms of the polar and azimuthal angles χ and ψ we can
write

v ¼ vðcos χnþ sin χ cosψe1 þ sin χ sinψe2Þ; ð58Þ

B ¼ Bðcos θn1 þ sin θe1Þ: ð59Þ

The element of the solid angle is do ¼ d cos χdψ . In this
reference frame

py ¼
p · B
B

¼ εvðcos χ cos θ þ sin χ cosψ sin θÞ; ð60Þ

ky ¼
k · B
B

¼ k cos θ; ð61Þ

n · v ¼ v cos χ: ð62Þ

Fermions moving in plasma parallel to the magnetic field
direction do not radiate due to the vanishing Lorentz force.
Taking into account that at high energies fermions radiate

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14
JT

FIG. 3. Spectrum of transversely polarized vector bosons JT as
a function of μ at ξ ¼ 1 and X ¼ 0.3 (solid line), X ¼ 1 (dashed
line) and X ¼ 3 (dashed-dotted line).
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mostly into a narrow cone with the opening angle χ ∼
m=ε;M=ω [see (2)], we conclude that vector boson
radiation at angles θ ≲m=ε;M=ω can be neglected.
Thus, expanding at small χ we obtain from (54),(60)

ε0 ≈ ε sin θ; ω0 ≈ ω sin θ; θ >
m
ε
;
M
ω
: ð63Þ

Omission of terms of order m=ε, Mω is consistent with the
accuracy of (27),(28). Dependence of the integrand of (57)
on the fermion direction specified by the angles χ, ψ comes
only through (55), viz.

1 − n0 · v0 ¼
1

sin2 θ

�
1 − cos χ þ m2

2ε2

�
: ð64Þ

For this reason, integration over the quark momentum
directions is similar to the one that led us from (25), (26) to
(30), (31) (in the K0 reference frame). Writing (57) as

dN
dtdΩdω

¼ 2Nc

ð2πÞ3
X
f

Z
dV
Z

∞

ω
dεε2fðεÞ½1 − fðε0Þ�

×
X
λ¼L;T

Z
do

d _wλ

dΩdω
ð65Þ

and substituting (56), (25), (26) (with appropriate notation
changes as described in Sec. III) and (63) we integrate first
over do and then over τ with the following result

Z
do

d _wT

dΩdω
¼ −

αm2

ε2
sin2θ

��
1 −

M2

2ωε0
ε2 þ ε02

m2

�

×
Z

∞

zθ

Aiðz0Þdz0þðsin θÞ2=3
�
ε

ε0

�
1=3

×

�
ωB

ω

�
2=3 ε2 þ ε02

m2
Ai0ðzθÞ

�
; ð66Þ

Z
do

d _wL

dΩdω
¼ αM2ε0

ω2ε
sin2θ

Z
∞

zθ

Aiðz0Þdz0; ð67Þ

where

zθ ¼ ðsin θÞ−2=3
�
ε

ε0

�
2=3
�
ω

ωB

�
2=3
�

m2

ε2 sin2 θ
þM2

ω2

ε0

ε

�
:

ð68Þ
If the magnetic field is a slow function of time and/or

coordinates one can adopt an adiabatic approximation and
integrate (66) and (67) over the time and space which yields
the total vector boson multiplicity spectrum radiated into a
unit solid angle. This is the formula that has been recently
employed in [24] for the calculation of the synchrotron
radiation of real photons in heavy-ion collisions, which is
one of the outstanding problems in high energy nuclear
physics [25–32].

For practical applications in relativistic heavy-ion phe-
nomenology it is customary to represent the boson spectra
as functions of rapidity y and transverse momentum k⊥
with respect to the collision axis z, in place of energy ω and
emission angle θ with respect to the magnetic field. Let α
and ϕ be the polar and azimuthal angles of the boson with
respect to the collision axis. They are related to ω and θ as
follows [8]:

ω ¼ k⊥ cosh y; cos θ ¼ sinϕ
cosh y

: ð69Þ

The differential boson multiplicity can be represented as

dN
dVdtd2k⊥dy

¼ dN
dVdtωdωdΩ

; ð70Þ

where one should substitute (69) in the right-hand side
of (70).
In deriving (65)–(68) we assumed that plasma is rela-

tivistic, i.e. that fermion energy satisfies ε ∼ T ≫ m.
This condition must hold not only for the current mass
m, but also for the temperature-dependent contribution that
fermions receive due to their interaction with the plasma.
Evidently, this contribution must be small compared to
the plasma temperature. This is true in a weakly coupled
plasma, such as the electromagnetic plasma, because
fermion mass receives a correction of order gT ≪ T, where
g is the coupling constant. As far as the quark-gluon plasma
is concerned, the coupling g is not small at temperatures
relevant in experiment. In practice, effective quark and
gluon masses are treated as free parameters in models
describing the quark-gluon plasma. Under such circum-
stances accuracy of the ultrarelativistic limit used to derive
(65)–(68) depends on a particular model used to describe
the plasma dynamics.

V. SUMMARY

In this paper we used the quasiclassical method to derive
the synchrotron radiation rate of massive vector bosons
including virtual photons. The main result is expressed in
formulas (27)–(32) that give the vector boson radiation rate
by a relativistic electrically charged fermion. They describe
the spectrum and the angular distribution of ultrarelativistic
vector bosons. Our analysis of the mass dependence of the
synchrotron spectra revealed that with increase ofM, spectra
become increasingly monochromatic with energy ωc, given
by (35). A more detailed structure is shown in Figs. 1 and 2.
Equations (27)–(32) can be directly applied to inves-

tigate the space-time structure of a magnetic field and its
dynamics in experiments with intense laser beams. In view
of possible applications in high energy nuclear physics
and in astrophysics, we derived a vector boson spectrum
(65)–(68) radiated by a relativistic plasma. These equations
can be used, for example, to evaluate a contribution of
synchrotron radiation to the dilepton spectrum produced in
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relativistic heavy-ion collisions at k⊥ > M and y ¼ 0 and
compare with the experimental data reported in [33].
These and other applications deserve full consideration

in separate publications.
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APPENDIX: SOME USEFUL INTEGRALS
INVOLVING THE AIRY FUNCTION AiðzÞ

In the following integrals a, b are real numbers and
z ¼ a=ð3bÞ1=3:

1

2π

Z
∞

−∞
e−i½aτþbτ3�dτ ¼ 1

ð3bÞ1=3AiðzÞ; ðA1Þ

1

2πi

Z
∞

−∞
τe−i½aτþbτ3�dτ ¼ 1

ð3bÞ2=3Ai
0ðzÞ; ðA2Þ

1

2π

Z
∞

−∞
τ2e−i½aτþbτ3�dτ ¼ −

z
3b

AiðzÞ; ðA3Þ

1

2πi

Z
∞

−∞

1

τ
e−i½aτþbτ3�dτ ¼

Z
∞

z
Aiðz0Þdz0: ðA4Þ
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