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The spectral dimension ds for high energies is calculated using the Relativistic Schrödinger Equation
Analytically Continued (RSEAC) instead of the so-called Telegraph’s equation (TE), in both ultraviolet
(UV) and infrared (IR) regimens. Regarding the TE, the recent literature presents difficulties related to its
stochastic derivation and interpretation, advocating the use of the RSEAC to properly describe the
relativistic diffusion phenomena. Taking into account that the Lorentz symmetry is broken in UV regime at
Lifshitz point, we show that there exists a degeneracy in very high energies, meaning that both the RSEAC
and TE correctly describe the diffusion processes at these energy scales, at least under the spectral
dimension criterion. In fact, both the equations yield the same result, namely, ds ¼ 2, a dimensional
reduction that is compatible with several theories of quantum gravity. This result is reached even when one
takes into account a cosmological model, as for example, the de Sitter universe. On the other hand, in the IR
regimen, such degeneracy is lifted in favor of the approach via TE, due to the fact that only this equation
provides the correct value for ds, which is equal to the actual number of spacetime dimensions, i.e., ds ¼ 4,
while RSEAC yields ds ¼ 3, so that a diffusing particle described by this method experiences a
three-dimensional spacetime.
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The classical diffusion equation (CDE) has been studied
in a broad context ranging from problems in thermal,
electrical, and nuclear engineering, passing by biological
ones such as the diffusion of nutrients in the ocean [1],
to social and economic issues like the diffusion of new
products on the market [2]. In nuclear physics, the neutron
flux in a nuclear reactor can be obtained from the CDE
solution involving both spatially and temporally variable
parameters of diffusion, which also includes terms of
absorption and production of neutrons (sinks and sources).
This solution is quite well known and provides the balance
of the particle average number in an infinitesimal volume of
the material, which encloses the reactor core for non-
relativistic (slow, thermal) neutrons [3]. However, when
one goes to systems with relativistic velocities or high
energies, which occur in astrophysical and cosmological

scenarios, there is still no agreement about the form of
the diffusion equation itself, as well as on the physical
interpretation of their solutions based on microscopic
stochastic collisions [4].
The first detailed studies on relativistic diffusion proc-

esses were carried out independently by Rudberg in 1957
[5], and Schay in 1961 [6]. But it was only in the middle
1980’s that the relativistic diffusion drawn more attention,
when one has considered the possibility of extending
microscopic and stochastic mechanisms to the framework
of the special relativity. According to those authors, any
relativistic generalization of CDE with constant coefficients
should be at least of second order in time. Besides this term,
the so-called Telegraph’s equation (TE) preserves all the
CDE terms. This commonly used relativistic diffusion
equation can be formally obtained by simply replacing
in CDE the Laplacian operator by the d’Alambertian one,
with the temporal variable becoming the proper time.
A stochastic, i.e., random walk based derivation of TE
shows that it is given by
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β
∂2ρðx;x0; τ; τ0Þ

∂τ2 þ ∂ρðx;x0; τ; τ0Þ
∂τ ¼ DΔρðx;x0; τ; τ0Þ;

ð1Þ

where D is the diffusion coefficient dependent on the
propagation speed, which cannot be arbitrarily large as in
CDE; Δ is the Laplacian operator, which in curved spaces

is given by Δ≡ jgj−1=2∂iðjgj1=2gij∂jÞ and corresponds to

the Laplace-Beltrami operator, and β > 0 is the relaxation
time parameter, that also measures the correlation in
microscopic motion, namely, how each particle continues
to move itself in the same direction as previously. Such
quantity introduces memory leading to a non-Markovian
process [7] arising from the random structure of TE.
A recently published paper [8] points out difficulties

related to the stochastic derivation and interpretation of
TE, advocating the use of another equation to properly
describe relativistic diffusion phenomena. This equation is
built from the relativistic kinetic energy operator for a free
massive particle described in quantum mechanics, given
byK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
−m, identifyingp2 with−Δ andK with

i∂=∂t (c ¼ ℏ ¼ 1), and after this, doing a Wick rotation,
t → −iτ. The obtained equation is called Relativistic
Schrödinger Equation Analytically Continuated (RSEAC),
and it seems to describe diffusion processes in high energies
without ambiguities, better than the TE, since the stochastic
process associated to the former does not present sharp
(singular) propagating wavefronts which arises in the latter.
Besides this, the RSEAC also describes a non-Markovian
diffusion process.
In very high energies (possibly at Planck scale or

beyond), some fundamental theories require the Lorentz
symmetry breaking, and a natural question that arises is
about the correct diffusion equation at these scales, since
that we would have a type of nonrelativistic behavior
again. The Hořava-Lifshitz theory, for example, is
a recent attempt to quantize gravity [9–11], whose
renormalizability via power-counting is warranted
through anisotropy between space and time directions
existing at ultraviolet (UV) scales. Such anisotropy is
implemented by means of scaling differently time and
space, in the form t → azt and xi → axi, where a is a scale
factor and z is a dynamical critical exponent that
goes to the unity at large distances. As expected,this
theory restores general relativity at the IR region. In a
d-dimensional space, the renormalizability of the theory is
warranted for z ¼ d, at least.
In this paper, we will compare the two relativistic

diffusion mechanisms described by RSEAC and TE, by
calculating the spectral dimension associated to them, in
both UVand IR regimens. This quantity can be interpreted
as an effective spacetime dimension experienced by a
diffusing particle.

In a seminal papers, Hořava [11] used the TE to calculate
the spectral dimension of the Universe, finding the follow-
ing result

ds ¼ 1þ d
z
; ð2Þ

so that at UV scale, ds ¼ 2, and at IR one, ds ¼ 4. This
expression does not depend on any temporal parameter,
although it is possible to obtain a continuous interpolation
between these two limits through the diffusion time [12].
Then, we will employ the Hořava’s procedure to obtain the
spectral dimension in these limits, now considering in this
analysis the RSEAC. The calculations will also be per-
formed by taking into account the cosmological evolution
for a flat universe at UV scale, using the model which is
possibly associated with its inflationary phase—the de
Sitter one, which is also compatible with the Hořava-
Lifshitz gravity as shown in masato.
Let us calculate the spectral dimension of the spacetime

using a diffusion law different from that one employed in
Hořava’s paper [11] and generalized in [13]. The principle
behind this is that at very short distances the spacetime
behaves as a microscopically chaotic and discrete system,
with its evolution obeying purely stochastic laws. Then,
instead of TE we assume that, in the continuum limit, the
mathematical law governing this kind of process is the
RSEAC, which is given by [8]

∂ρðx;x0; σÞ
∂σ ¼ ðm −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − Δ

p
Þρðx;x0; σÞ; ð3Þ

where σ is an external temporal parameter and m is related
to the diffusion coefficient. When m ¼ 0, we have the
fractional Schrödinger equation analytically continued
[14]. The isotropic point-source solution of Eq. (3) is
given by

PðσÞ ¼ ρðx;x0; σÞjx¼x0

¼ Cd

Z
∞

0

kd−1 exp
h
σðm −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
Þ
i
dk; ð4Þ

which is integrated in the momenta space and Cd is a
constant which depends on the spatial topological dimen-
sion, d. The Lorentz symmetry breaking predicted in the
Hořava-Lifshitz theory will be considered by introducing
the dynamical critical exponent, z, in Eq. (4) in such a way
that k2 → k2z.
Next, we calculate the spectral dimension, ds, by means

of its definition

ds ¼ −2
d logPðσÞ
d log σ

: ð5Þ

For our purpose, it is convenient to rewrite the spectral
dimension (5) as
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ds ¼ −
2σ

PðσÞ
dPðσÞ
dσ

: ð6Þ

Then, substituting Eq. (4) into Eq. (6), we get

ds ¼ −
2σ

R
∞
0 kd−1gðkÞ exp½σgðkÞ�dkR∞
0 kd−1 exp½σgðkÞ�dk ; ð7Þ

where gðkÞ ¼ ðm −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þm2

p
Þ.

A numerical analysis of Eq. (7) shows that, in UV limit,
when z ¼ d and σ → 0, we have ds ¼ 2 for any value ofm.
This is in total agreement with the result found in [11] as
well as with several other quantum gravity theories ([15]
and references therein).
In what follows, we modify the diffusion equation by

introducing the Laplace-Beltrami operator, in order to
consider the Friedman-Robertson-Walker (FRW) metric,
which can be written, in isotropic coordinates [16], as

ds2 ¼ −dt2 þ a2ðtÞ
ð1þ κr2=4Þ2 δijdx

idxj; ð8Þ

Taking into account the spacetime anisotropy via k2 → k2z,
in the background spacetime given by Eq. (8), we can write
the solution of Eq. (3) as

PðσÞ ¼ Cd

Z
∞

0

kd−1 exp
h
σðm −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ a−2ðσÞk2z

q
Þ
i
dk;

ð9Þ
in which we considered t≡ σ and κ ¼ 0. Now let us
consider a FRW cosmological model compatible with the
Hořava-Lifshitz gravity—the de Sitter model [17], which
probably prevailed in the primordial universe, during the
inflationary phase, which means, at very high energy
scales. In this model the scale factor varies as

aðσÞ ¼ a0 exp ðH0σÞ: ð10Þ
Plugging the above equation into Eq. (9) and this into
Eq. (6), the numerical analysis still yields ds ¼ 2, where
σ → 0, z ¼ d (UV regimen), for every m, a0, and H0 (all
greater than zero). In particular, if we make the same
analysis for TE, from this cosmological point of view, we
obtain an identical result.
On the other hand, without taking into account any

cosmological model, in the IR limit (d ¼ 3, z ¼ 1, and
σ → ∞) we obtain ds ¼ 3. This is an unexpected result,
since that the correct spectral dimension value should be
ds ¼ 4, which is the actual number of spacetime topologi-
cal dimensions, as it was found in the Hořava’s paper [11].
Thus, under this point of view, the RSEAC fails at the IR
scale, since the diffusing particle that it describes continues

experiencing a spacetime with reduced dimension at low
energies, which means that this method is not appropriate to
describe diffusion processes in the IR region.
In summary, we have considered that the RSEAC could

correctly describe relativistic processes of diffusion, as it is
claimed in the recent literature [8]. In fact, we have showed
that this is not true for all energy scales, by calculating the
spectral dimension of the Universe using this equation,
instead of that one usually employed in relativistic diffusion
models, namely, the Telegraph’s equation (TE). By means
of a numerical analysis, we found that ds ¼ 2 at UV scale,
i.e., when the diffusion time (σ) tends to zero and the
anisotropic parameter (z) is numerically equal to the space
topological dimension. With this, we can assert that there
exists a degeneracy in very high energies, since that the
two relativistic diffusion models provide the same spectral
dimension, at least in those theories in which the Lorentz
symmetry is broken at UV scale, as it is in the Hořava-
Lifshitz gravity.
The calculations were also performed taking into account

the de Sitter cosmological model, by considering the
corresponding FRW metric in RSEAC, and they have given
the same result. The mentioned degeneracy was reinforced
when we did the same procedure, mutatis mutandis, by
introducing de Sitter model in TE with anisotropic scaling,
again obtaining ds ¼ 2. Then Hořava’s work [11] was
extended by adding this cosmological feature.
At IR scale, namely, when σ → ∞, d ¼ 3, and z ¼ 1,

where we no longer consider cosmological models, our
approach gave the result ds ¼ 3 for the RSEAC, which is
totally unsatisfactory, since the expected value should be
equal to the actual number of topological dimensions of
the physical spacetime. This shows up that the dimensional
reduction remains, even in low energies. In fact, the
expected value (ds ¼ 4) happens when one uses the TE
in the context of different quantum gravity approaches [15].
From the obtained results, we conclude that the claim

that the method based on the RSEAC provides a suitable
description of diffusion phenomena is not valid in the
general sense. The RSEAC is free from singularities with
respect to wavefronts that it describes and the TE is not.
On the other hand, the former fails in the IR region while
the latter gives a correct result regarding the spectral
dimension. The inconsistences of both equations certainly
indicate that a proper generalized method without the
specific difficulties of the RSEAC and TE, which must
contain the positive points of both methods, should be
constructed in order to get a correct description of diffusion
phenomena at different energy scales.
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