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For a special value of the mass, a massive graviton on de Sitter space acquires an enhanced scalar gauge
symmetry, and is called partially massless. The partially massless graviton possesses a duality invariance
akin to electromagnetic duality. We display this duality in its manifestly local and covariant form, in which
it acts to interchange the first-order field equations and Bianchi identities of a gauge invariant field strength.
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I. INTRODUCTION

The action for a free massive graviton of massm, carried
by a symmetric tensor hμν, propagating on a background
3þ 1 dimensional de Sitter space gμν with cosmological
constant Λ, and coupled to a source Tμν is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∇λhμν∇λhμν þ∇λhμν∇νhμλ

−∇μh∇νhμν þ
1

2
∇μh∇μhþΛ

�
hμνhμν −

1

2
h2
�

−
1

2
m2ðhμνhμν − h2Þ þ hμνTμν

�
: ð1:1Þ

When the graviton mass takes the special value

m2 ¼ 2Λ
3
; ð1:2Þ

the theory has an enhanced gauge symmetry

δhμν ¼ ∇μ∇νϕþ Λ
3
gμνϕ; ð1:3Þ

with a scalar gauge parameter ϕ, provided the source
satisfies the conservation condition

∇μ∇νTμν þ Λ
3
Tμ
μ ¼ 0: ð1:4Þ

A massive graviton with the special value (1.2) is known as
a partially massless graviton [1–8]. It propagates 4 healthy/
unitary degrees of freedom, one fewer than the 5 polar-
izations of a generic massive spin-2, because the longitudinal
polarization is eliminated by the gauge invariance (1.3).
The partially massless theory is of interest as a gravi-

tational theory because the relation (1.2), enforced by the
gauge symmetry (1.3), ties the value of the cosmological
constant to the value of the graviton mass. Since the
graviton mass can itself be naturally small due to the

enhanced diffeomorphism invariance of general relativity
at m ¼ 0 [9,10], this offers an attractive avenue towards
solving the cosmological constant problem. Unfortunately,
there are obstructions to realizing a fully nonlinear theory
with these properties [11–15].
The partially massless theory possesses many features

that are more akin to photons than to gravitons, including
conformal invariance and null propagation in four dimen-
sions [16], a scalar gauge invariance (1.3), the existence
of a one-derivative gauge invariant field strength [17],
and the aforementioned difficulties with nontrivial self-
interactions. Another photonlike feature recently uncovered
in [18] will be our focus: an electromagneticlike duality
invariance.1

Electromagnetic duality has its origins almost a century
ago [30,31], and has ever since been the inspiration for
vast generalizations which lie at the root of many of
the advances of modern theoretical physics (see e.g. the
reviews [32–34]). Electromagnetic duality is a symmetry of
the sourceless Maxwell action in 3þ 1 dimensional flat
space [22,35]. However, its action on the dynamical
variables of the theory (the components of the gauge
potential Aμ) is (spatially) nonlocal and not manifestly
Lorentz invariant. Acting on the gauge invariant field
strength Fμν≡∂μAν−∂νAμ, the duality symmetry becomes
local and is manifestly Lorentz invariant, rotating the field
strength into its dual: δFμν ¼ ~Fμν ≡ 1

2
ϵμν

λσFλσ. The equa-
tions of motion can be written in manifestly duality
invariant first-order form: d ~F ¼ 0, dF ¼ 0. The first
equation is the field equation and the second equation is
a Bianchi identity that ensures that Fμν can be written in
terms of the potential Aμ. In terms of a spaceþ time
decomposition, the antisymmetric field strength Fμν

decomposes into the familiar electric and magnetic fields:
a spatial vector Ei ¼ Fi0 and an antisymmetric tensor
Bij¼Fij which can be dualized to a vector Bi¼ 1

2
ϵijkBjk.

Duality then acts to rotate the two vectors into each other:

*khinterbichler@perimeterinstitute.ca

1Although it was first known for the photon, duality extends
quite widely to other free massless fields on flat space in various
dimensions, including higher p-forms [19–21], linearized gravity
[22–24] and higher spins and representations [25–29].
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δEi ¼ −Bi, δBi ¼ Ei. This is the form in which electro-
magnetic duality is traditionally known, as a symmetry of
the first-order gauge invariant equations of motion for the
field strength. Duality symmetry is broken in the presence
of sources, but it is in this first-order form that the
introduction of magnetic sources (monopoles) becomes a
natural way to restore the duality invariance.
In [18], it was shown that the partially massless graviton

has a Maxwell-like duality invariance. The duality is
displayed there as a symmetry of the action in which all
the gauge symmetry and auxiliary fields are stripped away.
This form of the action is advantageous for seeing clearly
the physical degrees of freedom and their dynamics.
However, locality and de Sitter invariance are obscured;
the action of the duality symmetry on the dynamical
variables hμν is spatially nonlocal, and the de Sitter
invariance is not manifest. Here, we will display the duality
in manifestly gauge invariant and de Sitter invariant form,
at the level of the equations of motion. Analogously to
electromagnetic duality, it will manifest as a rotation
between the first-order equations of motion for the gauge
invariant field strength and its Bianchi identities.
Note that writing the equations of motion in duality

covariant form cannot by itself establish duality invariance
of the action. [In fact, as in electromagnetism, the source-
less equations will be invariant under a larger GL(2) group
of transformations between the field and its dual, whereas
the action is only invariant under SO(2) transformations.]
The 3þ 1 formulation of [18] establishes invariance of the
action, in terms of the relevant unconstrained physical
variables, at the unavoidable price of losing manifest (but of
course not underlying) dS invariance. Nevertheless, writing
the equations in duality covariant form complements the
3þ 1 analysis and completes the analogy to electromag-
netism. In particular, it will allow us to see how to introduce
magnetic sources, which cannot be introduced locally into
the free action but may play a role in any eventual nonlinear
completion of the theory.

II. PARTIALLY MASSLESS FIELD EQUATIONS
IN DUALITY COVARIANT FORM

The field equations coming from (1.1) are

□hμν −
4

3
Λhμν þ∇μ∇νh −∇μ∇λhνλ −∇ν∇λhμλ

þ gμν

�
∇λ∇σhλσ −□hþ Λ

3
h
�

¼ 0: ð2:1Þ

Duality is only a true symmetry of the action in the absence
of a source, so we have set Tμν ¼ 0. We comment more on
sources in Sec. IV.
Wewant to show that the equations (2.1) for the potential

hμν are equivalent to a manifestly duality invariant and
gauge invariant set of equations for a field strength. Like in
electromagnetism, these should divide into field equations

which reproduce (2.1), and Bianchi identities which tell us
that the field strength can be written in terms of a potential.
The duality should interchange the field equations with the
Bianchi identities.
The appropriate field strength for a partially massless

graviton is [17]

Fμνλ ¼ ∇μhνλ −∇νhμλ; ð2:2Þ

which is invariant under (1.3). Like the Maxwell field
strength of the photon, it is written as a first derivative of the
gauge potential and is gauge invariant. It is antisymmetric
in the first two indices, and vanishes if all three indices are
antisymmetrized; that is, it has the symmetries of the Young

tableaux in the antisymmetric convention.

Our manifestly invariant equations will be for a field
strength Fμνjλ which is antisymmetric in the first two
indices but has no a priori additional symmetries involving
the third index; i.e. it is an element of the product

representation . We define the dual tensor ~Fμνjλ
by dualizing over the two antisymmetric indices using the
de Sitter volume form,

~Fμνjλ ¼
1

2
ϵμν

ρσFρσjλ: ð2:3Þ

The equations we will find are

TrF ¼ 0; dL ~F ¼ 0; ð2:4Þ

Tr ~F ¼ 0; dLF ¼ 0: ð2:5Þ

Here, ðTrFÞμ ≡ Fν
μjν is the only nontrivial trace, and dL is

the exterior derivative with respect to the antisymmetric
pair of indices on the left, but using the full covariant
derivative,

ðdLFÞμνλjρ ¼ ∇μFνλjρ þ∇νFλμjρ þ∇λFμνjρ: ð2:6Þ

The equations (2.4), (2.5) are manifestly de Sitter invariant
and are manifestly symmetric under the duality rotation

δF ¼ ~F: ð2:7Þ

In the following, we will see that the two equations (2.5)
are Bianchi identities2 which tell us that the field strength is
given as in (2.2), after which the two equations (2.4) are
field equations equivalent to (2.1).

2The Bianchi identities also make an appearance in the
framelike formulation of partially massless gravity [36].
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A. Bianchi identities

We start with the first of the Bianchi identities (2.5):
Tr ~F ¼ 0. In components, this reads ϵμ

ρσνFρσjν ¼ 0.
Stripping off the epsilon, this tells us that the totally
antisymmetric part of the field strength vanishes,

F½μνjλ� ¼ 0: ð2:8Þ

The representation of Fμνjλ can be decomposed as

, and (2.8) tells us that only the part

with the symmetry of survives.

Now consider the second Bianchi identity dLF ¼ 0,

written out in (2.6). Once F has the symmetry of , we

can check explicitly that dFμνλρ ≡∇μFνλρ þ∇νFλμρ þ
∇λFμνρ has the symmetry of . Thus we can interpret

dL as a derivative operator . What we want is

for this operator to be part of a complex with d2 ¼ 0
whose cohomology is trivial, so that dF ¼ 0 implies that
F can be written in terms of the gauge potential as
in (2.2).
The description of the partially massless field involves a

scalar gauge parameter ϕ, a potential hμν with the symmetry

, and a field strength Fμνλ with the symmetry .

This, along with the desired Bianchi identity, leads us to the
desired complex

(2.9)

where

ðdϕÞμν ¼ ∇μ∇νϕþ Λ
3
gμν; ð2:10Þ

ðdhÞμνλ ¼ ∇μhνλ −∇νhμλ; ð2:11Þ

ðdFÞμνλρ ¼ ∇μFνλρ þ∇νFλμρ þ∇λFμνρ; ð2:12Þ

..

. ð2:13Þ

It is straightforward to check that with these definitions we
have

d2 ¼ 0: ð2:14Þ
Though we have no formal proof, on physical grounds the
cohomology of this complex should be trivial given reason-
able conditions on the fields.3 In particular, if the field
strength vanishes, then the potential should be pure gauge,

dh ¼ 0⇔h ¼ dϕ; ð2:15Þ
and if a given three indexhook-tableaux tensorF satisfies the
Bianchi identity dF ¼ 0, then it should be writable in terms
of a potential as in (2.2),

dF ¼ 0⇔F ¼ dh: ð2:16Þ

B. Field equations

We now move on to the field equations (2.5): TrF ¼ 0
and dL ~F ¼ 0. We want to show that these are equivalent to
(2.1) once the field strength is given as in (2.2). Taking a
divergence of (2.1), all the three-derivative terms cancel out
and we find

∇νhμν −∇μh ¼ 0; ð2:17Þ

which is nothing but the statement that the trace of the field
strength (2.2) vanishes,

TrF ¼ 0: ð2:18Þ
Using this to eliminate divergences in (2.1), we have

□hμν −
4

3
Λhμν −∇μ∇νhþ Λ

3
hgμν ¼ 0: ð2:19Þ

Now consider the expression,

∇λFλμν ∼ ϵμ1μ2μ3μ∇μ1ðϵμ2μ3ν1ν2Fν1ν2
νÞ ¼ 0: ð2:20Þ

Expanding (2.20) using (2.2) and then using (2.17) to
eliminate divergences, this reproduces (2.19). Stripping off
the first epsilon, (2.20) gives ∇½μ1ðϵμ2μ3�ν1ν2Fν1ν2

νÞ ¼ 0,
which is nothing but

dL ~F ¼ 0: ð2:21Þ
Note that the action (1.1) with the partially massless

tuning (1.2) is gauge invariant under (1.3) for any Einstein
space background with cosmological constant Λ. However,

3Proving this should be possible by extending the generalized
Poincaré lemmas of [26,37] to dS space.
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the duality results of [18] and those presented here go
through only if the background is de Sitter. Indeed, even the
field strength (2.2) fails to be gauge invariant for an
Einstein space which is not maximally symmetric, instead
picking up a piece proportional to the background Weyl
tensor. This is reminiscent of the results of [38–40] linking
duality invariance and maximal symmetry.

III. 3þ 1 DECOMPOSITION AND
MAXWELL-LIKE EQUATIONS

In this section we perform a spaceþ time decom-
position and display the equations of motion and duality
in a form analogous to the traditional undergraduate
presentation of Maxwell’s equations. In this form, it will
be easy to see why 3þ 1 dimensions is special, because
this is the only dimension in which the spatial tensors

arrange into pairs which can rotate into each other under
duality.
We write the background de Sitter metric in the flat

inflationary coordinates,

ds2 ¼ −dt2 þ aðtÞ2d~x2; aðtÞ ¼ eHt; ð3:1Þ

where H ¼
ffiffiffi
Λ
3

q
is the de Sitter Hubble constant.

We will work with the field strength Fμνλ for which the
two algebraic equations TrF ¼ 0 and Tr ~F ¼ 0 have already
been solved, so that the field strength is in the representation

(the superscript T indicates that the tensor is

traceless). Consider for a moment this tensor in dþ 1
spacetime dimensions. As an (irreducible) representation
of soðdþ 1Þ, it decomposes upon restriction to soðdÞ as

(3.2)

and this decomposition can be implemented as follows:

Fμνλ ¼

8>>>>><
>>>>>:

Fi00 ¼ aEi

Fi0j ¼ a2ðHij þ 1
2
BijÞ

Fij0 ¼ a2Bij

Fijk ¼ a3½fijk þ 1
d−1 ðEiδjk − EjδikÞ�:

ð3:3Þ

Here Ei ¼ □ is a spatial vector, a sym-

metric traceless tensor, an antisymmetric tensor

and a traceless mixed-symmetry tensor.

For d ¼ 3, we can dualize the antisymmetric tensor
Bij into a pseudovector Bi and the mixed-symmetry
tensor fijk into a symmetric traceless pseudotensor
Kij,

4

Bi ¼
1

2
ϵijkBjk; Kij ¼

1

2
ϵiklfklj: ð3:4Þ

(Tracelessness of Kij follows from the fact that fijk has
no totally antisymmetric component, and symmetry of
Kij follows from tracelessness of fijk.) Thus, only in
d ¼ 3, the gauge invariant spatial fields arrange into a
pair of vectors Bi; Ei, and a pair of symmetric traceless
tensors Hij; Kij.

In terms of these spatial variables the field equations take
the following form in vector calculus notation5:

∇ · ~E ¼ 0; ð3:5Þ

∇ ·H
↔
−
1

2
∇ × ~B −Ha~E ¼ 0; ð3:6Þ

�
d
dt

þ 3H

�
~E −

1

a
∇ × ~B ¼ 0; ð3:7Þ

�
d
dt

þ 2H

�
H
↔
−
1

a
∇⊙~E −

1

a
∇ × K

↔ ¼ 0; ð3:8Þ

where ð∇⊙~EÞij ≡ 1
2
ð∂iEj þ ∂jEi − 1

3
δij∇ · ~EÞ is the

symmetrized traceless derivative and ð∇ ×H
↔Þij ≡

1
2
ðϵikl∂kHl

j þ ϵjkl∂kHl
iÞ is the symmetrized curl. The

Bianchi identities take the form,6

4Spatial indices are always moved with δij, and ϵijk is the
standard flat space epsilon symbol with ϵ123 ¼ 1.

5Starting from the field equations as in (2.20), the 00 equation
gives (3.5), the 0i equation gives (3.6), the i0 equation gives (3.7),
and the symmetric traceless part of the ij equation gives (3.8).
The antisymmetric part of the ij equations is redundant with the
Bianchi equations (3.10) and (3.11), and the trace of the ij
equations is redundant with (3.5).

6Writing the Bianchi identity as ϵμμ1μ2μ3∇μ1Fμ2μ3ν ¼ 0, the 00
equation gives (3.9), the 0i equation gives (3.10), the i0 equation
gives (3.11), and the symmetric traceless part of the ij equation
gives (3.12). The antisymmetric part of the ij equations is
redundant with the field equations (3.6) and (3.7), and the trace
of the ij equations is redundant with (3.9).

KURT HINTERBICHLER PHYSICAL REVIEW D 91, 026008 (2015)

026008-4



∇ · ~B ¼ 0; ð3:9Þ

∇ · K
↔ þ 1

2
∇ × ~E −Ha~B ¼ 0; ð3:10Þ

�
d
dt

þ 3H

�
~Bþ 1

a
∇ × ~E ¼ 0; ð3:11Þ

�
d
dt

þ 2H

�
K
↔
−
1

a
∇⊙~Bþ 1

a
∇ ×H

↔ ¼ 0: ð3:12Þ

From these first-order equations we can easily verify
the number of propagating degrees of freedom: the
vectors each have 3 components and the traceless
symmetric tensors each have 5 components, and they
obey the first-order (in time) equations (3.7), (3.7),
(3.11), (3.12) for a total of 16 initial conditions. These
must obey the 8 constraint equations (3.5), (3.6), (3.9),
(3.10), which brings the number of independent initial
data down to 8. These are the configurations and
conjugate momenta for the 4 degrees of freedom of
the partially massless graviton in 3þ 1 dimensions.
Roughly, the helicity one mode is captured by the
spatial vectors and the helicity two mode is captured
by the spatial symmetric tensors. Note that (3.5), (3.7),
(3.9), (3.11) are autonomous equations for ~E and ~B
which are nothing but Maxwell’s equations on de
Sitter space.
Defining analogous spatial tensors ~Bi, ~Ei, ~Hij, ~Kij for the

dual tensor ~Fμνλ, we find after expanding (2.3) that the
effect of duality is to rotate the two vectors into each other
and the two tensors into each other,

~Ei ¼ −Bi; ~Bi ¼ Ei; ð3:13Þ

~Hij ¼ −Kij; ~Kij ¼ Hij: ð3:14Þ

The Maxwell-like equations are manifestly invariant under
duality; the field equations are rotated into the Bianchi
identities.

IV. SOURCES

In the case of electromagnetism, the presence of a source
jμ alters the right-hand side of the field equations: d ~F ¼ �j,
dF ¼ 0. This breaks the duality symmetry, but we may
restore it by introducing a magnetic source ~jμ which
appears on the right-hand side of the Bianchi identity
and predicts the existence of magnetic monopoles:

d ~F ¼ �j, dF ¼ �~j. Magnetic sources cannot be introduced
locally into the free action, but play a crucial role in
nonlinear embeddings of the theory [41,42].
Consider restoring the source Tμν into the partially

massless theory. As with electromagnetism, the source
makes an appearance on the right-hand side of the field
equations (2.4),

TrF ¼ 3

2Λ
∇T; dL ~F ¼ �0T; ð4:1Þ

Tr ~F ¼ 0; dLF ¼ 0; ð4:2Þ

where ð�0TÞμ1μ2μ3μ4 ≡ Tμ4
νϵνμ1μ2μ3 þ 1

2
Tν

νϵμ1μ2μ3μ4 −
3
2Λ∇μ4

∇νTνλϵλμ1μ2μ3 . Duality symmetry is broken by the
source.
This invites us to introduce a “magnetic” source tensor

~Tμν that satisfies the same conservation equation (1.4) as
the original source tensor, and which acts as a source for the
Bianchi identities and restores duality invariance to the
equations,

TrF ¼ 3

2Λ
∇T; dL ~F ¼ �0T; ð4:3Þ

Tr ~F ¼ 3

2Λ
∇ ~T; dLF ¼ �0 ~T: ð4:4Þ

Note that in the presence of generic magnetic sources, the
field strength will have an antisymmetric component and
will not be in a pure mixed symmetry representation. The
interpretation of such a dual source may be something
along the lines of [43,44]. As with electromagnetism, such
a dual source cannot be introduced locally into the free
action, but may play a role in any eventual nonlinear
embedding of the theory.
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