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We revisit the well-studied D0-D4 system of D-branes and its relationship to the Atiyah-Drinfeld-
Hitchin-Manin (ADHM) construction. It is well known that the D0-branes appear as instantons in the
D4-brane worldvolume. We add a Wilson line to the D4-brane in the guise of an extended fundamental
string and determine how this affects the D0-brane dynamics. As the D0-brane moves in the presence of
the Wilson line, it experiences a Lorentz force, proportional to its Yang-Mills gauge connection. From
the perspective of the D0-brane quantum mechanics, this force emerges through the ADHM
construction of the self-dual gauge connection.
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I. INTRODUCTION

The Atiyah-Drinfeld-Hitchin-Manin (ADHM) construc-
tion provides a beautifully simple method for finding
solutions to the self-dual Yang-Mills equations, reducing
nonlinear partial differential equations to some straightfor-
ward linear algebra [1].
There is a long history of viewing the ADHM con-

struction through the lens of string theory, starting with
the work of Witten [2]. This provides a physically
intuitive picture for how the construction works. The
simplest approach involves D-branes in type II string
theory and the observation that D0-branes appear as
instantons when nestled inside D4-branes [3]. The
dynamics of the D0-branes is governed by a quantum
mechanical gauge theory whose low-energy degrees of
freedom can be thought of as the ADHM data. The space
of ground states of this quantum mechanics coincides
with the wave functions on the moduli space of
instantons.
While the D0-D4 quantum mechanics naturally

describes the instanton moduli space in terms of ADHM
data, it does not tell us how to build the Yang-Mills gauge
field itself. In other words, it does not capture the
constructive part of the ADHM construction. For this,
we have to work a little harder. Previous approaches
involve the dynamics of some probe that moves in the
background of an instanton configuration. The original
work of [2] considered a heterotic string, moving in the
background of an instantonic 5-brane. In the type II
context, one typically looks at a D0-brane moving in the
background of a D4-D8 system, with the D4-brane
absorbed into the worldvolume of the D8-brane where it
appears as an instanton [4]. In both of these situations, the
instanton configuration is fixed, and the ADHM data now

appears as parameters of the theory rather than as dynami-
cal degrees of freedom.1

The purpose of this paper is to provide a slightly different
perspective on the ADHM construction of the gauge field.
We return to the D0-D4 system, but now with the addition of
a fixed, heavy quark, represented by aWilson line. The quark
is electrically charged while the instanton is magnetically
charged. As the instantonmoves in the presence of the quark,
it experiences a Lorentz force law proportional to its gauge
profile Ai. We will show that, from the perspective of the
D0-brane quantum mechanics, the computation of this force
reproduces the ADHM construction of the gauge field.
Our approach also yields a generalization of the ADHM

construction. A more precise version of the above statement
is that when the center of mass of the instanton moves, the
Wilson line exerts a Lorentz force proportional to the gauge
profile. But there are many other ways in which an instanton
configuration can move: the sizes or orientations or relative
separations of instantons can change. In all of these cases,
the fixed quark exerts a force on the instantons. We explain
how to compute this force from the gauge theory, and then
show that the D0-brane quantum mechanics provides a
simple expression for this force in terms of the ADHM data.
More generally, this paper fits into a growing literature

on understanding the dynamics of solitons in the presence
of electric or magnetic impurities. Other recent work in this
area includes [8–12].

II. INSTANTONS AND WILSON LINES

We start by describing the physics from a purely field
theoretic perspective. We will derive the Lorentz-like force
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1There are other approaches to extracting the instanton gauge
field from D-branes. The ADHM construction can be viewed as
tachyon condensation [5] in a system of D4-branes and anti–D4-
branes [6]. Alternatively, one can perturbatively reconstruct the
large distance instanton solution by looking at open string vertex
operators in the Dp-Dpþ 4 brane system [7].
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experienced by an instanton in the presence of a Wilson
line. In Sec. III we will reexamine this from the viewpoint
of D-branes and see how it is related to the ADHM
construction.
Wework with an SUðNÞYang-Mills theory in d ¼ 4þ 1

dimensions. The action for the gauge field Aμ and a single
adjoint-valued scalar φ is given by

SYM ¼ 1

e2

Z
d5xTr

�
−
1

2
FμνFμν −DμφDμφ

�
: ð2:1Þ

This can be viewed as part of an action with either N ¼ 1
or N ¼ 2 supersymmetry (i.e. either eight or sixteen
supercharges). The theory with N ¼ 2 supersymmetry
has further scalar fields which will not play a role in
our story.
If we set φ ¼ 0, this action admits static soliton solutions

obeying the self-dual Yang-Mills equations

Fij ¼
1

2
ϵijklFkl; ð2:2Þ

where i, j ¼ 1, 2, 3, 4 run over spatial indices. Solutions to
these equations are instantons. (For reviews, see [13–15].)
Instantons are classified by the winding number k ∈ Zþ of
the gauge field on the 3-sphere at infinity and the mass of
such an instanton solution is given by

Minst ¼
8πk
e2

:

The general solution to the instanton equations has 4kN
parameters. For well-separated instantons, these corre-
spond to four positions, a scale size and 4N − 5 orientation
modes within the SUðNÞ gauge group for each instanton.
We write the general solution as Aiðx;XαÞ with Xα,
α ¼ 1;…4kN the coordinates on the instanton moduli
space Mk;N which takes the form

Mk;N ≅ R4 × ~Mk;N: ð2:3Þ

Here the R4 factor captures the center of mass of the
instanton configuration, while the ~Mk;N factor captures the
relative positions, scale sizes and gauge orientations of
the instantons.

A. Dynamics of instantons

The dynamics of slowly moving instantons in 4þ 1-
dimensions can be described using the moduli space
approximation [16]. This means that we promote the collec-
tive coordinates Xα to become time-dependent variables
XαðtÞ and restrict attention to these degrees of freedom.
However, there is a subtlety: as the instantons move, they

generate a non-Abelian electric field Ei ¼ F0i and this
should obey Gauss’ law, DiEi ¼ 0. Typically this does

not happen automatically. Instead, we must turn on A0 to
ensure that the Gauss’ law constraint holds. To achieve this,
we start by introducing a zero mode associated to each of
the collective coordinates. This is defined as the derivative
of the gauge field together with an accompanying gauge
transformation,

δαAi ¼
∂Ai

∂Xα −DiΩα: ð2:4Þ

By construction, the zero mode is a solution to the
linearized self-dual Yang-Mills equation. We require the
compensating gauge transformations Ωαðx; XÞ to solve
the background gauge fixing condition,

DiðδαAiÞ ¼ 0; ð2:5Þ

where the covariant derivative is evaluated in the instanton
background. The utility of this choice comes when we look
at the non-Abelian electric field. This is given by

Ei ¼
∂Ai

∂Xα
_Xα −DiA0:

As we mentioned above, the electric field must satisfy
Gauss’ law DiEi ¼ 0. If we set

A0 ¼ Ωαðx;XÞ _Xα ð2:6Þ

then we have Ei ¼ δαAi
_Xα and Gauss’ law is obeyed by

virtue of the gauge fixing condition (2.5).
Substituting this ansatz for the electric field into the

action (2.1) gives us a description of the dynamics in terms
of a sigma model on the instanton moduli space Mk;N ,

Sinstanton ¼
Z

dt
1

2
gαβðXÞ _Xα _Xβ; ð2:7Þ

where the metric on Mk;N is given by the overlap of zero
modes

gαβðXÞ ¼
2

e2

Z
d4xTrðδαAiδβAiÞ: ð2:8Þ

This metric has a number of special properties: it is hyper-
Kähler and inherits an SOð4Þ × SUðNÞ isometry from
spatial rotations and gauge action of the underlying field
theory. However, it is not geodesically complete. The
instanton moduli space has singularities where the instan-
tons shrink to zero size; understanding the physics of these
singularities presumably requires knowledge of the UV
completion of our theory. The moduli space approximation
is valid provided that e2 ≪ ρ, where ρ is the size of any
given instanton. We assume that this condition holds in the
following.
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For many applications, the metric (2.8) is the most
important geometric quantity associated to the instanton
moduli space. Here, however, we will be more interested in
the object Ωα. This is an SUðNÞ connection overMk;N. To
see this, suppose that we have a class of instanton solutions
Aiðx;XÞ presented in some gauge. We perform a gauge
transformation, Ai

0 ¼ gAig−1þ ig∂ig−1, where g ¼ gðx;XÞ,
which means that we allow for the possibility of performing
different gauge transformations at different points of the
moduli space.We now need to find a different compensating
gauge transformationΩ0 such that the gauge fixing condition
(2.5) holds for our new solution. It is not hard to show that
this new compensating transformation is given by

Ω0
α ¼ gΩαg−1 þ ig∂αg−1

which means that Ω can indeed be viewed as an SUðNÞ
gauge connection over Mk;N as claimed.
The connection over the R4 factor of the moduli space

Mk;N in (2.3), describing the center of mass of the
instanton, is particularly straightforward. The gauge con-
dition (2.5) is satisfied if we take

Ωi ¼ −AiðXÞ: ð2:9Þ
In other words, the auxiliary gauge connection Ω coincides
with the physical gauge connection Ai over R4. With this
choice, the translational zero mode is given by δjAi ¼ Fij
and Gauss’ law is satisfied.
The connection over the reduced moduli space ~Mk;N is

generally nontrivial. Explicit formulas on the k ¼ 1, N ¼ 2
case can be found in [14].

B. Instantons and Wilson lines

We now add a heavy, stationary quark to our theory,
sitting at the origin of space. This is usually achieved by the
insertion of a Wilson line in the path integral of the form,

WR ¼ TrRT exp

�
i
Z

dtðA0ðtÞ − φðtÞÞ
�
: ð2:10Þ

Here T stands for time ordering and R specifies the SUðNÞ
representation of the quark. Both the gauge field and scalar
are evaluated at the origin of space: A0ðtÞ¼A0ð~x¼ 0; tÞ
and φðtÞ ¼ φð~x ¼ 0; tÞ. The fact that the gauge field
is accompanied in the Wilson line by a scalar field is
familiar in supersymmetric theories [17,18]; this ensures
that the Wilson line is Bogomol’nyi-Prasad-Sommerfield
(BPS), preserving half of the supercharges.
For our purposes, it will prove useful to work with a

slightly different representation of the Wilson line, one
which is at heart more semiclassical. To this end, we
introduce a single, complex quantum mechanical degree
of freedom, χðtÞ, which sits at the origin of space and
transforms in the fundamental representation of the gauge
group. It couples to the gauge field and scalar field through
the action,

Sχ ¼
Z

dt χ†ði∂t − A0ðtÞ þ φðtÞ þMÞχ; ð2:11Þ

where M is the energy scale needed to excite χ and should
be taken to be large.
If χ is placed in its ground state, then it plays no role at

energies E ≪ M. Things become more interesting if we
excite some number of the χ degrees of freedom. In this
case, there is a close relationship between the action (2.11)
and the Wilson line (2.10). (See, for example, the textbook
[19].) The idea is to first do the path integral over the χ
fields, in a fixed background A0ðxÞ and φðxÞ, and only
subsequently perform the path integral over the d ¼ 4þ 1
dimensional super Yang-Mills fields. The number of
excitations of χ is specified by including p insertions in
the path integral,

Zp½A0;ϕ� ¼
1

p!

Z
Dχ†Dχχa1ðþ∞Þ…χapðþ∞Þχ†a1ð−∞Þ…χ†apð−∞ÞeiSχ : ð2:12Þ

It is straightforward to evaluate this path integral directly.
One finds

Zp½A0;φ� ¼ WR½A0;φ�; ð2:13Þ

where the representation R depends on whether χ are
quantized as fermions or bosons. If χ is quantized as a
fermion then R is the pth antisymmetric representation of
SUðNÞ; if χ is quantized as a boson then R is the pth
symmetric representation. A recent, detailed derivation of
(2.13) can be found, for example, in [20].
We would like to understand how instantons move in the

presence of the Wilson line (2.10) or, equivalently, in the
presence of the χ degrees of freedom. This problem is

identical to the one solved in [11] where the dynamics of
monopoles in the presence of Wilson lines was derived.
(Avery similar problem also arose in [10], which discussed
the dynamics of Abelian vortices in the presence of charged
impurities.)
Using the representation of the Wilson line in terms of χ

fields allows us to work classically: we need to solve the
equations of motion arising from the action S ¼ SYM þ Sχ
given by (2.1) and (2.11). The χ fields source both A0

and φ. However, if we set A0 ¼ φ, then the equations of
motion for the spatial gauge fields are unchanged. This
means that the static instanton configurations obeying
Fij ¼ ⋆Fij remain solutions to the equations of motion
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in the presence of the coupling to χ. Meanwhile, φ, and
hence A0, is determined by the equation of motion

D2φ ¼ e2χχ†δ4ðxÞ; ð2:14Þ
where the covariant Laplacian D2 is evaluated on the
background of the instanton. This equation is reminiscent
of the discussion of dyonic instantons in [21]; both
configurations describe the BPS superposition of instanton
and electric charges.
Because the static instanton solutions are unchanged

by the presence of a Wilson line, the moduli space of
instantons is again given by Mk;N. However, the dynamics
of the instantons is now described by a quantum mechanics
involving the collective coordinates XαðtÞ coupled to
impurities χðtÞ. When the instantons move, the ansatz
for the temporal gauge field (2.6) must be replaced by

A0 ¼ Ωα
_Xα þ φ

with φ determined by (2.14). This satisfies Gauss’ lawDiEi
to leading order in e2=ρ (which is sufficient for the moduli
space approximation). Substituting this new ansatz into the
Yang-Mills action yields the action

Sinstanton ¼
Z

dt
1

2
gαβðXÞ _Xα _Xβ þ χ†ði∂t þ ΩαðXÞ _XαÞχ;

ð2:15Þ
where the metric gαβðXÞ is the same as that defined in (2.8)
and the connection is given by ΩðXÞ ¼ Ωð~x ¼ 0;XÞ. This
second term gives the promised Lorentz force which
couples the moving instanton to the Wilson line. If the
instanton configuration moves rigidly, changing only its
center of mass then, by (2.9), the force is governed by the
Yang-Mills profile Aiðx ¼ 0;XÞ as expected. [Note that
knowledge of Ai at x ¼ 0 is sufficient to reconstruct Ai at
all values of x; this is because if we decompose the moduli
into the center of mass coordinates, X, and the remainder ~X,
then gauge field has dependence Aiðx − X; ~XÞ.] However,
this action also captures the dynamics if the instantons
are undergoing a more complicated motion, changing their
orientation, size or relative separation.
The Wilson line and the instantons are half-BPS, and

correspondingly, the quantum mechanics (2.15) admits a
supersymmetric completion with N ¼ ð0; 4Þ supersym-
metry. The constraints of supersymmetry provide a par-
ticularly simple derivation of some of the properties of the
geometric quantities. They tell us, for example, that the
metric gαβ must be hyper-Kähler (which it is). They also tell
us that the curvature for the connection Ωα is a (1,1)-form
with respect to each of the three complex structures of the
hyper-Kähler manifold.

III. D-BRANES AND WILSON LINES

In this section, we provide a D-brane representation of
instantons interacting with Wilson lines using the familiar

D0-D4 system. Starting from the UðkÞ quantum mechanics
on the D0-branes, we will derive a low-energy effective
action of the form (2.15). As we will see, the SUðNÞ gauge
connection Ωα—which includes, as a special case, the
Yang-Mills field Ai—will arise through the ADHM con-
struction of the gauge connection.
Take N D4-branes lying in the x0;1;2;3;4 directions of type

IIA string theory. The worldvolume theory is described
by d ¼ 4þ 1-dimensional, UðNÞ Yang-Mills theory with
N ¼ 2 supersymmetry. These branes sit at the origin ofR5,
spanned by x5;6;7;8;9.
We wish to add to this a Wilson line. This can be done by

inserting an infinitely long fundamental string, lying in the
x9 direction as shown in the figure. However, there is a
simple trick, first introduced in [20], that we will find
useful. Rather than consider an infinitely long string, we will
allow it to terminate on another D4-brane which we will
denote as a D40-brane (Fig. 1). Since we want the end of the
string to be fixed, the D40-brane should have worldvolume
directions x0;5;6;7;8. We place the D40-brane at a distance L
in the x9 direction. Ultimately we will take L large.
The string stretched between the D4-branes and the

D40-brane has eight Dirichlet-Neumann directions. Upon
quantization, the lowest lying modes consist only of four
complex fermions that we will call χ. These lie in an
N ¼ ð0; 8Þ Fermi multiplet as described, for example, in
[22]. Each of these fermions transforms in the fundamental
representation of the UðNÞ gauge group, with their dynam-
ics governed by the action (2.11), where the mass is given
by M ¼ L=α0. There are also couplings to the fields on the
D40-brane which we suppress since they will not be
important in what follows.2

As we reviewed in Sec. II, integrating out the fermions χ
with p excitations in the path integral is equivalent to
the insertion of a Wilson line transforming in the pth
antisymmetric representation. In the present context of
D-branes, this observation was first made in [20].

X1,2,3,4

X5,6,7,8

X9

D0

D4

D4’

F1

FIG. 1. The D-brane configuration.

2If the D40-brane is wrapped on a compact space, this coupling
becomes important since Gauss’ law restricts the possible
excitations of the χ fields. The introduction of a Chern-Simons
coupling on the D40-brane of the form SCS ¼ p

R
dt A0

0 with
p ∈ Z ensures that the path integral is nonvanishing only when
accompanied by p field insertions as in (2.12). For the non-
compact D40-brane considered here, the flux can escape to
infinity and no such restriction applies.
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A. D0-branes and Wilson lines

We now add k D0-branes to our setup. These appear as
instantons when absorbed in the D4-branes. Our goal is to
understand how these D0-branes interact with the χ degrees
of freedom arising from the D4-D40 strings.
In fact, a T-dual version of this problem was solved

recently in [23], where the d ¼ 1þ 1, N ¼ ð0; 4Þ gauge
theory describing the D1-D5-D50 system was constructed.
We need only dimensionally reduce this theory to
d ¼ 0þ 1 dimensions. The result is an N ¼ ð0; 4Þ UðkÞ
gauged quantum mechanics. The theory has a UðNÞ flavor
symmetry and a G ¼ SOð4Þ− × SOð4Þþ symmetry arising
from rotations of the spatial R4 worldvolumes of the D4
and D40-branes respectively. We write this as

G ¼ SUð2Þ−L × SUð2Þ−R × SUð2ÞþL × SUð2ÞþR :

The two SUð2ÞR factors are R-symmetries of the
superalgebra.
The field content of the theory is
(i) D0-D0 strings: The D0-branes alone give rise to the

familiar 16-supercharge UðkÞ quantum mechanics,
with all fields in the adjoint representation of the
gauge group. There is a gauge field, u0, and nine real
scalar fields which naturally decompose into two
groups of 4 with one left over. The positions of the
D0-branes in x1;2;3;4 are denoted as Zi, with i ¼ 1, 2,
3, 4. They transform under SOð4Þ−. The positions of
the D0-branes in x5;6;7;8 are denoted asYi, with i ¼ 1,
2, 3, 4. They transform under SOð4Þþ. Finally, the
real scalarW describes the positions of the D0-branes
in the x9 direction. There are also eight complex,
adjoint fermions, λ, transforming under G as
ð1;2;1;2Þ⊕ ð1;2;2;1Þ⊕ ð2;1;1;2Þ⊕ ð2;1;2;1Þ.

(ii) D0-D4 strings: The interaction with the D4-branes
gives rise to an N ¼ ð4; 4Þ hypermultiplet, trans-
forming as ðk; N̄Þ under the UðkÞ ×UðNÞ sym-
metry. There are two complex scalars which we
write as the doublet ωT ¼ ðϕ; ~ϕ†Þ transforming as
ð1; 2; 1; 1Þ under G. The four complex fermions,
which we denote collectively as ψ , transform
as ð1; 1; 1; 2Þ ⊕ ð1; 1; 2; 1Þ.

(iii) D0-D40 strings: The interaction with the D40-brane
gives rise to the same field content as the hyper-
multiplet, but with the interactions twisted such
that SOð4Þþ and SOð4Þ− are exchanged. The fields
transform in the ðk; 1Þ ofUðkÞ × UðNÞ. The doublet
of complex scalars ω0T ¼ ðϕ0; ~ϕ0†Þ transform as
ð1; 1; 1; 2Þ under G. The four complex fermions,
which we denote collectively as ψ 0, transform as
ð1; 2; 1; 1Þ ⊕ ð2; 1; 1; 1Þ.

(iv) D4-D40 strings: As we have seen, the D4-D40 strings
give rise to an N ¼ ð0; 8Þ Fermi multiplet, consist-
ing of four fermions χ. These transform as ð1;NÞ
under UðkÞ ×UðNÞ and are singlets under G.

The only difficulty in constructing the interactions of the
theory is to determine how the χ fields couple to the rest.
Perhaps surprisingly, it turns out that the coupling is
uniquely fixed by supersymmetry: the interactions of the
D0, D4 and D40-branes alone do not preserve any super-
symmetry.3 This can be rectified by an essentially unique
(up to field redefinitions) interaction between the χ
fermions and the D0-D4 and D0-D40 strings. The full
Lagrangian was given in [23]; here we describe those
couplings that are relevant for our story.

1. The Higgs branch as the instanton moduli space

The scalar potential is most simply written by first
introducing two triplets of D-terms,

~DZ ¼ ~ηijZiZj þ ω†~σω

~DY ¼ ~ηijYiYj þ ω0†~σω0: ð3:1Þ

Here ~η are the self-dual ’t Hooft matrices and ~σ are the Pauli
matrices. Each of these looks like the triplet of D-terms that
usually arise in theories with eight supercharges. The only
novelty is that we now have a pair of these D-terms. The
scalar potential is given by

V¼Trð ~DZ · ~DZþ ~DY · ~DYÞþTr½Zi;Yj�2þω†ðYiYiþWWÞω
þω0†ðZiZi−ðW−MÞðW−MÞÞω0 þTrðω† ·ωω0† ·ω0Þ:

The indices in the last of these terms are constructed so that
the expression is a singlet under the UðNÞ and G but
transforms in the adjoint representation under the UðkÞ
gauge group.
The phase of the theory in which the D0-branes appear

as instantons is characterized by the requirement that
W ¼ Yi ¼ ϕ0 ¼ ~ϕ0 ¼ 0, while Zi, ϕ and ~ϕ are constrained

to obey the D-term constraint ~DZ ¼ 0 as given in (3.1).
There are 4k2 þ 4kN degrees of freedom in Z, ϕ and ~ϕ.
The D-terms above give 3k2 constraints. After dividing
out by UðkÞ gauge transformations, we are left with a
4kN-dimensional space. This is the Higgs branch of the
gauge theory and is known to coincide with the instanton
moduli space (2.3).
The Higgs branch inherits a metric from the scalar

kinetic terms and part of the ADHM construction is the
statement that this agrees with the metric (2.8) on the
instanton moduli space. Although the construction of
the Higgs branch metric is well known, it involves an
ingredient that we will need later and, for this reason, we

3The field content is consistent with N ¼ ð0; 4Þ supersym-
metry but the interactions are not. The problem arises in
N ¼ ð0; 2Þ superfield language through the requirement that
the two different kinds of superpotential obey a constraint
“E · J ¼ 0.” For more details, see [23].
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review it here. We introduce coordinates Xα, α¼ 1;…;4kN
on the Higgs branch. This means that we can think of
solutions to ~DZ ¼ 0 as being of the formωðXÞ, ZiðXÞ. Now
suppose that we move on the Higgs branch, so X → XðtÞ.
We need to satisfy the constraint of Gauss’ law within the
UðkÞ gauge theory on the D0-branes. If all other fields are
set to zero, this reads

i½Zi;D0Zi� þ iωD0ω
† − iðD0ωÞω† ¼ 0:

To solve this, we need to turn on the worldline UðkÞ gauge
field u0. The way we do this is entirely analogous to the
construction of the metric on the instanton moduli space.
We first associate a zero mode to each degree of freedom.
We define

δ̂αω ¼ ∂ω
∂Xα − ivαω; δ̂αZi ¼ ∂Zi

∂Xα − i½vα; Zi�;

where, in each case, the change of the field is accompanied
by an infinitesimal UðkÞ gauge transformation, vα. This
compensating gauge transformation is determined by
requiring that the zero modes obey a background gauge
condition,

i½Zi; δ̂αZi� þ iωδ̂αω† − iðδ̂αωÞω† ¼ 0: ð3:2Þ

Then we can obey Gauss’ law by setting the worldline
gauge field u0 to

u0 ¼ vα _X
α: ð3:3Þ

This means that D0Z ¼ δ̂αZ _Xα and D0ω ¼ δ̂αω _Xα. Then,
restricted to the Higgs branch, the low-energy dynamics of
the quantum mechanics becomes

SHiggs ¼
Z

dtTrðD0ZiD0Zi þD0ωD0ω
†Þ

¼
Z

dt
1

2
gαβðXÞ _Xα _Xβ: ð3:4Þ

Famously, the metric gαβ arising here coincides with the
metric (2.8). In this way, the D0-brane quantum mechanics
captures the dynamics of instantons. The action has a
supersymmetric completion which involves the fermions λ
and ψ .
The upshot of this is that the instanton moduli space

actually comes equipped with both a UðkÞ connection vα
and an SUðNÞ connection Ωα. The D-brane picture
naturally gives us the vα connection. The field theory
picture naturally gives us the SUðNÞ connection. As we
now show, the interaction with the Wilson line provides a
natural map between them.

2. The Wilson line

We now turn to the dynamics of the fermions χ that are
associated to the Wilson line. If we place all fermions χ in
their ground state then they play no role in the dynamics.
This corresponds to the situation where we do not excite
any D4-D40 strings. This situation is boring.
Instead, we are interested in the case where the funda-

mental string between the stacks of D4-branes is in one
of its lowest excited states. We pick one representative
fermion, χ, and choose to excite it just once. This
corresponds to a Wilson line in the fundamental represen-
tation of the UðNÞ gauge group on the D4-branes. We
would like to understand how this excited fermion affects
the dynamics of the D0-branes.
When we sit in the Higgs branch—so that the D0-branes

are absorbed in the D4-branes—there is a mixing between χ
and various other fermionic excitations. We can safely
ignore any Yukawa couplings that involve Y, W, ~ϕ or ~ϕ0

because these have been set to zero, but we are left with the
following interactions:

LYukawa ¼ ð ~ψ 0þ; ψ̄ 0þÞ
�

ϕ

~ϕ†

�
χ þ ð ~ψ 0þ; ψ̄ 0þÞZiσi

� ¯~ψ 0−
ψ 0
−

�
:

ð3:5Þ

Here the ψ 0 fermions are those that arise from the D0-D40
strings. We have distinguished four different kinds: ψ 0

�
transform as k and ~ψ 0

� transform as k̄ under theUðkÞ gauge
group. The � subscripts reflect the chirality of these
fermions in d ¼ 1þ 1 dimensions before dimensional
reduction. (The χ fermions are left moving in d ¼ 1þ 1
and would be denoted χ−.) The form of these Yukawa
couplings is fully dictated by supersymmetry as described
in [23].
To understand the meaning of these Yukawa couplings,

suppose for now that we place the two stacks of D4-branes
on top of each other, so M ¼ 0 and there is no cost in
energy to excite χ. Then, on the Higgs branch, the Yukawa
couplings above act as mass terms for the fermions. There
are 2k “right-moving” spinors and 2kþ N “left-moving”
spinors. This means that, generically, we will be left with
N massless left-moving spinors. (In the absence of any
mixing due to the Yukawa terms, these are simply χ.)
Now separate the D4 and D40 branes a distance L. It will

cost energy M ¼ L=α0 to excite these N modes, which are
now a linear combination of χ and ψ 0. These excitations
remain BPS excitations: they are the lowest energy exci-
tations of the D4-D40 strings and will play the role of our
Wilson line. In order to determine which combination of χ
and ψ 0 we need to excite, we introduce a 2k × ðN þ 2kÞ
matrix, familiar to aficionados of the ADHM construction,

Δ† ¼ ðω; Ziσ̄iÞ;
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where ωT ¼ ðϕ; ~ϕ†Þ. This matrix is to be thought of as a
function of the 4kN coordinates Xα which parameterize
the Higgs branch. Generically, this matrix has rank 2k.
We can introduce N orthonormal, null eigenvectors, Ua,
a ¼ 1;…; N, each of them a (N þ 2k)-dimensional vector,
defined by

Δ†Ua ¼ 0 with U†
a · Ub ¼ δab: ð3:6Þ

Then theN BPS modes, which receive no additional energy
from the Yukawa interactions (3.5), are given by

ðχ; ¯~ψ 0−;ψ 0
−ÞT ¼ Uaηa;

where ηa are N Grassmann parameters. Restricted to these
modes, the action for the three spinors becomes an action
for the η parameters,

Sη ¼ iχ̄∂0χ þ i ¯~ψ 0−D0 ~ψ
0− þ iψ̄ 0−D0ψ

0−
¼ iη̄bU

†
bðUa∂0ηa þ ðD0UaÞηaÞ

¼ η̄bðδabi∂0 þ ðΩαÞab _XαÞηa: ð3:7Þ

We see that the effective low-energy Lagrangian for the
Grassmann parameters η contains an emergentUðNÞ gauge
connection defined by

ðΩαÞab ¼ iUb
†δ̂αUa: ð3:8Þ

The covariant derivative δα involves the UðkÞ gauge
connection vα on the instanton moduli space. Its action
on U is a little unusual; tracing through the definitions
above, we see that it only acts on the lower 2k components
of the (N þ 2k)-vector U which transform in the funda-
mental of UðkÞ.
The computation of Ω above, which involved finding

massless combinations of Yukawa couplings, is very
similar to that first introduced in [2]. However, there is
an important difference: for us, the fields in Δ are
dynamical rather than fixed parameters. This means that
we end up with a connection over the full moduli space,
Mk;N , rather than just R4.
The end result is an action for the D0-branes coupled to

the Wilson line degrees of freedom,

S ¼ SHiggs þ Sη

with the two expressions given in (3.4) and (3.7). This is to
be compared with the gauge theory result (2.15). In both
cases, the Wilson line degrees of freedom couple through
an SUðNÞ gauge connection that we have called Ωα. It
remains to show that these two Ωα are actually the same
thing. This equivalence, as we now review, is the essence of
the ADHM construction.

B. The ADHM gauge connection

The D-brane configuration naturally gives the UðNÞ
gauge connection Ω over the instanton moduli space
defined in (3.8). Let us first restrict attention to the R4

factor of Mk;N where, from the Yang-Mills analysis (2.9),
we expect Ω to coincide with the instanton gauge potential
Ai. From the D0-brane quantum mechanics, it is simple to
check that the associated UðkÞ gauge connection vanishes
in this case, vi ¼ 0. Comparing the two, we therefore
expect that

AiðXÞ ¼ iU†∂iU: ð3:9Þ

Indeed, this is usually paraded as the key result of the
ADHM construction [1]. It is not hard to show that the field
strength associated to Ai is the self-dual instanton solution:
Fij ¼ ⋆Fij. Simple proofs of this result can be found in any
number of review articles such as [13–15].
However, our D0-brane quantummechanics has given us

more. When the instanton configuration moves in the
relative moduli space ~Mk;N , corresponding to changing
the size, orientation or relative separations of the instantons,
the force due to the Wilson line is captured by the other
components of the UðNÞ connection Ωα. We would like to
show that this force correctly captures the dynamics,
meaning that the ADHM expression for Ω given in (3.8)
coincides with the definition introduced in Sec. II. In fact,
this result was first proven some time ago in [24] (and
reviewed in [13]). For completeness, we describe the
proof here.
Let us recall what we want to show. The zero modes are

defined by

δαAi ¼
∂Ai

∂Xα −DiΩα;

where Ai is given in terms of ADHM data by (3.9). We
claim that if we take Ωα to be given by the expression (3.8)
then the zero mode automatically solves the background
gauge fixing condition,

DiðδαAiÞ ¼ 0:

We start by writing down an expression for the zero mode
in terms of ADHM data. In order to do this, we need the
defining properties of U (3.6) and Ai (3.9), as well as the
D-term constraints ~DZ ¼ 0 with ~DZ given in (3.1). These
D-term constraints have a nice consequence for Δ which
can be shown to satisfy the condition,

Δ†Δ ¼ f−1 ⊗ 12×2

for some invertible k × k matrix f. Making liberal use of
these properties, one can show that the zero mode can be
written as
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δαAi ¼ U†MαiU;

where

Mαi ¼ iðδ̂αΔÞf∂iΔ† þ H:c:

Continuing down this road, one needs no new techniques
and only a little more stamina, to find

DiðδαAjÞ ¼ U†ð∂iMαj − ð∂iΔÞfΔ†Mαj

−MαjΔfð∂iΔ†ÞÞU:

Finally, we need to show that this vanishes when contracted
over i and j. This requires some obvious σ-matrix identities
and, ultimately, reduces to the requirement that

Tr2×2ðΔ†ðδ̂αΔÞ − ðδ̂αΔ†ÞΔÞ ¼ 0:

This is equivalent to our gauge fixing condition (3.2)
for the Higgs branch zero modes. It is pleasing that the
UðkÞ gauge fixing on the Higgs branch implies the
UðNÞ gauge fixing condition. This concludes the proof
that the ADHM connection Ωα defined in (3.8) is the
same object as the compensating gauge transformation
defined in (2.4).
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