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In this paper, we revisit scalar field theories in d space-time dimensions possessing UðNÞ global
symmetry. Following our recent work [1], we consider the generating function of correlation functions of
allUðNÞ-invariant, single-trace operators at the free-fixed point. The exact renormalization group equations
are cast as Hamilton equations of radial evolution in a model space-time of one higher dimension, in this
case AdSdþ1. The geometry associated with the renormalization group equations is seen to emerge
naturally out of the infinite jet bundle corresponding to the field theory and suggests their interpretation as
higher-spin equations of motion. While the higher-spin equations we obtain are remarkably simple, they are
nonlocal in an essential way. Nevertheless, solving these bulk equations of motion in terms of a boundary
source, we derive the on-shell action and demonstrate that it correctly encodes all of the correlation
functions of the field theory, written as “Witten diagrams.” Since the model space-time has the isometries of
the fixed point, it is possible to construct new higher-spin theories defined in terms of geometric structures
over other model space-times. We illustrate this by explicitly constructing the higher-spin renormalization
group equations corresponding to the z ¼ 2 nonrelativistic free field theory in D spatial dimensions. In this
case, the model space-time is the Schrödinger space-time, SchrDþ3.
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I. INTRODUCTION

It is widely believed that gauge/gravity duality (or holog-
raphy) should be interpreted as a geometrization of the
renormalization group (RG) of quantum field theories. In this
picture, scale transformations in the field theory correspond
to movement in the extra “radial” direction, and specific
RG trajectories correspond to specific geometries, which are
asymptotically anti-de Sitter (AdS) if the RG flow begins or
ends near a fixed point. Early papers [2,3] on the subject
noted the relationship between RG flow and Hamilton–
Jacobi theory of the bulk radial evolution. Additional
contributions were made for example by Refs. [4–9], and
more recent discussions include Refs. [10–15].
From the perspective of quantum field theory, consid-

erations of the renormalization group usually begin within
the context of perturbation theory, naturally interpreted in
terms of deformations away from a free RG fixed point.
Indeed, the “exact renormalization group” (ERG) originally
formulated by Polchinski [16] was constructed within the
confines of a path integral over bare elementary fields with
(regulated) canonical kinetic terms corresponding to the
free-fixed point. Both the power and the curse of the ERG is
that it is formulated in terms of the free-fixed point. One
of the hallmarks of holography is that it pertains to a quite
opposite limit, in which simple geometric constructions in
the bulk correspond to strongly coupled dynamics in the
dual field theory. So on the face of it, one might expect very
little relationship to exist between the exact renormalization
group and holography.
However, there exists a conjectured duality [17–19]

between free vector models in d ¼ 2þ 1 and certain types

of higher-spin theories on AdS4 (for a detailed exposition
to higher-spin theories, see, e.g., Refs. [20–22] and the
reviews [23,24]). While the field theory side in this case
is completely under control, the bulk is a far more
complicated and highly nonlinear theory involving fields
of arbitrarily high spin. Nevertheless, one might hope that
this model provides an accessible testing ground for the
holography/RG correspondence. A useful way to think of
these vector model/higher-spin dualities can be illustrated
by considering three-dimensional Chern–Simons theories,
known to be “dual” to two-dimensional Wess–Zumino–
Witten models. In this case, the theory is topological in
the bulk [thus giving rise to a sort of holography long
appreciated by condensed matter theorists (and experimen-
talists)]. What this means is that the theory does not
depend on a bulk metric, and diffeomorphism invariance is
broken only on the boundary through the introduction of
boundary terms that explicitly involve a boundary metric.
In particular, it is conjectured that 3D gravity [25,26]
(and higher-spin generalizations [27–29]) can be thought
of in these terms. Here, the dynamical degrees of freedom
do not include a metric in the bulk, but at least a wide
class of classical solutions has a geometric interpretation,
the Chern–Simons gauge fields recast in terms of a
coframe and spin connection (or higher-spin generaliza-
tions thereof). The equations of motion are first order (i.e.,
classical solutions are flat connections). We emphasize that
one can interpret Chern–Simons theory in radial phase
space terms, the precise details determined by the choice
of a boundary action. Given any such choice, different
components of the connection correspond to “coordinates
q” and “momenta p” of this phase space. Through the
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holographic dictionary, we expect p and q to correspond to
expectation values and sources, respectively, for operators
in the dual field theory. If we rewrite the bulk action in
terms of p; q, the radial Hamiltonian is pure (Gauss)
constraint, and the first-order Chern–Simons equations
of motion are nothing but Hamilton’s equations. It is of
course this latter structure that generalizes to other dimen-
sions. As we will now review, the picture that emerges
from a study of exact RG equations of vector models is that
we should formulate their holographic duals in terms of
connections and sections of certain bundles over a model
space-time (AdS, for example).
Indeed, following the initial proposal of Ref. [30], we

considered in Ref. [1] the Wilson–Polchinski exact renorm-
alization group equations for a specific theory containingN
Majorana fermion fields in 2þ 1 dimensions. More pre-
cisely, we considered the partition function of the theory
as a function of sources for all bilocal, single-trace, OðNÞ-
invariant operators. Taking all such operators is a conven-
ient way of organizing the infinite set of OðNÞ-invariant
conformal modules with higher-spin quasiprimaries.
Central to our construction was the recognized role of a
huge symmetry [that we called COðL2Þ] of free field
theories under which the elementary fields transform
linearly but bilocally. Since in a path integral formulation
the elementary fields are not operators but just integration
variables, changing integration variables by such a trans-
formation relates the partition function evaluated at differ-
ent values of the sources, leading to Ward identities. It is
crucial in this construction that the theory is properly
regulated (the path integral exists) and that the sources
are written in an appropriate fashion. The beauty of the
Majorana model was that (because the free action contains
only one derivative) the appropriate structure was more
or less manifest, and the sources could be immediately
understood in terms of a connection for the COðL2Þ group
as well as a section (of an associated endomorphism
bundle). It is this COðL2Þ that becomes the “gauge group”
of the corresponding higher-spin theory. The renormaliza-
tion group equations, interpreted as the equations of motion
in one-higher-dimensional RGmapping space, then provide
the equations of motion for these sources. Remarkably, the
“higher-spin equations” so obtained are ostensibly simpler
than those of Vasiliev higher-spin theory. The price we pay
is that our RG equations are nonlocal in an essential and
unavoidable way. It seems then, that the holographic dual
to free field theory is most straightforwardly formulated
in terms of nonlocal (in space-time) variables.
In the present paper, we apply these methods to complex

scalar field theories (in arbitrary space-time dimensions
d > 2) with UðNÞ global symmetry. The understanding of
the geometric structure appearing in the Majorana model
can be carried over to this case—the COðL2Þ symmetry
described above translates into CUðL2Þ. As we will show,
the bosonic theory is somewhat simpler than the Majorana

model, as the holographic phase space can be formulated
entirely in terms of a scalar source and its conjugate
momentum. This comes about through an extra [i.e.,
independent of the CUðL2Þ symmetry] redefinition sym-
metry possessed by the bosonic model. The ERG analysis
gives rise to a complete Hamilton–Jacobi structure. We
solve the Hamilton equations in terms of a boundary source,
evaluate the corresponding on-shell action, and thus recover
all n-point correlation functions of UðNÞ-singlet operators.
These correlation functions are written holographically:
each correlation function corresponds to a bulk “Witten
diagram.” It is a simple matter to show that these reduce to
the known correlation functions of the free-fixed point, and
correspondingly, the bulk on-shell action can be resummed
to reproduce the field theory generating function in the log-
det form, confirming that the holographic interpretation
has lost no information about the free-fixed point.
One of the central ideas of holography is that the

conformal symmetries of a field theory fixed point are
reflected in the isometries of the bulk background geom-
etry. This of course need not be AdS—AdS pertains when
the conformal symmetry is relativistic. To demonstrate this,
in the final section, we construct the exact RG equations for
the z ¼ 2 nonrelativistic free-fixed point using light-cone
quantization methods, and thus develop a higher-spin
gauge theory defined not on AdS but on the Schrödinger
geometry, SchrDþ3.

II. OVERVIEW: THE FREE RELATIVISTIC
UðNÞ MODEL

In this section, we review the prescription in Ref. [1],
adapted to the case of N complex scalar fields in d space-
time dimensions. The fixed point action is given by

S0Bos ¼ −
Z

ddxϕ�
mðxÞ□ðxÞϕmðxÞ; ð1Þ

where we have taken the space-time metric to be gμν ¼ ημν
and□ ¼ ημν∂μ∂ν. Following Ref. [16], we will regulate the
action by introducing a smooth cutoff function KFðsÞ
which has the property that KFðsÞ → 1 for s < 1 and
KFðsÞ → 0 for s > 1. A central object in Ref. [1] was the
regulated derivative operator

PF;μðx; yÞ ¼ K−1
F ð−□ðxÞ=M2Þ∂ðxÞ

μ δdðx − yÞ; ð2Þ
and we will use this here to construct a regularized action
for the bosonic theory. We are interested in deforming the
theory away from the free-fixed point with generic “single-
trace” operators1 of the schematic form

1Restricting to single-trace operators of course is not very
general, but it is a consistent truncation of the full set of ERG
equations in which sources for all “multitrace” operators are
included. We will return to this more general system in a
subsequent publication [31].
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ϕ�
mϕ

m;ϕ�
m∂μϕ

m;ϕ�
m∂μ∂νϕ

m;… ð3Þ

with no prejudice toward the number of derivatives. To do
so, it is most convenient to introduce two bilocal sources
Bðx; yÞ and Wμðx; yÞ.2 We now write the full action for the
UðNÞ model as

SregBos ¼ −
Z
x;u;y

ϕ�
mðxÞημνDμðx; uÞDνðu; yÞϕmðyÞ

þ
Z
x;y

ϕ�
mðxÞBðx; yÞϕmðyÞ; ð6Þ

where we have introduced the notation

Dμðx; yÞ ¼ PF;μðx; yÞ þWμðx; yÞ: ð7Þ

One can easily check that this action sources all possible
single-trace operators. We have written the action in this
precise form, because, as in Ref. [1], we will see shortly
that Dμ is a covariant derivative for a background gauge
symmetry. The bilocal sourcesB andWμ are really operators
acting on L2 functions over space-time, but the bilocal
representation is merely convenient notation which allows
us to think in terms of “matrices.”Given thismatrix notation,
we will often use the “dot” notation for integration,

ðf·gÞðx; yÞ ¼
Z
u
fðx; uÞgðu; yÞ: ð8Þ

The sources B and Wμ that we have introduced above
couple, respectively, to the following bilocal operators:

Π̂ðx; yÞ ¼ ϕ�
mðyÞϕmðxÞ;

Π̂μðx; yÞ ¼
Z
u
ðϕ�

mðyÞDμðx; uÞϕmðuÞ

−Dμðy; uÞϕ�
mðuÞϕmðxÞÞ: ð9Þ

Note that Π̂μðx; yÞ can be interpreted as a bilocal current
operator. There is a minor subtlety in definingUðNÞ singlet
bilocal operators—since ϕmðxÞ is a section of a UðNÞ

vector bundle, the only natural contraction between ϕ�
mðyÞ

and ϕmðxÞ should involve a UðNÞ Wilson line. For
instance,

Π̂ðx; yÞ ¼ ϕ�
mðyÞ

�
Pe

R
x

y
Að0Þ�m

n
ϕnðxÞ; ð10Þ

where Að0Þ is a background UðNÞ connection. By not
including the Wilson lines explicitly, we are assuming
that the UðNÞ vector bundle is trivial—this means that Að0Þ
can be taken to be flat, and in particular we make the
choice Að0Þ ¼ 0.
The generating function (or partition function) is

obtained by performing the path integral

Z½M;U;B;W� ¼ ðdetð−P2
FÞÞN

Z
½dϕdϕ��eiUþiSregBos ð11Þ

The path integration in (11) is over the set of all square
integrable complex scalar functions over the space-time
R1;d−1, where the measure is conventionally written for-
mally as

½dϕdϕ�� ¼
YN
m¼1

Y
x∈R1;d−1

dϕmðxÞdϕ�
mðxÞ: ð12Þ

In the above, we have also introduced a source U for the
identity operator to keep track of the overall normalization
and a determinant normalization factor out front to ensure
that the path integral is well defined in the presence of the
cutoff function.

A. UðL2Þ and CUðL2Þ symmetries

Given the measure in Eq. (12), it is natural to ask what a
general linear transformation in function space would do
to the path integral. To that end, consider a general linear
bilocal field redefinition

ϕðxÞ ↦
Z
y
Lðx; yÞϕðyÞ; ð13Þ

where L∶ L2ðRdÞ → L2ðRdÞ is a unitary map of square
integrable functions, i.e.,

L†·Lðx; yÞ≡
Z
u
L�ðu; xÞLðu; yÞ ¼ δdðx − yÞ: ð14Þ

We will refer to the group of such transformations as
UðL2ðRdÞÞ, or simply UðL2Þ for short.3 If we consider an
infinitesimal version of the above transformation,

2While we will work with arbitrary bilocal sources for the most
part, one might like to organize one’s thoughts in terms of a
quasilocal expansion for these in the form

Bðx; yÞ ∼
X∞
s¼0

Ba1���asðxÞ∂ðxÞ
a1 � � � ∂ðxÞ

as δ
dðx − yÞ þ � � � ð4Þ

Wμðx; yÞ ∼
X∞
s¼0

Wμ
a1���asðxÞ∂ðxÞ

a1 � � � ∂ðxÞ
as δ

dðx − yÞ þ � � � ; ð5Þ

where the ellipsis indicates more nonlocal (i.e., nonquasilocal)
terms. Putting these expressions into the action, we see that
they amount to sourcing arbitrary single-trace operators with any
number of derivatives; such operators can be organized into
conformal modules, represented by lowest weight quasiprimary
operators.

3Here we are considering such transformations that commute
with the UðNÞ. This is appropriate since we are sourcing UðNÞ ⊂
Oð2NÞ singlets, and so we have a specific complex structure on
the space of elementary fields. The sources themselves are of
course real valued.
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Lðx; yÞ≃ δðx − yÞ þ ϵðx; yÞ; ð15Þ

then the UðL2Þ condition implies

ϵ�ðx; yÞ þ ϵðy; xÞ ¼ 0: ð16Þ

For example, consider an ϵ of the form

ϵðx; yÞ ¼ iξðxÞδðx − yÞ þ ξμðxÞ∂ðxÞ
μ δðx − yÞ

þ iξμνðxÞ∂ðxÞ
μ ∂ðxÞ

ν δðx − yÞ þ � � � ; ð17Þ

where ξ; ξμ; ξμν… are all real. This satisfies the UðL2Þ
condition provided∂μξ

μ ¼ 0; ∂μξ
μν ¼ 0, and so on. The first

term above is an infinitesimal Uð1Þ gauge transformation,
the second term is a volume-preserving diffeomorphism,
while the rest are higher-derivative transformations.
Formally, the measure (12) is invariant under UðL2Þ

transformations; i.e., the Jacobian is unity. Coming to the
action (6), we obtain

SregBos½L·ϕ; B;Wμ� ¼ SregBos½ϕ;L−1·B·L;L−1·Wμ·L

þ L−1·½PF;μ;L�·� ð18Þ

Thus, we find that Wμ acts like a background gauge field
for unitary bilocal field redefinitions, while B conjugates
tensorially. In the infinitesimal case, the transformation
properties of B and W can be written as

δB ¼ ½B; ϵ�·; δWμ ¼ ½Dμ; ϵ�; ð19Þ

where we have defined the “·-bracket” ½f; g�· ¼ f·g − g·f.
Given the formal invariance of the path integral measure,
we obtain the Ward identity

Z½M;U;B;Wμ� ¼ Z½M;U;L−1·B·L;L−1·Wμ·L

þ L−1·½PF;μ;L�·� ð20Þ

Note that ordinarily we would write the partition function
for the free-fixed point in the above notation as
Z½M;U; 0; 0�. But the UðL2Þ symmetry we encountered
above teaches us a vital lesson—since Wμ behaves like a
background connection under UðL2Þ, the configuration
Wμ ¼ 0 is gauge equivalent to the pure-gauge configura-
tion Wμ ¼ L−1·½PF;μ;L�·. Thus, for any flat connection
Wð0Þ satisfying

dWð0Þ þWð0Þ∧Wð0Þ ¼ 0 ð21Þ

with d ¼ dxμPF;μ, the partition function Z½M;U; 0;Wð0Þ�
describes the free-fixed point. For this reason, we will find
it convenient to pull out a flat piece from the full source W
and write it as

W ¼ Wð0Þ þ bW: ð22Þ

Indeed, it is bW and B which represent arbitrary single-trace,
tensorial deformations away from the free-fixed point and
thus parametrize single-trace RG flows away from the free
conformal field theory (CFT). We will return to this point
shortly.
The group UðL2Þ does not exhaust the background

symmetries of the free bosonic UðNÞ vector model. We
can further enlarge this group by considering transforma-
tions of the form

L†·Lðx; yÞ≡
Z
u
L�ðu; xÞLðu; yÞ ¼ Ω2ðxÞδdðx − yÞ; ð23Þ

where Ω is an arbitrary real function. In what follows,
we will mostly focus on the case of constant Ω—the
general case should be a straightforward extension, and its
significance4 should not be neglected. We will call this
larger group CUðL2Þ.
First, the measure of the path integral is, in general, not

invariant under these transformations (unless Ω ¼ 1) but
will in general pick up an overall normalization factor,
which one might think of as an anomaly. This can be
absorbed into the source for the identity operator, which we
will indicate by

U → bU: ð24Þ

As we will see shortly, CUðL2Þ transformations induce
a Weyl rescaling of the background metric. To continue
thinking of the field theory as possessing a Minkowski
metric, we introduce a conformal factor z in the background
metric, ημν ↦ z−2ημν, and redefine the sources by rescaling
them: Bold ¼ zdþ2Bnew and Wold ¼ zdWnew.

5 For simplic-
ity, we will drop the subscript new from here on. With
these changes, the action takes the form

SregBos½ϕ;M; z; B;W�

¼ −
1

zd−2

Z
x;u;y

ϕ�
mðxÞDμðx; uÞDμðu; yÞϕmðyÞ

þ 1

zd−2

Z
x;y

ϕ�
mðxÞBðx; yÞϕmðyÞ; ð25Þ

where

4In particular, for diffeomorphism invariance in the dual
theory.

5These scale factors are put in for the following reason: recall
that the sources admit the quasilocal expansions (4), (5). These
expressions will get modified upon the introduction of the
conformal factor z in the metric, as δðdÞðx − yÞ → zdδðdÞðx − yÞ.
The scale factors introduced above precisely remove this addi-
tional z dependence. The extra z−2 in Bnew ensures that it
transforms tensorially under CUðL2Þ.
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Dμðx; yÞ ¼ K−1
F ð−z2□ðxÞ=M2Þ∂ðxÞ

μ δdðx − yÞ þWμðx; yÞ
ð26Þ

and by □ðxÞ we mean the η d’Alembertian. We note that
the effective “renormalization scale” now appears to be
μ ¼ M=z. Indeed, as we will see in the following section,
the renormalization group flow will be parametrized by z,
while M is essentially an auxiliary parameter inside the
cutoff function, which sets the length scale. We will take z
to lie within the range z ∈ ½ϵ;∞Þ, with z ¼ ϵ corresponding
to the ultraviolet cutoff ΛUV ¼ M

ϵ and z → ∞ correspond-
ing to the infrared.
Having made these changes, we find straightforwardly

SregBos½L·ϕ;M; z; B;Wμ�
¼ SregBos½ϕ; λ−1M; λ−1z;L−1·B·L;L−1·Wμ·L

þ L−1·½PF;μ;L��; ð27Þ
where L is a CUðL2Þ element satisfying Eq. (23), with
Ω ¼ λ

d−2
2 . Once again, we find that the 1-form Wμ trans-

forms like a gauge field, while the 0-form B conjugates
tensorially. Note further, that the conformal factor z rescales
to λ−1z, and so does M. Thus, we conclude that CUðL2Þ is
a background symmetry of the action up to a conformal
rescaling of the background metric and the cutoff. In terms
of the quantum partition function, we have the Ward
identity

Z½M; z; B;Wμ; U� ¼ Z½λ−1M; λ−1z;L−1·B·L;L−1·Wμ·L

þ L−1·½PF;μ;L�; bU�: ð28Þ
Since the CUðL2Þ transformations involve a rescaling of the
background metric, we expect them to play an important
role in the renormalization group analysis. Indeed, this will
be the case.
However, we have one more background symmetry to

discuss before we move on to the renormalization group.
Recall that we have split the 1-form Wμ into a flat
connection and a tensorial piece—see Eq. (22). With this
separation, the action becomes

SregBos½ϕ;M; z; B;Wμ� ¼ S0 þ S1 ð29Þ

S0 ¼ −
1

zd−2

Z
x;y;u

ϕ�
mðxÞημνDð0Þ

μ ðx; uÞDð0Þ
ν ðu; yÞϕmðyÞ

ð30Þ

S1 ¼
1

zd−2

Z
x;y

ϕ�
mðxÞðBðx; yÞ − f bWμ; Dð0Þ

μ g·ðx; yÞ

− bWμ· bWμðx; yÞÞϕmðyÞ; ð31Þ

where Dð0Þ
μ ¼ PF;μ þWð0Þ

μ . Since bWμ is tensorial, it is

possible to redefine B to absorb the terms involving bW:

B ¼ B − f bWμ; Dð0Þ
μ g· − bWμ· bWμ: ð32Þ

More formally, one can write an identity for the partition
function

Z½M; z; B;Wð0Þ
μ ; bWμ þ Λμ� ¼ Z½M; z; B − fΛμ; Dμg·

− Λμ·Λμ;Wð0Þ
μ ; bWμ�: ð33Þ

Therefore, one can use the above freedom to set bWμ ¼ 0 in
S1; we will henceforth do so and write the deformations
away from the fixed point as

S1 ¼
1

zd−2

Z
x;y

ϕ�
mðxÞBðx; yÞϕmðyÞ: ð34Þ

Note that this was in fact the starting point of Ref. [30], but
the geometrical structure has now been made manifest.
In our discussion of the exact RG equations to follow, were
we not to absorb bWμ, we would find that the exact RG
equation cannot unambiguously be separated into indepen-
dent equations for B and bWμ. The phase space of the dual
theory is coordinatized entirely by fields of which boundary
values are Bðx; yÞ and Πðx; yÞ.

B. Infinite jet bundles

We have seen above that the large symmetry of free
field theory, which is best elucidated in the path integral
formulation, has a naturally geometric flavor. In particular,
W—which sources a certain bilocal current operator in the
field theory—transforms like a “connection.” As explained
in Ref. [1], a natural interpretation for W is that it is a
connection on the infinite jet bundle of the field theory. Said
another way, the background UðL2Þ and CUðL2Þ sym-
metries of free field theory can be characterized as gauge
transformations of its infinite jet bundle, and sourcing all
possible single-trace operators is equivalent to picking a
connection on (and a section of the endomorphism bundle
of) the infinite jet bundle corresponding to the field theory.
For completeness, we will end this section by briefly
recalling a few details of this construction—this discussion
is not strictly required to read the rest of the paper, and
some readers might want to skip ahead to Sec. III. For a
somewhat more technical discussion, see Ref. [1].
While it is true that the UðL2Þ and CUðL2Þ symmetries

we have discussed resemble gauge symmetries, the main
problemwemust confront in order for such an interpretation
to hold is their nonlocal nature. The gauge transformations
one usually encounters in physics are local—consider for
instance a Uð1Þ gauge transformation δϕðxÞ ¼ iαðxÞϕðxÞ.
In this case, ϕ is thought of as a section of a vector bundle
associated to a principal Uð1Þ bundle, and the gauge
transformation may be thought of as a vertical group action.
On the other hand, a UðL2Þ transformation
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δϕmðxÞ ¼
Z
y
ϵðx; yÞϕmðyÞ ð35Þ

depends on the value of ϕm not merely at one point but over
the entire common support of ϵ and ϕm. In other words, the
action in (35) depends on thevalue of theϕm at a point and its
derivatives at that point. To interpret this as a gauge trans-
formation then, there is a need to construct a vector bundle
of which the fiber at each point keeps track of ϕm and its
derivatives. In mathematics, this construction is referred to
as the infinite jet bundle. Loosely speaking, the infinite jet
bundle is a vector bundle of which the fiber at a point p
consists of all equivalence classes of functions (or more
generally sections) which have the same derivatives at p.
Schematically, an element Φ of the fiber at p correspondent
to the function ϕ looks like

Φm½ϕ�ðpÞ ¼
�
ϕmðxÞ; ∂ϕ

m

∂xμ ðpÞ; ∂2ϕm

∂xμ∂xν ðpÞ; � � �
�

ð36Þ

and is called the jet of ϕ at p. The space of all jets at a point
constitutes the fiber of the infinite jet bundle at that point.
Going back to Eq. (35), we see the action of ϵ on ϕm can be
represented in terms of a linear and local action on its jet
Φm½ϕ�. This is why we can think of UðL2Þ transformations
as gauge transformations acting on the infinite jet bundle,
satisfying the UðL2Þ condition. Given this interpretation,
the 1-formWμ is naturally identified as a connection 1-form
over the infinite jet bundle, while the 0-form B can be
thought of as a section of its endormorphism bundle. Indeed,
this interpretation fits nicely with our intuition for quasilocal
expansions for our bilocal sources6:

Wμðx;yÞ≃
X∞
s¼1

Wa1���as−1
μ ðxÞ∂ðxÞ

a1 � ��∂ðxÞ
as−1δ

dðx−yÞþ��� ð37Þ

Bðx;yÞ≃X∞
s¼1

Ba1���as−1ðxÞ∂ðxÞ
a1 � � �∂ðxÞ

as−1δ
dðx− yÞþ � � � ð38Þ

The above quasilocal expansions basically express the fact
that bothWμ and B are valued in the endomorphism bundle
of the jet bundle.7 Of course, the jet bundle language is
powerful enough to accommodate more general, nonlocal
terms in Wμðx; yÞ and Bðx; yÞ, and this is indicated by the

ellipsis in the above expansions. Indeed, as wewill see later,
the renormalization group forces the sources to become
nonlocal in the infrared. In this way, a purely field theoretic
exercise of sourcing all possible single-trace operators
turns out to provide a beautiful geometric framework.
Before we proceed, wewould like to introduce the notion

of a Wilson line. We define the Wilson line Kγðt; t0Þ along
the curve γμðsÞ∶ ½t0; t� → Rd from the point x0 to x as the
path-ordered exponential

Kγðt;t0Þ¼P · exp
Z

t

t0

ds_γμðsÞWμðsÞ

¼1þ
Z

t

t0

ds_γμðsÞWμðsÞ

þ1

2

Z
t

t0

ds1

Z
s1

t0

ds2 _γμðs1ÞWμðs1Þ·_γνðs2ÞWνðs2Þ

þ1

2

Z
t

t0

ds2

Z
s2

t0

ds1 _γνðs2ÞWνðs2Þ·_γμðs1ÞWμðs1Þ

þ���; ð39Þ

where WμðsÞ ¼ WμðγðsÞ; yÞ is the connection at the point
γðsÞ. Note here that the “free index” y insideW is an artifact
of our bilocal notation—it signifies that at each point along
the curve,Wμ is a bilocal kernel [see Eq. (37) above]. Also,
the path-ordered exponential above is a “·” exponential, in
that all the products involved in defining it are “·” products.
As usual, the Wilson line defined above satisfies

d
dt

Kγðt; t0Þ ¼ _γμðtÞWμðtÞ·Kγðt; t0Þ: ð40Þ

An important property of Wilson lines is that if the
connection W is flat then Kγ is independent of γ and
depends only on the end points. Some of these properties of
Wilson lines will become relevant when we discuss the
field theory correlation functions from a holographic point
of view.

III. RENORMALIZATION GROUP
AND HOLOGRAPHY

Next, let us construct the renormalization group flow for
the free bosonic vector model, perturbed away from the
fixed point by the bilocal source B. To do so, we follow the
conventional two-step process of Wilsonian RG:

(i) Step 1: Lower the “cutoff” M → λM (for λ < 1), by
integrating out a shell of “fast modes”—this changes
the sources, and we will use the notation U → eU,
B → eB to denote this. The calculation can be
efficiently carried out using Polchinski’s exact RG
formalism (see Appendix A for details).

(ii) Step 2: Perform a CUðL2Þ transformation ϕ → L·ϕ
to bring M back to its original value, but in the
process changing z → λ−1z—thus, the RG flow is

6These quasilocal expansions should be regarded as schematic.
More precisely, we should think of the bilocal fields as sourcing
all possible quasiprimary operators and their descendants, and
hence the expansion is in terms of conformal modules.

7In most physics literature, the connection is thought of
as a 1-form valued in the Lie algebra of the gauge group,
W ¼ Wα

μTαdxμ. The quasilocal expansions should be thought
of in the same spirit, with the differential operators TðsÞ ≃
∂s
ðxÞδ

dðx − yÞ playing the role of the Lie-algebra elements.
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parametrized by z in our description and not M
(M is an auxiliary parameter in the cutoff function).
The CUðL2Þ transformation additionally acts on
the sources and, as we will see below, leads to a
covariantization of the RG equations.

The above two-step process can be succinctly stated in
the form of the following equality of partition functions:

Z½M; z;B;Wð0Þ; U� ¼ Z½λM; z; eB;Wð0Þ; eU� ð41Þ

¼ Z½M; λ−1z;L−1·eB·L;L−1·Wð0Þ·L

þ L−1·½PF;L�·; beU�: ð42Þ

We can parametrize the infinitesimal RG transformation by
writing λ ¼ 1 − ε, and

L ¼ 1þ εzWð0Þ
z ; ð43Þ

where we have suggestively denoted the infinitesimal piece

of L asWð0Þ
z , to indicate that it should be thought of as the z

component of the connection. From this point of view,Wð0Þ
z

is merely a bookkeeping device which keeps track of the
gauge transformations along the RG flow. Equations (41)
and (42) then give us

Wð0Þ
μ ðzþ εzÞ ¼ Wð0Þ

μ ðzÞ þ εz½PF;μ þWð0Þ
μ ;Wð0Þ

z �· þOðε2Þ
ð44Þ

Bðzþ εzÞ ¼ BðzÞ − εz½Wz;B�· þ εzβðBÞ þOðε2Þ ð45Þ

Uðzþ εzÞ ¼ UðzÞ − iεzNTrΔB·B; ð46Þ

where the tensorial beta function βðBÞ is given by (see
Appendix A for details)

βðBÞ ¼ B·ΔB·B: ð47Þ
We have also defined

ΔB ¼ M
z

d
dM

�
Dð0Þ

μ
−2
�
: ð48Þ

By continuing the renormalization group flow, we can
extend B and Wð0Þ into the entire RG mapping space
R3 ×Rþ, where the half-line Rþ is parametrized by z. We
will often refer to this space as the bulk, for reasons which
will become apparent soon. We will also henceforth refer to
the extended fields as B and Wð0Þ, to emphasize that they
live in the bulk. Note that Wð0Þ is a 1-form in the bulk;

indeed, Wð0Þ “grows a leg” in the z direction, with Wð0Þ
z

keeping track of the gauge transformations along the RG
flow, as discussed above.
Comparing the ε terms on both sides of Eqs. (44) and

(45), we find

∂zW
ð0Þ
μ − PF;μW

ð0Þ
z þ ½Wð0Þ

z ;Wð0Þ
μ �· ¼ 0 ð49Þ

∂zBþ ½Wð0Þ
z ;B�· ¼ βðBÞ: ð50Þ

Therefore, the renormalization group equations emerge as

gauge-covariant equations in the bulk. Given that Wð0Þ
μ is

also flat in the transverse directions [by construction; see
the discussion around Eqs. (21) and (22)], the first of these
equations can be promoted to

F ð0Þ ≡ dWð0Þ þWð0Þ∧Wð0Þ ¼ 0 ð51Þ
where d ¼ dxμ½∂μ; ·� þ dz∂z is the bulk exterior derivative.
Note that the transverse component of the bulk exterior
derivative is now simply ∂μ, instead of the regulated
derivative PF;μ. The role of PF;μ was to regulate the path
integral; having extracted the RG equations, we will
abruptly replace it with an ordinary derivative everywhere,
except inside ΔB. One reason behind this choice is that
it ensures d2 ¼ 0. But a better justification will emerge
in Sec. III B, where we will show that the resulting bulk
on-shell action reproduces precisely all the correlation
functions of the boundary field theory, written as Witten
diagrams. Moving on, Eq. (50) can similarly be promoted
to a full-fledged 1-form equation in the bulk:

Dð0ÞB≡ dBþ ½Wð0Þ;B�· ¼ βðBÞ ð52Þ

The z component of the 1-form βðBÞ ¼ βðBÞ
μ dxμ þ βðBÞdz is

given by Eq. (47); the transverse components on the other
hand get determined by the Bianchi identity8

Dð0ÞβðBÞ ≡ dβðBÞ þ ½Wð0Þ; βðBÞ�· ¼ 0: ð53Þ

Thus, the renormalization group equations for single-trace
perturbations away from the free-fixed point organize
themselves into covariant equations, with the beta function
playing the role of “curvature.” In the following section,
we will argue that these can be naturally interpreted as
equations of motion describing the holographic dual of free
field theory. It might be surprising that the equations we
have derived above are remarkably simple, as compared to
the Vasiliev higher-spin equations. We emphasize that the
equations are exact and form a consistent closed system.
We have been able to establish these simple equations
precisely because we have not insisted on locality. This is
an essential aspect of free field theories.
Notably, Eq. (51) implies that the Wð0Þ is a flat

connection in the bulk. This is where AdS comes into
the picture—in the given coordinates, a particular solution
(any other solution is of course gauge equivalent to this
one) to the flatness condition is given by

8The Bianchi identity is derived by acting on Eq. (52) with
Dð0Þ and using the fact that Wð0Þ is flat.
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Wð0Þðz; x; yÞ ¼ −
dz
z
Dðx; yÞ þ dxμ

z
Pμðx; yÞ ð54Þ

Dðx; yÞ ¼ 1

2
ðxμ∂ðxÞ

μ − yμ∂ðyÞ
μ þ 2ΔϕÞδdðx − yÞ;

Pμðx; yÞ ¼ ∂ðxÞ
μ δdðx − yÞ; ð55Þ

which is easily identified as the AdS connection.9 More
precisely, Eq. (54) provides a g ¼ oð2; dÞ-valued 1-form,
which is in fact the Maurer–Cartan form for Oð2; dÞ.
By picking out an h ¼ oð1; dÞ subalgebra inside g, one
identifies the corresponding h-valued part of Wð0Þ as the
AdS spin connection, while the remaining g=h-valued
piece is identified as the AdS coframe. The fact that the
isometry group of AdSdþ1 is precisely the conformal group
Oð2; dÞ of R1;d−1 is, in the above language, manifested in
the fact that there exists a subalgebra isomorphic to oð2; dÞ
inside the set of all gauge transformations which pre-
serve Wð0Þ.
We can similarly write down the Callan–Symanzik

equations for Πðx; yÞ following the two-step RG prescrip-
tion outlined above. We find (see Appendix A for details)

Πðzþ εz; x; yÞ ¼ Πðz; x; yÞ − zε½Wð0Þ
z ;Π�· þ iεzNΔB

þ εzTr γðx; y; u; vÞ·Πðv; uÞ; ð56Þ

where we have introduced the notation

γðx; y; u; vÞ ¼ −
δβðBÞðu; vÞ
δBðy; xÞ : ð57Þ

Note that Πðx; yÞ transforms tensorially under CUðL2Þ; we
may extend it to a bulk adjoint-valued zero-form Pðx; yÞ.
Comparing ε terms on both sides of Eq. (56), we arrive at

Dð0Þ
z P ≡ ∂zP þ ½Wð0Þ

z ;P�·
¼ iNΔB þ Tr γðx; y;u; vÞ·Pðv; uÞ: ð58Þ

Finally, we state the infinitesimal version of the RG “Ward
identities” (41) and (42) explicitly,

−
∂
∂zZ¼Tr

�
ð½B;Wð0Þ

z �·þβðBÞÞ· δ
δB

þ½Dð0Þ
μ ;Wð0Þ

z �··
δ

δWð0Þ
μ

�
Z

þNTrðΔB·BÞZ; ð59Þ

where by ∂
∂z Z we mean the partial derivative with respect to

z keeping all the sources fixed. As we will see in the next
section, this identity can be interpreted as the Hamilton–
Jacobi equation (z being the parameter for “radial

evolution”) and plays a very crucial role in making contact
with holography.

A. Holography and Hamilton–Jacobi theory
In the previous section, we have seen how the renorm-

alization group organizes field theory data in the one-
higher-dimensional RG mapping space. In this setup, the
sources and the corresponding vacuum expectation values
for single-trace deformations away from the fixed point
turn into fields living in the bulk, with their dynamics
governed by renormalization group equations. However,
in order to ascribe a holographic interpretation to this, we
must go further and show that all the correlation functions
of the field theory can be reproduced from the bulk theory.
The first step toward this, of course, is to construct the
bulk action.
The defining property of holography is contained in the

equation

Z½z�;Wð0Þðz�Þ;Bðz�Þ� ¼ eiSHJ½Wð0Þðz�Þ;Bðz�Þ�; ð60Þ

where SHJ is the Hamilton–Jacobi functional for the bulk
theory; i.e., the bulk action evaluated on shell, with the
boundary conditionsBðz�Þ ¼ Bðz�Þ. Said another way, the
generating functional of the CFT is a wave functional
(defined on a constant z ¼ z� hypersurface) from the bulk
point of view in radial quantization. Therefore, while we
might not have access directly to the bulk action, the field
theory gives us the Hamilton–Jacobi functional instead.
As is well known from Hamilton–Jacobi theory, the
(connected) boundary expectation value

Π ¼ δSHJ
δB

ð61Þ

can be thought of as the boundary value of the momentum
conjugate toB in the bulk. Thus, we see a bulk phase space
picture emerging, with B and P forming a canonical pair.
The canonical 1-form (of which the symplectic 2-form is
the exterior derivative) is given by

θ ¼ TrP·δB: ð62Þ
The crucial observation is that the RG Ward identity (59)
takes the form of the Hamilton–Jacobi equation

∂
∂z SHJ ¼ −H ð63Þ

with the bulk Hamiltonian given by

H ¼ Trfð½B;Wð0Þ
z �· þ βðBÞ

z Þ·P þ ½Dð0Þ
μ ;Wð0Þ

z �··Pμg
− iN TrðΔB·BÞ: ð64Þ

It is straightforward to check that the Hamilton equations
of motion which follow from the above are precisely the

9In evaluating the curvature of this connection, one should
regard Pðx; yÞ and Dðx; yÞ as “generators” of the gauge group,
and as such the exterior derivative d does not act on them.
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RG equations (49), (50) and the Callan–Symanzik equa-
tions (58). In addition to the above “dynamical” terms in
the Hamiltonian, we may also introduce constraint terms,
which enforce the transverse components (i.e., the dxμ

components) of Eqs. (51) and (52),

Hconstr ¼ TrfðDð0Þ
μ B − βðBÞ

μ Þ·Qμ þ F ð0Þ
μν ·Qμνg; ð65Þ

where Qμ and Qμν are Lagrange multipliers. Note that the
Hamiltonian is linear in momenta, and as such there is no
distinction between phase space and configuration space
formalisms. Nevertheless, we may construct a “phase space
action” (“p _q −H”) given by

I ¼
Z

ϵ

∞
dz TrfPI ·ðDð0Þ

I B − βðBÞ
I Þ þ PIJ·F ð0Þ

IJ þ iNΔB·Bg;
ð66Þ

where we have collected together P;Qμ into PI , etc. It is
worthwhile noting that the first variation of this action
reproduces all the RG and Callan–Symanzik equations (in
the gauge where the Lagrange multipliers are set to zero).
More importantly, we will now show that this action
reproduces all the correlation functions of the boundary
theory, from a holographic perspective (see also Ref. [30]
for a related but different approach).
Before continuing, it is perhaps instructive to point to

one feature of the bulk Hamiltonian that the reader may
not have anticipated, namely that it is not “pure con-
straint,” as might have been expected for a gravitational
theory. We will in fact see in the next section that the
trailing term in (64) plays a crucial role in the holographic
correspondence.

B. Correlation functions and Witten diagrams

To compute the field theory correlation functions, we
follow the standard prescription; i.e., we compute the bulk
action on shell and extract the boundary generating func-
tional from it, as per Eq. (60), with z� ¼ ϵ. Note that the
first two terms in the bulk action vanish on shell; the only
nontrivial contribution comes from the last term,

Io:s ¼ −iN
Z

∞

ϵ
dz TrðΔB·B;Þ ð67Þ

where the minus sign comes from flipping the limits of
integration. We remark that this term may be traced back to
the anomalous transformation (46). Since the fieldB above
is a solution to the bulk equation of motion Dð0ÞB ¼ βðBÞ,
what we should do is solve this equation (along with the
Callan–Symanzik equation) and substitute back into the
action. But before we do that, we need to set up boundary
conditions. Since we have two equations at hand, we need
two boundary conditions. In the present context, one
boundary condition presents itself naturally—we fix the
value of B at the boundary z ¼ ϵ:

Bðϵ; x; yÞ ¼ bð0Þðx; yÞ: ð68Þ

From the field theory point of view, bð0Þ clearly has the
interpretation of fixing the source at the ultraviolet cutoff.
For the other boundary condition, we fix P in the infrared:

lim
z→∞

Pðz; x; yÞ ¼ 0: ð69Þ

This condition is of course consistent with the Hamilton–
Jacobi structure [and the canonical 1-form (62)] and is akin
to the interior boundary condition one encounters regularly
in holography.10

The equations at hand are nonlinear; it is convenient
(and perhaps physically more instructive) to solve them
iteratively. Consequently, we introduce a formal organizing
parameter α, writing

B ¼ αBð1Þ þ α2Bð2Þ þ � � � ð70Þ

P ¼ Pð0Þ þ αPð1Þ þ α2Pð2Þ þ � � � ; ð71Þ

and we will solve the equations of motion order by order
in α, later setting α to 1. Let us focus on the B equation
first. In fact, it suffices to focus on the z component of
the equation of motion, as the remaining components are
automatically enforced by the Bianchi identity (53). Then,
we have

½Dð0Þ
z ;Bð1Þ�· ¼ 0 ð72Þ

½Dð0Þ
z ;Bð2Þ�· ¼ Bð1Þ·ΔB·Bð1Þ ð73Þ

½Dð0Þ
z ;Bð3Þ�· ¼ Bð2Þ·ΔB·Bð1Þ þBð1Þ·ΔB·Bð2Þ

..

. ð74Þ

We immediately see that the system of equations can be
solved sequentially, with the solution of one equation (and
all before it) determining the right-hand side of the next.
The first equation (72) is homogeneous and has the solution

Bð1Þðz; x; yÞ ¼
Z
x0;y0

Kðz; x; x0Þbð0Þðx0; y0ÞK−1ðz; y0; yÞ;

ð75Þ
where we have defined the boundary-to-bulk Wilson
line

10For the variational principle to be well defined, we must
either fix B on the boundary or set P ¼ 0 on the boundary, and
thus the boundary conditions we have chosen are consistent with
the variational principle without any additional boundary terms.
While this choice of boundary conditions is natural in the present
case, there are other boundary conditions which also have
physically interesting interpretations [31].
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KðzÞ ¼ P · exp

�
−
Z

z

ϵ
dz0Wð0Þ

z ðz0Þ
�

ð76Þ

satisfying the equation

∂zKðzÞ þWð0Þ
z ðzÞ·KðzÞ ¼ 0: ð77Þ

This Wilson line should be interpreted in the terms we
described in Sec. II B above. As usual, we will surrepti-
tiously write Eq. (75) as

Bð1ÞðzÞ ¼ KðzÞ·bð0Þ·K−1ðzÞ ð78Þ
in favor of compact notation. What we have done above is
to recognize that conjugating byK (i.e., pulling back from a
bulk point to the boundary) effectively converts the
covariant derivative in (72) to ∂z. Since Wð0Þ is flat by
its equation of motion, K is independent of the path
connecting the end points. At this order, the on-shell action
is simply

Ið1Þo:s: ¼ −iN
Z

∞

ϵ
dz TrΔB·Bð1Þ

¼ −iN
Z

∞

ϵ
dz TrðK−1·ΔB·K·bð0ÞÞ: ð79Þ

It is convenient at this point to define the Wilsonian Green
function for the boundary field theory,

gðz; x; yÞ ¼
Z

z

ϵ
dz0Hðz0; x; yÞ

¼
Z

z

ϵ
dz0ðK−1·ΔB·KÞðz0; x; yÞ; ð80Þ

where

HðzÞ≡ K−1ðzÞ·ΔBðzÞ·KðzÞ ¼ ∂zgðzÞ; ð81Þ

and furthermore we will denote

gð0Þðx; yÞ≡ gð∞; x; yÞ; ð82Þ
which is in fact closely related to the free elementary field
propagator of the boundary theory. To see this, note from
the result (79) [or equivalently by solving the Callan–
Symanzik equation at the zeroth order Dð0ÞPð0Þ ¼ iNΔB,
subject to the boundary condition Eq. (69)] that

Pð0Þðϵ;x;yÞ≡ hϕ�
mðyÞϕmðxÞiCFT¼

δIo:s:
δbð0Þðy;xÞ

����
bð0Þ¼0

¼−iN
Z

∞

ϵ
dz Hðz;x;yÞ¼−iNgð0Þðx;yÞ; ð83Þ

where the subscript CFT means the correlation function at
the free-fixed point. This result implies that ΔB, which we
defined earlier in the paper, can also be written

ΔB ¼ −½Dð0Þ
z ;Dð0Þ−2

μ �·
Thus, we find that the linear term in the on-shell action can
be written entirely in terms of boundary quantities:

Ið1Þo:s: ¼ −iN Trgð0Þ·bð0Þ: ð84Þ

The above computation can be represented in terms of a
Witten diagram as in Fig. 1.
Proceeding to second order, we solve Eq. (73) with Bð1Þ

given by Eq. (78):

½Dð0Þ
z ;Bð2Þ�· ¼ Φð2ÞðzÞ

≡ KðzÞ·bð0Þ·K−1ðzÞ·ΔBðzÞ·KðzÞ·bð0Þ·K−1ðzÞ:
ð85Þ

More generally, at any given order, we can always write

½Dð0Þ
z ;BðkÞ�· ¼ ΦðkÞðzÞ; ð86Þ

where ΦðkÞ is the inhomogenous term at the corresponding
order. To solve this, we first conjugate by K to reduce the
covariant derivative to an ordinary derivative,

K−1ðzÞ·½Dð0Þ
z ;BðkÞ�·ðzÞ·KðzÞ ¼ ∂zðK−1ðzÞ·BðkÞðzÞ·KðzÞÞ;

ð87Þ

and so we obtain

∂zðK−1ðzÞ·BðkÞðzÞ·KðzÞÞ ¼ K−1ðzÞ·ΦðkÞðzÞ·KðzÞ: ð88Þ

Taking without loss of generality the boundary condition to
beBðkÞðϵÞ ¼ 0;∀k ≥ 2 [since Eq. (68) has been satisfied at
first order in α], the above equation can be easily solved:

FIG. 1. The Witten diagram representation for the boundary
one-point function Pð0Þðx; yÞ. The arrows indicate radial
orientation, while the turnaround in the bulk represents an
insertion of ΔB.
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BðkÞðzÞ ¼ KðzÞ·
	Z

∞

ϵ
dz0Θðz − z0ÞK−1ðz0Þ·ΦðkÞðz0Þ·Kðz0Þ



·K−1ðzÞ: ð89Þ

We can recognize here the ingoing bulk-to-bulk Wilson line

Gðz; z0Þ ¼ Θðz − z0ÞKðzÞ·K−1ðz0Þ ¼ Θðz − z0ÞP · exp

�
−
Z

z

z0
duWð0Þ

z ðuÞ
�

ð90Þ

and the outgoing bulk-to-bulk Wilson line

G−1ðz0; zÞ ¼ Θðz − z0ÞKðz0Þ·K−1ðzÞ ¼ Θðz − z0ÞP · exp

�
−
Z

z0

z
duWð0Þ

z ðuÞ
�
; ð91Þ

viz.

BðkÞðzÞ ¼
Z

∞

ϵ
dz0Gðz; z0Þ·ΦðkÞðz0Þ·G−1ðz0; zÞ: ð92Þ

Collecting everything together, we get the integral equation

BðzÞ ¼ KðzÞ·bð0Þ·K−1ðzÞ þ
Z

∞

ϵ
dz0Gðz; z0Þ·βðBÞ½B�ðz0Þ·G−1ðz0; zÞ: ð93Þ

Returning to the second order calculation, we have

Bð2Þ ¼
Z

z

ϵ
dz0KðzÞ·bð0Þ·K−1ðz0Þ·ΔBðz0Þ·Kðz0Þ·bð0Þ·K−1ðzÞ; ð94Þ

and thus the on-shell action at second order is given by

Ið2Þo:s ¼ −iN
Z

∞

ϵ
dz

Z
z

ϵ
dz0TrðK−1ðzÞ·ΔBðzÞ·KðzÞ·bð0Þ·K−1ðz0Þ·ΔBðz0Þ·Kðz0Þ·bð0ÞÞ ð95Þ

¼ −iN
Z

∞

ϵ
dz

Z
z

ϵ
dz0TrðHðzÞ·bð0Þ·Hðz0Þ·bð0ÞÞ: ð96Þ

We can once again represent this in terms of a Witten diagram as in Fig. 2. Using Eq. (80), the z integrations can be
straightforwardly performed,

Ið2Þo:s ¼ −iN
Z

∞

ϵ
dz

Z
z

ϵ
dz0TrðHðzÞ·bð0Þ·∂z0gðz0Þ·bð0ÞÞ ð97Þ

¼ − iN
Z

∞

ϵ
dzTrð∂zgðzÞ·bð0Þ·gðzÞ·bð0ÞÞ ð98Þ

¼ −i
N
2

Z
∞

ϵ
dz∂zTrðgðzÞ·bð0Þ·gðzÞ·bð0ÞÞ; ð99Þ

which integrates to

Ið2Þo:s ¼ −i
N
2
Trðgð0Þ·bð0Þ·gð0Þ·bð0ÞÞ: ð100Þ

This result reproduces the correct two-point functions of
the free field theory.
This procedure can be followed to arbitrary order.

One finds the kth-order term has the form

FIG. 2. The Witten diagram representing the second-order term
Ið2Þo:s in the bulk on-shell action. The bð0Þs are boundary insertions
of the ultraviolet bilocal source bð0Þ.
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IðkÞo:s: ¼ −iN
Z

∞

ϵ
dz1

Z
z1

ϵ
dz2…

×
Z

zk−1

ϵ
dzkTrðHðz1Þ·bð0Þ·Hðz2Þ·bð0Þ·…·HðzkÞ·bð0Þ

þ permutationsÞ: ð101Þ

The permutations include all of the distinct orderings of
fHðz2Þ;…; HðzkÞg. Proceeding with the z integrals as
before, we find the on-shell action at this order is given by

IðkÞo:s: ¼ −i
N
k
Trðgð0Þ·bð0ÞÞk: ð102Þ

As an example, the Witten diagram for the three-point
function is shown in Fig. 3.
Collecting Eqs. (84), (100), and (102), we note that the

on-shell action

Io:s: ¼ −iN
�
Trðgð0Þ·bð0ÞÞ þ

1

2
Trðgð0Þ·bð0Þ·gð0Þ·bð0ÞÞ

þ 1

3
Trðgð0Þ·bð0Þ·gð0Þ·bð0Þ·gð0Þ·bð0ÞÞ þ � � �

�
ð103Þ

precisely reproduces the boundary generating functional

Z½bð0Þ�=Z½0� ¼ eiIo:s: ¼ det−Nð1 − gð0Þ·bð0ÞÞ: ð104Þ
Thus, we conclude that the holographic formulation cor-
rectly reproduces all of the correlation functions of the
boundary field theory. We will repeat the same analysis for
the case of the fermionic vector model in Appendix B.
Several comments are in order at this point. First, we have

seen that a “double-line notation” naturally emerges for the
Witten diagrams, essentially due to the bilocality of the bulk
field B. However, because the connection Wð0Þ is flat, the
corresponding Wilson lines can follow any path.11 Second,

the “bulk vertex” is nonlocal. Each of these properties is a
manifestation of unbroken higher-spin symmetry at the free-
fixed point. Third, the above computation strengthens our
claim that the action (66) describes the holographic dual to
the free bosonic vector model. It is only because the field
theory in this case is completely under control that we could
construct the bulk holographic description by hand and then
check that we can go back and forth between the bulk and
boundary descriptions. Finally, note from (104) that our
holographic description reproduced the ratio of partition
functions Z½bð0Þ�=Z½0�. Z½0� is the domain of holographic
renormalization. The divergences as ϵ → 0 contained in Z½0�
can be cancelled by local boundary counterterms.

IV. NONRELATIVISTIC UðNÞ VECTOR MODEL

The form of the higher-spin theory that emerges from the
exact renormalization group is in fact dictated by the
assumed symmetries of the free-fixed point. If we change
those symmetries, we can expect to obtain a distinct higher-
spin holographic theory. We demonstrate here that this
idea is correct by sketching the construction of the exact
renormalization group equations for the free, nonrelativistic
z ¼ 2 bosonic theory (where z is the Lifshitz scaling
exponent). What one finds is that the analog of the above
discussion goes through, but the flat connection Wð0Þ
should be taken to be that of the Schrödinger geometry,
as it is that connection which corresponds to a geometry
with the isometries of the z ¼ 2 fixed point. (Related work
in the context of Vasiliev higher-spin theory may be found
in Ref. [32]). The discussion in this section will not be as
detailed as the previous sections but is meant to sketch out
the basic ideas involved.
We have in fact almost all of the ingredients already

assembled. The trick is to take the boundary d’Alembertian
in the coordinatization

□ ¼ ∂ξ∂t þ ~∇2 ð105Þ

and assign the scaling symmetry ðξ; t; ~xÞ ↦ ðξ; λ2t; λxÞ,
which of course corresponds to dynamical exponent z ¼ 2.
This is in fact the idea behind light-cone quantization (or
Discrete LCQ if the reader prefers)—the nonrelativistic
theory is obtained from the relativistic theory in these
specific coordinates. The program hangs together as long as
the generatorN ¼ ∂

∂ξ is central, which allows for specifying
a superselection sector of definite N eigenvalue n (and

hence □ reduces to in∂t þ ~∇2
).12

We begin with a review of light-cone quantization in
classical field theory. We take N complex scalar fields ϕm

with action

FIG. 3. The Witten diagram for the bulk on-shell action at third
order.

11If the region between Wilson lines were filled in [as it would
be in the presence of a dynamical UðNÞ gauge field in the field
theory] to obtain “open string worldsheets,” the string tension
would be zero.

12The N eigenvalue would be identified with the nonrelativistic
mass in some particle interpretation (which here has no particular
significance). The centrality of N pertains for z ¼ 2 exclusively.
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S ¼
Z

dtdDxdξϕ†
m□ϕm; ð106Þ

where □ ¼ ∂ξ∂t þ ~∇2
. Of course the theory is Lorentz

invariant, but we write the d’Alembertian in these coor-
dinates because we are going to do light-cone quantization;
namely, we interpret t as time. Notice that the model has a
UðNÞ spin-1 current with components

jmn ¼
�
i
2
ðϕ†

m∂ξϕ
n − ∂ξϕ

†
mϕnÞ; iðϕ†

m
~∇ϕn

− ~∇ϕ†
mϕnÞ; i

2
ðϕ†

m∂tϕ
n − ∂tϕ

†
mϕnÞ

�
: ð107Þ

The momentum conjugate to ϕm is πm ¼ − 1
2
∂ξϕ

†
m, and the

momentum conjugate to ϕ†
m is π̄m ¼ − 1

2
∂ξϕ

m. We thus find
a Hamiltonian of the form

H ¼
Z

dDxdξ ~∇ϕ†
m · ~∇ϕm; ð108Þ

and the charge operator [just the Uð1Þ charge for brevity] is

Q ¼ i
2

Z
dDxdξðϕ†

m∂ξϕ
m − ∂ξϕ

†
mϕmÞ: ð109Þ

The canonical equal-time commutation relations (ETCRs)
are

½ϕmð~x; ξÞ; ∂ξϕ
†
m0 ð~y; ξ0Þ�

¼ −2iδmm02πδðξ − ξ0Þð2πÞDδðDÞð~x − ~yÞ: ð110Þ

It is this result that is the first indication that this theory has
all the features of a nonrelativistic field theory. We can
mode expand the fields as

ϕmð~x; ξÞ ¼
Z

dD~p
ð2πÞD

Z
dn
2π

ei~p·~xeinξamn;~p; ð111Þ

and to reproduce the ETCR, we have

½amn;~p; a†m0;n0;~q� ¼ −
4π

n
δmm0δðn − n0Þð2πÞDδðDÞð~p − ~qÞ:

ð112Þ
We would introduce a tensor Fock space H ¼⊗n;~p F n;~p
and define lowest weight representations by

amn0;~p0 j0i≡ amn0;~p0 ⊗n;~p j0in;~p ¼ 0: ð113Þ

The excited states are then obtained by acting with a†’s.
Given this, we can identify the number operator

Nm;n;~p ¼ −
n
2
a†m;n;~pa

m
n;~p ðno sumÞ; ð114Þ

and the charge operator is just

Q ¼
Z

dD~p
ð2πÞD

Z
dn
2π

Nm;n;~p: ð115Þ

The Hamiltonian gives

Ha†m;n;~pj0i ¼ ~p2a†m;n;~pj0i: ð116Þ

We see that the quantum number n represents a degeneracy
—the energies do not depend on it. The dynamics of the
model do not distinguish n, and we can think about a given
value of n as corresponding to a superselection sector.
Thus, at least in this free theory, we see that a super-

selection sector of the d ¼ Dþ 2-dimensional relativistic
theory quantized on the light cone is equivalent to a
Dþ 1-dimensional nonrelativistic theory. In a given
superselection sector labelled by n, we may then take
the action to be

S0 ¼
Z

dtdD~xϕ†
mðinPF;t þ ~P 2

FÞϕm; ð117Þ

where now the regulated derivative is defined in a
Schrödinger-covariant manner,

PF;μ ¼ K−1
F

�
−

1

M2
ðin∂t þ ~∇2Þ

�
∂μ: ð118Þ

This action represents a (regulated) free, nonrelativistic
conformal field theory [33,34].
However, let us be a little more specific about what we

mean by a superselection sector. In terms of the naive free
field theory, we mean that the action and path integral
measure are sums and products respectively of quantities
with fixed n,

Z ¼
Y

n∈specðNÞ
Zn: ð119Þ

When we introduce the bilocal sources, we choose to
preserve this structure. Given then a source term of the
schematic formZ

dξdtdDx
Z

dξ0dt0dDx0ϕ†
mðξ; t; ~xÞ

× Bðξ; t; ~x; ξ0; t0; ~x0Þϕmðξ0; t0; ~x0Þ; ð120Þ

we see that requiring ϕmðξ; t; ~xÞ ¼ einξϕmðn; t; ~xÞ for fixed
n (i.e., requiring that the source does not mix different
superselection sectors) is equivalent to requiring that within
a superselection section labelled by n,

Bðξ; t; ~x; ξ0; t0; ~x0Þ ¼ einðξ−ξ0ÞBnðt; ~x; t0; ~x0Þ: ð121Þ
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Thus, had we taken the sources to be local in RDþ2, then
they would have had no dependence on n. This is to be
expected from nonrelativistic holography: the bulk fields
that give rise to conserved currents in the boundary field
theory are gauge fields with n ¼ 0. We see though that in
the higher-spin version this will be a little more subtle—the
higher-spin fields will have some memory of n.
In formulating the exact RG equations and thus the

higher-spin bulk theory, we will keep ξ dependence and the
ξ components of the connection. However, ultimately what
we will mean by “DLCQ in the bulk” is that the bulk fields
will be taken after the fact to have definite ξ dependence, of
the form (121) (but see also the discussion below).
Keeping in mind our experience in dealing with the free

relativistic models, we perturb away from this fixed point
by introducing the bilocal sources Bðx; yÞ;Wμðx; yÞ,

S ¼ ϕ†
m·ðDξ·Dt þ ~D2Þ·ϕm þ ϕ†

m·B·ϕm; ð122Þ

where we have defined

Dμ ¼ PF;μ þWμ ð123Þ

as before. This action of course transforms under
UðL2ðR1;Dþ1ÞÞ transformations

ϕm → L·ϕm; L†·L ¼ 1 ð124Þ

with the sources transforming as

B → L−1·B·L; Wμ → L−1·Wμ·Lþ L−1·½PF;μ;L�·
ð125Þ

From our discussion of DLCQ above, the next task is to
constructUðL2ðR1;Dþ1ÞÞ transformations which do not mix
various superselection sectors. This means that in any given
sector labelled by n, we must restrict the ξ dependence of
our transformations as

Lnðξ; t; ~x; ξ0; t0; ~x0Þ ¼ einðξ−ξ0Þ ~Lnðt; ~x; t0; ~x0Þ; ð126Þ

where ~Ln satisfy

~L†
n· ~Ln ¼ δðt − t0Þδð~x − ~x0Þ: ð127Þ

We will refer to these subgroups as UnðL2ðR1;DÞÞ.
Generalizing this to CUðL2ðR1;Dþ1ÞÞ is also straightfor-

ward, provided one is mindful of the fact that the coor-
dinates are taken to scale as ðξ; t; ~xÞ ↦ ðξ; λ2t; λ~xÞ. As
before, we introduce a conformal factor z in the field theory
metric

gð0Þ ¼ 1

z2
ðdξdtþ d~x2Þ: ð128Þ

Defining the dimensionless sources Wold ¼ zDþ2Wnew and
Bold ¼ zDþ4Bnew, the action becomes

S ¼ 1

zD
ϕ†
m·ðiDξ·Dt þ ~D2Þ·ϕm þ 1

zD
ϕ†
m·B·ϕm: ð129Þ

With these definitions, the action is invariant under CUðL2Þ
transformations satisfying

L†·Lðξ; t; ~x; ξ0; t0; ~x0Þ ¼ λ2Δϕδðξ − ξ0Þδðt − t0ÞδDð~x − ~x0Þ;
ð130Þ

where Δϕ ¼ 1
2
D. The sources transform according to

Eq. (125), along with z → λ−1z. As in the relativistic case,

we have the freedom to take Wμ ¼ Wð0Þ
μ to be flat.

The renormalization group equations take the same form,

dWð0Þ þWð0Þ∧Wð0Þ ¼ 0 ð131Þ

dBþ ½Wð0Þ;B�· ¼ βðBÞ; ð132Þ

where βðBÞ ¼ B·ΔB·B, and ΔB;n ¼ M
z

d
dM ðiDð0Þ

ξ ·Dð0Þ
t þ

~Dð0Þ2Þ−1.
Let us now project onto a superselection sector. Recall

from our previous discussion that in order to do this
consistently we must choose a specific ξ dependence for
the source, namely

Bðξ; t; ~x; ξ0; t0; ~x0Þ ¼ einðξ−ξ0ÞBnðt; ~x; t0; ~x0Þ: ð133Þ

Note though that this ξ dependence inB can be completely
removed by a gauge transformation:

Lnðξ; t; ~x; ξ0; t0; ~x0Þ ¼ einξδðξ − ξ0Þδðt − t0ÞδDð~x − ~x0Þ:
ð134Þ

The renormalization group equations, however, transform
covariantly under a gauge transformation, and so we arrive
at the equations projected onto a superselection sector,

dWð0Þ
n þWð0Þ

n ∧Wð0Þ
n ¼ 0 ð135Þ

dBn þ ½Wð0Þ
n ;Bn�· ¼ βðBÞ

n ; ð136Þ

where now d is the exterior derivative on R1;D, and
Wð0Þ

n ¼ ðL−1
n ·Wð0Þ·Ln þ L−1

n ·dLnÞ. The z component of
the β function is given by

βðBÞ
n;z ¼ Bn·ΔB;n·Bn; ð137Þ

where now ΔB;n ¼ M
z

d
dM ðinDð0Þ

t þ ~Dð0Þ2Þ−1. These are the
final nonrelativistic higher-spin renormalization group
equations.
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A natural choice for the flat connection is given by

Wð0Þ
n ¼ −

dz
z
Dðx; yÞ þ dt

z2
Hðx; yÞ þ d~xi

z
~Piðx; yÞ

þ dξNðx; yÞ; ð138Þ

where we have used the shorthand notation x ¼ ðt; ~xÞ and
in the given superselection sector Nðx; yÞ evaluates to
inδðDþ1Þðx; yÞ. This last term above is important—it

ensures that the connection Wð0Þ
n is gauge equivalent to

a connection of the form

einðξ−ξ0Þ eWð0Þ
n ðx; yÞ; ð139Þ

which is crucial for a consistent projection onto super-
selection sectors. Note that the only remaining dependence
on n is in the dξ component of the connection. Indeed, the
theory remembers the superselection sector through the
holonomy of Wð0Þ around the ξ cycle:I

ξ-cycle
Wð0Þ

n ¼ inδðDþ1Þðx − yÞ: ð140Þ

The remaining components ofWð0Þ
n give us the Schrödinger

connection, which is the Maurer–Cartan form on the
Schrödinger group. One can show, similarly to the above
analysis, that the Hamilton–Jacobi formalism can be
constructed for this theory, and the Schrödinger-covariant
correlation functions obtained.

V. DISCUSSION

In this article, we have applied the techniques developed
in Ref. [1] to the case of free bosonic vector models. The
essence of the construction was to interpret the covariant
higher-spin exact renormalization group equations, written
in terms of nonlocal variables, as the bulk equations of
motion. We then computed the bulk on-shell action
iteratively in terms of a general boundary source, and
we showed that this reproduces precisely the field theory
generating functional for connected correlation functions.
Thus, taking advantage of the fact that free field theory is
exactly solvable, we have been able to build a holographic
dual and demonstrate that we can go back and forth
between the intrinsic field theory and the bulk holographic
descriptions. What remains to be done is to clarify the
relationship between our higher-spin theory and that of
Vasiliev. On the face of it, the Vasiliev equations are written
in terms of a large number of auxiliary variables and are
local in space-time. The first steps toward a map between
the two formalisms were taken in Ref. [1], but a complete
picture remains elusive. As a first step of course, it might
be worthwhile to reproduce Fronsdal equations from the
higher-spin renormalization group equations. Given that our
bilocal source Bðx; yÞ sources all possible quasiprimary

operators and their descendants, the coefficient functions
obtained through its quasilocal expansion naturally organize
in terms of conformal modules

Bðx; yÞ ∈
X∞
s¼0

Dð2 − s; sÞ ð141Þ

with the lowest weight states in each module being the
Fronsdal fields. Indeed, since the Fronsdal wave operator is
essentially the quadratic Casimir for the conformal group
SOð2; dÞ written in a bulk basis, it seems natural that the
Fronsdal equations should follow as a natural consequence
of conformal symmetry. The details of this will be presented
elsewhere.
While the above is interesting in its own right, a major

motivation is indeed to be able to adopt some of these
methods to the case of interacting field theories. Within the
context of vector models, it has long been conjectured that
the critical bosonic/fermionic UðNÞ models (namely the
nontrivial interacting IR/UV fixed points) are dual to type
A/B Vasiliev theories with a different quantization for the
bulk scalar.13 In the N → ∞ limit, the generating func-
tionals of these interacting theories can be obtained as a
Legendre transform with respect to the source of the scalar
operator ϕ�

mϕ
m (or ψ̄mψ

m for the fermionic case)—thus, in
principle, one can extract the holographic Hamiltonian, and
hence the bulk equations of motion for the interacting case
straightforwardly from our results, through a Legendre
transform. However, it would be much more satisfying to
apply the exact renormalization group to the interacting
fixed point and demonstrate from first principles the
emergence of (massless) higher-spin equations at large
N. At finite N, one expects to see that all spin s > 2 gauge
fields are Higgsed, leaving behind only the s ≤ 2 fields. We
will present the details of this investigation elsewhere [31].
Another possible direction for future work is to general-

ize our ideas to the larger arena of theories with gauge
symmetries, for example the Chern–Simons-vector models.
The basic idea is that the singlet sector of free vector models
discussed in this paper can be thought of as the k → ∞ limit
of a corresponding Chern–Simons vector model.
Interestingly, there are conjectured holographic dualities
between certain parity-breaking Vasiliev theories and
finite-k Chern–Simons vector models [35,36].
Finally, we note that an interesting connection between

exact renormalization group and string field equations was
sought to be made in Ref. [37]. Indeed, it is widely
speculated that the higher-spin gauge fields are some sort
of an effective description of a certain subsector of the
higher-spin modes associated with string theory, which
become massless in the α0 → ∞ limit. Given the similarities
between the ideas presented here and in Ref. [37], it will be

13In phase space terms, the “quantizations” are expected to be
related by a canonical transformation.
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interesting to see whether or not this connection to string
theory can be made more explicit.
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APPENDIX A: RENORMALIZATION GROUP:
DETAILS

In this Appendix, we spell out the details of the
derivation of the exact renormalization group equations.
We take the regulated action to be

SBos ¼ S0 þ S1 ðA1Þ

S0 ¼ −
1

zd−2

Z
x;y;u

ϕ�
mðxÞDð0Þ

μ ðx; yÞDð0Þ
μ ðy; uÞϕmðuÞ ðA2Þ

S1 ¼
1

zd−2

Z
x;y

ϕ�
mðxÞBðx; yÞϕmðyÞ þ U: ðA3Þ

Next, we run the two-step RG process:
(i) Step 1: In step 1 of the RG, we want to integrate out

a shell of fast modes and investigate how that
changes the sources. To perform this integration,
we use Polchinski’s exact RG formalism. We start by
lowering M → λM, where λ ¼ 1 − ε. Since this has
the interpretation of integrating out fast modes, we
can extract the change in the sources δεB ¼
−εM d

dMB and δU ¼ −εM d
dMU by imposing

M
d
dM

Z ¼ Z−1
0

Z
½dϕdϕ��

��
M

d
dM

eiS0
�
eiS1

þ eiS0
�
M

d
dM

eiS1
�

− Z−1
0 eiS0þiS1M

d
dM

Z0

�
¼ 0; ðA4Þ

where the last term above is from the normalization
of the partition function,14 as in (11). Evaluating the
first term, we find

M
d
dM

eiS0 ¼ −
i

zd−2
eiS0

Z
ϕ�
m·

�
M

d
dM

D2
ð0Þ

�
·ϕm

¼ i
zd−2

eiS0
Z

ϕ�
m·Dð0Þ2·ΔB·Dð0Þ2·ϕm

¼ −izd−2
Z
x;y

ΔBðx; yÞ
�

δ2

δϕmðxÞδϕ�
mðyÞ

− i
δ2S0

δmϕðxÞδmϕ�ðyÞ
�
eiS0 ; ðA5Þ

where we have defined ΔB ¼ M d
dM ðDð0Þ

μ Dð0Þ
μ Þ−1.

The second term in (A5) cancels with the contribu-
tion from the normalization. Therefore, integrating
by parts from Eqs. (A4) and (A5), we are left with

M
d
dM

eiS1 − izd−2
Z
x;y

ΔBðx; yÞ
δ2

δϕ�
mðxÞδϕmðyÞ e

iS1

¼ 0: ðA6Þ

Evaluating this term by term, we find

i

�
M

d
dM

U þ 1

zd−2
ϕ�
m·M

d
dM

B·ϕm

�

¼ −
�
NTrΔB·B þ i

zd−2
ϕ�
m·B·ΔB·B·ϕm

�
: ðA7Þ

As the notation suggests, the above equations should
be regarded as valid inside the path integral. From
the above equation, we can now read off the change
in the sources [if we treat the 1 and ϕ�

mðxÞϕmðyÞ as
independent operators]:

δεB ¼ −εM
d
dM

B ¼ εB·ΔB·B ðA8Þ

δεU ¼ −εM
d
dM

U ¼ −iεNTrΔB·B: ðA9Þ

(ii) Step 2: Next in step 2, we perform a CUðL2Þ
transformation,

Lðx; yÞ ¼ δdðx − yÞ þ εzWð0Þ
z ðx; yÞ; ðA10Þ

to bring the cutoff back while changing the conformal
factor of the metric. Having done this, we label the
sources BðzÞ;Bðzþ εzÞ and UðzÞ; Uðzþ εzÞ.
Together with step 1, we thus conclude

Bðzþ εzÞ ¼ BðzÞ − ε½Wð0Þ
z ;B�· þ εB·ΔB·B ðA11Þ

Uðzþ εzÞ ¼ UðzÞ − iεNTrΔB·B: ðA12Þ

In this way, the renormalization group extends the
sources defined at a given value of z to all of the14We have defined Z0 ¼

R ½dϕdϕ��eiS0 .
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bulk RG mapping space. Redefining ΔB as ΔB ¼
M
z

d
dM ðD2

ð0ÞÞ−1, we recover Eqs. (45) and (46).

A. Callan–Symanzik equations

Similarly, we can derive an expression for the Callan–
Symanzik equations of the bilocal operator Π̂ðx; yÞ ¼
ϕ�
mðyÞϕmðxÞ. Again we run the two-step RG process:
(i) Step 1: Defining normalized correlation functions by

hOi≡
R ½dϕ dϕ��OeiSR ½dϕ dϕ��eiS ; ðA13Þ

it is straightforward to demonstrate the relationship

MdMΠ≡MdMhΠ̂i ¼ Tr
�
ΔB·

�
δS1
δϕ�

m

δΠ̂
δϕm

þ δΠ̂
δϕ�

m

δS1
δϕm − i

δ2Π̂
δϕ�

mδϕ
m

��
: ðA14Þ

The right-hand side can be calculated explicitly. The
result is

δεΠ ¼ −εMdMΠ

¼ iεNzΔB − εzΔB·B·Π − εzΠ·B·ΔB; ðA15Þ

or more compactly

δεΠ ¼ iεzNΔB þ εzTrfγ·Πg; ðA16Þ

where we define

γðx; y; u; vÞ≡ −
δβðBÞðu; vÞ
δBðy; xÞ

¼ −δðx − uÞðΔB·BÞðy; vÞ
− ðB·ΔBÞðu; xÞδðv − yÞ: ðA17Þ

(ii) Step 2: We perform a CUðL2Þ transformation as
given in (A10). The result is

Πðzþ εz; x; yÞ ¼ Πðz; x; yÞ − εz½Wð0Þ
z ;Π�· þ iεzNΔB

þ εzTrfγðx; y; u; vÞ·Πðv; uÞg:
ðA18Þ

As with the beta function derived above, this
relationship can be extended into the bulk. Denoting
the bulk momentum as P, we have

Dð0Þ
z P ≡ ∂zP þ ½Wð0Þ

z ;P�·
¼ iNΔB þ Trfγðx; y;u; vÞ·Pðv; uÞg; ðA19Þ

where γðz; x; y; u; vÞ≡ − δβðBÞðz;u;vÞ
δBðz;y;xÞ is the bulk

extension of γ.

APPENDIX B: DIRAC FERMION:
CORRELATION FUNCTIONS

In this section, we present some details of the UðNÞ
fermionic vector model at its free-fixed point. The exact
renormalization group for the OðNÞMajorana free fermion
and its interpretation as a higher-spin holographic system
was discussed in detail in Ref. [1]. Here we present a review
of the Dirac fermion, with emphasis on reproducing the
boundary correlation functions from the holographic
action.
The regulated Dirac action, with bilocal sources for

UðNÞ-singlet, single-trace operators is given by

SDirac ¼
Z
x;y

ψ̄ðxÞiγμPF;μðx; yÞψðyÞ

þ
Z
x;y

ψ̄ðxÞðAðx; yÞ þ γμWμðx; yÞÞψðyÞ: ðB1Þ

Unlike the bosonic version, the structure of sources for the
fermionic vector model is dimension dependent-for in-
stance, in d ¼ 2nþ 1 dimensions, one has the single-trace
bilocal operators

ψ̄mðxÞψmðyÞ; ψ̄mðxÞγμ1ψmðyÞ;
ψ̄mðxÞγμ1μ2ψmðyÞ � � � ; ψ̄mðxÞγμ1���μnψmðyÞ;

ðB2Þ

while in even dimensions, one must also account for chiral
operators involving γ5. Consequently, the nature of bulk
fields in the holographic description necessarily involves
higher-form fields for d ≥ 4. For this reason, we will
presently restrict our discussion to the case d ¼ 3, although
much should have a natural generalization to arbitrary
dimension. Note also that the zero-form source Aðx; yÞ in
the fermionic model is parity odd (i.e., a pseudoscalar), as
opposed to the bosonic counterpart Bðx; yÞ, which was
parity even.
As was the case with the bosonicUðNÞmodel, the action

above has a CUðL2Þ symmetry, under whichWμ transforms
as a connection, while A transforms as an adjoint scalar. We
may split the connection

Wμ ¼ Wð0Þ
μ þ bWμ ðB3Þ

into a flat piece Wð0Þ and the tensorial piece bW. In the
bosonic model, we used a field redefinition symmetry to
absorb bW into the zero-form B. However, in the fermionic
case, we do not have the liberty to do so because of the
gamma matrix structures involved. Therefore, we must
keep both A as well as bWμ as the tensorial perturbations
away from the free-fixed point. The renormalization group
extends the field theory sources into fields A and W living
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on the one-higher-dimensional RG mapping space. The
ERG equations take the form of bulk equations of motion,
given by

F ð0Þ ≡ dWð0Þ þWð0Þ∧Wð0Þ ¼ 0 ðB4Þ

½D;A�· ≡ dAþ ½W;A�· ¼ βðAÞ ðB5Þ

F ≡ dW þW∧W ¼ βðWÞ; ðB6Þ

where the beta functions are given by

βðAÞ ¼ ðA·Δμ· bWμ þ bWμ·Δμ·Aþ ϵμνλ bWμ·Δν· bWλÞdz
þ βðAÞ

μ dxμ ðB7Þ

βðWÞ ¼ ðA·Δμ·Aþ ϵμνλðA·Δν· bWλ þ bWν·Δλ·AÞ
þ bWν·Δν· bWμ − bWν·Δμ· bWν

þ bWμ·Δν· bWνÞdz∧dxμ þ βðWÞ
μν dxμ∧dxν; ðB8Þ

where the transverse components of the beta functions
above are determined by the Bianchi identities. The
interpretation of these equations as the Hamilton equations
for radial evolution along z goes through straightforwardly.
Once again, the Hamiltonian turns out to be linear in
momenta, and we may write a phase space action which
reproduces all the RG equations as the corresponding
equations of motion:

I ¼
Z

ϵ

∞
dzTrfPIð½DI;A�· − βðAÞ

I Þ þ PIJðF IJ − βðWÞ
IJ Þ

− iNΔI · bWIg: ðB9Þ

To compute the boundary correlation functions, we need to
evaluate this action on shell,

Io:s ¼ iN
Z

∞

ϵ
dzTrΔμ bWμ; ðB10Þ

wherewe havemade a convenient gauge choice bWz ¼ 0. To
proceed, we need to obtain bWμðzÞ by solving the equations
of motion (once again, focusing on the z component)

½Dð0Þ
z ;A�· ¼ βðAÞ

z ðB11Þ

½Dð0Þ
z ; bWμ�· ¼ βðWÞ

zμ : ðB12Þ

It is most convenient to solve these equations iteratively:

A ¼ Að0Þ þAð1Þ þAð2Þ þ � � � ðB13Þ

bWμ ¼ bWð0Þ
μ þ bWð1Þ

μ þ bWð2Þ
μ þ � � � ðB14Þ

The background values are taken to beAð0Þ ¼ bWð0Þ
μ ¼ 0, as

these correspond to the free-fixed point. We will take the
boundary to lie at z ¼ ϵ and fix the boundary values to be

Aðϵ; x; yÞ ¼ að0Þðx; yÞ; bWμðϵ; x; yÞ ¼ ŵð0Þ
μ ðx; yÞ:

ðB15Þ

As in the bosonic case, the other boundary condition is the
interior boundary condition, i.e.

lim
z→∞

Pðz; x; yÞ ¼ lim
z→∞

Pμðz; x; yÞ ¼ 0; ðB16Þ

whereP andPμ are themomenta corresponding toA and bW.
The first-order sources are easily solved for

Að1Þ ¼ K·að0Þ·K−1; bWð1Þ
μ ¼ K·bwð0Þ

μ ·K−1; ðB17Þ

where K is the boundary to bulk Wilson line defined in the
main text. The equations for the kth-order sources take the
form

½Dð0Þ
z ;AðkÞ�· ¼ ΦðkÞ

A ðB18Þ

½Dð0Þ
z ; bWðkÞ

μ �· ¼ ΦðkÞ
W ; ðB19Þ

where the inhomogenous termsΦðkÞ
A andΦðkÞ

W are made up of
lower-order sources. In terms of the bulk-to-bulkWilson line
G (defined in the main text), we find that Eqs. (B18) and
(B19) can be solved as

AðkÞðzÞ ¼
Z

∞

ϵ
dz0Gðz; z0Þ·ΦðkÞ

A ·G−1ðz0; zÞ

bWðkÞðzÞ ¼
Z

∞

ϵ
dz0Gðz; z0Þ·ΦðkÞ

W ·G−1ðz0; zÞ: ðB20Þ

All that remains is to plug these solutions into the on-shell
action and perform the z integrations. This computation
proceeds in exactly the sameway as the bosonic case, and so
we do not show all the details here. The on-shell action at the
kth order can be massaged into the form

IðkÞo:s ¼ iN
Z

∞

ϵ
dz1

Z
z1

ϵ
dz2 � � �

×
Z

zk−1

ϵ
dzkTrðHðz1Þ·ðað0Þ þ γμŵð0Þ

μ Þ � � �HðzkÞ

·ðað0Þ þ γσŵð0Þ
σ Þ þ permutationsÞ; ðB21Þ

where we have defined HðzÞ ¼ K−1ðzÞ·γμΔμðzÞ·KðzÞ.
Defining the Wilsonian Green function

gμðz; x; yÞ ¼
Z

z

ϵ
dz0K−1ðz0Þ·Δμðz0Þ·Kðz0Þ ðB22Þ
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gð0Þμ ðx; yÞ ¼ gμð∞; x; yÞ; ðB23Þ

we find (after performing the z integrations) that Eq. (B21) becomes

IðkÞo:s ¼ i
N
k
Trðγνgð0Þν ·ðað0Þ þ γμŵð0Þ

μ ÞÞk: ðB24Þ

Thus, the bulk action evaluated on shell reproduces the field theory generating functional (up to source-independent boundary
terms)

Io:s: ¼ iNTr ln ððγμgð0Þμ Þ−1 − að0Þ − γμŵð0Þ
μ Þ: ðB25Þ
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