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The effects induced by the quantum vacuum fluctuations of one massless real scalar field on a
configuration of two partially transparent plates are investigated. The physical properties of the infinitely
thin plates are simulated by means of Dirac-δ − δ0 point interactions. It is shown that the distortion caused
on the fluctuations by this external background gives rise to a generalization of Robin boundary conditions.
The T operator for potentials concentrated on points with nondefined parity is evaluated with total
generality. The quantum vacuum interaction energy between the two plates is computed in several
dimensions using the TGTG formula to find positive, negative, and zero Casimir energies. The parity
properties of the δ − δ0 potential demands that one distinguish between opposite and identical objects. It is
shown that between identical sets of δ − δ0 plates, repulsive, attractive, or null quantum vacuum forces
arise. However, there is always attraction between a pair of opposite δ − δ0 plates.
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I. INTRODUCTION

More than 30 years ago, Symanzik in Ref. [1] estab-
lished the correspondence between boundary conditions
and surface interactions in quantum field theory. The most
remarkable physical manifestation of surface interactions
in QFT is the Casimir effect [2]. Recently Bordag, Milton,
Fosco and others have treated different idealized
semitransparent plates by using Dirac-δ functions, see
Refs. [3–10]. This idealization provides an analytic
approach to studying the electromagnetic quantum vacuum
interaction between several types of material plates. In
Ref. [10] we thoroughly studied the quantum vacuum
interaction between two Dirac-δ plates with arbitrary
couplings in one spatial dimension. If one or two of the
Dirac-δ couplings are negative, the quantum vacuum
energy becomes imaginary and the phenomenon of fluc-
tuation absorption/emission appears. A similar idea, based
on 2D Dirac-δs, has been applied by Munoz-Castaneda and
Bordag to analyze the quantum vacuum interaction
between two cosmic strings; see Ref. [11].
Quantum boundary conditions, compatible with the prin-

ciples of QFT, that quantum fields can satisfy in a QFT
defined over a domain with boundary has been studied by
Munoz-Castaneda, Asorey et al. during the past few years
[12–16] in full generality. The analysis of quantum mechani-
cal systems defined in bounded domains as self-adjoint
extensions of the free particle Hamiltonian developed by
Asorey-Ibort-Marmo in Ref. [17] is the starting point of the
work of Munoz-Castaneda, Asorey et al. These authors
select the eigenfunctions of the self-adjoint Hamiltonians as

the one particle states of a QFT defined on a compact
manifold with boundary. By doing this they characterize all
the boundary conditions compatible with unitarity that
quantum fields confined in finite domains can satisfy.
Moreover, calculations of the vacuum energy and other
important magnitudes in the QFTas functions over the space
of allowed boundary conditions were also achieved; see
Refs. [12,16]. Although several authors suggested the
connection between surface/pointlike Dirac-δ interactions
and a kind of generalized Dirichlet boundary conditions, see
[3,4,6,9], we used the same strategy of introducing δ-point
interactions in Ref. [10] to make contact with the Asorey–
Munoz-Castaneda formalism without complete success.
More complex pointlike/surface interactions are needed to
implement other Asorey–Munoz-Castaneda quantum boun-
dary conditions, e.g., of Robin type.
In this paper we propose to add Dirac-δ0 potentials to the

same points where δ interactions were introduced in order
to investigate which Asorey–Munoz-Castaneda boundary
conditions can be reproduced by pointlike potentials of the
form μδðxÞ þ λδ0ðxÞ. In the past 20 years there has been a
lot of activity on how to define the derivative of the Dirac-δ
as a quantum mechanical potential; see Refs. [18–22] to
find different approaches to the problem. The most suc-
cessful way to define the δ0 is to introduce it using a
regularization. The two most rigorous regularized defini-
tions of the δ0 are the one introduced by Kurasov and
Gadella et al. in Refs. [20,21] and the regularized definition
introduced by Seba, Albeverio, Fassari, and others in
Refs. [18,19]. We remark that the regularized potentials
through different approaches are not equivalent, but illu-
minating discussions of the distinct outcomes are offered in
Refs. [21,23,24]. Here we define the Dirac-δ0 potential
following the proposal of Kurasov and Gadella et al. in
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Refs. [20,21]. In their approach, the δ0 potential is regu-
larized by also including a Dirac-δ interaction at the same
point. By doing this, scale invariance associated with a pure
1D δ0 potential is broken. The combined pair of δ − δ0 point
interactions is defined as a self-adjoint extension of the free
particle Hamiltonian by imposing natural matching con-
ditions to μδðxÞþλδ0ðxÞ on the eigenfunctions at the origin.
Fulling in Ref. [25] succeeded in implementing Robin

boundary conditions by means of a quantum graph vertex
with a Dirac-δ attached, somehow characterized by the
matching conditions for the δ0 potential given by Seba in
[18]. In Ref. [26] Fosco et al. explain how a superconduct-
ing circuit experiment formed by a coplanar wave-guide
ended on a superconducting quantum interference device
(SQUID) is described by one quantum scalar field in ð1þ
1Þ dimensions subjected to generalized Robin boundary
conditions at the endpoints of an interval. Our strategy,
however, will be to consider two pairs of μδðxÞ þ λδ0ðxÞ
interactions and study the quantum fluctuations
of a quantum scalar field in the R × ½−a; a� space-time
under the influence of the static background: UðxÞ ¼
μ1δðxþ aÞ þ λ1δ

0ðxþ aÞ þ μ2δðx − aÞ þ λ2δ
0ðx − aÞ. We

will follow and generalize the procedures and techniques
established in [10] when the δ0s are switched off. Choosing
the matching conditions of Gadella et al., we end in a richer
situation where generalized Robin conditions arise linking
this pair of point interactions to quantum boundary con-
ditions in QFT compatible with unitarity as described in the
Asorey–Munoz-Castaneda formalism. Additionally, inter-
pretating the point interactions as featuring two pairs of
Casimir plates we will apply the TGTG formula to evaluate
the quantum vacuum energy. As wewill demonstrate, in the
μ1>0, μ2 > 0 cases, the vacuum energy between two δ − δ0

plates is found to be positive, negative, or zero giving rise,
respectively, to repulsive, attractive, or null Casimir forces.
Whereas the couplings to the δ potentials physically

describe the plasma frequencies in Barton’s hydrodynam-
ical model [5] characterizing the electromagnetic properties
of the conducting plates, the physical meaning of the
coupling to the δ0 potential has been discovered only very
recently. Bordag’s analysis of monoatomically thin polar-
izable plates formed by lattices of dipoles published
recently in [27] shows that δ0 potentials appear in the
interaction between the electric field and the component of
the diagonal polarizability tensor acting on the direction
orthogonal to the plate; see Secs. I and II as well as Eq. (33)
in Ref. [27]. The δ0 coupling λ thus describes the response
of the orthogonal polarizability of a monoatomically thin
plate to the electromagnetic field. The Bordag paper paves
the way to a finer understanding of the electromagnetic
response of the monoatomically thin plate that completes
previous works by Barton [28,29], where the plasma model
is used, and Milton and collaborators [4,9], where the
orthogonal polarizability was not accounted for.

Starting with a lightning review of the quantum mechani-
cal spectrum of the δ − δ0 point potential defined by
Kurasov-Gadella, we discuss as a novelty new physical
properties of the δ − δ0 and the spectrum of the double
δ − δ0 potential. For the double δ − δ0 potential, the scatter-
ing amplitudes and the bound state energies, identified
graphically, and eigenfunctions are unveiled. The analysis
is performed with reference to the space of parameters, i.e.,
the four couplings to the two pairs of point interaction,
because it is important to know where bound states inducing
absorption/emission phenomena arise: in these zones of the
parameter space the scalar quantum field theory is not
unitary. A second novel point is the demonstration that δ −
δ0 interactions provide a dynamical materialization of
generalized Robin boundary conditions. The third achieve-
ment is the calculation of the quantum vacuum interaction
energy between two δ − δ0 plates by means of the TGTG
formalism. Numerical integrations in the TGTG formula
show that the Casimir forces between two of such plates can
be attractive, repulsive, or null depending on the chosen zone
of the parameter space. In particular, several planes in the 4D
parameter space will be chosen to present results offering
several tomographic views of the problem. All this material
will be organized as follows. In Sec. II the basic formulas are
compiled. In particular, in Sec. II D we describe the quantum
physics of the single δ − δ0 potential. In Sec. III the quantum
mechanical spectrum of two δ − δ0 interactions is studied:
we solve the scattering problem and characterize the bound
state spectrum. In Sec. IV we study the scalar quantum field
theory that arises in the background of a double δ − δ0
potential and the connection with Asorey–Munoz-Castaneda
formalism for quantum fields in bounded domains via the
relativistic probability flux. The Asorey–Munoz-Castaneda
formalism is used in Sec. V to demonstrate that the δ − δ0
potential is a semitransparent generalization of Robin
boundary conditions, and how the usual Robin boundary
conditions arise in this background. In Sec. VI the scalar
quantum vacuum interaction between two δ − δ0 plates is
analyzed through the general formula for the T operator of a
point potential with nondefined parity previously obtained.
Finally, in Sec. VII we discuss the results and draw the main
conclusions.

II. QUANTUM FLUCTUATIONS
OF 1þ 1-DIMENSIONAL SCALAR FIELDS

A. The field equation and the Green function

The fluctuations of 1D scalar fields on static classical
backgrounds modeled by the function UðxÞ are governed
by the action

S½Φ� ¼
Z

d2x

�
1

2
∂μΦ∂μΦ −

1

2
UðxÞΦ2ðx; tÞ

�
: ð1Þ

We shall focus on compact support functions UðxÞ in
order to deal with well-defined scattering problems [30].
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The classical field and the Green’s function equations
arising from (1) are, respectively,

ð∂2
t − ∂2

x þ UðxÞÞΦðx; tÞ ¼ 0;

ð∂2
t − ∂2

x þ UðxÞÞGðx; t; x0; t0Þ ¼ δðx − x0Þδðt − t0Þ: ð2Þ

Performing a Fourier decomposition in the time coordinate
of the scalar field

Φðt; xÞ ¼
Z

∞

−∞

dω
2π

eiωtϕωðxÞ; ð3Þ

the general solution of the field equation becomes a linear
superposition of the eigenfunctions of the static fluctuation
Schrödinger operator:

−ϕ00
ωðxÞ þUðxÞϕωðxÞ ¼ ω2ϕωðxÞ: ð4Þ

The same Fourier decomposition leads to the reduced
Green’s function Gωðx; x0Þ and its corresponding differ-
ential equation:

Gðx; t; x0; t0Þ ¼
Z

∞

−∞

dω
2π

eiωðt0−tÞGωðx; x0Þ; ð5Þ

ð−ω2 − d2=dx2 þ UðxÞÞGωðx; x0Þ ¼ δðx − x0Þ: ð6Þ

The reduced Green function plays a central role in the
paper. We shall need the reduced Green function in the
calculation of the Casimir energy by means of the TGTG
formalism developed in Refs. [31–34].

B. One-particle scattering waves and bound states

The one-particle states of the ð1þ 1ÞD scalar quantum
field theory are the eigenfunctions of the Schrödinger
operator

K ¼ K0 þ UðxÞ ¼ −
d2

dx2
þUðxÞ: ð7Þ

Generically this operator has both a continuous and a
discrete spectrum

Kψ jðxÞ ¼ ω2
jψ jðxÞ; j ¼ 1; 2;…; l; l ∈ N; ð8Þ

KψkðxÞ ¼ ωðkÞ2ψkðx; kÞ; ωðkÞ2 ¼ k2; k ∈ R: ð9Þ

For each k ∈ R the differential equation (9) has two linear
independent solutions: scattering waves incoming from the
left ψ ðRÞ

k ðxÞ and from the right ψ ðLÞ
k ðxÞ. Their asymptotic

behavior is determined by the scattering amplitudes; see
e.g. References [30,35]:

ψ ðRÞ
k ðxÞ≃

�
eikx þ rRðkÞe−ikx; x → −∞
tðkÞeikx; x → ∞

ð10Þ

ψ ðLÞ
k ðxÞ≃

�
tðkÞe−ikx; x → −∞
e−ikx þ rLðkÞeikx; x → ∞

: ð11Þ

The Wronskian of the two independent scattering solutions
is proportional to the transmission amplitude tðkÞ

W½ψ ðRÞ
k ðxÞ;ψ ðLÞ

k ðxÞ� ¼ −2iktðkÞ≡WRLðkÞ; ð12Þ

which is identical for ψ ðRÞ and ψ ðLÞ waves due to time-
reversal invariance. The reduced Green function defined
in (5) is obtained from the two independent scattering
solutions by means of the following expression, see
e.g. [31]:

Gωðx; x0Þ ¼
1

WRLðkÞ
ðθðx − x0Þψ ðRÞ

k ðxÞψ ðLÞ
k ðx0Þ

þ θðx0 − xÞψ ðRÞ
k ðx0Þψ ðLÞ

k ðxÞÞ; ð13Þ

where θðxÞ is the Heaviside step function.

C. The TGTG method in ð1þ 1Þ-dimensional theories

In Refs. [31–34] one finds the description of the logical
steps and equations leading to the TGTG formula for the
Casimir energy/quantum vacuum interaction between
two compact/topological disjoint objects in ð1þ 1Þ-dimen-
sional scalar quantum field theories. We offer here a brief
summary. The Lipmann-Schwinger equation arising in
quantum mechanical scattering theory defines the transfer
matrix, also called T operator, as

Gω ¼ Gð0Þ
ω −

Gð0Þ
ω · U ·Gð0Þ

ω

Iþ U ·Gð0Þ
ω

≡Gð0Þ
ω · ðI − Tω ·Gð0Þ

ω Þ;

ð14Þ

where Gð0Þ
ω is the Green’s function for the free particle

operator K0; see again Refs. [30,35]. It is convenient to
write the last equality in Eq. (14) in terms of the
corresponding integral kernels:

Gωðx; yÞ ¼ Gð0Þ
ω ðx; yÞ

−
Z

dz1dz2G
ð0Þ
ω ðx; z1ÞTωðz1; z2ÞGð0Þ

ω ðz2; yÞ:

The integral kernel of the T operator in turn reads

Tωðx; yÞ ¼ UðxÞδðx − yÞ þ UðxÞGð0Þ
ω ðx; yÞUðyÞ; ð15Þ

according to the detailed demonstration available in [34].
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Compact disjoint objects in one dimension are modeled
by potentials of the form

UðxÞ ¼ U1ðxÞ þU2ðxÞ;

where the smooth functions UiðxÞ, i ¼ 1; 2, have disjoint
compact supports on the real line. Under this assumption
the TGTG formula for the vacuum interaction energy
is [32]

Eint
0 ¼ −

i
2

Z
∞

0

dω
π

TrL2 ln ð1 −MωÞ; ð16Þ

whereas the operator Mω and its integral kernel are

Mω ¼ Gð0Þ
ω Tð1Þ

ω Gð0Þ
ω Tð2Þ

ω ð17Þ

Mωðx; yÞ ¼
Z

dz1dz2dz3½Gð0Þ
ω ðx; z1ÞTð1Þ

ω ðz1; z2Þ

× Gð0Þ
ω ðz2; z3ÞTð2Þ

ω ðz3; yÞ�: ð18Þ

Here, TðiÞ
ω , i ¼ 1; 2, is the T operator associated with the

object characterized by UiðxÞ, i ¼ 1; 2. The potentials
UiðxÞ, i ¼ 1; 2, independently define two Schrödinger
operators:

KðiÞ ¼ −
d2

dx2
þUiðxÞ; i ¼ 1; 2: ð19Þ

In general the operators KðiÞ act on Hilbert spaces that are
not isomorphic to the Hilbert space spanned by the
eigenstates of the operator K0 [36]. The poles of the
Green function Gð0Þ of the Klein-Gordon operator

ð∂2
t − ∂2

xÞGð0Þðx − x0Þ ¼ δðt − t0Þδðx − x0Þ

correspond to the propagation of the free mesons on shell.
A Wick rotation ω → iξ in the energy-momentum plane
skips all these poles and improves the convergence of the
free quantum field theory. The same trick for the Green
function in the external background does not work if KðiÞ
presents bound states that still produce dangerous poles. In
this case Gð0Þ

ω and TðiÞ
ω refer to different Hilbert spaces. The

product Gð0Þ
ω · TðiÞ

ω is ill defined and the formula (16) is not
valid. This problem is avoided in two steps: (1) go to the
Euclidean rotated quantum theory, and (2) push upwards
the scattering threshold of the background distorted prop-
agations by means of an infrared cutoff m2 until the bound
state eigenvalues disappear in the continuous spectrum.
Having the bound states as purely imaginary momenta of
the form k ¼ iκb, κb > 0, the contributions of the bound
states to the meson propagator

i
−ω2 − κ2b þm2

⟹
i

ξ2 − κ2b þm2

become finite provided thatm2 > κ2b,∀κb. After that, all the
operators act over the same Hilbert space and the TGTG
formula reads

Eint
0 ¼ 1

2

Z
∞

0

dξ
π
TrL2 ln ð1 −MiξÞ; ð20Þ

where all the operators are the Euclidean rotated version
of their Minkowskian counterparts and the dispersion
relation energy-momentum incorporates the cutoff m2;
see Refs. [31,34]. In this paper, however, we shall consider
external backgrounds not allowing bound states in such a
way that we keep the threshold at m2 ¼ 0.

D. The δ − δ0 interaction

We define the singular potential VðxÞ ¼ μδðxÞ þ λδ0ðxÞ
as the self-adjoint extension of the free Schrödinger
operator on the real line excluding the origin as built by
Kurasov and Gadella et al. in Refs. [20,21]. The potential
depends on two real parameters μ and λ that have
dimensions of length to the −1 and 0, respectively, that
sets the strength of the interactions. The spectral problem
associated with the Hamiltonian

K̂ ¼ −
d2

dx2
þ μδðxÞ þ λδ0ðxÞ ð21Þ

is defined as in [21]. The matching conditions at x ¼ 0 are
set to be [37]

ψkð0↑Þ ¼
1þ λ=2
1 − λ=2

ψkð0↓Þ; ð22Þ

ψ 0
kð0↑Þ ¼

1 − λ=2
1þ λ=2

ψ 0
kð0↓Þ þ

μ

1 − λ2=4
ψkð0↓Þ: ð23Þ

Here, and in the sequel, we denote as fða↑Þ and fða↓Þ,
respectively, the limit of fðxÞ at x ¼ a coming, respec-
tively, from the right and from the left. Thus, the eigen-
waves of a free quantum nonrelativistic particle

−
d2

dx2
ψkðxÞ ¼ k2ψkðxÞ ð24Þ

are required to comply with the conditions (22)–(23) in
order to define the μδðxÞ þ λδ0ðxÞ interaction. There are
two linearly independent scattering solutions if k ∈ R:
(1) incoming towards the origin from the far left ψ ðRÞ

k plane
waves and (2) incoming from the far right ψ ðLÞ

k plane
waves. The effect of the interaction is encoded in the
corresponding scattering amplitudes

ψ ðRÞ
k ðxÞ ¼ ðeikx þ rRðkÞe−ikxÞθð−xÞ þ tRðkÞeikxθðxÞ;

ψ ðLÞ
k ðxÞ ¼ tLðkÞe−ikxθð−xÞ þ ðe−ikx þ rLðkÞeikxÞθðxÞ;
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where θðxÞ denotes the Heaviside step function. Plugging
these expressions in (22)–(23) one obtains two linear
systems of two linear equations each that allow one to
obtain the following transmission and reflection coefficients

tRðkÞ ¼ tLðkÞ ¼ tðkÞ ¼ −
kðλ2 − 4Þ

kðλ2 þ 4Þ þ 2iμ
;

rRðkÞ ¼
−4kλ − 2iμ

kðλ2 þ 4Þ þ 2iμ
; rLðkÞ ¼

4kλ − 2iμ
kðλ2 þ 4Þ þ 2iμ

;

ð25Þ
in agreement with Ref. [21]. Note that, because the
Hamiltonian (21) defined this way is time-reversal invariant,
the right and left transmission amplitudes are equal. Parity
invariance, however, is explicitly broken by the δ0 inter-
action. Therefore the right and left reflection amplitudes are
different and related to the transmission amplitudes through
the formula

tðkÞ − 1 ¼ 1

2
ðrRðkÞ þ rLðkÞÞ;

in contrast to the pure δ potential in which the scattering is
not unimodal. For λ ¼ �2 the transmission amplitude is
zero; at the lines ðμ;�2Þ in the μ∶λ plane the δ − δ0 potential
is completely opaque. The transition and reflection ampli-
tudes at these lines become

tðkÞjλ¼�2 ¼ 0; rRjλ¼2 ¼ rLðkÞjλ¼−2 ¼ −1;

rRðkÞjλ¼−2 ¼ rLðkÞjλ¼2 ¼
4k − iμ
4kþ iμ

; ð26Þ

a result also obtained but not underlined in [21]. If the δ
interaction is switched off, μ ¼ 0, the scattering amplitudes
become k independent:

tjμ¼0 ¼
4 − λ2

λ2 þ 4
; rRjμ¼0 ¼ −rLjμ¼0 ¼ −

4λ

λ2 þ 4
;

as one expects from scale invariance.

The transmission amplitude tðkÞ has one pole over the
imaginary axis at

kb ¼ iκb; κb ¼ −
2μ

λ2 þ 4
: ð27Þ

For μ < 0 this pole is due to the existence of a bound state
with energy Eb ¼ −κ2b, but when μ > 0 the pole corre-
sponds to an antibound state. The bound/antibound state
wave function reads

ψbðxÞ ¼
ð−μ=2Þ1=2
1þ λ2=4

½ð1þ λ=2Þe−
μ

2ð1þλ2=4Þxθð−xÞ

þ ð1 − λ=2Þe
μ

2ð1þλ2=4ÞxθðxÞ�: ð28Þ

Clearly, when κb < 0 the wave function ψb is not normal-
izable but it becomes normalizable if κb > 0. We remark
that when λ ¼ −2 there is probability density of finding the
particle in this μ < 0 bound state only in the x > 0 half-line
but in the ψb state the particle is located at the x < 0 half-
line if λ ¼ 2. The bound state completely disappears from
the spectrum when μ ¼ 0 because scale invariance.

III. TWO PAIRS OF δ − δ0 INTERACTIONS

Our main goal in this paper is the analytical description
of the quantum vacuum interaction between two partially
transparent plates in a Casimir setup by mimicking the
plates as two point interactions, each of them of the form
μδðxÞ þ λδ0ðxÞ. The first task is to characterize the spec-
trum of the Schrödinger operator

K̂ ¼ −
d2

dx2
þ μ1δðxþ aÞ þ λ1δ

0ðxþ aÞ
þ μ2δðx − aÞ þ λ2δ

0ðx − aÞ ð29Þ

in order to identify the eigenmodes of the scalar field
fluctuations. The matching conditions between the one-
particlewave functions at the plate locations x ¼ �a general-
ize those defining a single δ − δ0 interaction (22)–(23):

0
BBB@

ψð−a↑Þ
ψ 0ð−a↑Þ
ψða↑Þ
ψ 0ða↑Þ

1
CCCA ¼

0
BBBBBB@

1þλ1=2
1−λ1=2

0 0 0

μ1
1−λ2

1
=4

1−λ1=2
1þλ1=2

0 0

0 0 1þλ2=2
1−λ2=2

0

0 0 μ2
1−λ2

2
=4

1−λ2=2
1þλ2=2

1
CCCCCCA

0
BBB@

ψð−a↓Þ
ψ 0ð−a↓Þ
ψða↓Þ
ψ 0ða↓Þ

1
CCCA: ð30Þ

Thus, the plane waves − d2

dx2 ψkðxÞ ¼ k2ψkðxÞ are com-
pelled to satisfy the matching conditions (30). In order to
have a detailed description of the spectrum of the Schrö-
dinger operator (29) we must study the scattering solutions
and the bound states.

A. Scattering waves

Scattering states correspond to solutions with
k ∈ R ⇒ k2 ≥ 0. The point interactions divide the real
line into three zones: zone I −a < x < a, zone II x < −a,
and zone III x > a. Given a value of k ∈ R there are two
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independent scattering solutions: (1) incoming from the far

left in zone II scattering waves ψ ðRÞ
k , and (2) incoming from

the far right in zone III scattering waves ψ ðLÞ
k . Away from

the singular points the scattering states are of the form

ψ ðRÞ
k ðxÞ ¼

8><
>:

e−ikxrRðkÞ þ eikx; x ∈ II

ARðkÞeikx þ BRðkÞe−ikx; x ∈ I

eikxtRðkÞ; x ∈ III

; ð31Þ

ψ ðLÞ
k ðxÞ ¼

8><
>:

e−ikxtLðkÞ; x ∈ II

ALðkÞeikx þ BLðkÞe−ikx; x ∈ I

eikxrLðkÞ þ e−ikx; x ∈ III

: ð32Þ

These solutions must satisfy the matching conditions (30).
Imposing (30) over the two linear independent scattering
states above gives rise to two linear systems of equations
in t, A, B, r. Solving the linear systems we obtain
fAI; BI; tI; rIgI¼R;L as functions of fλ1; λ2; μ1; μ2; a; kg:

rRðkÞ ¼
−2
ΔðkÞ ðe

2iakðkðλ21 þ 4Þ − 2iμ1Þð2kλ2 þ iμ2Þ þ e−2iakð2kλ1 þ iμ1Þðkðλ22 þ 4Þ þ 2iμ2ÞÞ; ð33Þ

ARðkÞ ¼
kðλ21 − 4Þðkðλ22 þ 4Þ þ 2iμ2Þ

ΔðkÞ ; BRðkÞ ¼ −
2e2iakkð−4þ λ21Þð2kλ2 þ iμ2Þ

ΔðkÞ ; ð34Þ

rLðkÞ ¼
2

ΔðkÞ ðe
−2iakðkðλ21 þ 4Þ þ 2iμ1Þð2kλ2 − iμ2Þ þ2iak ð2kλ1 − iμ1Þðkðλ22 þ 4Þ − 2iμ2ÞÞ; ð35Þ

ALðkÞ ¼ −
2e2iakkðλ22 − 4Þð2kλ1 − iμ1Þ

ΔðkÞ ; BLðkÞ ¼ −
kðλ22 − 4Þðkðλ21 þ 4Þ þ 2iμ1Þ

ΔðkÞ ; ð36Þ

tRðkÞ ¼ tLðkÞ ¼ tðkÞ ¼ ðλ21 − 4Þðλ22 − 4Þk2
ΔðkÞ ; ð37Þ

ΔðkÞ≡ 4e4iakð2kλ1 − iμ1Þð2kλ2 þ iμ2Þ þ ðkðλ21 þ 4Þ þ 2iμ1Þðkðλ22 þ 4Þ þ 2iμ2Þ: ð38Þ

The coefficients fAI; BI; tI; rIgI¼R;L completely determine
the scattering states. The transmission amplitudes tðkÞ are
identical for ψ ðLÞ

k and ψ ðRÞ
k because of the time-reversal

invariance; meanwhile the reflection amplitudes rLðkÞ,
rRðkÞ are different because of the parity symmetry break-
ing. It is worthwhile to mention that the distance between
singular points 2a explicitly breaks conformal invariance
even if μ1 ¼ μ2 ¼ 0. In this case

ΔðkÞ ¼ k2ð16λ2λ2e4aik þ ðλ21 þ 4Þðλ22 þ 4ÞÞ

and the scattering amplitudes depend on k.

B. Bound states

Poles of the transmission amplitude on the positive
imaginary axis in the complex k-plane give rise to bound
states of the Hamiltonian (29). Thus the positive roots of the
transcendent equation

Δðiκ; μ1; λ1; μ2; λ2; aÞ ¼ 0; κ ∈ Rþ

⇔ 4e−4aκð2κλ1 − μ1Þð2κλ2 þ μ2Þ
þ ðκðλ21 þ 4Þ þ 2μ1Þðκðλ22 þ 4Þ þ 2μ2Þ ¼ 0 ð39Þ

are the bound states imaginary momenta. We define
nondimensional momenta z≡ κa and coupling constants
ηi ¼ μia; i ¼ 1; 2 and write Eq. (39) in the form

4e−4z ¼ Rðz; η1; η2; λ1; λ2Þ: ð40Þ

The poles are the z > 0 intersections between the expo-
nential function in the left member of (40) and the rational
function of z in the right member:

RðzÞ≡ −
ðzðλ21 þ 4Þ þ 2η1Þðzðλ22 þ 4Þ þ 2η2Þ

ð2zλ1 − η1Þð2zλ2 þ η2Þ
:

The number of positive roots of (40) varies with the
parameters ðη1; η2; λ1; λ2Þ and it is a quantity difficult to
determine in full generality. Nevertheless, we list some
properties of the function R that will help in developing a
qualitative analysis about the number of solutions on
certain planes embedded in the four-dimensional parameter
space:
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(1) Limits: limz→0Rðz; η1; η2; λ1; λ2Þ ¼ 4

lim
z→þ∞

Rðz; η1; η2; λ1; λ2Þ ¼ −
ð4þ λ21Þð4þ λ22Þ

4λ1λ2
:

(2) The rational function Rðz; η1; η2; λ1; λ2Þ has two
singular points: z1 ¼ η1

2λ1
and z2 ¼ − η2

2λ2
. If λ1 ¼

−2 z1 becomes a regular point and the same fate
happens to z2 at λ2 ¼ 2.

Together with this information, the knowledge of the value
of the tangent to the curve RðzÞ at the origin R0ð0Þ with
respect to the tangent of 4E−4z at z ¼ 0 will allow us to
determine the number of bound states.
We now describe several reductions to a parameter

subspace of two dimensions.

1. The double-δ interaction, or λ1 ¼ λ2 ¼ 0

When the δ0 potentials are switched off the space of
parameters reduces to the η1∶η2 plane and there are zones
of zero, one, and two bound states separated by the two
branches of the hyperbola: 2 ¼ − η1þη2

η1η2
; see Ref. [10].

2. The double-δ0 system or μ1 ¼ μ2 ¼ 0

The δ interactions are switched off and the transcendent
equation (39) becomes

e−4z ¼ −
ðλ22 þ 4Þðλ21 þ 4Þ

16λ1λ2
: ð41Þ

The function of λ1; λ2 on the right member of this equation
is a constant in z such that it is either lesser than −1 if
signλ1 ¼ signλ2 or greater than 1 if signλ1 ≠ signλ2.
Therefore there are no intersections with the exponential
in the left-hand side of (41) for z > 0 and hence there are no
bound states. However there is an infinite tower of
resonances. Writing w ¼ −iz we find the following com-
plex solutions of (39): if n ∈ Z is an integer,

wn ¼ kna ¼ π

2

�
nþ 1

2

�
−
i
4
log

�ðλ22 þ 4Þðλ1 þ 4Þ2
16λ1λ2

�
;

when signλ1 ¼ signλ2, but

wn ¼ kna ¼ π

2
n −

i
4
log
�ðλ22 þ 4Þðλ1 þ 4Þ2

16jλ1λ2j
�
;

if signλ1 ≠ signλ2. These solutions have complex momenta
with negative imaginary part. The real parts come in pairs,
nþ 1=2with −n − 1=2 (n ≥ 0) if the signs of the couplings
are equal, or n with −n (n > 0) if the signs are different. In
this last case there exists one antibound state corresponding
to n ¼ 0, the remaining solutions behaving as resonant
states. It is a curious fact that the imaginary parts become

null at the points λ1 ¼ �2, λ ¼ �2. In particular, if one of
the couplings is 2 and the other −2 the antibound state is a
zero mode.

3. Two identical pairs of δ − δ0 interactions:
μ1 ¼ μ2 ¼ μ;λ1 ¼ λ2 ¼ λ

The rational function R in the right member of Eq. (39)
reduces to

Rðz; η; λÞ ¼ −
ðzðλ2 þ 4Þ þ 2ηÞ2
ð2λz − ηÞð2λzþ ηÞ ; η ¼ μa: ð42Þ

The number of bound states bound characterized as the
intersection of the two curves in the left and right members
of the transcendent equation

4e−4z ¼ −
ðzðλ2 þ 4Þ þ 2ηÞ2
ð2λz − ηÞð2λzþ ηÞ ð43Þ

is summarized as follows: If η > 0 there are no bound states
for any value of λ including λ ¼ �2. If η < 0 is negative
two situations are distinguished:

(i) η < 0 and λ ≠ �2. Two subcases arise in turn: when
0 > R0ð0Þ > −16 there are two bound states. If
−16 > R0ð0Þ there is only a bound state. The frontier
between these two regimes is the curve R0ð0Þ ¼ −16
in the half-plane η < 0. In both cases, however, the
values of κb corresponding to the intersections
belong to the interval ð0; j η

2λ jÞ. In Fig. 1 it is shown
how the separatrix curve divides the η∶λ-plane into
three zones: (1) zero bound states, (2) one bound
state, and (3) two bound states.

(ii) η < 0 and λ ¼ �2. If R0ð0Þ ¼ 32=η < −16 the two
curves do not intersect and there is no bound state. If,
alternatively, −16 < 32=η < 0 there is one bound

FIG. 1 (color online). Zones with different number of bound
states in the λ − η plane with the straight lines λ ¼ �2 excluded.
The curve R0ð0; η; λÞ ¼ −16 (red line) divides the η < 0 semi-
plane into two zones: one bound state and two bound states.
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state. At λ ¼ �2 there exists one bound state only
for η < −2; one bound state is lost with respect to
λ ≠ �2 in each zone of the η < 0 half-plane.

4. Two pairs of opaque interactions: λ1 ¼ �2, λ2 ¼ �2

The previous result suggests the interest of considering
the special values �2 of the nondimensional couplings that
produce opaque walls separately. Since the case of identical
δ − δ0 plates was previously analyzed, we consider only
cases where η1 ≠ η2. Specifically, we distinguish four
different possibilities:

(i) λ1 ¼ λ2 ¼ 2. The bound state equation reads

e−4z ¼ η1 þ 4z
η1 − 4z

:

There is one solution to this equation if and only if
η1 < −2, whereas η2 can take any real value.

(ii) λ1 ¼ λ2 ¼ −2. The bound state equation becomes

e−4z ¼ η2 þ 4z
η2 − 4z

and there is one solution to this equation if η2 < −2,
whereas η1 can take any real value.

(iii) λ1 ¼ 2; λ2 ¼ −2. In this case the bound state equa-
tion reads

e−4z ¼ ðη1 þ 4zÞðη2 þ 4zÞ
ðη1 − 4zÞðη2 − 4zÞ : ð44Þ

If R0 > 0 there are no bound states, for 0 < R0ð0Þ <
−16 there are two bound states, and there is only one

if −16 < R0ð0Þ. The zones with zero, one, and two
bound states are plotted in Fig. 2.

(iv) λ1 ¼ −2; λ2 ¼ 2. The bound state equation becomes
e−4z ¼ 1 ⇔ z ¼ 0 and there are no bound states.

To summarize we conclude that there are zones in the
parameter space where zero, one, or two bound states exist
in the spectrum of the Hamiltonian. Resonances and
antibound states do not belong to the spectrum because
they are not normalizable. The exact values of bound state
energies only can be identified by graphical methods due to
the transcendent character of the equations from which they
are determined. A novel fact with respect to a similar
analysis on the bound states of a double-δ system is that
solutions of the transcendent equations for very large
positive values of κ, i.e., very deep bound states, may
exist if signðλ1Þ ≠ signðλ2Þ because in that case the
function R at z ¼ þ∞ is positive.

IV. SCALAR FIELDS ON COMPACT SPACES
WITH BOUNDARY

On a cylindrical space-time R ×M where M is a
compact manifold of dimension n with n − 1-dimensional
boundary ∂M ≡Ω the action for a scalar field that general-
izes (1) reads

SðϕÞ ¼ 1

2

Z
R
dt

�Z
M
dnx

�∂ϕ�

∂t ·
∂ϕ
∂t −

− ϕ�ð−Δþ Uð~xÞÞϕ
�
−
Z
Ω
dΩ~σ:ϕ� ~∇ϕ

�
; ð45Þ

where dΩ~σ is the volume differential element in the
boundary times a unit vector Poynting outwards M.
The one-particle wave functions ϕðt0; ~xÞ ¼ ψð~xÞ belong
to the space L2ðM;CÞ of square integrable functions where
the quantum mechanical Schrödinger operator

K̂ ¼ −Δþ Uð~xÞ ð46Þ

acts symmetrically in general (see Ref. [12]).

A. Probability flux conservation

The Asorey–Munoz-Castaneda formalism to deal with
quantum fields in bounded domains will be the basis of our
approach; see Refs. [12,14–16]. Unitary scalar field the-
ories on spaces with boundary are in one-to-one corre-
spondence with the self-adjoint extensions of the Ĥ
operator at the boundary. The continuity equation

d
dt

Z
M
ρ ¼ −

Z
Ω
Reðiψ� ~∇ψÞ · dΩ~σ ð47Þ

equals the variation in time of the probability with the flow
of probability current across the boundary. Probability
conservation, that is necessary for unitarity of the quantum

FIG. 2 (color online). Zones in the η1 − η2 plane for λ1 ¼ 2
and λ2 ¼ −2 with 0, 1, and 2 bound states. The curve
R0ð0; η1; η2; 2;−2Þ ¼ −16 (red line) divides the η1 − η2 plane
into three zones: no bound states, one bound state, and two bound
states.
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field theory, demands annihilation of the flux at the
boundary: Z

Ω
Reðiψ� ~∇ψÞ · dΩ~σ ¼ 0: ð48Þ

Because the boundary conditions compatible with self-
adjoint extensions of the Hamiltonian (46) may give rise to
interferences between plane waves in the interior of M, the
flux of the imaginary part of the current due to these
interferences must also be null on the boundary for finding
an unitary QFT. Therefore we require

ΦΩðψÞ≡
Z
Ω
ðiψ� ~∇ψÞ · dΩ~σ ¼ 0; ð49Þ

as explained in Refs. [12,17]. The interpretation of the
complex flux ΦΩðψÞ is accordingly as follows:

(i) ReðΦΩðψÞÞ is the probability flux across the sur-
face Ω ¼ ∂M.

(ii) ImðΦΩðψÞÞ is the flux across the boundary Ω of
destructive and constructive interferences between
scattered waves.

Note that the annihilation of the complex extension of the
probability flux (49) is equivalent to the annihilation of the
surface term in (45).

B. Quantum fluctuations inside the ½−a;a� interval
We consider scalar field fluctuations distorted by δ − δ0

plates and study the QFT that arises in the interval ½−a; a�
regardless of what happens outside this interval. Thus
M≡ ½−a; a� ⊂ R, whereas its boundary is the set of the
two endpoints:Ω ¼ fa;−ag. The complex probability flux
ΦΩ for a given wave function ψ in this one-dimensional
interval is

ΦΩðψÞ≡ iðψ�ð−a↑Þψ 0ð−a↑Þ þ ψ�ða↓Þψ 0ða↓ÞÞ:

For a linear combination of left-to-right-moving and right-
to-left-moving plane waves with the same momentum k
inside ½−a; a�, the complex probability flux ΦΩ is

ΦΩ ¼ −2k½jAj2 − jBj2 þ 2i cosð2kaÞImðAB�Þ�: ð50Þ

Plugging in the scattering solutions of the double δ − δ0
potential

UðxÞ ¼ μ1δðxþ aÞ þ λ1δ
0ðxþ aÞ þ μ2δðx − aÞ

þ λ2δ
0ðx − aÞ;

we obtain the following complex fluxes:

ΦðRÞ
Ω ¼ −2kðλ21 − 4Þ2

jΔj2 · ½k4ðλ22 − 4Þ2 þ 4ik2 cosð2kaÞfkðλ2 − 2Þ2μ2 cosð2akÞ þ 2ðk2λ2ðλ22 þ 4Þ þ μ22Þ sinð2akÞg�; ð51Þ

ΦðLÞ
Ω ¼ 2kðλ22 − 4Þ2

jΔj2 · ½k4ðλ21 − 4Þ2 − 4ik2 cosð2kaÞfkðλ1 þ 2Þ2μ1 cosð2akÞ þ 2ð−k2λ1ðλ21 þ 4Þ þ μ21Þ sinð2akÞg�: ð52Þ

In order to obtain a unitary QFT between δ − δ0 plates
regardless of what happens outside the space between
plates, we must study the conditions under which these
complex fluxes become null keeping nontrivial wave
functions between plates.

V. ROBIN BOUNDARY CONDITIONS VERSUS
δ − δ0 INTERACTIONS

The annihilation conditions ΦðRÞ
Ω ðψÞ ¼ 0, ΦðLÞ

Ω ðψÞ ¼ 0
ensure that the quantum field theory defined in the interval
is unitary regardless of what happens outside this region.
ΦΩðψÞ ¼ 0 is only compatible with a non-null wave
function between the plates for a discrete set of momenta
kn, i.e., a spectral condition giving rise to a pure point
spectrum emerges when wave packets live only in the finite
interval −a<x<a. The idea is to compare this spectrum to
the spectra arising in the Asorey–Munoz-Castaneda formal-
ism for the different boundary conditions compatible with
unitary quantum field theories, see Refs. [10–12,15–17], in

order to identify what kind of boundary conditions can be
reproduced by means of the pair of δ − δ0 interactions. We
remark that four real parameters define this family of
potentials, whereas the self-adjoint extensions of the free
particle Hamiltonian on a finite interval have deficit indices
(2,2) and form thus also a four-parametric family.
Formulas (51) and (52) show that the real part of the

complex flux (the probability flux across the δ − δ0 plates)
is given by

ReðΦðRÞ
Ω Þ ¼ −2k5

jΔj2 · ðλ21 − 4Þ2ðλ22 − 4Þ2; ð53Þ

ReðΦðLÞ
Ω Þ ¼ 2k5

jΔj2 · ðλ
2
1 − 4Þ2ðλ22 − 4Þ2: ð54Þ

It is of note that whenever one of the δ0 couplings takes one
of the values �2 the probability fluxes across the interval
endpoints are identically zero for both incoming from the
left and from the right scattering waves.
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A. Dirichlet boundary conditions

The easiest interpretation of boundary conditions as
δ − δ0 interactions starts by considering the opaque limit
where the two couplings of the δ interactions μ1, μ2 are sent

toþ∞. The analysis follows Ref. [10] where the same limit
without extra δ0s was analyzed. Before taking the limit we
write the scattering data for incoming from the left waves
and equal δ couplings μ1 ¼ μ2 ¼ μ:

Δðk; λ1; μ; λ2; μ; aÞ ¼ 4e4ikað2kλ2 − iμÞð2kλ2 − iμÞ · ð2kλ1 þ iμÞ þ ðkðλ21 þ 4Þ þ 2iμÞ · ðkðλ22 þ 4Þ þ 2iμÞ
¼ Δ2ðk; λ1; λ2; aÞμ2 þ Δ1ðk; λ1; λ2; aÞμþ Δ0ðk; λ1; λ2; aÞ;

rRðkÞ ¼ −
2e2iak

Δðk; μ; λ1; μ; λ2; aÞ
· f½kðλ21 þ 4Þ − 2iμ�½2kλ2 þ iμ� þ e−2ika½kðλ22 þ 4Þ þ 2iμ�½2kλ1 þ iμ�g;

tðkÞ ¼ ðλ21 − 4Þðλ22 − 4Þk2
Δðk; μ; λ1; μ; λ2; aÞ

; ARðkÞ ¼
kðλ21 − 4Þðkðλ22 þ 4Þ þ 2iμÞ

Δðk; μ; λ1; μ; λ2; aÞ
; BRðkÞ ¼ −2

ke2iakðλ21 − 4Þð2kλ2 þ iμÞ
Δðk; μ; λ1; μ; λ2; aÞ

:

For arbitrary k > 0 one finds that the wall at x ¼ −a is
completely opaque:

lim
μ→∞

rRðkÞ ¼ −e−2iak; lim
μ→∞

tðkÞ ¼ 0;

lim
μ→∞

ARðkÞ ¼ lim
μ→∞

BRðkÞ ¼ 0:

There is total reflection and it is clear that a similar pattern
would be found for scattering waves incoming from the
right in the wall at x ¼ a. Moreover, one may also check
that the flux is zero:

lim
μ→þ∞

ΦðRÞ
Ω ¼ lim

μ→þ∞
ΦðLÞ

Ω ¼ 0

showing that this limit is compatible with unitarity for
arbitrary k.
There are, however, characteristic values of k that allow

life between the walls. Annihilation of the term propor-
tional to μ2 in the denominator is achieved by a discrete set
of momenta:

Δ2ðk; aÞ ¼ 4ðe2ika − 1Þðe2ika þ 1Þ ¼ 0 ⇔ kn ¼
π

2a
n;

where n ∈ N� is a positive natural number. For these
discrete momenta the opaque limit gives rise to nontrivial
solutions between plates:

tðkn; μ ¼ ∞Þ ¼ 0; rRðkn; μ ¼ ∞Þ ¼ −ð−1Þn

ARðkn; μ ¼ ∞Þ ¼ 4 − λ21
8þ 4ðλ1 − λ2Þ þ λ21 þ λ22

ARðkn; μ ¼ ∞Þ ¼ −ð−1ÞnBRðkn; μ ¼ ∞Þ:

Thewave functions between walls for these momenta are of
the form

ψðx; kn; μ ¼ ∞Þ

¼ 4 − λ21
8þ 4ðλ1 − λ2Þ þ λ21 þ λ22

ðeiknx − ð−1Þne−iknxÞ ð55Þ

that satisfies Dirichlet boundary conditions:
ψð�a; kn; μ ¼ ∞Þ ¼ 0. We remark that the values λ1 ¼
�2 must be excluded. An identical pattern arises for
incoming from the right scattering waves exchanging λ1
by λ2 because the wall at x ¼ a is also opaque in this
ultrastrong limit. The same restrictions on the incoming
from the right scattering waves produce the collapse to the
same (55) wave functions, merely replacing λ1 by λ2. We
should stress that Δ2ðk; aÞ is the spectral function for
Dirichlet boundary conditions found by Asorey and
Munoz-Castaneda, whereas the Uð2Þ matrix characterizing

the self-adjoint extension is U ¼ −
�
1 0

0 1

	
.

B. Mixed Dirichlet-Neumann boundary conditions

We consider now the effect of setting, e.g., λ2 ¼ 2. To
isolate the behavior of the system for this critical strength of
the coupling we switch off the δ interactions altogether:
μ1 ¼ μ2 ¼ 0. Under these assumptions AR and BR become

AR ¼ −
λ21 − 4

4þ 4e4iakλ1 þ λ21
; BR ¼ ðλ21 − 4Þe2iak

4þ 4e4iakλ1 þ λ21
;

and the wave function between walls and its derivative read

ψR
k ðx; λ1; aÞ ¼

λ21 − 4

4þ 4e4ikaλ1 þ λ21
ðe−ikðx−2aÞ − eikxÞ;

ðψ 0ÞRk ðx; λ1; aÞ ¼
−ikðλ21 − 4Þ

4þ 4e4ikaλ1 þ λ21
ðe−ikðx−2aÞ þ eikxÞ:

Evaluated at the endpoints the wave function and its
derivative are
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ψR
k ða; λ1; aÞ ¼ 0;

ðψ 0ÞRk ða; λ1; aÞ ¼ −2ik
eikaðλ21 − 4Þ

4þ 4e4ikaλ1 þ λ21
;

ψR
k ð−a; λ1; aÞ ¼

ðλ21 − 4Þe−ika
4þ 4e4ikaλ1 þ λ21

ðe4ika − 1Þ;

ðψ 0ÞRk ð−a; λ1; aÞ ¼
ike−ikað4 − λ21Þ
4þ 4e4ikaλ1 þ λ21

ðe4ika þ 1Þ:

Discrete values of the momenta such that e4ikna ¼ 1, where
kn ¼ π

2a n and n is an integer, give rise to wave functions
complying with Dirichlet boundary conditions at both
boundary points. Discrete momenta for which
e4ikna ¼ −1, with now kn ¼ π

4a n, produce wave functions
complying with mixed Dirichlet, on x ¼ a, and Neumman,
on x ¼ −a, boundary conditions. A new spectral function,

hð2aÞdn ðkÞ ∝ 2 cosð2akÞ, corresponds to this last possibility.
The complex probability flux for these values of the
parameters is

ΦΩðψRÞ ¼ −
4ikðλ21 − 4Þ2 cosð2kaÞ sinð2kaÞ

j4þ 4e4iakλ1 þ λ21j2

and both the momenta leading to pure Dirichlet or
Dirichlet-Neumann boundary conditions are bona fide
unitary quantum field theories. Exchanging λ2 ¼ 2 by
λ1 ¼ 2 offers the same pattern on the ψ ðLÞ wave functions

vanishing in the opposite wall. No novelties arise choosing
−2 instead of 2.

C. Robin boundary conditions

We set first λ2 ¼ −2 as the δ0ðx − aÞ coupling and leave
free the other parameters. In the Appendix it is shown that

R1∶ ψ ðRÞ
k ða↓Þ þ 4

μ2
ψ 0ðRÞ
k ða↓Þ ¼ 0;

i.e., the δ − δ0 interaction at x ¼ a is a Robin plate towards
the left if λ2 ¼ −2. The amplitudes between walls for
λ2 ¼ −2 become

ARðk;μ1;λ1;μ2;−2;aÞ ¼
2kðλ21− 4Þð4kþ iμ2Þ
Δðk;μ1;λ1;μ2;−2;aÞ

;

BRðk;μ1;λ1;μ2;−2;aÞ ¼−
2ke2ikaðλ21− 4Þðiμ2− 4kÞ
Δðk;μ1;λ1;μ2;−2;aÞ

;

Δðk;μ1;λ1;μ2;−2;aÞ ¼ 4e4ikað2kλ1− iμ1Þðiμ2− 4kÞ
þ ðkðλ21þ 4Þþ 2iμ1Þ · ð8kþ 2iμ2Þ:

These formulas lead to the following expression for the
complex probability flux across the walls from the interior
due to the “diestro” scattering wave functions ψ ðRÞ

k
in −a < x < a:

ΦΩðψ ðRÞ
k ; μ1; λ1; μ2;−2; aÞ ¼

128ik2ðλ21 − 4Þ2
jΔðk; μ1; λ1; μ2;−2; aÞj2

cosð2kaÞ
�
kμ2 cosð2kaÞ − 2

�
k2 −

μ22
16

�
sinð2kaÞ

�
:

The complex flux ΦðRÞ is null for the values of momenta
that solve the following transcendent equation:

knμ2 cosð2knaÞ − 2

�
k2n −

μ22
16

�
sinð2knaÞ ¼ 0. ð56Þ

In the Asorey–Munoz-Castaneda formalism the boun-
dary conditions compatible with an unitary quantum field
theory in ð1þ 1Þ dimensions are characterized by a Uð2Þ
matrix connecting the values of the scalar field fluctuations
at the two points of the boundary:

�
ϕðt0;−aÞ þ iϕ0ðt0;−aÞ
ϕðt0; aÞ − iϕ0ðt0; aÞ

�

¼ Uðα; β; θ; γÞ
�
ϕðt0;−aÞ − iϕ0ðt0;−aÞ
ϕðt0; aÞ þ iϕ0ðt0; aÞ

�
:

The matrix

Uðα; β; θ; γÞ ¼ eiαðcosðβÞ:Iþ i sinðβÞ~nðθ; γÞ~σÞ

depends on four angles: α ∈ ½0; 2π�, β ∈ ½− π
2
; π
2
�, θ ∈ ½0; π�,

γ ∈ ½0; 2π�, ~nðθ; γÞ is a vector varying on a S2 sphere of
radius 1, and the components of ~σ are the Pauli matrices.
Robin boundary conditions correspond to β ¼ 0 such that
the Uð2Þ matrix becomes UðαÞ ¼ e2iαI. Momenta compat-
ible with these Robin boundary conditions belong to the
kernel of the spectral function:

hRðk; αÞ ∝
�−2k sinð2αÞ cosð2kaÞ
þ2ðk2a2cos2ðαÞ − sin2ðαÞÞ sinð2kaÞ : ð57Þ

The spectral conditions (56) and (57) are identical if and
only if tan α ¼ μ2a

4
and Robin boundary conditions are

obtained in the two δ=δ0 plates.
In fact, if λ2 ¼ −2 the wave functions between walls and

their derivative read
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ψ ðRÞ
k ðxÞ ¼

−2kðλ21 − 4Þ½e−ikðx−2aÞ iμ2−4kiμ2þ4k − eikx�
Δðk; μ1; λ1; μ2;−2; aÞ

;

ψ 0ðRÞ
k ðxÞ ¼

2ik2ðλ21 − 4Þ½e−ikðx−2aÞ iμ2−4kiμ2þ4k þ eikx�
Δðk; μ1; λ1; μ2;−2; aÞ

;

such that their values at the boundary points are

ψ ðRÞ
k ða↓Þ ¼ 2

k2eikaðλ21 − 4Þ
Δðk; μ1; λ1; μ2;−2; aÞ

;

ψ 0ðRÞ
k ða↓Þ ¼ −4

k2eikaðλ21 − 4Þμ2
Δðk; μ1; λ1; μ2;−2; aÞ

;

ψ ðRÞ
k ð−a↑Þ ¼ −μ2 cosð2akÞ þ 4k sinð2akÞ

8
ψ ðRÞ
k ða↓Þ;

ψ 0ðRÞ
k ð−a↑Þ ¼ −

4k cosð2akÞ þ μ2 sinð2akÞ
μ2

ψ 0ðRÞ
k ða↓Þ:

The linear combinations of the wave function and its
derivative at the x ¼ �a points satisfy

R1∶ ψ ðRÞ
k ða↓Þ þ 4

μ2
ψ 0ðRÞ
k ða↓Þ ¼ 0;

R2∶ ψ ðRÞ
k ð−a↑Þ

þ 4k cosð2kaÞ þ μ2 sinð2kaÞ
kðμ2 cosð2kaÞ − 4k sinð2kaÞÞψ

0ðRÞ
k ð−a↑Þ ¼ 0:

Plugging in R2, the momenta complying with the spectral
condition (56), one finds

4kn cosð2knaÞ þ μ2 sinð2knaÞ
knðμ2 cosð2knaÞ − 4kn sinð2knaÞÞ

¼ −
4

μ2

such that the plate at x ¼ −a is also a Robin plate for these
discrete set of wave numbers. In sum, the quantum
fluctuations corresponding to “diestro” scattering satisfy
Robin boundary conditions if λ2 ¼ −2 and the momenta
are selected by the spectral condition (56).
To build Robin boundary conditions also on the “zurdo”

scattering wave functions ψ ðLÞ
k , we follow an identical

process setting λ1 ¼ 2 as the δ0ðxþ aÞ coupling and
leaving free all the other three. In the Appendix we have
shown that

R2∶ ψ ðLÞ
k ð−a↑Þ − 4

μ1
ψ 0ðLÞ
k ð−a↑Þ ¼ 0.

The annihilation of the complex flux towards the exterior of
the “zurdo” scattering waves between plates

ΦΩðψL
k ; μ1; 2; μ2; λ2; aÞ

¼ 128ik2ðλ22 − 4Þ2
jΔðk; μ1; 2; μ2; λ2; aÞj2

× cosð2kaÞ
�
kμ1 cosð2kaÞ − 2

�
k2 −

μ21
16

�
sinð2kaÞ

�

is accomplished by quantum fluctuations with wave num-
bers satisfying the spectral condition

knμ1 cosð2knaÞ − 2

�
k2n −

μ21
16

�
sinð2knaÞ ¼ 0: ð58Þ

For this discrete set of momenta complying with (58), AL
and BL are non-null and fluctuations that do not cross the
walls survive in the interior. Repeating the arguments above
we find that the ψ ðLÞ

k waves satisfy also Robin boundary
conditions at x ¼ a:

R1∶ ψ ðLÞ
k ða↓Þ þ 4

μ1
ψ 0ðLÞ
k ða↓Þ ¼ 0;

R2∶ ψ ðLÞ
k ð−a↑Þ − 4

μ1
ψ 0ðLÞ
k ð−a↑Þ ¼ 0:

One might wonder about the simultaneous choice of
λ1 ¼ 2 and λ2 ¼ −2 as δ0ðxþ aÞ and δ0ðx − aÞ couplings.
A new set of Robin boundary conditions arises at this plane
in the parameter space:

R1∶ ψkða↓Þ þ
4

μ2
ψ 0
kða↓Þ ¼ 0;

R2∶ ψkð−a↑Þ −
4

μ1
ψ 0
kð−a↑Þ ¼ 0: ð59Þ

Plane waves of the form ψkðxÞ ¼ Aeikx þ Be−ikx, solutions
of our Hamiltonian inside ½−a; a�, satisfy the boundary
conditions (59) if the determinant of the corresponding
homogeneous linear system

det

� eikað1þ 4i k
μ2
Þ e−ikað1− 4i k

μ2
Þ

e−ikað1− 4i k
μ1
Þ eikað1þ 4i k

μ1
Þ

�

¼ −
16i
μ1μ2

�
2

�
k2 −

μ1μ2
16

�
sinð2akÞ− k

μ1 þ μ2
2

cosð2akÞ
�

ð60Þ

is zero. The solution is

AðknÞ ¼ 1; BðknÞ ¼ e2ikna
μ2 þ 4ikn
μ2 − 4ikn

tanð2aknÞ ¼
4knðμ1 þ μ2Þ
16k2n − μ1μ2

: ð61Þ
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From the point of view of scattering waves both walls
respectively at λ1 ¼ 2 and λ2 ¼ −2 are opaque to waves
of generic wave number k and there is nothing between
plates: ARðk; μ1; 2; μ2;−2; aÞ ¼ ALðk; μ1; 2; μ2;−2; aÞ ¼
BRðk; μ1; 2; μ2;−2; aÞ ¼ BLðk; μ1; 2; μ2;−2; aÞ ¼ 0. A dis-
crete subset of momenta, however, escapes this fate. The
discriminant is in this case

Δðk; μ1; 2; μ; − 2; aÞ

¼ 64ie2ika
�
k
μ1 þ μ2

2
cosð2kaÞ − 2

�
k2 −

μ1μ2
16

�
sinð2kaÞ

�
ð62Þ

such that nonzero wave functions inside the ½−a; a�
interval are still possible for all those wave numbers
kn belonging to the kernel of Δ. A third spectral
condition (61) arises annihilating both (60) and (62).

Moreover, a collapse of the “diestro” and “zurdo” states
to a single wave function satisfying Robin boundary
conditions is caused by the choice μ1 ¼ μ2 ¼ μ to find
the same situation as described above for Dirichlet
boundary conditions.

VI. QUANTUM VACUUM INTERACTION
BETWEEN TWO δ − δ0 PLATES

In this section we consider the two δ − δ0 potentials as
modelling two monoatomic infinitely thin plates with its
physical properties encoded in the μ and λ couplings. The
goal is the computation of the quantum vacuum interaction
energies between these partially transparent plates.

A. T operator for parity breaking point potentials

The reduced Green’s function (13) for a potential
concentrated at x ¼ 0 is of the general form

Gωðx; yÞ ¼ Gð0Þ
ω ðx − yÞ þ

8>><
>>:

δGð−;−Þ
ω ðx; yÞ ¼ − rRðkÞ

2ik e−ikðxþyÞ; x; y < 0

δGðþ;þÞ
ω ðx; yÞ ¼ − rLðkÞ

2ik eikðxþyÞ; x; y > 0

δGð∓;�Þ
ω ðx; yÞ ¼ − ðtðkÞ−1Þ

2ik eikjx−yj; sgnðxyÞ ¼ −1

; Gð0Þ
ω ðx − yÞ ¼ −

1

2ik
eikjx−yj: ð63Þ

The formula obtained in Sec. IVA of Ref. [10] for the
integral kernel of the T operator

Tωðx; yÞ ¼ 2ikðtðkÞ − 1ÞδðxÞδðyÞ; ð64Þ

in terms of the transmission amplitude tðkÞ works fine for
parity-even point interactions producing unimodal scatter-
ing processes. In such a case rRðkÞ ¼ rLðkÞ ¼ tðkÞ − 1, see
e.g. Ref. [30]. In these cases the reduced Green function
(63) is such that

−
rðkÞ
2ik

¼ lim
x↑0;y↑0

δGð−;−Þ
ω ðx; yÞ ¼ lim

x↓0;y↓0
δGðþ;þÞ

ω ðx; yÞ:

δGð∓;�Þ
ω ðx; yÞ are not differentiable at the origin and

produce through their second derivatives at x ¼ y ¼ 0
the even point potential. The delta function source in the
equation for the Green function is accounted for by the
second derivative of Gð0Þ

ω ðx − yÞ at x ¼ y ¼ 0.
When the point potential is not parity even, rRðkÞ ≠

rLðkÞ and tðkÞ − 1 ≠ rR;LðkÞ. We have

−
rRðkÞ
2ik

¼ lim
x↑0;y↑0

δGð−;−Þ
ω ðx; yÞ;

−
rLðkÞ
2ik

¼ lim
x↓0;y↓0

δGðþ;þÞ
ω ðx; yÞ:

There is a step discontinuity at the origin between
δGð−;−Þ

ω ðx; yÞ and δGðþ;þÞ
ω ðx; yÞ responsible, through the

second derivative, of a parity-odd point interaction. The
parity-even point potential is due to the same part of the
Green function as before. Together with the delta source
coming fromGð0Þ

ω these Dirac δ and δ0 will saturate the Green
equation. We conclude that δGð−;−Þ

ω ðx; yÞ and δGðþ;þÞ
ω ðx; yÞ

contribute to theT operator of a point interaction neither even
nor odd. For point potentials that do not have well-defined
parity one considers the following directional limits:

tðkÞ − 1 ¼ −2ik lim
x↓0;y↑0

δGðþ;−Þ
ω ðx; yÞ;

tðkÞ − 1 ¼ −2ik lim
x↑0;y↓0

δGð−;þÞ
ω ðx; yÞ;

rRðkÞ ¼ −2ik lim
x↑0;y↑0

δGð−;−Þ
ω ðx; yÞ;

rLðkÞ ¼ −2ik lim
x↓0;y↓0

δGðþ;þÞ
ω ðx; yÞ:

Collectively denoting the difference between the Green
functions of K and Kð0Þ in the four quadrants of the real
line times itself as δGωðx; yÞ and using fðxÞδðxÞ ¼
fð0ÞδðxÞ, one immediately generalizes Eq. (64) to obtain
the T operator for a point interaction neither even nor odd:

Tωðx; yÞ ¼ −ð2ikÞ2δGωðx; yÞδðxÞδðyÞ: ð65Þ

δ − δ0 GENERALIZED ROBIN BOUNDARY … PHYSICAL REVIEW D 91, 025028 (2015)

025028-13



Accordingly, theT-operatorexpressions in termsof thescatteringamplitudesaredifferent indistinctquadrantsof the ðx; yÞplane:

Tωðx; yÞ ¼ 2ikδðxÞδðyÞ
8<
:

rR; x; y < 0

rL; x; y > 0

t − 1; sgnðxyÞ ¼ −1
: ð66Þ

In the first and third quadrant the T-matrix formula picks the reflection amplitudes, whereas in the second and
fourth quadrant the transmission amplitude is pertinent. It is clear that for even unimodal point potentials all the components
are equal. We write the T operator in the compact form

Tωðx; yÞ ¼ θðxÞθðyÞTðþ;þÞ
ω ðx; yÞ þ θð−xÞθð−yÞTð−;−Þ

ω ðx; yÞ þ θðxÞθð−yÞTðþ;−Þ
ω ðx; yÞ þ θð−xÞθðyÞTð−;þÞ

ω ðx; yÞ

such that the different components of the T operator are
identified from Eq. (66).

B. The TGTG formula for parity breaking
point potentials

In Ref. [32], Sec. VII A, it is shown that only the Tðþ;þÞ
ω

and Tð−;−Þ
ω components of the T operator enter in the TGTG

formula of the quantum vacuum interaction energy between
two compact objects. The basis of the TGTG formula is the
M operator:

Mω ¼ Gð0Þ
ω Tðþ;þÞ

ωð1Þ Gð0Þ
ω Tð−;−Þ

ωð2Þ :

In this context we have

Tðþ;þÞ
ξð1Þ ðz1; z2Þ ¼ −2κrð1ÞL ðκÞδðz1 þ aÞδðz2 þ aÞ; ð67Þ

Tð−;−Þ
ξð2Þ ðz1; z2Þ ¼ −2κrð2ÞR ðκÞδðz1 − aÞδðz2 − aÞ; ð68Þ

where we have performed the Wick rotation ω → iξ and
considered the energy-momentum dispersion relation of a
massless scalar particle: ω ¼ k → iξ ¼ iκ. The T integral
kernel in formula (67) is due to the ðμ1; λ1Þ point interaction
located atx ¼ −a relatingpoints such that z1; z2 > −a. TheT
integral kernel in (68) comes from the ðμ2; λ2Þ point inter-
action located at x ¼ a relating points such that z1; z2 < a.
We write now the TGTG formula in terms of the

associated integral kernels after the Wick rotation in the
form:

Mξðx; yÞ

¼
Z

∞

−a
dz1

Z
∞

−a
dz2

Z
a

−∞
dz3

× ½Gð0Þ
ξ ðx; z1ÞTðþ;þÞ

ξð1Þ ðz1; z2Þ · Gð0Þ
ξ ðz2; z3ÞTð−;−Þ

ξð2Þ ðz3; yÞ�
¼ rð1ÞL ðκÞrð2ÞR ðκÞe−2κae−κjxþajδðy − aÞ:

From this kernel we obtain the trace of the Mξ operator
taking x ¼ y and integrating over the interval ½−a; a� where
these two points may coincide:

TrL2Mξ ¼
Z

a

−a
dxMξðx; xÞ ¼ rð1ÞL ðκÞrð2ÞR ðκÞe−4κa:

Other combinations of the T-operator components do not
allow full coincidences of the x and y points in the interval
½−a; a�; this is the only contribution to the Euclidean
TGTG formula for the quantum vacuum interaction
induced by the two point potentials. The formal series
expansion

TrL2 ln ð1 −MξÞ

¼ −
X∞
n¼1

ð−1Þn
n

½TrL2Mξ�n ¼ ln ð1 − TrL2MξÞ

leads to the final formula:

Eint
0 ¼ 1

2

Z
∞

0

dξ
π
TrL2 ln ð1 −MξÞ

¼ 1

2

Z
∞

0

dξ
π
ln ð1 − rð1ÞL ðξÞrð2ÞR ðξÞe−4ξaÞ: ð69Þ

Application to the U ¼ λδ0ðxÞ þ μδðxÞ potential provides
the quantum vacuum interaction between two δ − δ0 plates
in terms of the right and left reflection amplitudes pre-
viously obtained:

Eint
0 ¼

Z
∞

0

dξ
2π

× ln

�
1þ 4e−4aξð2λ1ξ − μ1Þð2λ2ξþ μ2Þ

½ðλ21 þ 4Þξþ 2μ1�½ðλ22 þ 4Þξþ 2μ2�
�
:

ð70Þ

It is of note that the quantum vacuum interaction energy
depends on the nondimensional parameters μ1a, μ2a, λ1, λ2
and is proportional to a−1. Therefore without loss of
generality we will only perform the numerical calculations
setting a ¼ 1 which is enough to obtain information about
the dependence of the vacuum energy in the δ − δ0
couplings.
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C. Numerical and analytical evaluations

The integral in formula (70) is not amenable to analytic
integration for generic values of μ and λ. Numerical
integration, however, of the right member of (70) is stable
and very robust due to the decreasing exponential factor.
We find that quantum vacuum energies between two δ − δ0
plates can be positive, negative, or zero when the param-
eters vary: there are repulsive, attractive, and null Casimir
forces. In Fig. 3 (left) we plot the numerical results for
the vacuum quantum energy in the 2D subspace of the
parameter space where the couplings at x ¼ −a and x ¼ a
are identical. The quantum vacuum energy in the case of
λ1 ¼ λ2 ¼ λ; μ1 ¼ μ2 ¼ μ is numerically estimated and the
pattern is shown in Fig. 3 (left) where the zones of positive,
respectively negative, Casimir energy are shown by means
of colors towards the infrared, respectively the ultraviolet,
ends of the visible light spectrum separated by a black
curve of zero energy. This pattern of the Casimir energy
seems to be in contradiction with the Kenneth-Klich
theorem: “opposites attract”; see Ref. [38]. The apparent
contradiction is explained, however, by noticing that the
double δ − δ0 system of plates is not symmetric under
reflection even when both plates have identical parameters.
The exchange symmetry occurs only for the pure double δ
system. We showed that two identical δ plates do indeed
attract each other in [10]. A natural loophole is a refinement
of the intelligence of “opposite”: two δ − δ0 plates are
opposite if they have identical δ couplings, μ1 ¼ μ2, but δ0
couplings of opposite sign and the same modulus:
λ1 ¼ −λ2. With this proviso our results fit well into the
Keneth-Klicht paradigm.

1. Robin quantum vacuum energy

A similar structure is shown in Fig. 3 (right) by the
numerically evaluated quantum vacuum energy in the two-
dimensional subspace λ1 ¼ 2, λ2 ¼ −2. Positive, negative,
and zero quantum vacuum energies also arise prompting
repulsive, attractive, and null forces in this subspace
corresponding to Robin boundary conditions. In Fig. 4
we plot the map of the quantum vacuum energies at the
opaque point λ2 ¼ −2 in the other two cases: λ1 ¼ 0 (left)
and μ1 ¼ μ2 (right). The quantum vacuum interaction
energy follows the same pattern as in the preceding
regimes: Casimir forces appear attractive, repulsive,
and null.

2. Two analytic evaluations: The limits μ1 ¼ μ2 ¼ þ∞
and μ1 ¼ μ2 ¼ 0

In the case that the two δs are infinitely repulsive
μ1 ¼ μ2 ¼ þ∞ the integral in formula (70) is analytically
computable and we find

Eint
0 ¼

Z
∞

0

dξ
2π

· ln ð1 − e−4aξÞ ¼ −
1

12
·
π

4a
;

the well-known result for Dirichlet boundary conditions on
an interval of length 2a.
In the second limit when the Dirac-δ point potentials are

switched off, μ1 ¼ μ2 ¼ 0 the integration in the TGTG
formula (70) can be computed analytically to find

Eint
0 ðλ1; λ2Þ ¼ −

Li2ðrLð0; λ1ÞrRð0; λ2ÞÞ
8πa

; ð71Þ

FIG. 3 (color online). Quantum vacuum interaction energy for a ¼ 1: two identical δ − δ0 plates (left). λ1 ¼ −λ2 ¼ 2 opaque points of
different sign prompting Robin boundary conditions (right). In both cases the thick black line is the zero energy line that separates the
zones of attractive and repulsive Casimir forces. Note that opposite plates that appear in the plot in the right on the diagonal μ1 ¼ μ2
always attract.
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where Li2ðzÞ ¼
P∞

k¼1 z
k=k2 is the polylogarithm of

order 2 and rLð0; λ1Þ, rRð0; λ2Þ are the left and right
reflection amplitudes for a single δ0 respectively at x ¼
−a and x ¼ a. The sign of the quantum vacuum
interaction energy in this case is just sgnðλ1λ2Þ and
the zero energy lines are the abscissa and ordinate axes;
see Fig. 5. This result is remarkable: one needs to
choose δ0 couplings of opposite sign to compensate the
parity breaking and find attractive Casimir forces,
confirming the need of refinement of the concept of
opposite objects as explained above.

D. The TGTG formula in higher dimensions

We next address the problem of the quantum vacuum
interaction energy between two D − 1-dimensional hyper-
cubical plates. The D − 1 plates are very thin in their
perpendicular direction. If n̂ is a normal vector orthogonal
to the plate we characterize them by the potential Vðx ·
n̂Þ ¼ μδðx · n̂Þ þ λδ0ðx · n̂Þ (see [39]). In the TGTG for-
mula for the quantum vacuum energy per unit “surface”
Eint
0 =ΣD, ΣD denoting the volume of the plate, κ ¼ ξ is

replaced by the modulus of the momentum vector
ik ¼ ijkj, such that integration becomes D-dimensional
and a factor containing the Euler Gamma function ΓðzÞ
appears:

Z
∞

0

dξ
π
↦
Z
RD

dDk
ð2πÞD ¼ π−D=2

2DΓðD
2
Þ
Z

∞

0

dkkD−1:

The integrand in the TGTG formula only depends on the
modulus k, and the vacuum energy density reads:

Eint
0

ΣD
¼ π−D=2

2DΓðD
2
Þ ·
Z

∞

0

dkkD−1 ln ð1 − rð1ÞL ðikÞrð2ÞR ðikÞe−4akÞ:

ð72Þ

Obviously, the integral here is much more complicated but
numerical integration will remain stable due to the presence
of the decreasing exponential factor. We anticipate now that
the qualitative effect of higher dimensional plates on scalar
field fluctuations follows a similar pattern to the pattern
previously described for the one-dimensional setup. Setting
the values of the δ0 couplings to be λ1 ¼ −2 ¼ −λ2, the
argument of the logarithm in Eq. (72) becomes

FIG. 4 (color online). Quantum vacuum energies for a ¼ 1 and λ2 ¼ −2: the other δ0 turned off (left) two equal δs that allow Robin
boundary conditions on the straight line λ ¼ 2, giving rise to negative vacuum energy (right). The thick black lines denote the zero
energy curves.

FIG. 5 (color online). Two-δ0 quantum vacuum interaction
energy for a ¼ 1. The thick black line corresponds to zero
quantum vacuum energy.
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1 − rð1ÞL ðikÞjλ1¼−2r
ð2Þ
R ðikÞjλ2¼2e

−4ak ¼ 1 − e−4ak;

the well-known integrand produced by Dirichlet boundary
conditions on scalar quantum fluctuations. In this case the
integral in formula (72) can be computed exactly to find, for
instance for D ¼ 3,

Eint
0 ðλ1 ¼ −2; λ2 ¼ 2Þ=ΣD ¼ −

π2

1440
·

1

ð2aÞ3 ;

which is a very well known result for the quantum vacuum
energy interaction between 3D Dirichlet plates; see for
example Refs. [12,40]. This calculation confirms what we
show in Appendix A, the −λ1 ¼ 2 ¼ λ2 combination of δ0
couplings is tantamount to Dirichlet boundary conditions.
We also show that the alternative combination λ1 ¼ 2 and
λ2 ¼ −2 compels the quantum vacuum fluctuations
between plates to behave as if the δ − δ0 plates where
Robin plates; see Ref. [40] to find a direct description of
this type of boundary conditions on scalar fields. For this
choice λ1 ¼ 2 ¼ −λ2 the argument of the logarithm in
formula (72)

1 − rð1ÞL ðikÞjλ1¼2r
ð2Þ
R ðikÞjλ2¼−2e

−4ak

¼ 1 −
e−4akð4k − μ1Þð4k − μ2Þ
ð4kþ μ1Þð4kþ μ2Þ

leads to the following quantum vacuum energy per unit
surface integral formula for D-dimensional δ − δ0 plates at
the Robin combination λ1 ¼ 2 ¼ −λ2 of opaque points:

Eint
0

ΣD
¼ π−D=2

2DΓðD
2
Þ

×
Z

∞

0

dkkD−1 ln

�
1 −

e−4akð4k − μ1Þð4k − μ2Þ
ð4kþ μ1Þð4kþ μ2Þ

�
:

ð73Þ

Partial integration in the integral formula (5.20) of Ref. [40]
tells us that this formula is identical to (73) provided that
the bi, i ¼ 1; 2, nondimensional parameters entering in
formula (5.20) of Ref. [40] are traded by − 4

μi
· 1
2a. We now

offer two sets of graphics, Figs. 6 and 7, where the quantum
vacuum energy densities obtained by numerical integra-
tions of formula (72) are plotted both for “opposite” and
identical” δ − δ0 plates in D ¼ 3.
Regarding the dialectic “opposite” versus “identical” we

have collected evidence about the fact that similar patterns
are followed by the vacuum energy density in higher
dimensions as compared with the one-dimensional situa-
tion. The surge of repulsive, null, and attractive quantum
vacuum forces between identical 1D plates, whereas
opposite plates only suffer attraction, are properties also
happening in higher dimensions. The theorem by Kenneth
and Klich remains valid when the plates present a Z2

symmetry with respect to the hyperplane equidistant from
both plates, i.e., when λ1 ¼ −λ2 and μ1 ¼ μ2; see Fig. 6. If
both plates are identical, i.e., λ1 ¼ λ2 and μ1 ¼ μ2, the Z2

symmetry is lost and therefore the quantum vacuum
interaction energy between plates can be positive, negative,
or zero, giving rise respectively to repulsive, attractive, or
null quantum vacuum forces, as one can see in Fig. 7.

FIG. 6 (color online). Contour plot (left) and 3D plot (right) of Eint
0 ð2aÞ3=Σ3 when the δ0 couplings of the two plates are identical in

modulus but have different signs. We thus deal with “opposite objects” and find accordingly that the vacuum energy per unit surface is
negative throughout the whole μ − λ quadrant. The minimum energy density is −π2=1440 and occurs either at the straight line λ ¼ −2,
i.e., for Dirichlet boundary conditions, or, at the point ðμ ¼ 0; λ ¼ 2Þ, a special case of Robin boundary conditions. It is interesting to
compare these figures with Fig. 3(right) and Fig. 5 showing vacuum energies in the 1D case.
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VII. CONCLUSIONS AND FURTHER COMMENTS

In summary, we draw the following conclusions from
this work:

(i) We delved further into the physical aspects of the
μδþ λδ0 point interaction relying on the natural
definition of this potential by Gadella et al. [21]
as a self-adjoint extension of the free particle
Hamiltonian. In particular, we explained the special
physical features of the scattering amplitudes and the
bound state wave function at λ ¼ �2. For λ ¼ �2

the scattering is completely opaque, with no trans-
mission at all, and the probability amplitude of the
particle in the bound state is restricted to only one
side of the point where the point potential is placed.

(ii) A novel development achieved in this paper is the
solution of the spectral problem of two pairs of
δ − δ0 point interactions. We have identified the
scattering data of the quantum Hamiltonian defined
by imposing over the eigenfunctions the Kurasov-
Gadella et al. matching conditions at the two points
on the real line where the interactions sit. The
scattering amplitudes are accordingly analytically
determined. More difficulties arise in elucidating
the energies of the bound states from the poles of the
S-matrix on the positive imaginary half-axis in
the momentum complex plane because it requires
solving a transcendent equation. Nevertheless, the
number of these poles (0, 1, or 2) has been identified
in some significant two-dimensional subzones of the
space of couplings.

(iii) The spectral data of the two δ − δ0 Hamiltonian have
been used as the one-particle states of one scalar
quantum field theory in ð1þ 1Þ-dimensional Min-
kowski space-time. By considering this point of view
we have demonstrated that plates mimicked by δ − δ0
potentials can be interpreted as a generalization of
Robin boundary conditions. When the δ0 coupling in
the left is either set to λ1 ¼ 2 or the coupling in the
right is fixed to λ2 ¼ −2 the quantum fluctuations in
the interval ½−a; a� corresponding to scattering waves
incoming either from the left or from the right satisfy
Robin boundary conditions provided that restrictions
to a discrete set of momenta complying with a certain
spectral conditions are imposed. If the arrangement
λ1 ¼ 2, λ2 ¼ −2 is chosen both the left and right
movers satisfy Robin boundary conditions under a
third, stronger, spectral condition. Thus, the QFT
generated between plates becomes unitary and is
identified with a massless scalar QFT defined over the
interval with the quantum fields satisfying Robin
boundary conditions. Therefore, because one δ − δ0
potential is understood as the idealization of a plate in
a Casimir setup, we analytically mimicked all the
plates compatible with Robin boundary conditions.
We should mention at this point that the opposite
arrangement, λ1 ¼ −2, λ2 ¼ 2, gives rise to an
unitary QFT of massless scalar fields complying with
Dirichlet boundary conditions.

(iv) The main results reflect the quantum vacuum inter-
action energies arising between two 1D plates ideal-
ized as two δ − δ0 point potentials. The calculations

FIG. 7 (color online). Contour plot (left) and 3D plot (right) of Eint
0 ð2aÞ3=Σ3 when both plates are identical. The vacuum energy may

be positive, repulsive quantum vacuum force, negative, attractive quantum vacuum force, or zero, null quantum vacuum force, in
different zones of the positive μ − λ quadrant. The thick black curve in the contour plot represents the zero energy density curve, whereas
the maximum energy density is 7π2=11520 and occurs at the two points: ðμ ¼ 0; λ ¼ �2Þ. The minimum energy density in this case is
again − π2

1440
and occurs at the infinity point ðμ ¼ þ∞; λ ¼ 0Þ, the other regime where the field fluctuations feel Dirichlet boundary

conditions at both plates; see Ref. [10].
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have been performed in the TGTG formalism of
Kenneth and Klich. We thus deal with two points,
rather than two compact objects. Numerical evalua-
tions of the integral in the TGTG formula show that
the quantum vacuum forces between two δ − δ0 point
plates are attractive, repulsive, or null depending on
the parameter space zones where the calculation is
carried out. We avoided the parameter space zones
where bound states exist and the theory ceases to be
unitary leaving room to absorption/emission
processes.

(v) We have been able to obtain an analytical expression
of the quantum vacuum interaction energy between
two pure δ0 walls. In this case the quantum vacuum
interaction is also positive (repulsive Casimir force),
negative (attractive Casimir force), and zero (null
Casimir force).

(vi) Calculations in higher dimensional spaces of quantum
vacuum energies per unit surface have also been
achieved in the framework of the TGTG paradigm.
In these cases the plates areD − 1-dimensional hyper
cubes. We found similar patterns in three and one
dimensions followedby the dependenceof thevacuum
energies on the couplings although the scale of the
energies induced by vacuum fluctuations changes.

(vii) If the two δ − δ0 pairs of couplings are identical,
μ1 ¼ μ2, λ1 ¼ λ2, our calculations show that the
quantum vacuum force between these two infinitely
thin plates is repulsive. Apparently this behavior
does not fit within the framework of the Kenneth-
Klich theorem, “opposites attract”; see Ref. [38].
The basic assumption in the proof of the Kenneth-
Klich theorem is the characterization of “opposite”
objects as two identical bodies placed in a Z2

reflection symmetrical way with respect to the
hyperplane equidistant to the two objects. This
mirror symmetry does not hold when the potentials
mimicking the objects are not parity invariant, as
happens with the δ − δ0 plates. Understanding the δ0

coupling λ as the polarizability perpendicular to the
plate, two identical plates symmetrical with respect
to the hyperplane centered at the middle point are
not opposite: the polarizabilities point in the same
direction. In this case the two objects are opposite if
the δ couplings are identical, μ1 ¼ μ2, but the δ0

couplings differ in sign: λ1 ¼ −λ2. In this arrange-
ment the double δ − δ0 potential is parity invariant
and our results fit perfectly with the Kenneth-Klich
theorem provided that this refinement of the concept
of “opposite” is assumed. According to our calcu-
lations concerning the double δ − δ0 set of plates, we
conclude that “opposites” always attract but “iden-
tical” may repel, attract, or do not interact.

(viii) It is tempting to replace the δ0 interaction by a
singular potential of the form λsignðxÞδ0ðxÞ, i.e., a

multiplicative δ0=step potential similar to the addi-
tive δ=step potential treated, for instance, in
Ref. [41]. By considering this “even” potential we
would have rRðkÞ ¼ rLðkÞ because parity is pre-
served and the refinement of the concept of opposite
objects adopted in the paper would be immediate.
The general procedure could be developed along the
same lines starting from the appropriate modifica-
tion of the matching conditions.
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APPENDIX: δ − δ0 INTERACTIONS
AND BOUNDARY CONDITIONS

Recall the matching conditions (22),(23) that define the
δ − δ0 point interaction:

ψkð0↑Þ ¼
1þ λ=2
1 − λ=2

ψkð0↓Þ;

ψ 0
kð0↑Þ ¼

1 − λ=2
1þ λ=2

ψ 0
kð0↓Þ þ

μ

1 − λ2=4
ψkð0↓Þ:

Our goal in this appendix is to understand the δ − δ0
interaction as a physical implementation of Robin boun-
dary conditions. With this aim in mind we write the
matching conditions (22)–(23) as a self-adjoint extension
of the free particle Hamiltonian in the Asorey–Munoz-
Castaneda formalism; see Ref. [12]. We thus rewrite the
δ − δ0 matching conditions in the form

Ψþ ¼ Uδδ0Ψ−;

Ψ� ¼
�
μψð0↑Þ � iψ 0ð0↑Þ
μψð0↓Þ ∓ iψ 0ð0↓Þ

�
¼
�
Ψð1Þ

�

Ψð2Þ
�

�
; ðA1Þ

where Uδδ0 is a 2 × 2 unitary matrix.
Because

�
Ψð1Þ

þ
Ψð1Þ

−

�
¼
�
1 i

1 −i

�
·

�
μψð0↑Þ
ψ 0ð0↑Þ

�
;

�
Ψð2Þ

þ
Ψð2Þ

−

�
¼
�
1 −i
1 i

�
·

�
μψð0↓Þ
ψ 0ð0↓Þ

�

a reshuffling of the matching conditions (22)–(23) in the
form
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�
Ψð1Þ

þ
Ψð1Þ

−

�
¼ Wδδ0

�
Ψð2Þ

þ
Ψð2Þ

−

�
ðA2Þ

demands that the new matrix Wδδ0 is a similarity trans-
formation of the old matrix:

Wδδ0 ¼
�
1 i

1 −i

�
·

 1þλ=2
1−λ=2 0

1
1−λ2=4

1−λ=2
1þλ=2

!
·

�
1 −i
1 i

�−1

¼ 1

4 − λ2

�
4λþ 2i 4þ λ2 þ 2i

4þ λ2 − 2i 4λ − 2i

�
:

The second equation in the linear system (A2) can be
recast as

Ψð2Þ
þ ¼ 1

ðWδδ0 Þ2;1
ðΨð1Þ

− − ðWδδ0 Þ2;2Ψð2Þ
− Þ; ðA3Þ

and used in the first equation of (A2) to remove the
dependence in Ψð2Þ

þ :

Ψð1Þ
þ ¼ ðWδδ0 Þ1;1Ψð1Þ

− − detðWδδ0 ÞΨð2Þ
−

ðWδδ0 Þ2;1
: ðA4Þ

These two equations above identify the Asorey–Munoz-
Castaneda quantum boundary condition (A1) coming from
the matching conditions (22)–(23) defining the δ − δ0 point
interaction. The corresponding matrix is

Uδδ0 ¼
1

ðWδδ0 Þ2;1

� ðWδδ0 Þ1;1 − detWδδ0

1 −ðWδδ0 Þ2;2

�

¼ 1

4þ λ2 − 2i

�
4λþ 2i 4 − λ2

4 − λ2 −4λþ 2i

�
: ðA5Þ

It is straightforward to check that Uδδ0 is indeed a unitary
matrix, and therefore it defines a self-adjoint extension of
the free particle Hamiltonian.

1. The λ → �2 limits of the δ0 coupling and Robin
boundary conditions

The λ → �2 limits of the unitary matrix (A5) are

lim
λ→2

Uδδ0 ¼
� 4−i

4þi 0

0 −1
�
; lim

λ→−2
Uδδ0 ¼

� −1 0

0 4−i
4þi

�
:

We remark that (see Reference [12])
(i) ψðaÞ � iaψ 0ðaÞ ¼ −ðψðaÞ ∓ iaψ 0ðaÞÞ requires that

ψðaÞ ¼ 0, i.e., it is equivalent to imposing a Dirich-
let boundary condition at x ¼ a.

(ii) ψðaÞ � iaψ 0ðaÞ ¼ e2iαðψðaÞ ∓ iaψ 0ðaÞÞ, or
ψðaÞ tanðαÞ ∓ aψ 0ðaÞ ¼ 0, is equivalent to demand-
ing a Robin boundary condition characterized by the
angle α at x ¼ a.

We find the following:
(1) For a λ ¼ 2 δ0 coupling

ðaÞ ψð0↑Þ − 4

μ
ψ 0ð0↑Þ ¼ 0; ðbÞ ψð0↓Þ ¼ 0:

The pair of data fμψð0↑Þ;ψ 0ð0↑Þg subjected to the
matching conditions (22)–(23) satisfies Robin boun-
dary conditions at the origin if λ ¼ 2 and tan α ¼ μa

4
.

The second pair fμψð0↓Þ;ψ 0ð0↓Þg, however, satisfies
Dirichlet boundary conditions when x ¼ 0 and λ ¼ 2.

(2) If λ ¼ −2 the two pairs of data exchange their roles:

ðaÞ ψð0↑Þ ¼ 0; ðbÞ ψð0↓Þ þ 4

μ
ψ 0ð0↓Þ ¼ 0

fμψð0↑Þ;ψ 0ð0↑Þg satisfies Dirichlet boundary con-
ditions, whereas fμψð0↓Þ;ψ 0ð0↓Þg satisfies Robin
boundary conditions.

It is possible therefore to tune both δ − δ0 interactions in the
Casimir setup as Robin plates and obtain the same result as
Ref. [40]. This choice requires λ1 ¼ 2 to be set in the plate at
x ¼ −a and λ2 ¼ −2 as the δ0 coupling at x ¼ a. Under
these circumstances the quantum fluctuations between plates
experience Robin boundary conditions. According to the
analysis above, this happens when the plate that is placed at
x ¼ −a, collecting the contribution from rL to the vacuum
energy, is tuned at the λ1 ¼ 2 opaque point, whereas the
plate that is placed at x ¼ a, picking the contribution of rR to
the vacuum energy, sets its δ0 coupling to be λ2 ¼ −2.
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