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The effective potential is known to be a key object of the
quantum field theory allowing us to make conclusions
about many issues related to the low-energy effective
behavior of the corresponding theory such as spontaneous
symmetry breaking, phase transitions, Green functions, and
many other aspects. It has been studied within numerous
contexts and for different field theory models. Certainly, it
is interesting to study the effective potential also in the
theories where Lorentz symmetry is broken—in particular,
in the theories with time-space asymmetry—that is, those
ones characterized by different orders in space and time
derivatives. First attempts of studies of such theories [1],
motivated further by the Horava gravity concept [2], called
attention to investigation of different properties of other
Horava-Lifshitz-like (HL-like) field theory models, with
two main lines of study: first, their renormalization
aspects [3]; and second, their effective potential, which
has been studied for different models including HL-like
QED, HL-like Yukawa, and different scalar theories in
Refs. [4–7]. At the same time, one could note that, within
studies of the effective potential in the HL-like QED [5–7],
a special gauge has been employed—that is, the HL-like
generalization of the Feynman gauge. Certainly, it sim-
plifies the calculations essentially. However, the problem
of the gauge dependence of the effective potential is still
open. In this paper we try to answer this problem.
Our starting point is the Lagrangian of the scalar QED

with an arbitrary z [5]:

L ¼ 1

2
F0iF0i þ ð−1Þz 1

4
FijΔz−1Fij þD0ϕðD0ϕÞ�

−Di1Di2…DizϕðDi1Di2…DizϕÞ�; ð1Þ

where D0 ¼ ∂0 − ieA0, Di ¼ ∂i − ieAi is a gauge covar-
iant derivative. For the sake of simplicity, we suggest that
there is no self-coupling of the matter field, the theory is
massless, and the critical exponents for scalar and gauge
fields are the same (the generalization for the case of their

difference is straightforward, as well as for the case of the
massive theory). Here we have used slightly different
definitions in comparison with Refs. [5–7] for convenience.
Our signature is ð−þþþÞ.
We introduce the canonical momenta conjugated to Ai,

ϕ, ϕ�, respectively:

Πi ¼ F0i; π ¼ ð∂0 þ ieA0Þϕ� ¼ ðD0ϕÞ�;
π� ¼ ð∂0 − ieA0Þϕ ¼ D0ϕ: ð2Þ

At this time we note the presence of the primary constraint

Φð1Þ ¼ Π0 ≃ 0: ð3Þ

For didactic reasons, we introduce an intermediate object
L½Π; π�—that is, the Lagrangian where the velocities are
expressed in terms of momenta:

L½Π; π� ¼ 1

2
ΠiΠi þ ð−1Þz 1

4
FijΔz−1Fij þ ππ�

−Di1Di2…DizϕðDi1Di2…DizϕÞ�: ð4Þ

The Hamiltonian density is defined as

H ¼ Πi
_Ai þ π _ϕþ π� _ϕ� − L½Π; π�: ð5Þ

Its explicit form, after one integration by parts, is

H ¼ 1

2
ΠiΠi þ ππ� − A0ð∂iΠi − ieðπϕ − π�ϕ�ÞÞ

− ð−1Þz 1
4
FijΔz−1Fij

þDi1Di2…DizϕðDi1Di2…DizϕÞ�: ð6Þ

The secondary constraint has the role of the Gauss law:

Φð2Þ ¼ fΦð1Þ; Hg ¼ ∂iΠi þ ρ; ð7Þ

where ρ ¼ −ieðπϕ − π�ϕ�Þ is a charge density. One can
conclude that there are no other constraints (indeed, the
time dependence in our theory is just the same as in the
usual QED). So, our Hamiltonian density is rewritten as
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H ¼ 1

2
ΠiΠi þ ππ� − A0Φð2Þ − ð−1Þz 1

4
FijΔz−1Fijþ

þDi1Di2…DizϕðDi1Di2…DizϕÞ�: ð8Þ

Now, let us follow the algorithm of Ref. [8]. We introduce
the transverse projector P⊥

ij and the longitudinal one P∥
ij

(we note that for a pure HL-like QED without scalar matter,
the Hamiltonian analysis has been performed in Ref. [9]):

P⊥
ij ¼ δij −

∂i∂j

Δ
; P∥

ij ¼
∂i∂j

Δ
: ð9Þ

It is clear that P⊥
ijP

⊥
jk ¼ P⊥

ik, P
⊥
ijP

∥
jk ¼ 0, and ∂iP⊥

ij ¼ 0.
Other important properties of the projectors are also valid.
Then, we introduce the transverse and longitudinal
momenta:

Πt
i ¼ P⊥

ijΠj; Πl
i ¼ P∥

ijΠj: ð10Þ

In the same manner, we can introduce transverse and
longitudinal fields At

i and Al
i. We note that the transverse

field At
i is invariant under the gauge transformations. It is

easy to show that FijΔz−1Fij ¼ −2At
iΔzAt

i (up to the
additive total derivative). So, we arrive at the following
form for the Hamiltonian density:

H ¼ 1

2
Πt

iΠt
i þ

1

2
Πl

iΠl
i þ ππ� − A0Φð2Þ þ 1

2
At
ið−ΔÞzAt

i

þDi1Di2…DizϕðDi1Di2…DizϕÞ�: ð11Þ

We note that the secondary constraint now can be rewritten
as Φð2Þ ¼ −ð∂iΠl

i þ ρÞ, so it involves only the longitudinal
part of the vector field as it must be. Now, let us carry out
the same trick as in Ref. [10]—that is, we make the change
of variables

ϕ → ~ϕ ¼ eieRϕ; ϕ� → ~ϕ� ¼ ϕ�e−ieR: ð12Þ

Here R does not depend on ϕ, ϕ�. It is clear that the
conjugated momenta are defined as

~π ¼ e−ieRπ; ~π� ¼ eieRπ�; ð13Þ

and thus ππ� ¼ ~π ~π�. Then, it is clear that

ð∂i þ ieAiÞϕ ¼ ð∂i þ ieAiÞðe−ieR ~ϕÞ
¼ ð∂i

~ϕþ ie½Ai − ∂iR� ~ϕÞe−ieR:

If one changes RðxÞ ¼ −
R
ddyð∂jAl

jðyÞÞGðx − yÞ, with
∇2Gðx − yÞ ¼ −δdðx − yÞ, and Al

j is a longitudinal part

of Aj (so
∂i∂j
∇2 Al

j ¼ Al
i), one has Al

i − ∂iR ¼ 0; therefore,

ð∂i þ ieAiÞϕ ¼ ½ð∂i þ ieAt
iÞ ~ϕ�e−ieR: ð14Þ

Using the mathematical induction method together with the
relation Al

i − ∂iR ¼ 0, one can show that for any integer n,

ð∂in þ ieAinÞ…ð∂i1 þ ieAi1Þϕ
¼ ½ð∂in þ ieAt

in
Þ…ð∂i1 þ ieAt

i1
Þ ~ϕ�e−ieR: ð15Þ

Therefore, our Hamiltonian density is

H ¼ 1

2
Πt

iΠt
i þ

1

2
Πl

iΠl
i þ ~π ~π� þ A0Φð2Þ þ 1

2
At
ið−ΔÞzAt

i

þ ½ð∂in þ ieAt
in
Þ…ð∂i1 þ ieAt

i1
Þ ~ϕ�

× ½ð∂in þ ieAt
in
Þ…ð∂i1 þ ieAt

i1
Þ ~ϕ��: ð16Þ

Now, it is the time to remember that our aim consists in
the calculation of the one-loop effective potential. So, we
make the shift ~ϕ → ~Φþ ~ϕ, ~ϕ� → ~Φ� þ ~ϕ� and suggest first
that the field Ai is a purely quantum one, and second that
the background fields ~Φ; ~Φ� are constants (which in terms
of the original fields is equivalent to the condition that
ΦΦ� ¼ ~Φ ~Φ� is a constant), so ∂i

~Φ ¼ ∂i
~Φ� ¼ 0. Restricting

ourselves by the terms of the second order in quantum
fields and integrating by parts where it is necessary, we find
the following Hamiltonian density:

H ¼ 1

2
Πt

iΠt
i þ

1

2
Πl

iΠl
i þ ~π ~π� þ 1

2
At
ið−ΔÞzAt

i þ ~ϕð−ΔÞz ~ϕ�

þ e2ΦΦ�At
ið−ΔÞz−1At

i − A0Φð2Þ: ð17Þ

Now, the transverse and longitudinal parts are completely
separated. The condition Φð2Þ ≃ 0 emerges as a conse-
quence of the corresponding constraint. Then, we proceed
as in Ref. [8]: we can solve the secondary constraint (7) as

Πl
iðxÞ ¼ ∂i

Z
d3yGðx − yÞρðyÞ; ð18Þ

where Gðx − yÞ is a Green function for the Laplace
operator, such as ∇2Gðx − yÞ ¼ −δðx − yÞ, and ρðyÞ is a
(gauge invariant) charge density. In this case, we can
eliminate the longitudinal momenta Πl

i so that

Z
d3x

1

2
Πl

iΠl
i ¼

1

2

Z
d3xd3yρðxÞGðx − yÞρðyÞ: ð19Þ

So, our Hamiltonian, on the surface of the constraint, takes
the form
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H ¼
Z

d3x

�
1

2
Πt

iΠt
i þ

1

2
At
ið−ΔÞzAt

i þ e2ΦΦ�At
ið−ΔÞz−1At

i

þ ~π ~π� þ ~ϕð−ΔÞz ~ϕ�
�

þ 1

2

Z
d3xd3yρðxÞGðx − yÞρðyÞ: ð20Þ

It is clear that the dynamics of scalar fields is completely
factorized out, and this Hamiltonian yields the well-known
contribution to the one-loop effective potential [5–7]:

Uð1Þ
t ¼ d

Z
ddk
ð2πÞd ½

~k2z þ 2e2ΦΦ�~k2z−2�1=2; ð21Þ

whose result has been found in Ref. [5] to be

Uð1Þ
t ¼ −

dπ
d−1
2

4ð2πÞd ð2e
2ΦΦ�Þdþz

2

Γð− dþz
2
ÞΓðdþz−1

2
Þ

Γðd
2
Þ : ð22Þ

So, we reproduced the result found in Ref. [5] for a
HL-like analogue of the Feynman gauge. In other words,
it is clear within this formalism that the coupling of the
gauge field to quantum scalar fields contributes only to the
gauge dependent part.
Finally, we conclude that the only contribution to the

effective potential is just (21). Actually, we have shown that
this result does not depend on the gauge choice.
With the other approach, we start again with the

expression (1) and note that it can be in principle rewritten
in terms of the real fields ϕ1 and ϕ2, such as

ϕ ¼ ϕ1 þ iϕ2ffiffiffi
2

p ; ϕ� ¼ ϕ1 − iϕ2ffiffiffi
2

p : ð23Þ

However, we postpone introduction of ϕ1, ϕ2 up to a
certain step, since the formulation with ϕ;ϕ� is much more
convenient for the quantum calculations. Moreover, the
only place where we will actually use the fields ϕ1 and ϕ2

rather than ϕ;ϕ� now will be the gauge condition.
Then, we introduce the following analogue for the Rξ

gauge (cf. Ref. [8]) by modifying the gauge-fixing
Lagrangian from the form used in Ref. [8] to

Lgf ¼
1

2ξ
ð−1Þz½ð−1ÞzΔ−z−1

2 ∂0A0 þ Δz−1
2 ∂iAi þ eϵabvaϕb�2:

ð24Þ

The vi actually is an isovector in a two-dimensional space.
We choose vi ¼ ðv; 0Þ, so ϵabvaϕb ¼ vϕ2 ¼ v ϕ−ϕ�

i
ffiffi
2

p . Also,

we choose the background Φi ¼ ðΦ; 0Þ to provide
ϵijviΦj ¼ 0 (this relation is required by the gauge invari-
ance; cf. Ref. [8]), which in terms of the fields ϕ;ϕ� will
mean that the background scalar field is real, Φ� ¼ Φ.
Since the gauge transformations are as usual

δA0;i ¼ ∂i;0ω; δϕa ¼ −eϵabωϕb; ð25Þ

we should also introduce a Lagrangian for the correspond-
ing ghosts c; c0:

Lgh ¼
1ffiffiffi
ξ

p c½ð−1ÞzΔ−z−1
2 ∂0∂0 þ Δzþ1

2 þ e2vΦ�c0: ð26Þ

The total Lagrangian of the gauge field will take the form
(cf. Refs. [5–7])

Lgauge ¼
1

2
A0

�
−Δþ 1

ξ
∂2
0ð−ΔÞ−ðz−1Þ

�
A0 − ∂0A0∂iAi

�
1 −

1

ξ

�

−
1

2
Aj½∂2

0 þ ð−ΔÞz�Aj þ
1

2

�
1 −

1

ξ

�
∂iAið−ΔÞz−1∂jAj

þ 1

2ξ
e2v2ϕ2

2ð−1Þz þ
1

ξ
ev½Δ−z−1

2 ∂0A0 þ ð−1ÞzΔz−1
2 ∂iAi�ϕ2; ð27Þ

where ϕ2 ¼ ϕ−ϕ�
2i . Since our aim consists in calculating the effective potential, we as usual carry out the background

quantum splitting by the rule ϕ → Φþ ϕ, ϕ� → Φ� þ ϕ� (with Φ;Φ� as the background fields, and ϕ;ϕ� the quantum
ones). We get the following quadratic Lagrangian of quantum fields from the scalar sector:

Lsc ¼ ∂0ϕ∂0ϕ
� þ ie½ð∂0A0Þ − ð−ΔÞz−1∂iAi�ðΦϕ� − Φ�ϕÞ

þ e2A0A0ΦΦ� − ϕð−ΔÞzϕ� − e2Aið−ΔÞz−1AiΦΦ�: ð28Þ
After we impose the condition of reality for the background, Φ� ¼ Φ, and introduce the ϕ1;ϕ2 fields as above, we get

Lsc ¼
1

2
½∂0ϕ1∂0ϕ1 − ϕ1ð−ΔÞzϕ1 þ ∂0ϕ2∂0ϕ2 − ϕ2ð−ΔÞzϕ2 þ 2e2Φ2A0A0

− 2e2Φ2Aið−ΔÞz−1Ai� þ ð
ffiffiffi
2

p
ÞeΦ½ð∂0A0Þ − ð−ΔÞz−1ð∂iAiÞ�ϕ2: ð29Þ
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We sum Lsc, Lgauge, and Lgh. As a result, the total quadratic action is

Ltotal ¼ −
1

2
ϕ1½∂2

0 þ ð−ΔÞz�ϕ1 −
1

2
ϕ2

�
∂2
0 þ ð−ΔÞz þ e2v2

ξ
ð−1Þz−1

�
ϕ2 þ

1

2
A0

�
ξ−1∂2

0 þ ð−ΔÞz þ 2e2Φ2ð−ΔÞz−1
ð−ΔÞz−1

�
A0

−
1

2
Aj½∂2

0 þ ð−ΔÞz þ 2e2Φ2ð−ΔÞz−1�Aj þ
�
ð

ffiffiffi
2

p
ÞeΦþ 1

ξ
evΔ−z−1

2

�
½ð∂0A0Þ − ð−ΔÞz−1ð∂iAiÞ� · ϕ2

þ 1

2

�
1 −

1

ξ

�
∂iAið−ΔÞz−1∂jAj − ∂0A0∂iAi

�
1 −

1

ξ

�
þ c½ð−1ÞzΔ−z−1

2 ∂0∂0 þ Δzþ1
2 þ e2vΦ�c0: ð30Þ

Here we have reabsorbed the factor 1ffiffi
ξ

p into the redefinition of the ghosts. We note that the ghost contribution is completely

factorized, as it must be in the one-loop order, and we will consider it in the final step.
In principle, we can write down the nonghost contribution to the corresponding one-loop effective potential as a trace of

the logarithm of some operator:

Γð1Þ
ϕ;A ¼ i

2
tr ln

0
BBBBB@

−□z 0 0 0

0 −□z þ 1
ξ e

2v2ð−1Þz T0 Ti

0 −T0 Q ∂0∂ið1 − 1
ξÞ

0 −Ti ∂0∂ið1 − 1
ξÞ −Hij

1
CCCCCA
: ð31Þ

Here ∂2
0 þ ð−ΔÞz ≡□z, Pz ¼ □z þ 2e2Φ2ð−ΔÞz−1, Q ¼ −Δþ 1

ξ ∂2
0ð−ΔÞ−ðz−1Þ þ 2e2Φ2, Hij¼δijPzþð1−1

ξÞð−ΔÞz−1
∂i∂j, T0 ¼ ðð ffiffiffi

2
p ÞeΦþ 1

ξ evΔ
−z−1

2 Þ∂0, Ti ¼ −ðð ffiffiffi
2

p ÞeΦþ 1
ξ evΔ

−z−1
2 Þð−ΔÞz−1∂i. Already at this step, the field ϕ1 (corre-

sponding to the first line/column) completely decouples, so one rests with

Γð1Þ
ϕ;A ¼ i

2
tr ln

0
BBBBB@

−□z þ 1
ξ e

2v2ð−1Þz T0 Ti

−T0 Q ∂0∂ið1 − 1
ξÞ

−Ti ∂0∂ið1 − 1
ξÞ −Hij

1
CCCCCA
: ð32Þ

This is a result for the one-loop effective potential in an
arbitrary gauge. In principle, one can reduce even this
determinant through the following formula for the deter-
minant of the block matrix:

ln det

�
A B

C D

�
¼ ln detAþ ln detðD − CA−1BÞ; ð33Þ

and if we choose A ¼ −□z þ 1
ξ e

2v2ð−1Þz, the first term of
this logarithm yields a mere constant and thus can be
thrown away. However, the second term, in the case of the
arbitrary gauge, is very complicated (the same situation
takes place in Ref. [8]).
So, let us choose some gauge in which our one-loop

effective potential is radically simplified. It is easy to see
that, first, the cancellation of the “mixed” scalar-vector term
requires an essentially nonlocal condition

�
ð

ffiffiffi
2

p
ÞeΦþ 1

ξ
evΔ−z−1

2

�
½ð∂0A0Þ − ð−ΔÞz−1ð∂iAiÞ� ¼ 0:

ð34Þ

Actually, this is a generalization of the Feynman gauge,
which can be treated as an equation on the A0; Ai [really, it
is weaker than the usual Feynman-like gauge condition
ð∂0A0Þ − ð−ΔÞz−1ð∂iAiÞ ¼ 0]. In what rests, we can put
also ξ ¼ 1. We rest with the quadratic action of quantum
fields (except that of ghosts):

Ltotal ¼
1

2
½∂0ϕ1∂0ϕ1 − ϕ1ð−ΔÞzϕ1 þ ∂0ϕ2∂0ϕ2

− ϕ2ð−ΔÞzϕ2 þ e2v2ϕ2
2ð−1Þz�

þ 1

2
A0ð−Δþ ∂2

0ð−ΔÞ−ðz−1Þ þ 2e2Φ2ÞA0

−
1

2
Aj½∂2

0 þ ð−ΔÞz þ 2e2Φ2ð−ΔÞz−1�Aj: ð35Þ
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It is clear that the contribution to the one-loop effective
action from the scalar fields is trivial, since it does not
involve any background fields (note that v is a constant, not
a field), and from the gauge fields one has

Γð1Þ
ϕ;A ¼ i

2
ðdþ 1Þtr ln½∂2

0 þ ð−ΔÞz þ 2e2Φ2ð−ΔÞz−1�: ð36Þ

It is clear that at z ¼ 1, the expression is Lorentz invariant,
and the usual result for the QED is restored. After the
Fourier transform and Wick rotation, we have

Γð1Þ
ϕ;A ¼ 1

2
ðdþ 1Þ

Z
dk0Eddk
ð2πÞdþ1

lnðk20E þ ~k2z þ 2e2Φ2~k2z−2Þ;

ð37Þ
which, with use of Ref. [5], is

Γð1Þ
ϕ;A ¼ −

ðdþ 1Þπd−1
2

4ð2πÞd ð2e2Φ2Þdþz
2

Γð− dþz
2
ÞΓðdþz−1

2
Þ

Γðd
2
Þ : ð38Þ

The only difference is the overall factor dþ 1 instead of d
in Refs. [5,6]. However, this is a natural impact of the
difference of the gauge choice.
Now, recalling Ref. [6], we can briefly describe the

dependence of this result on d and z. It is easy to see that
when dþ z ¼ 2nþ 1 is odd, the one-loop effective poten-
tial is essentially finite. Moreover, if in this case the n is
even, the factor −Γð− dþz

2
Þ ¼ −Γð−n − 1

2
Þ in (38) is pos-

itive; therefore, the effective potential is non-negative,
having the minimum at Φ ¼ 0, and if n is odd, the effective
potential is negative and the theory is unstable at one
loop. At the same time, if dþ z ¼ 2l is even, the one-loop
effective potential diverges and requires an introduction of
a corresponding counterterm—that is, the self-coupling of
the scalar field, with additional one-loop contributions [7].
It remains for us to treat the ghost contribution to the

one-loop effective action. In this case, it is nontrivial, being
equal to

Γð1Þ
gh ¼ −

i
2
tr ln½ð−1ÞzΔ−z−1

2 ∂0∂0 þ Δzþ1
2 þ e2vΦ�; ð39Þ

or, as is the same,

Γð1Þ
gh ¼ −

i
2
tr ln½∂0∂0 þ ð−1ÞzΔz þ e2vΦð−1ÞzΔz−1

2 �; ð40Þ

which after Fourier transform and Wick rotation yields

Γð1Þ
gh ¼ −

1

2

Z
dd~kdk0
ð2πÞdþ1

ln½k20 þ ~k2z þ e2vΦð−1Þ3z−12 j~kjz−1�:

ð41Þ

To avoid the problems with reality of the expression, we
can suggest that ð−1Þ3z−12 ¼ �1 (that is, zmust be odd), with
the sign of v chosen in an appropriate manner. It remains
for us to integrate, which we can do following the lines of
Ref. [5]. Afterwards, we arrive at

Γð1Þ
gh ¼ 1

ð4πÞ2dþzþ1
4

1

zþ 1

Γð2dþz−1
2zþ2

Þ
Γð2dþz−1

4
Þ

× Γ
�
−
1

2
−
2dþ z − 1

2zþ 2

�
ðe2jvΦjÞdþz

zþ1: ð42Þ

This contribution diverges if 2dþz−1
zþ1

¼ 2n − 1, with n a non-
negative integer (in particular, if z ¼ 1, it corresponds to an
odd d, as it must be). The whole result is a sum of (38) and
(42). We note that first, it diverges at certain values of d and
z; and second, while (38) does not depend on v, (42)
essentially depends on it, which means that these two
contributions have essentially distinct structure.
Let us compare the results obtained within the two

approaches—that is, (22) and the sum of (38) with (42),
respectively. It is clear that the latter result is obtained in
some special gauge—that is, the analogue of Rξ gauge
allowing for removal of nondiagonal terms of the action by
paying the price of introducing the extra parameters v and
ξ, and further, the nontrivial coupling of the ghosts to the
scalar field. It is clear that this gauge is much more generic
than the usual Feynman-like gauge used in the first part of
the paper. However, if we suggest that we impose several
special restrictions on these parameters—that is, choose
ξ ¼ 1 to remove the nondiagonal terms in the purely gauge
sector, and v ¼ 0 to remove the ghost-matter coupling
together with its consequence—that is, the contribution of
(42). [Recall that within usual gauges, which do not involve
scalar fields, this coupling does not arise—the results, (22)
and (38), will have exactly the same functional form.] The
only difference is in the overall factor (d or dþ 1), which is
caused by the fact that while within the first manner of
calculation we absorbed A0 (so-called “scalar photon”) into
the charge density ρ, which has no contribution at the one-
loop order, within the second manner we treated A0 on the
same base as the physical Ai components, which yields a
contribution similar to that of Ai. Therefore, we conclude
that, if we restrict ourselves to purely physical variables—
that is, throw away the contribution of a nonphysical A0—
the results will coincide. Actually, the difference of results
within two methods is caused by the fact that, in the Rξ

gauge, the result for the one-loop effective potential is
strongly gauge dependent. Nevertheless, the physical
variables should be gauge independent.
We considered two different approaches to the study of

the one-loop effective potential in the HL-like QED. Within
the first of them, we implemented the gauge invariant
physical variables and obtained the one-loop potential
expressed in these variables. The result coincided with
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the previous result of Ref. [5]. Within the second one, we
used a special gauge—that is, the Rξ gauge, known as an
efficient tool in simplification of the classical action. We
showed that using this gauge with an appropriate fixation of
the free parameters allows us to obtain a result which differs
from that of Ref. [5] only by a numerical factor, plus some
extra contribution generated by ghosts which do not

decouple in this case because of the unusual structure of
the gauge-fixing function.
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