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The generalized spectral dimension DSðTÞ provides a powerful tool for comparing different approaches
to quantum gravity. In this work, we apply this formalism to the classical spectral actions obtained within
the framework of almost-commutative geometry. Analyzing the propagation of spin-0, spin-1 and spin-2
fields, we show that a nontrivial spectral dimension arises already at the classical level. The effective field
theory interpretation of the spectral action yields plateau structures interpolating between a fixed spin-
independent DSðTÞ ¼ dS for short and DSðTÞ ¼ 4 for long diffusion times T. Going beyond effective field
theory the spectral dimension is completely dominated by the high-momentum properties of the spectral
action, yielding DSðTÞ ¼ 0 for all spins. Our results support earlier claims that high-energy bosons do not
propagate.
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I. INTRODUCTION

The spectral action principle [1,2] provides a framework
for unifying gravity and elementary particle physics on the
basis of noncommutative geometry [3], see [4–7] for
reviews. A key ingredient in the construction is the spectral
action [1,2]

Sχ;Λ ¼ Tr½χðD2=Λ2Þ� ð1Þ
where χ is a positive function, D is a Dirac operator on a
noncommutative geometry, Λ is a suitable cutoff scale,
and the trace indicates the sum over eigenvalues of D.
Amongst noncommutative geometries almost-commutative
ones lead, for suitable choices of the almost-commutative
manifold, to a spectral action which can give rise to the
standard model of particle physics minimally coupled to
gravity [8–12]. These models may also be extended to
include physics beyond the standard model [13–16] or
supersymmetry [17–20]. Their renormalization has been
studied in [21–25] and the phenomenological implications
of the resulting effective actions have been carried out, e.g.,
in [26–28]. A more detailed discussion of the cutoff Λ may
be found in [29], and the generalization to noncommutative
spaces built from nonassociative algebras has been pursued
in [30].
In this work, we follow up on Refs. [31,32] and study the

properties of the spectral action beyond the framework of
effective field theory. More specifically, we construct the

generalized spectral dimension DSðTÞ [33–35] resulting
from the spectral action principle and compare our findings
with other approaches to quantum gravity.
The basic idea underlying the concept of the generalized

spectral dimensionDSðTÞ is that a test particle diffusing on a
givenbackgroundprobes certain features of the background.
By now, this “observable” has been computed in many
approaches to quantum gravity and a number of quantum
gravity inspired models. A common feature shared by many
of these studies is a “dynamical dimensional reduction”
from a classical spacetime with DSðTÞ ¼ 4 at macroscopic
scales to DSðTÞ ¼ 2 [36,37]. The widespread use of DSðTÞ
throughout the quantum gravity community then calls for a
detailed understandingwhich (quantum) features of amodel
are actually encoded in DSðTÞ.
In the literature, there are essentially three approaches to

compute DSðTÞ. For the piecewise linear geometries
approximating spacetime within Monte Carlo simulations
of the gravitational partition sum, one sets up a random
walk on the effective quantum geometry. This allows a
direct measurement ofDSðTÞ from the return probability of
the random walker, thereby characterizing the fractal
features of the geometry. A prototypical example for this
setup is provided by the causal dynamical triangulations
program [34,38]. The second way towards obtaining a
nontrivial DSðTÞ starts from a theory where the propagator
of the test particle is already modified at the classical level.
It is this feature that gives rise to the nontrivial spectral
dimension in Hořava-Lifshitz gravity [35,39,40], general
Lorentz-violating theories [41,42], or fractional quantum
field theory [43,44]. Finally, DSðTÞ may be modified
through nontrivial quantum fluctuations of spacetime
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predicted by a fundamental theory of gravity. This set
includes the multifractal spacetimes occurring in the
gravitational asymptotic safety program [33,45–48], the
microscopic structure of spacetime within loop quantum
gravity [49–54], causal set theory [55] or the propagation of
particles on κ-Minkowski [56,57] and other noncommuta-
tive spaces [58].
For the classical spectral action, the nontrivial spectral

dimension originates from the noncanonical momentum
dependence of the theory’s propagators. The essentially
new feature, making this model worthwhile to study, is that
the (inverse) full propagators of the model are nonanalytic
functions of the momentum. This will lead to a rather
surprising behavior of the spectral dimension computed in
this framework.
The rest of this work is devoted towards studying these

novel features. In Secs. II and III we review the relevant
aspects of the spectral action and the generalized spectral
dimension, respectively. The spectral dimension resulting
from the spectral action is computed in Sec. IV and we
conclude with a brief summary and outlook in Sec. V.

II. THE SPECTRAL ACTION AND
ITS BOSONIC PROPAGATORS

We start by reviewing the spectral action and its con-
nection to the heat kernel mainly following [7,31]. The
basic ingredient for constructing the spectral action is an
almost-commutative manifold M × F. Here M is a
Riemannian spin manifold which plays the role of the
Euclidean spacetime and F a finite, generally noncommu-
tative, space encoding the internal degrees of freedom. The
geometry of M has an operator algebraic description in
terms of the canonical triple

M≔ðC∞ðMÞ; L2ðM; SÞ;DÞ ð2Þ
where C∞ðMÞ is the set of smooth functions on M,
L2ðM; SÞ is the Hilbert space of square-integrable spinors
onM, andD is the (Euclidean) Dirac operator acting on this
Hilbert space. Similarly, the geometry of F can be captured
by a triple

F≔ðAF;HF;DFÞ; ð3Þ
where HF is a finite-dimensional Hilbert space of complex
dimension N,AF is an algebra of N × N matrices acting on
HF, and DF is a Hermitian operator, given by a Hermitian
N × N matrix.
In order to illustrate the propagation of particles resulting

from this setup, it suffices to chose the simplest internal
space, taking F as a single point. In this case the triple
F ¼ ðC;C; 0Þ and the Dirac operator on the product space
reduce to the one on M. Concretely, we will consider

D ¼ Dþ γ5ϕ; ð4Þ

where the covariant derivative

D ¼ iγμð∇LC
μ þ iAμÞ; ð5Þ

contains the Levi-Cevita spin connection and the gauge
potential Aμ. Consequently, the resulting spectral action
comprises a spin-2 field, the graviton, a massless Uð1Þ
gauge field Aμ with field strength Fμν ¼ ∂μAν − ∂νAμ and a
scalar ϕ. In the sequel, we will study the transverse traceless
fluctuations hμν with ∂μhμν ¼ 0, δμνhμν ¼ 0 only and
impose the Landau gauge for the spin-1 field ∂μAμ ¼ 0,
limiting ourselves to the propagation of the physical
degrees of freedom.
The operator D2 appearing in the spectral action (1) can

then be cast into the standard form of a Laplace-type
operator

D2 ¼ −ð∇2 þ EÞ ð6Þ
with the endomorphism E given by

E ¼ −iγμγ5∇μϕ − ϕ2 −
1

4
Rþ i

4
½γμ; γν�Fμν: ð7Þ

Moreover, the curvature of ∇μ ¼ ∇LC
μ þ iAμ is given by

Ωμν≔½∇μ;∇ν� ¼ −
1

4
γργσRρσμν þ iFμν: ð8Þ

At this stage, it is illustrative to follow [31] and consider
the special case where the generating function in Eq. (1) is
given by χðzÞ ¼ e−z In this case, the spectral action (1)
coincides with the heat trace

Sχ;Λ ¼ Trðe−tD2Þ ¼ KðD2; tÞ with t≔Λ−2; ð9Þ

which is a well-studied object, see, e.g., [32,59–62].
As we are interested in the propagation of fields we will

extract the (inverse) propagators of the matter fields by
expanding (9) up to second order in ϕ, Aμ. The inverse
propagator in the gravity sector is obtained by expanding
gμν around flat (Euclidean) space

gμν ¼ δμν þ Λ−1hμν: ð10Þ

The inclusion of Λ ensures that hμν has the same mass
dimension as the matter fields and gives rise to the
canonical form of the graviton propagator. Comparing
(10) with the stand expansion of gμν used in perturbation
theory, gμν ¼ δμν þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGN

p
hμν with GN being Newton’s

constant, identifies the natural scale for Λ as the Planck
mass mPl ¼ ð8πGNÞ−1=2 (also see [63] for a related dis-
cussion). A lengthy but in principle straightforward calcu-
lation [31,32,59–61] then yields the expression for the
inverse propagators of the physical fields including the
full-momentum dependence
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Kð2ÞðD2; tÞ ¼
Z

d4x½ϕF0ð−t∂2Þϕ

þ AμF1ð−t∂2ÞAμ þ Λ−2hμνF2ð−t∂2Þhμν�:
ð11Þ

Here Kð2Þ indicates that we retained the second order of the
fields only and we explicitly exhibit the factor Λ−2 coming
from the expansion (10). The structure functions Fs
coincide with the standard heat kernel result for spin-s
fields and are given by

F0ðzÞ ¼
t−1

ð4πÞ2 ð−4þ 2zhðzÞÞ; ð12Þ

F1ðzÞ ¼
t−1

ð4πÞ2 ð−4þ 4hðzÞ þ 2zhðzÞÞ; ð13Þ

F2ðzÞ ¼
t−2

ð4πÞ2
�
−2þ hðzÞ þ 1

4
zhðzÞ

�
; ð14Þ

with

hðzÞ ¼
Z

1

0

dαe−αð1−αÞz: ð15Þ

Note that these functions are nonanalytic in

z ¼ p2

Λ2
¼ tp2: ð16Þ

The inverse of these structure functions provide the
classical propagators of the theory. For illustration, we
show the “reduced” structure functions

GsðzÞ ¼ ð4πÞ2tαsFsðzÞ ð17Þ

with FsðzÞ defined in Eqs. (12)–(14) and αs ¼ ð1; 1; 2Þ
in Fig. 1.

The structure functions (12)–(14) posses an early-time
expansion for momenta p2 ≪ Λ2, i.e., z < 1. Using that

hðzÞ ¼ 1 −
z
6
þ z2

60
−

z3

840
þOðz4Þ ð18Þ

one finds

ð4πÞ2tF0ðzÞ ¼ −4þ 2z −
z2

3
þ z3

30
þ � � � ;

ð4πÞ2tF1ðzÞ ¼
4

3
z −

4

15
z2 þ 1

35
z3 þ � � � ;

ð4πtÞ2F2ðzÞ ¼ −1þ z
12

−
z2

40
þ z3

336
þ � � � : ð19Þ

The early-time expansion of the structure functions [trun-
cated at Oðz3Þ and OðzÞ, respectively] is shown in Fig. 2.
Comparing the result to the functions FsðzÞ including the
full z-dependence it is easily seen that the truncation
drastically modifies the behavior of the (inverse) propa-
gators for large momenta. While the truncated FsðzÞ
diverge the full structure functions remain finite. As we
will see in Sec. IV, this feature will have a drastic effect on
the spectral dimension of the theory.
At this stage, the following remarks are in order. The

constant term appearing in the expansion of F0 plays
the role of a mass term for ϕ. The sign thereby indicates that
the squared mass is negative. This is a remnant of the fact
that the scalar ϕ acquires a nontrivial vacuum expectation
value via the Higgs mechanism [1,11,24]. Since Kð2Þ, by
construction, contains the terms quadratic in ϕ only the
scalar potential is not included in (11) so that the stabiliza-
tion of ϕ cannot be demonstrated in this approximation.
The constant term in F2 indicates the presence of a positive
cosmological constant, acting like a mass term for the
graviton, while the structure of F1 indicates that the gauge
field remains massless.
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FIG. 1. Illustration of the momentum dependence of the
structure functions GsðzÞ (17): Spin 0: solid thick line, spin 1:
dashed thick line, and spin 2: dash-dotted thick line.
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FIG. 2. Propagators obtained from truncating GsðzÞ at z3,
following the spirit of effective field theory (spin 0: solid thick
line, spin 1: dashed thick line, and spin 2: dash-dotted). The
expansions up to linear order in z are shown as corresponding
thin lines.
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In order to understand the behavior of the theory at high
energies, it is also useful to carry out the late-time
expansion of the structure functions, capturing the behavior
for z ≫ 1. In this case

hðzÞ ¼ 2

z
þ 4

z2
þ 24

z3
þ 240

z4
þ � � � ð20Þ

which yields

ð4πÞ2tF0ðzÞ ¼
8

z
þ 48

z2
þ 480

z3
þ � � � ;

ð4πÞ2tF1ðzÞ ¼
16

z
þ 64

z2
þ 576

z3
þ � � � ;

ð4πtÞ2F2ðzÞ ¼ −
3

2
þ 3

z
þ 10

z2
þ 84

z3
þ � � � : ð21Þ

A typical viewpoint adopted in the spectral action
approach to particle physics consider the actions generated
by (1) as effective actions which should be truncated at a
certain power of the cutoff Λ−2. In this case the early-time
expansion (19) allows us to construct the effective action
resulting from an arbitrary function χ. This uses the fact that
the Trace (1) can be related to the heat kernel (9) using

Sχ;Λ ¼ Tr½χðD2=Λ2Þ�

¼
Z

∞

0

dy~χðyÞTr½e−yD2=Λ2 �; ð22Þ

where ~χðyÞ is the inverse Laplace transform of χðzÞ.
Evaluating the operator trace in (22) based on the early-
time expansion then yields the systematic expansion of
Sχ;Λ in (inverse) powers of the cutoff. The χ-dependent
coefficients in this expansion are given by

Qn½χ�≡
Z

∞

0

dy y−n ~χðyÞ ð23Þ

and can be computed by standard Mellin-transform tech-
niques [66]. Thus the Qn ≡Qn½χ� are real numbers which
are normalized such that Qn ¼ 1 for χ ¼ expð−tzÞ.
The part of the spectral action containing the terms

quadratic in the fields is then given by

Sð2Þχ;Λ ¼ Λ2

ð4πÞ2
Z

d4x½ϕF 0;χð−∂2=Λ2Þϕ

þ AμF 1;χð−∂2=Λ2ÞAμ þ hμνF 2;χð−∂2=Λ2Þhμν�;
ð24Þ

with

F 0;χðzÞ ¼ −4Q1 þ 2Q0z −
Q−1

3
z2 þQ−2

30
z3 þ � � � ;

F 1;χðzÞ ¼
4Q0

3
z −

4Q−1

15
z2 þQ−2

35
z3 þ � � � ;

F 2;χðzÞ ¼ −Q2 þ
Q1

12
z −

Q0

40
z2 þQ−1

336
z3 þ � � � : ð25Þ

The momenta (23) can be adjusted by choosing a suitable
function χ. Note, however, that the Qn’s appearing in the
matter and gravitational sector of (24) cannot be adjusted
independently, however, since they are generated by the
same function χ.
We close this section by discussing possible truncations

of the expansion (11):
Truncating the moments Qn. From the mathematical view-
point it is tempting to choose a generating function χ whose
momentsQn½χ� vanish for all values n ≥ nmax. This leads to
the rather peculiar property that the highest powers of −∂2

appearing in the matter and gravitational sector come with
opposite signs. In other words adjusting the Qn in such a
way that the propagators in the matter sector are stable at
high momenta implies an instability of the gravitational
propagator and vice versa. Thus “truncating” the theory by
adjusting the momenta Qn gives rise to a dynamical
instability of the theory.
The effective field theory viewpoint. A similar (though not
equivalent) strategy interprets the expansion (11) as an
effective field theory, which should be truncated at a given
power of the cutoff Λ. Retaining the relevant and marginal
operators then provides a good description of the physics as
long as p2=Λ2 ≪ 1. While it is possible to systematically
compute quantum corrections to an effective action, this
expansion breaks down if the momenta are of the order of the
Planck scale. A detailed analysis then reveals that the Qn’s
can be adjusted in such a way that all propagators of the
theory are stable.Thuswewill focuson this case in the sequel.

III. THE GENERALIZED SPECTRAL DIMENSION

The motivation for studying the (generalized) spectral
dimension associated with a particle physics model comes
from the idea that a test particle diffusing on a given fixed
background feels certain features of this background as,
e.g., its dimension. For a spinless test particle performing a
Brownian random walk on a Riemannian manifold with
metric gμν, the diffusion process is described by the heat
kernel Kgðx; x0;TÞ which gives the probability density for a
particle diffusing from the point x to x0 in the diffusion time
T. The heat kernel satisfies the heat equation

ð∂T þ ΔgÞKgðx; x0;TÞ ¼ 0;

Kgðx; x0; 0Þ ¼ δðx − x0Þ; ð26Þ

where Δg ≡ −D2 is the Laplace-Beltrami operator. In flat
space, the solution of this equation is
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Kðx; x0;TÞ ¼
Z

ddp
ð2πÞd e

ip·ðx−x0Þe−p2T: ð27Þ

In general Kgðx; x0;TÞ is the matrix element of the operator
expð−TΔgÞ. For the diffusion process, its trace per volume
gives the averaged return probability

PgðTÞ ¼ V−1
Z

ddx
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
Kgðx; x;TÞ

¼ V−1Tr expð−TΔgÞ; ð28Þ

measuring the probability that the particle returns to its
origin after a diffusion time T. Here V ≡ R

ddx
ffiffiffiffiffiffiffiffiffi
gðxÞp

denotes the total volume. For the flat-space solution (27)

PðTÞ ¼ ð4πTÞ−d=2: ð29Þ

The (standard) spectral dimension dS is defined as the
T-independent logarithmic derivative

dS ≡ −2lim
T→0

∂ lnPðTÞ
∂ lnT : ð30Þ

On smooth manifolds dS agrees with the topological
dimension of the manifold d. In order to also capture
the case of diffusion processes exhibiting multiple scaling
regimes, it is natural to generalize the definition (30) to the
T-dependent spectral dimension

DSðTÞ≡ −2
∂ lnPðTÞ
∂ lnT : ð31Þ

In the classical spectral action (1) the propagation of the
test particles on a flat Euclidean background is modified by
the higher-derivative terms entering into the (inverse)
propagators of the fields. In Eq. (26) this effect can readily
be incorporated by replacing the Laplace-Beltrami operator
by the inverse propagators

ð∂T þ Fð−∂2ÞÞKgðx; x0;TÞ ¼ 0;

Kgðx; x0; 0Þ ¼ δðx − x0Þ: ð32Þ

The solution of this equation can again be given in terms of
its Fourier transform

Kðx; x0;TÞ ¼
Z

ddp
ð2πÞd e

ip·ðx−x0Þe−Fðp2ÞT: ð33Þ

Notably, given a generic function Fðp2Þ there is no
guarantee that the resulting heat kernel is positive semi-
definite thereby admitting an interpretation as probability
density. This “negative probability problem” has been
discussed in detail [45,64], concluding that the spectral
dimension remains meaningful.

The PðTÞ resulting from (33) is given by

PðTÞ ¼
Z

ddp
ð2πÞd e

−Fðp2ÞT; ð34Þ

and may still admit the interpretation of a (positive-
semidefinite) return probability even in the case where a
probability interpretation of Kðx; x0;TÞ fails. The general-
ized spectral dimension may then be obtained by substitut-
ing the inverse propagators from Eq. (11) and evaluating
(31) for the corresponding return probabilities.
Following the ideas of [41,42] the spectral dimension

arising from (34) permits an interpretation as the Hausdorff
dimension of the theory’s momentum space. Provided that
the change of coordinates k2 ¼ Fðp2Þ is bijective, the
inverse propagator in the exponential can be traded for a
nontrivial measure on momentum space

PðTÞ ¼ VolSd
ð2πÞd

Z
kdk

ðF−1ðk2ÞÞðd−2Þ=2
F0ðp2Þ e−Tk

2

: ð35Þ

Here we invoked the inverse function theorem where
F0ðp2Þ is understood as the derivative of FðzÞ with respect
to its argument, evaluated at p2 ¼ F−1ðk2Þ. Thus Eq. (34)
is equivalent to a particle with canonical inverse propagator,
Fðp2Þ ∝ p2 in a momentum space with nontrivial measure.
This picture also provides a meaningful interpretation of
DSðTÞ even in the case where the model is purely classical
so that the nontrivial spectral dimension cannot originate
from properties of an effective quantum spacetime.
Before embarking on the computation of the spectral

dimensions resulting from the spectral action it is illus-
trative to consider the case where the inverse momentum-
space propagator Fðp2Þ contains a mass term m2 ¼
Fðp2Þjp2¼0. In this case it is useful to split off the massless
part from Fðp2Þ and write

Fðp2Þ ¼ Fð0Þðp2Þ þm2: ð36Þ
Based on Fð0Þðk2Þ we can then introduce the return
probability

Pð0ÞðTÞ ∝
Z

d4p
ð2πÞ4 e

−TFð0Þðp2Þ ð37Þ

together with the spectral dimension seen by the massless
field

Dð0Þ
S ðTÞ≡ −2T

∂
∂T lnPð0ÞðTÞ: ð38Þ

Substituting (36) into the return probability (34) and
extracting the mass term from the integral it is straight-
forward to establish

DSðTÞ ¼ 2m2T þDð0Þ
S ðTÞ: ð39Þ

Thus a mass term just leads to a linear contribution in
DSðTÞ and does not encode nontrivial information on the
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propagation of the particle. Thus we limit ourselves to the

study of Dð0Þ
S ðTÞ in the sequel.

IV. THE SPECTRAL DIMENSION FROM THE
SPECTRAL ACTION

Based on the discussion of the last two sections, it is now
straightforward to compute the spectral dimensions from
the spin-dependent propagators provided by the spectral
action. We will start by investigating the truncated propa-
gators based on Eqs. (11) and (24) in Sec. IVA before
including the full-momentum dependence in Sec. IV B.

A. Effective field theory framework

In the effective field theory interpretation of (24) the
functions F s;χ are truncated at a fixed power of the cutoff
Λ. The resulting massless parts of the bosonic propagators
then become polynomials in the particles momentum,

F ð0Þ
s ðp2Þ ¼

XNmax

n¼1

asnðp2Þn; ð40Þ

with obvious relations among the polynomial coefficients
an and the numbers Qn (25). Limiting the expansion to the
marginal and relevant operators, coming with powers of the
cutoff Λ2n, n ≤ 2, fixesNmax ¼ 1 and all propagators retain
their standard p2-form. Also taking into account power-
counting irrelevant terms containing inverse powers of the
cutoff adds further powers to the polynomial (40). Thus the
propagators include higher powers of momentum in this
case.
A positive-semidefinite spectral dimension Dð0Þ

S requires
a positive function F ð0Þ

s . This requirement puts constraints
on the signs of the momenta Qn appearing in Eq. (25). In
particular as1 > 0 is required for obtaining classical propa-
gators at low energies while asNmax

> 0 is needed for
stability at high energies.
The asymptotic behavior of Dð0Þ

S for short (long) dif-
fusion time T is governed by the highest (lowest) power of
p2 contained in (40). Evaluating (37) and (38) for the
special cases F ð0Þ

s ðp2Þ ∝ p2 and Fðp2Þ ∝ ðp2ÞNmax , a
simple scaling argument establishes

lim
T→∞

Dð0Þ
S ðTÞ ¼ 4; a1 > 0;

lim
T→0

Dð0Þ
S ðTÞ ¼ 4

Nmax
: ð41Þ

Thus a1 > 0 ensures that the spectral dimension seen by
particles for long diffusion times coincides with the
topological dimension of spacetime. Including higher
powers of momenta decreases Dð0Þ

S ðTÞ for short diffusion
times. The generalized spectral dimension then interpolates
smoothly between these limits. This feature is illustrated in
Fig. 3. The case Nmax ¼ 1, a1 > 0 leads to a spectral
dimension which is independent of the diffusion time

(dashed line). The spectral dimension obtained for Nmax ¼
3 and momenta Qn ¼ 1, n ¼ 1; 0;−1;−2. In this case,

Dð0Þ
S ðTÞ interpolates between 4 at large T and 4=3 for small

T respectively. The crossover occurs for T=t ≈ ð4πÞ2 (spin
0 and 1), respectively, T=t2 ≈ 10 × ð4πÞ2 (spin 2). Notably,
it is only the shape of this crossover, which depends on the
spin of the particle, while the asymptotic limits are
universal for all spins.

B. Propagators with full-momentum dependence

We now take the step beyond effective field theory and
investigate the spectral dimension arising from the inverse
propagators (14) including the full-momentum depend-
ence. Comparing Figs. 1 and 2 the structural difference is
immediate: in the effective field theory framework FsðzÞ
diverges as z → ∞ while the inclusion of the full-
momentum dependence renders limz→∞FsðzÞ finite with
the limit given by the leading term in (21). As a conse-
quence of the modified asymptotics, the integral (37)
diverges at the upper boundary, since the contribution of
large momenta is no longer exponentially suppressed once
the full-momentum dependent propagators are considered.
In order to still be able to analyze the spectral dimension

arising in this framework, we regulate (37) by introducing a
UV cutoff ΛUV,

Pð0ÞðT;ΛUVÞ ¼
Z

ΛUV d4p
ð2πÞ4 e

−TFð0Þðp2Þ: ð42Þ

In the spirit of the discussion leading to Eq. (39), we
consider the “massless” structure functions Fð0Þ

s ðzÞ where
the constant terms appearing in the late-time expansion (21)
have been removed. The return probability (42) then allows
us to construct the spectral dimension as a function of ΛUV

Dð0Þ
S ðT;ΛUVÞ ¼ −2T∂T lnðPð0ÞðT;ΛUVÞÞ: ð43Þ
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FIG. 3. The spin-dependent spectral dimension Dð0Þ
S ðTÞ ob-

tained from (40) with Nmax ¼ 1 (dotted line) and Nmax ¼ 3,
Qn ¼ 1, n ¼ 1; 0;−1;−2 for spin 0: solid line, spin 1: dashed
line, and spin 2: dashed-dotted line. The crossover scale is set by
t ¼ Λ−2 and has been normalized to t ¼ 1.
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The scale Λ appearing in the spectral action (1) is thereby
held fixed and sets the transition scale between the UVand
IR regime. A detailed analytical and numerical analysis
based on the expansion (21) then establishes

lim
ΛUV→∞

Dð0Þ
S ðT;ΛUVÞ ¼ lim

ΛUV→∞
4TFð0Þ

s ðΛUVÞ: ð44Þ

Based on the late-time expansion (21), we thus we
conclude that including the full-momentum dependence
in the structure function leads to a spectral dimension
which vanishes for all diffusion times T:

Dð0Þ
S ðTÞ ¼ lim

ΛUV→∞
Dð0Þ

S ðT;ΛUVÞ ¼ 0: ð45Þ

This result entails in particular that there is no scaling
regime for large diffusion time where the spectral dimen-
sion matches the topological dimension. Thus including the
full-momentum dependence, one does not recover a
“classical regime” where the spectral dimension would
indicate the onset of classical low-energy physics.

V. CONCLUSIONS AND OUTLOOK

In this work we constructed the generalized spectral
dimension DSðTÞ describing the propagation of (massless)
scalars, vectors and gravitons based on the classical
spectral action (1). Our results distinguish three cases:
(1) If the spectral action is interpreted as an effective

field theory restricted to the power-counting relevant
and marginal terms, the generalized spectral dimen-
sion is independent of the diffusion time T and
matches the topological dimension of spacetime
DSðTÞ ¼ 4.

(2) If the effective field theory framework is extended to
also include power-counting irrelevant terms, the
generalized spectral action interpolates between
DSðTÞ ¼ 4 for long diffusion time and DSðTÞ ¼
4=Nmax for short diffusion times. Nmax is determined
by the highest power of momentum contained in the
propagator, ðp2ÞNmax . The crossover between these
two asymptotic regimes is set by the cutoff Λ and its
shape explicitly depends on the spin of the propa-
gating particle.

(3) If the full-momentum dependence of the propagators
is taken into account, the generalized spectral
dimension becomes independent of the spin and
vanishes identically DSðTÞ ¼ 0.

The last feature can be traced back to the fact that the full
propagators approach a constant for momenta much larger
than the characteristic cutoff scale Λ. In Ref. [31] the
peculiar behavior was summarized by the catchy phrase
that “high-energy bosons do not propagate.” Indeed the
vanishing of the spectral dimension suggests that the
momentum space of the theory resembles the one of a

zero-dimensional field theory. In this sense the situation
resembles a picture where spacetime fragments into iso-
lated points which do not communicate.
We stress, however, that all computations carried out in

thiswork are at the classical level. In particular the spacetime
is given by classical Euclidean space. All effects are due to
the change of measure in momentum space reflected by
noncanonical form of the classical propagators and thus do
not capture properties of an underlying quantum spacetime.
Nevertheless, we believe that the spectral action, comprising
the three scenarios discussed above, provides a valuable test
bed for new candidates for quantum gravity observables
generalizing the spectral dimension.
The vanishing of the spectral dimension,DSðTÞ ¼ 0, is in

agreement with the previous computations obtained for
other noncommutative spacetimes [58]. This is a welcome
and surprising result, since the noncommutative nature of
our spectral triple construction differs substantially from that
of [58]. Aside for the limiting case of vanishing spectral
dimension, both results display the same qualitative fea-
tures: The spectral dimension interpolates between the
topological dimension and zero, and has a local maximum
situated close to a transition scale. Additionally, the onset of
the transition is, in both cases, controlled by the parameter
which is introduced by the noncommutative description
(Λ in our computation and the parameter κ that governs the
noncommutativity of the coordinates in [58]). Therefore,
the transition is truly representative of a regime in which
the noncommutative features of the spacetime become
important.
In agreement with the conjecture of “asymptotic silence”

pushed forward in [36], it is a general feature of our
computation that the spectral dimension decreases in the
ultraviolet, and thus describes a spacetimes that breaks into
disconnected regions at high energies. However, differently
from [36] and [65], it is not immediately evident what is the
physical mechanism underlying this scenario. Furthermore,
our results are instead in stark contrast to the generalized
spectral dimension typically obtained within quantum
gravity approaches where DSðTÞ typically interpolates
between DSðTÞ ¼ 4 (classical, macroscopic phase) and
DSðTÞ < 4 at microscopic scales [36].
At this stage, it is tempting to speculate that the vanishing

spectral dimension is an artifact of extrapolating the
classical spectral action into the trans-Planckian regime
without taking quantization effects into account. In other
words, vacuum fluctuations seem to be fundamental to
balance the fragmentation of spacetime in the ultraviolet
[37]. An UV completion of the spectral action could be
achieved through the asymptotic safety mechanism [47,66],
which seems a natural choice given the field content and
symmetries of the model, may lead to DSðTÞ interpolating
from four to two, while still keeping the nonpolynomial
momentum dependence in the propagators. We hope to
come back to this intriguing possibility in the future.
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