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We propose the first covariant local action describing the propagation of a single free continuous-spin
degree of freedom. The theory is simply formulated as a gauge theory in a “vector superspace,” but can also
be formulated in terms of a tower of symmetric tensor gauge fields. When the spin invariant ρ vanishes, the
helicity correspondence is manifest—familiar gauge theory actions are recovered and couplings to
conserved currents can easily be introduced. For nonzero ρ, a tower of tensor currents must be present, of
which only the lowest rank is exactly conserved. A paucity of local gauge-invariant operators for nonzero ρ
suggests that the equations of motion in any interacting theory should be covariant, not invariant, under a
generalization of the free theory’s gauge symmetry.
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I. INTRODUCTION

This paper presents a field theory for a single bosonic
continuous-spin particle (CSP). The theory is defined by a
simple free-particle action, which is local and bilinear in a
gauge field and can be coupled to an appropriately conserved
background current. The action is most simply specified
using a “vector superspace” in which the orientation of an
auxiliary 4-vector geometrizes spin. This formalism sub-
sumes and simplifies the well-known Schwinger-Fronsdal
description of high-spin bosons; CSPs emerge as a simple
and natural generalization. Our focus here is primarily on the
bosonic CSP in 3þ 1 dimensions, but our results apply more
generally. Of particular interest is the 2þ 1-dimensional
analogue of CSPs, which has a single polarization state
with novel properties closely related to the fractional spin of
massive anyons. Our result completes the program of
obtaining local spacetime actions for free particles of every
integer spin, and opens a new door to investigating all long-
distance physics compatible with relativity and quantum
mechanics.

A. Asymptotic states and quantum mechanics

Massive particles in 3þ 1 dimensions transform in
unitary representations of SO(3) and are classified, as is
well known, by their spin eigenvalue ~J2 ¼ SðSþ 1Þ or,
more covariantly, W2 ¼ −m2SðSþ 1Þ where Wμ ¼
1
2
ϵμνρσJνρPσ and m2 ¼ þP2, in the mostly negative metric

convention. An action formalism for massive particles of
arbitrary integer spin was formulated by Singh and Hagen
in Ref. [1].
Massless particles, in contrast, transform in unitary

representations of ISO(2), the isometry group of a plane
[2]. In the generic faithful representation, W2 ¼ −ρ2 takes

an arbitrary negative real eigenvalue (with dimensions of
momentum squared) and the representation comprises
infinitely many polarizations. These are the “continuous-
spin” representations. The states can always be decom-
posed into a basis of eigenstates of a “helicity” operator
~J · k̂ for 3-momentum ~k. The two ISO(2) “translation”
generators (i.e. combinations of transverse boosts and
rotations) mix helicities, and can be grouped into raising
and lowering operators with T�jhi ¼ ρjh� 1i (see e.g.
Ref. [3] for a review). For a given spin scale ρ, there are two
continuous-spin representations in 3þ 1 dimensions: a
“bosonic” one comprising states of all integer helicities,
and a “fermionic” one comprising states of all half-integer
helicities. In the degenerate case ρ ¼ 0, each helicity state
separates into an independent representation satisfying
ðWμ − hPμÞjhi ¼ 0. Action formalisms describing free
particles of any helicity are known, with the most general
high-spin case due to Fang and Fronsdal [4,5].
Quantum-mechanical consistency places severe con-

straints on interacting helicity degrees of freedom, sug-
gesting that long-range forces in flat space can only be
mediated by particles of helicity 2 or less [6–8]. But this
finding crucially relies on the assumption that helicity is
exactly invariant under boosts, i.e. ρ ¼ 0. When that
assumption is relaxed, quantum consistency permits covar-
iant soft emission amplitudes for a CSP that yield finite
differential cross sections and (for small enough ρ) viable
approximate thermodynamics despite the infinite number
of polarizations [3,9]. Moreover, at energies large com-
pared to ρ or in the nonrelativistic limit, these amplitudes
approach those of a helicity-0, -1, or -2 particle [10]. Thus,
relativity and quantum mechanics alone imply that non-
trivial CSP physics should mirror that of familiar gauge
theories and Einstein’s general relativity (GR) in the ρ → 0

limit, raising the possibility that CSPs might offer con-
sistent models of electromagnetism and gravity that differ
from existing descriptions only deep in the infrared.
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Up until now, it has not been possible to investigate these
findings from the point of view of a spacetime field theory
for a single CSP,1 a situation that we are correcting with the
formalism presented here.

B. Summary of the free field theory

In addition to familiar coordinate space xμ, the free gauge
potential Ψðη; xÞ≡ ψ0ðxÞ þ ημψ

μ
1ðxÞ þ � � � resides in a

“vector superspace” with 4-vector coordinate ημ. Only
the orientation of η is physical, and in this space our
action is

S ¼ 1

2

Z
d4x½d4η�ðδ0ðη2 þ 1Þð∂αΨÞ2 þ 1

2
δðη2 þ 1ÞðΔΨÞ2Þ;

ð1:1Þ

where ΔΨ≡ ð∂η:∂x þ ρÞΨ. Ψ is an analytic function in
vector superspace, and for such functions the suitably
defined η integrations yield tensor contractions among
the components of Ψ. As we will show in this paper, this
action describes a single CSP with spin invariant ρ.
The whole tower of tensors ψμ1…μn

n ðxÞ in Ψ is needed to
describe the tower of massless integer-helicity polarization
states present in the spectrum of a CSP. For ρ ≠ 0, boosts
mix the different spin states in exactly the manner expected
for a particle with W2 ¼ −ρ2. Moreover, for nonzero ρ the
helicity-h eigenmode cannot be described by a single tensor
component in any gauge, but must rather involve infinitely
many nonzero tensor components; in this sense, the whole
vector superspace is optional for ρ ¼ 0 but essential for
nonzero ρ.
The action is invariant under the gauge transformation

δΨε;χ ¼ ðη · ∂x − 1
2
ðη2 þ 1ÞΔÞϵðη; xÞ þ ðη2 þ 1Þ2χðη; xÞ

where ϵ and χ are arbitrary smooth functions. In an
appropriate component form, the ϵ gauge transformation
reproduces familiar gauge transformations, but with the
addition of rank-mixing terms proportional to ρ, while χ
can be used to fix a double-traceless gauge. For ρ → 0, the
action after this partial gauge fixing smoothly and precisely
recovers the familiar Fronsdal form, thereby making the
helicity correspondence conjectured in Ref. [10] manifest.
Both the gauge potential Ψ and the gauge parameters ϵ and
χ are unconstrained, which differs from the Fronsdal
formalism where double-trace degrees of freedom must
be removed by hand. Our formalism is naturally endowed

with an enhanced gauge symmetry that simply decouples
all such double traces.
For ρ ¼ 0, familiar interactions are introduced with a

coupling S ¼ R
d4x½d4η�δ0ðη2 þ 1ÞΨJ, where Jðη; xÞ ¼

J0ðxÞ þ ημJ
μ
1ðxÞ þ ðημην þ 1

2
gμνÞJμν2 þ � � �. Gauge invari-

ance requires δðη2 þ 1ÞΔJ ¼ 0, which for ρ ¼ 0 encodes
the conservation of J1 and J2, and forces higher nonde-
rivative currents to vanish. For nonzero ρ, the continuity
condition can be satisfied for a tower of component currents
obeying

∂ · J1 þ
ρffiffiffi
2

p
�
J0 þ

1

2
J02

�
¼ 0;

∂ · Jμ2 þ
ρ

2
ffiffiffi
2

p
�
Jμ1 þ

1

2
J0μ3

�
¼ 0;

�
∂ · Jμν3 þ ρ

3
ffiffiffi
2

p
�
Jμν2 þ 1

2
J0μν4

��
¼ 0;

…�
∂ · Jn þ

ρ

n
ffiffiffi
2

p
�
Jðn−1Þ þ

1

2
J0ðnþ1Þ

��
¼ 0;

where h…i denotes the traceless part of the enclosed tensor.
Thus, Ψ can be sourced by a current with an exactly
conserved lowest-rank current; for example a conserved Jμ1
component would yield a QED-like theory. For ρ ≠ 0,
gauge invariance implies that all higher-rank currents must
be nonzero, are not conserved, and naively have ρ sup-
pression increasing with rank. This is entirely compatible
with helicity correspondence and general constraints on
high-rank currents in flat space [6–8].

C. Potential applications

The action found in the present work does not address
the question of CSP-matter interactions, or even CSP self-
interactions. But it simultaneously sharpens the challenge
of constructing such couplings and the motivations to do
so. Like familiar helicity-1 and -2 gauge fields, our CSP
field can couple only to appropriately conserved currents.
The conservation condition is local and at zeroth order in ρ
it is satisfied by scalar, conserved vector, and conserved
tensor currents—echoing in the field theory the S-matrix
helicity correspondence found in Ref. [10]. But it is not
clear what symmetry the matter sector must possess, in
order to satisfy the full ρ-dependent continuity condition in
a local way (or whether this is even possible). Likewise, for
nonzero ρ, the only gauge-invariant (GI) operators with at
most two derivatives and that are linear in the gauge
potential vanish on the equation of motion. But there are
GI operators local in time, but spatially nonlocal, that
recover familiar GI operators in the ρ → 0 limit and appear
causal even for nonzero ρ.
At the same time, we can clearly identify two things that

are not gauge-invariant: a mass term for the CSP field, and a

1Several early papers aimed to describe CSPs with fully
covariant fields (rather than a gauge potential) and encountered
difficulties [11–15]. A covariant equation of motion for a CSP
gauge potential was found in Ref. [16], but was not of Lagrangian
form. Although the authors of this work presented a field theory
action recently in Ref. [17], it propagated a continuum of CSP
species with every spin scale ρ rather than a single degree of
freedom, and its ρ → 0 limit could not readily be coupled to
conserved currents.
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tadpole-like coupling for the trace of the spin-2 mode. In
other words, it may be consistent for a CSP to be scalar-
like, in the sense that its high-energy matter amplitudes
approach those of a generic scalar particle. Such a particle
would look to an effective field theorist like a fine-tuned
scalar field, while in fact its masslessness is protected by
symmetry! Likewise, even if one can introduce graviton-
like CSP-matter couplings, it is not consistent for that CSP
to be sourced by vacuum energy, at least not without
spontaneously breaking the underlying gauge symmetry.
An effective field theorist describing the CSP as an Einstein
graviton would certainly conclude that it is fine-tuned!
We cannot read too much into these putative violations of

effective field theory intuition until we have an interacting
theory in hand and can study its quantum consistency.
Indeed, the pessimistic reading is that the above arguments
just provide evidence against such interactions existing.
Yet the properties encountered in the free theory and
coupling to classical backgrounds hint at just the right
kinds of structure to address well-known fine-tuning
puzzles: a large deformation of the infrared degrees of
freedom, new symmetries required in the matter sector, and
possibly a mild degree of infrared nonlocality in the
interactions. We believe this is a strong motivation to
resolve the question of CSP couplings to matter one way or
the other.
A very different motivation to study continuous-spin

theories is their potential relevance to 2þ 1-dimensional
physics [18]. Continuous-spin particles have analogues in
2þ 1 dimensions or higher (see Ref. [19] for a classifica-
tion). Our action extends straightforwardly to higher and
lower dimensions, though we have not fully explored the
higher-dimensional state content. The 2þ 1-dimensional
CSP, unlike its higher-dimensional counterparts, has just
two states, related by parity, that transform as Wjψi ¼
�ρjψi with W ¼ 1

2
ϵμνρJμνPρ. To our knowledge, such

states have not received any attention in the literature.
We know of no in-principle obstruction to the emergence

of CSP quasiparticles in 2þ 1-dimensional condensed
matter systems. This would not be without precedent, as
massive anyons (with Wjψi ¼ ρjψi, with ρ ¼ m · s arbi-
trary) play an important role in many such systems (see e.g.
Refs. [20,21]). From at least one perspective, emergent
CSPs would be less surprising than anyons; while anyon
wave functions transform nontrivially under a compact
rotation generator, and therefore must be multivalued, CSPs
merely acquire nontrivial transformations under a non-
compact boostþ rotation generator. This is reflected in the
simplicity of our action compared to the Jackiw-Nair action
needed to represent anyons as elementary fields [22].

D. Outline

To set the stage, we begin in Sec. II by summarizing the
Schwinger-Fronsdal actions for massless particles of
arbitrary integer helicity. Section III introduces “vector

superspace,” and motivates the introduction of gauge
symmetries to allow unitary representations of helicity
degrees of freedom in terms of covariant fields. The
resulting action is then shown to be equivalent to a sum
of Schwinger-Fronsdal actions, but greatly simplified.
In Sec. IV, we present the action describing a single
CSP, showing that the action propagates massless degrees
of freedom with the correct polarization content. We also
present the action and equation of motion in tensor form,
thereby demonstrating that the free theory smoothly and
transparently recovers the Schwinger-Fronsdal form as
ρ → 0. In Sec. V we consider couplings of the vector-
superspace action to backgrounds currents. We illustrate
how familiar matter couplings for helicities 0, 1, and 2 can
be added to the vector-superspace action with ρ ¼ 0, and
examine the generalized continuity condition for nonzero ρ.
In the latter case, gauge invariance is satisfied by a tower of
related currents, of which only the lowest in rank is exactly
conserved; we show how appropriately conserved and
covariant ansatz currents reproduce the soft CSP emission
amplitudes of Ref. [3]. In Sec. VI, we comment on several
gauge-invariant and -noninvariant operators: the Poincaré
generators are gauge invariant, but their spacetime densities
are not, much like those of gravitational radiation in
linearized GR. We then comment on the absence of simple,
local gauge-invariant operators (excluding the equation of
motion), and the causality properties of some nonlocal
gauge invariants. We conclude in Sec. VII with a summary,
discussion of open problems, and speculation on the
physical significance of the paucity of gauge invariants
encountered in Sec. VI.

II. REVIEW OF MASSLESS BOSONS IN THE
SCHWINGER-FRONSDAL FORMALISM

The Schwinger-Fronsdal formalism describes a propa-
gating helicity-h particle through the dynamics of a rank-h
gauge field, which we will denote ϕðhÞ. The formalism has
been extensively reviewed (see e.g. Refs. [23,24]), but we
summarize the essential results for completeness and to
introduce our notation used to suppress explicit Lorentz
indices, which differs slightly from the usual conventions in
the high-spin literature.
Given two tensors XðnÞ and YðmÞ of rank n and m,

respectively, X ∘ Y is the symmetric rank-ðnþmÞ tensor
obtained by summing over inequivalent orderings of the
indices, with no explicit symmetry factor. For example,
ðX∘YÞμν≡XμYνþXνYμ for two rank-1 tensors,
ðX∘YÞμρσ≡XμYνρþXνYρμþXρYμν for a rank-1 with
rank-2 tensor and so on. A contraction of two tensors is
denoted by X · Y, so that X · Y ≡ Xμ1…μnYμ1…μn for two
rank-n tensors, ðX · YÞμ ≡ XνYνμ for a rank-1 with rank-2
tensor and so on. In actions and other contexts where the
end result is clearly a scalar, we will often write contrac-
tions of a tensor with itself as X2, as was done above.
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However, powers of ∂μ or the (mostly negative) flat metric
gμν are always taken to mean outer products. Thus, for a
rank-n tensor X, the rank-ðn − 2Þ object ∂2 · X ¼
∂μ∂νXμν… should never be confused with the rank-n object
□X¼ð∂:∂ÞX. In addition, X0¼TrX¼g·X, X00 ¼ Tr2X ¼
g2 · X, etc.2

Using these conventions, we can write the Schwinger-
Fronsdal action describing a helicity-h particle in d
dimensions as

Sh ¼ ð−1Þh
Z

ddx
1

2
ð∂αϕÞ2 −

s
2
ð∂ · ϕÞ2

−
sðs − 1Þ

2
ϕ0 · ð∂ · ∂ · ϕÞ − sðs − 1Þ

4
ð∂αϕ

0Þ2

−
sðs − 1Þðs − 2Þ

8
ð∂ · ϕ0Þ2 − ϕ · JðhÞ ð2:1Þ

¼ ð−1Þh
Z

ddx
1

2
ð∂αϕÞ2 −

sðs − 1Þ
8

ð∂αϕ
0Þ2

−
s
2

�
∂ · ϕ −

1

2
∂ ∘ ϕ0

�
2

− ϕ · JðhÞ: ð2:2Þ

The rank-h tensor field ϕ is restricted to be double traceless,
ϕ00 ¼ 0, and the sign factor ð−1Þh ensures a canonical
kinetic term for the physical components with our mostly
negative metric. The free action (J ¼ 0) is then invariant
under gauge transformations

δϕ ¼ ∂ ∘ ε; ð2:3Þ

where ε is a traceless rank-ðh − 1Þ tensor (ε0 ¼ 0), though
in general the Lagrangian changes by a total derivative
under gauge variations.
The trace condition on the gauge parameter ε is trivial for

helicities h ≤ 2 and the double-trace condition on the fieldϕ
is trivial for h ≤ 3. In fact, for ranks 0, 1, and 2 the action
above is equivalent (up to total derivatives) to the Klein-
Gordon, Maxwell, or linearized Einstein actions, respec-
tively. The action remains gauge invariant when coupled to
a current JðxÞ satisfying J00¼0 and ∂ ·J− 1

2hþd−6g∘∂ ·J0¼0;
in other words, the traceless part of ∂ · J must vanish.
The equation of motion for ϕ is most simply written as

F ¼ □ϕ − ∂ ∘ ∂ · ϕþ ∂2 ∘ ϕ0 ¼ 0; ð2:4Þ

though in fact the variation of Eq. (2.2) with respect to ϕ
yields the equivalent but trace-reversed equation
F − 1

2
g ∘ F 0 ¼ 0.

III. TO VECTOR SUPERSPACE AND BACK

Symmetric rank-n gauge potentials can locally encode
the propagation of helicity-n radiation. To describe a
bosonic CSP, for which all integer helicities mix under
Lorentz transformations, we must treat all integer spins on
an equal footing. A natural way to do this, which is quite
standard in the high-spin literature, is to introduce a new
4-vector coordinate ημ, and consider fields Ψðη; xÞ that are
smooth in η, i.e. they have Taylor expansions

Ψðη; xÞ ¼
X
n

ημ1…ημnψ ðnÞðxÞμ1…μn
¼

X
n

ηn · ψ ðnÞðxÞ;

ð3:1Þ

whose coefficients ψ ðnÞ are precisely the rank-n symmetric
tensors that encode spin-n degrees of freedom. The
compact notation introduced in the last equality follows
the conventions of the previous section. Lorentz trans-
formationsΛ are taken to act on η and xwhile translations a
will only act on x, i.e. under Poincare transformations,

Ψðη; xÞ → ΨðΛ−1η;Λ−1xþ aÞ; ð3:2Þ

which implies the usual tensor transformation law of the
coefficient functions ΨðnÞ. Thus, the orientation of η
encodes spin, while the scale of η can be absorbed
by a field redefinition. There is no dynamics in η-space;
it is just a useful bookkeeping device for compactly
manipulating many tensors simultaneously. Typically,
this is done by constructing functions of Ψðη ¼ 0; xÞ and
its η derivatives, which is equivalent to a tensor contraction
of the components ψ ðnÞ. While this bookkeeping has
facilitated finding equations of motion for CSPs [16], no
Lagrangian equations of this form have ever been found.
The new approach that we introduce here, which we refer

to as “vector superspace,” is to embrace the geometry of η
space. Though the actions we consider are superficially
quite similar to those found in Ref. [17], that work
considered rather singular functions of η, while here we
will consider smooth fields (3.1). The simplicity of the
actions thus obtained is remarkable. The sum of free
Schwinger-Fronsdal actions for integer helicities in four
dimensions, usually written as a sum of five terms for
each tensor field ψ ðnÞ, can be recast as an integral in η
space localized to the neighborhood of the unit spacelike
hyperboloid:

Z
½d4η�δ0ðη2 þ 1Þ 1

2
ð∂μΨðη; xÞÞ2 þ 1

4
δðη2 þ 1Þð∂η:∂xΨÞ2:

ð3:3Þ

The notation ½d4η� denotes that the integral should be
regulated by analytic continuation and appropriately
normalized as explained below, while δ0ðaÞ ¼ d

da δðaÞ.

2We caution that the notation XðnÞ is used here to denote the
rank of X, not to denote an nth trace as is sometimes done in the
literature. In addition, our use of a mostly negative metric leads to
some overall sign discrepancies with most of the literature.
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The generalization to a CSP with nonzero ρ is obtained
simply by the substitution ∂η:∂x ≡ ∂η:∂x þ ρ, resulting in
a ρ-deformed gauge invariance.
The remainder of this section introduces the key features

of the integer-helicity action (3.3) and demonstrates its
equivalence to a sum of Schwinger-Fronsdal actions; the
bosonic CSP generalization will be considered in detail in
the next section. Sections III A and III B motivate the basic
structure of the action—its localization to an η-space
hyperboloid and the need for a gauge symmetry to
encode the ISO(2) little group through the hyperboloid’s
SO(3,1) symmetry. Section III C explicitly constructs the
Schwinger-Fronsdal action and equations of motion from a
component decomposition of Eq. (3.3). Some computa-
tional details are deferred to Appendix A. Though we focus
on 3þ 1-dimensional theories throughout most of this
paper, the results in the Appendix suggest simple gener-
alizations to higher dimensions, as well as to 2þ 1
dimensions as discussed in Ref. [18].

A. Spin as superspace orientation and the delta function

We have already noted the qualitative idea that the
orientation of η should geometrize the notion of spin,
while its magnitude, which could be absorbed into a field
redefinition of the ψ ðnÞðxÞ, is unimportant. This idea points
to a restricted class of Lorentz invariants built out of Ψ. For
example, we cannot simply integrate products of η space
functions to form invariants, such as

R
d4ηΨ1ðηÞΨ2ðηÞ, as

this is sensitive to the profile of Ψ as we rescale η, rather
than just the orientation. Moreover, such integrals are not
well defined for smooth wave functions Ψ.
The simplest invariants that are both well defined and

only sensitive to the η-space orientation dependence of
fields are integrals along hypersurfaces. To guarantee the
Lorentz invariance of the resulting action, we focus on the
hyperboloids η2 þ α2 ¼ 0, with Lorentz-invariant integrals
of the form

Z
d4ηδðη2 þ α2ÞF½ΨðηÞ�; ð3:4Þ

for some functional F. The magnitude of any nonzero α can
be absorbed into a field redefinition ofΨ, so without loss of
generality we take α ¼ þ1, which corresponds to a unit
spacelike norm of η in our mostly negative metric con-
vention. Integrals of this form still appear to be ill-defined;
for example, if F½Ψ� ¼ 1 then Eq. (3.4) is simply the
volume of the hyperboloid, which is clearly divergent. But
integrals of the form (3.4) are uniquely defined by
analytically continuing η to a Euclidean-signature variable
η̄ defined by ðη̄0; η̄iÞ ¼ ðiη0; ηiÞ. Upon continuation,
Eq. (3.4) becomes an integral of a smooth function over
the compact 3-sphere η̄2 ¼ 1, which is convergent.
Alternatively, one can define Eq. (3.4) directly in
Minkowski space using only its symmetry properties, up

to an overall normalization. Other equally well-defined
invariants can be formed, for example by integrating over
derivatives of δ functions. These generalizations are dis-
cussed more fully in Appendix A.
Of course, integrals such as Eq. (3.4) can equally

well be thought of as functionals of the tensor components
ψ ðnÞðxÞ. To make contact with this decomposition,
it is useful to introduce the generating function
GðwÞ≡ R

d4ηδðη2 þ 1Þe−iη·w ¼ 2J1ðxÞ=xjx¼ ffiffiffiffiffiffi
−w2

p , in terms
of which (see also Appendix A)

Z
½dDη�δðη2þ 1ÞFðηÞ ¼ ½Fði∂wÞGðwÞ�w¼0

¼ ½Gði∂ηÞFðηÞ�η¼0
≡F �G: ð3:5Þ

But the geometric form has at least two advantages: the
action is quite simple, and many important results can be
demonstrated using simple algebraic manipulations or
integrations (see e.g. the derivations of the Pauli-
Lubanski invariant for a CSP in Sec. IVA and of the
orthonormality of basis states in Appendix A 3).

B. Gauge invariance in superspace from the bottom up

The physical motivation for keeping track of only the
orientation of η is that it should encode spin; this is why the
actions in vector superspace are supported in a neighbor-
hood of a hyperboloid. In fact the hyperboloid’s symmetry
group SO(3,1) is the smallest group that contains an ISO(2)
subgroup and is related by analytic continuation to a
compact group (allowing the definition of surface integrals
by analytic continuation). For a given null momentum k,
the little group is spanned by the three Lorentz generators
that leave η ∝ k invariant.
To specify the generators more explicitly, we introduce

a set of null frame vectors k; q; ϵ� with q · k ¼ 1,
ϵþ · ϵ− ¼ −2, and all other products among frame vectors
vanishing.3 The three little-group generators are

R ¼ 1

2
ðη · ϵ−ϵþ · ∂η − η · ϵþϵ− · ∂ηÞ; ð3:6Þ

T� ¼ iðη · kϵ� · ∂η − η · ϵ�k · ∂ηÞ: ð3:7Þ

Here, R reduces to the familiar helicity operator if we
choose ϵ0� ¼ 0, while T� are the commuting translations
[more precisely, Tþ þ T− and iðTþ − T−Þ are the
Hermitian translation generators of ISO(2)]. The algebra
½R; T�� ¼ �T� can be trivially verified from the above.4

3This normalization convention differs from that of
Refs. [3,10,17], where we took ϵþ:ϵ− ¼ −1. The unconventional
normalization used here implies W2 ¼ −TþT−.

4Upon analytically continuing η0 → iη0, R remains Hermitian
provided ϵ0� ¼ 0, while T� continue to complex linear combi-
nations of Hermitian SO(4) generators.
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Although these differential operators realize ISO(2),
smooth wave functions Ψðη; kÞ do not realize its unitary
helicity-h representations, except for the trivial h ¼ 0
representation. Helicity representations are eigenstates of
R annihilated by both T�. But for an eigenstate ofR, the best
we can do is construct a wave function annihilated by one of
T�. For example, Ψh ∼ ðη · ϵþÞh is annihilated by Tþ but
has T−Ψh ∼ hη · kðη · ϵþÞh−1 [of course the antisymmetric
field strength Fμν and its higher-spin generalizations are
annihilated by T�, but because Ψðη; xÞ decomposes into
symmetric tensors, they can be obtained only as gradients of
Ψ, consistent with the above]. Moreover, the functional form
of Ψh is not fully specified by its helicity eigenvalue; any
function Ψ ∼ ðη · ϵþÞhfðη:k; η:qÞ is also an R eigenstate.
Both of the above difficulties are resolved simultane-

ously by imposing a “transverse” requirement on the wave
function and positing a gauge redundancy. For example, the
transverse condition k · ∂ηΨ ¼ 0 rules out η:q dependence
of Ψ, while a gauge redundancy Ψ≃Ψþ η · kεðη; xÞ
ensures that T−Ψh is pure gauge, as is the η:k dependence
ofΨ. But these two requirements are actually incompatible:
generic gauge variations δΨ ¼ η · kεðη; xÞ violate the trans-
verse condition!
Fortunately, our physically motivated assumption that

only the behavior of Ψ on the surface η2 þ 1 ¼ 0 matters
resolves this bind; for consistency, we should have
demanded the weaker transverse condition

δðη2 þ 1Þk · ∂ηΨ ¼ 0 ð3:8Þ
and the surface-localized gauge equivalence δðη2 þ 1ÞΨ≃
δðη2 þ 1ÞðΨþ η · kεðηÞÞ. Back in position space, the
covariant equations δ0ðη2 þ 1Þ□xΨðη; xÞ ¼ 0 and
δðη2 þ 1Þ∂x · ∂ηΨðη; xÞ ¼ 0, with a gauge redundancy
δðη2 þ 1ÞΨ≃ δðη2 þ 1ÞðΨþ η · ∂xεðη; xÞÞ realize all the
helicity representations; solutions to these equations
decompose (on the δ-function support) into helicity eigen-
states proportional to ðη:ϵ�Þjhj plus gauge. The derivative
of a delta function, δ0ðxÞ ¼ d

dx δðxÞ, was needed in the first
equation because the transverse condition involves a
derivative of Ψ, and therefore depends on Ψ in a first
neighborhood of η2 þ 1 ¼ 0.
What can we say about the gauge transformation of Ψ

itself, away from the η2 þ 1 ¼ 0 surface? The most general
gauge transformation on Ψ that reduces to the above on the
η2 þ 1 ¼ 1 surface, δε;~εΨ ¼ η · kεðηÞ þ ðη2 þ 1Þ~εðηÞ, does
not preserve the transverse condition δðη2 þ 1Þk · ∂ηΨ ¼ 0.
It is easy to verify that the transverse condition is invariant
under the restricted gauge transformation

δΨε;χ ¼
�
k · η −

1

2
ðη2 þ 1Þk · ∂η

�
ϵðη; xÞ

þ ðη2 þ 1Þ2χðη; xÞ; ð3:9Þ
and that this redundancy suffices to guarantee that
δðη2þ1ÞΨðη;xÞ realizes the integer-helicity representations.

Strictly speaking, the subset of ϵ transformations with
ϵðη; xÞ ¼ ðη2 þ 1Þξðη; xÞ for some ξ are entirely equivalent
to the gauge transformations generated by χ. But it will
prove convenient to include both explicitly.
From these observations, it is easy to discover that the

covariant equation of motion

δ0ðη2þ1Þ□xΨ−
1

2
∂x ·∂ηðδðη2þ1Þ∂x ·∂ηΨÞ¼ 0 ð3:10Þ

is gauge invariant under Eq. (3.9) with Ψ and ε uncon-
strained, and precisely reduces to the on-shell form once we
specialize to the transverse δðη2 þ 1Þ∂x · ∂ηΨ ¼ 0 gauge.
To see geometrically how this equation of motion

encodes a tower of helicities, it is useful to fully fix gauge
by taking Ψðη; xÞ to satisfy ∂2

ηΨ ¼ ∇η:∇xΨ ¼ ∂0
ηΨ ¼ 0

(all three conditions can only be satisfied simultaneously on
the support of the equation of motion; we defer the proof
that such a gauge can be reached to Sec. IV B). In this
gauge, the physical plane-wave solutions with momentum
~k are specified by a harmonic function on the spatial

2-plane in η space transverse to ~k (e.g. the plane

η0 ¼ ~η:~k ¼ 0); the helicity rotation operator (3.6) simply
rotates this plane. Identifying the 2-plane with the complex
z plane, the helicity operator is z∂z − z̄∂̄z and the harmonic
condition ∂z∂̄zΨðzÞ ¼ 0 restricts Ψ to be a sum of
holomorphic and antiholomorphic parts, which can be
decomposed as a sum of monomials zh and z̄h with helicity
�h, respectively. The physical data, i.e. coefficients of each
monomial in a series expansion for Ψðz; z̄Þ, can indeed be
obtained by integrating Ψðz; z̄Þ against zh (or z̄jhj) over the
circle defined by the plane’s intersection with the hyper-
boloid η2 þ 1 ¼ 0. In fact, this identification of states with
harmonic functions of z will persist in the generalization of
Eq. (3.10) to CSPs with ρ ≠ 0, with Ψ acquiring a non-
trivial (but fully determined up to gauge) dependence on a
direction transverse to the z plane.

C. The Fronsdal formalism simplified in
vector superspace

By demanding that the spin of helicity-h particles be
realized geometrically and covariantly in vector super-
space, we derived the quadratic action (3.3) (with
Δ≡ ∂η:∂x), whose field variation is the unified equation
of motion (3.10). The action and the equation of motion
(but not the Lagrangian) are invariant under the gauge
transformations (3.9).
It is not yet obvious that the simple action (3.3) is

equivalent to the Schwinger-Fronsdal tensor actions. To see
this connection, we will need to carry out the η integration
explicitly. In terms of the generating functional G0ðwÞ ¼
J0ð

ffiffiffiffiffiffiffiffiffi
−w2

p
Þ (see Appendix A), we can write the action as
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S ¼
Z

d4x

�
1

2
G0ði∂ηÞð∂αΨÞ2 þ 1

4
Gði∂ηÞðΔΨÞ2

�
η¼0

:

ð3:11Þ

Evidently, although the action (3.11) is quadratic in fields,
it is not rank diagonal when we expand Ψ into components
as in Eq. (3.1); for example, the degree-2n term in the
Taylor expansion of G0 provides a rank-diagonal kinetic
term for the field ψ ðnÞ, but also mixes the “scalar” ψ ð0Þ with
the maximal trace of ψ ð2nÞ. The rank mixing is related to the
fact that tensor components in Eq. (3.1) were defined via
Taylor expansion about η ¼ 0, while the action is supported
at nonzero η. To remove the rank mixing, we must
decompose Ψðη; xÞ into tensors in a different way.
In this section we present a simple decomposition that

recovers a sum of Fronsdal actions, but is only rank
diagonal after partially fixing gauge so that the tensor
components are double traceless. An example of a different
decomposition, which removes rank mixing to all orders in
traces while maintaining the full gauge symmetry (3.9), is
discussed in Appendix B.
The nature of the Fronsdal fields’ gauge transformations

δϕðnÞ ¼ ∂ ∘ ϵðn−1Þ for traceless ϵ will be our guide to
decomposing Ψ into Fronsdal-like components. We can
parametrize arbitrary gauge transformations in terms of
tensor components as

ϵðη; xÞ ¼
X
n

ðnþ 1Þcnþ1η
n ~ϵðnÞðxÞ

¼ c1 ~ϵð0Þ þ 2c2ημ ~ϵ
ð1Þ
μ þ 3c3ημην ~ϵ

ð2Þ
μν þ � � � ; ð3:12Þ

χðη; xÞ ¼
X
n

ηnχðnÞðxÞ ¼ χð0Þ þ ημχð1Þμ þ ημηνχð2Þμν þ � � � ;

ð3:13Þ

where the numerical factors cn ¼ 2n=2 are chosen for later
convenience. We can further decompose each ~ϵðnÞ ¼ ϵðnÞ þ
g ∘ ξðn−2Þ where ϵðnÞ is traceless. In fact, as was mentioned
already in the vector-superspace language, this way of
parametrizing gauge transformations is redundant. For
example, any transformation of the form ~ϵð2Þ ∝ g ∘ ξð0Þ

is equivalent to one generated by ~ϵð0Þ ∝ ξð0Þ. Likewise, a
transformation with ~ϵð3Þ ∝ g ∘ ξð1Þ is equivalent to one
generated by ~ϵð1Þ ∝ ξð1Þ and χð0Þ ∝ ∂ · ξð1Þ. In general,
gauge transformations generated by ~ϵðnÞ ∝ g ∘ ξðn−2ÞðxÞ
are equivalent to ~ϵðn−2Þ ∝ ξðn−2Þ with χðn−3Þ ∝ ∂ · ξðn−2Þ.
Thus, starting at rank 2, the trace of ~ϵð2Þ is redundant with a
lower-rank gauge transformation. At rank 3, the trace of ~ϵð3Þ

is redundant with a lower-rank ~ϵð1Þ and χð1Þ. By induction,
the trace of ~ϵðnÞ will in general be redundant with a lower-
rank traceless ~ϵ and χ. Thus, it suffices to consider the

gauge transformations generated by traceless ϵðnÞ and
arbitrary χðnÞ.
The gauge variation induced by the traceless gauge

parameters ϵðnÞ can be written as

δΨðη; xÞ ¼
X
n≥1

cn

�
ηðnÞ −

1

2
ðη2 þ 1Þg ∘ ηðn−2Þ

�
∂ ∘ ϵðn−1Þ

¼ c1ημ∂μϵ
ð0Þ þ c2

�
ημην −

1

2
gμνðη2 þ 1Þ

�
∂ðμϵ

ð1Þ
νÞ

þ c3

�
ημηνηρ −

1

2
ðgμνηρ þ gμρην

þ gρνημÞðη2 þ 1Þ
�
∂ðμϵ

ð2Þ
νρÞ þ � � � ; ð3:14Þ

where ∂ðμϵν…Þ denotes the sum (without a combinatoric
factor) over all permutations of the indices μ; ν;….
The suggestive resemblance to the gauge transformation
(2.3) of the Fronsdal fields motivates the decomposition of
Ψðη; xÞ into tensor components as

Ψðη; xÞ ¼
X
n

cn

�
ηn −

1

2
g ∘ ηn−2ðη2 þ 1Þ

�
ϕðnÞ; ð3:15Þ

which transform as δϕðnÞ ¼ ∂ ∘ ϵðn−1Þ. Up to now, the
fields ϕðnÞ are unconstrained; in particular, they do not
satisfy a double-trace condition. But each of the remaining
χðnÞ gauge redundancies gives us precisely enough freedom
to fix a gauge where ϕðnþ4Þ is double traceless, i.e.
ϕðnþ4Þ00 ¼ 0.
To summarize our results: we can parametrize all

inequivalent gauge transformations by a sequence of trace-
less ϵðnÞ and unconstrained χðnÞ. If we decompose the
vector-superspace field Ψðη; xÞ à la Eq. (3.15) in terms of
tensor components ϕðnÞðxÞ, we can always reach a gauge
where the ϕðnÞ are double traceless. This requirement fully
fixes the χðnÞ gauge symmetries leaving only the traceless
ϵðnÞ’s, which transform ψ ðnÞ in precisely the same manner as
Eq. (2.3), i.e. δψ ðnÞ ¼ ∂ ∘ ϵðnÞ.
With this decomposition in hand, it is straightforward to

verify that the action (3.3) is equivalent to a direct sum of
Schwinger-Fronsdal actions for all n. The coefficients cn
have been chosen so that the component fields ϕðnÞ are
canonically normalized in four dimensions. For example,
to expand the term

R ½d4η� 1
4
δðη2 þ 1ÞðΔΨðη; xÞÞ2 in

components, we first note that

ΔΨðη; xÞ ¼ ∂η · ∂xΨðη; xÞ
¼

X
n≥1

ncnηn−1Dðn−1ÞðxÞ þ ðη2 þ 1Þ…; ð3:16Þ

Dðn−1Þ ≡
�
∂ · ϕðnÞ −

1

2
∂ ∘ ϕðnÞ0

�
; ð3:17Þ
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where the terms proportional to ðη2 þ 1Þ do not contribute
to the action because of the δ function. Moreover, Dðn−1Þ is
traceless, and is therefore annihilated by ∂2

η. Thus, upon
expanding the generating function Gði∂ηÞ as a power series
in ∂2

η, the only surviving terms in Eq. (3.11) are those where
each ∂2

η acts as ∂μ
ηΔΨ∂ημΔΨ, i.e. where two D-tensors of

the same rank are fully contracted into each other:

Z
½d4η�δðη2 þ 1Þð∂η · ∂xΨðη; xÞÞ2

¼ Gði∂ηÞ
�X

n≥1
2n=2nηn−1Dðn−1Þ

�
ð3:18Þ

�X
m≥1

2m=2mηm−1Dðm−1Þ

�
jη¼0 ð3:19Þ

¼
X
n

n
2
Dðn−1ÞðxÞ ·Dðn−1ÞðxÞ; ð3:20Þ

which precisely matches the third term in the Schwinger-
Fronsdal action (2.2). The final result follows from Taylor
expanding the Bessel function in G and a bit of careful
counting; the factor of n=2 arises from the product of the
Taylor coefficient in the Bessel function, the 2pp!2 com-
binatoric factor from all the ways that ð∂ηÞ2p can act on the
term in Eq. (3.19) with n ¼ m ¼ p, and the explicit factors
ð2n=2nÞ × ð2m=2mÞ. Completely analogous calculations
show that the first two terms of Eq. (2.2) can be obtained
by expanding the δ0 term in the vector-superspace
action (3.3).
This construction demonstrates that we can view the

vector-superspace action (2.2) as a sum over helicities of
helicity-n Schwinger-Fronsdal actions, with the tensor
fields grouped together in a convenient way. Conversely,
we can view the Schwinger-Fronsdal action for a single
helicity as arising from a partial gauge fixing of the vector-
superspace action, with the field Ψ restricted to a particular
spin sector. It would be interesting to explore whether this
repackaging of the integer-helicity Schwinger-Fronsdal
actions in a simple geometric form may generalize to
high-spin theories in de Sitter and anti–de Sitter back-
grounds, and to other formulations of high-spin theories
[24–27], but we do not pursue these questions here. Instead,
we take the η-space action (3.3)—which propagates one
state of every integer helicity and treats all spins on an equal
footing—as a starting point for building a gauge theory for
a free CSP.

IV. THEORY OF A SINGLE CSP

We have seen that the gauge potential Ψ with dynamics
governed by Eq. (3.3) describes a tower of free helicity-h
degrees of freedom, one for each integer helicity value. This
is a natural starting point for describing a CSP with ρ ≠ 0,
as we expect such an object to involve a propagating tower

of integer-spaced helicity-like degrees of freedom that mix
under boosts. In fact, a trivial generalization of this action
does the job.
As was anticipated in the last section, the action for a

CSP with nonzero spin invariant ρ is simply

S¼ 1

2

Z
d4x½d4η�

�
δ0ðη2þ1Þð∂αΨÞ2þ1

2
δðη2þ1ÞðΔΨÞ2

�
;

ð4:1Þ
where ΔΨ≡ ð∂η:∂x þ ρÞΨ [which differs from Eq. (3.3)
by only the “þρ” term in Δ]. This action is invariant under
gauge transformations

δϵ;χΨ≡
�
η:∂x −

1

2
ðη2 þ 1ÞΔ

�
ϵðη; xÞ þ ðη2 þ 1Þ2χðη; xÞ:

ð4:2Þ
This section unpackages the physical content of this free

action. We first demonstrate that this action indeed prop-
agates massless degrees of freedom of the “continuous-
spin” type; i.e. they transform faithfully under the little
group, with a nonzero eigenvalue for the Pauli-Lubanski
invariant. The argument closely parallels the discussions of
the previous section, but it is necessary to keep track of
what changes under the ρ deformation of the action and
gauge symmetry, and what features are unaffected. To make
the little-group transformation properties more explicit,
and to show that the action propagates precisely one CSP
(i.e. one state for each helicity eigenvalue), we construct an
explicit basis of gauge-inequivalent wave functions that
solve the equations of motion following from Eq. (4.1) and
illustrate their transformation under the little group in
Sec. IV B. In Sec. IV C, we recast this action and the
resulting equation of motion in a tensor form similar to
the Fronsdal action.

A. Mass and spin

To demonstrate that the action (4.1) propagates continu-
ous-spin particles, we show that the propagating degrees of
freedom have eigenvalues P2Ψðη; xÞ ¼ 0 andW2Ψðη; xÞ ¼
−ρ2Ψðη; xÞ under the two invariants of the 3þ 1-
dimensional Poincaré group, where Wμ ¼ 1

2
ϵμνρσJνρPσ ¼

ϵμνρσην∂ηρ∂xσ is the Pauli-Lubanski pseudovector. This is
to be contrasted with massless helicity particles, which
have P2 ¼ W2 ¼ 0, and with massive particles with spin,
for which P2 and W2 are both nonzero. Of course, in a
gauge theory we should only demand these equalities up to
pure-gauge corrections:

P2Ψðη; xÞ ¼ 0þ gauge and

W2Ψðη; xÞ ¼ −ρ2Ψðη; xÞ þ gauge: ð4:3Þ
To show that the degrees of freedom are massless, we can

simply reverse the argument of Sec. III B. But because the
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Oðρ2Þ term in Eq. (4.1) looks superficially like a mass term,
it is worth going through the logic explicitly.
Varying the action (4.1) with respect to Ψ yields the free

equation of motion

δ0ðη2 þ 1Þ□Ψ −
1

2
Δðδðη2 þ 1ÞΔΨðη; xÞÞ ¼ 0; ð4:4Þ

which is gauge invariant.5 As is often the case in gauge
theories, the equation of motion suggests a choice of
“harmonic” gauge in which the Ψ equation of motion
simplifies to a massless wave equation. Here, the gauge
choice δðη2 þ 1ÞΔΨ ¼ 0 brings the equation of motion
into the form δ0ðη2 þ 1Þ□Ψ ¼ 0. To see that this gauge can
be reached, note that under ϵ-type gauge transformations,
δϵΔΨðη; xÞ ¼ − 1

2
ðη2 þ 1ÞΔ2ϵðη; xÞ þ□ϵðη; xÞ. The first

term vanishes on the support of δðη2 þ 1Þ, while the second
can be used to gauge away δðη2 þ 1ÞΔΨ using ϵ ¼
− 1

□
ΔΨ. Writing □Ψ ¼ ðη2 þ 1Þ2βðη; xÞ for any solution

to this equation of motion, we can further gauge away β by
using a χ ¼ − 1

□
β gauge transformation. Thus, any solution

to the equation of motion (4.4) is gauge equivalent to a
solution of

□Ψðη; xÞ ¼ 0 and δðη2 þ 1ÞΔΨ ¼ 0: ð4:5Þ

The first equation shows that the degrees of freedom
propagated in Ψ are massless. The harmonic gauge choice
leaves a residual gauge freedom generated by arbitrary
χðη; xÞ and ϵðη; xÞ with □ϵðη; xÞ ¼ □χðη; xÞ ¼ 0.
Having shown that our action describes massless degrees

of freedom, we can now study the action of the spin
invariantW2 on the field Ψ, working in harmonic gauge for
simplicity. On the support of □xΨ ¼ 0, the operator W2

can be simplified to the form

W2Ψ ¼ ½η2ð∂η:∂xÞ2 þ ðη:∂xÞ2□η − 2η:∂x∂η:∂xη:∂η�Ψ
ð4:6Þ

¼ ½η2ðΔ − ρÞ2 þ ðη:∂xÞ2□η − 2η:∂xðΔ − ρÞη:∂η�Ψ
ð4:7Þ

¼ ½η2ðΔ − ρÞ2 þ ðη:∂xÞ2□η − 2η:∂xðη:∂η þ 1Þ
× ðΔ − ρÞ�Ψ; ð4:8Þ

where in the last line we have used the commutator
½Δ; η:∂η� ¼ Δ − ρ. Other useful commutation relations are

½Δ; η2� ¼ 2η:∂x; ½η:∂η; η2� ¼ 2η2;

½∂2
η; η2� ¼ 4ðη:∂η þ 2Þ; ð4:9Þ

of which the last is specific to four dimensions. For Ψ in
harmonic gauge, we can write

ΔΨ ¼ ðη2 þ 1Þαðη; xÞ; ð4:10Þ
where the residual α is unconstrained.
Using this and the commutator relations (4.9) repeatedly,

we obtain

W2Ψ ¼ −ρ2Ψþ δϵ½ðη:∂x∂2
η − 2∂η:∂xη:∂ηÞΨ − 2α�

þ δχ

�
1

2
ðη:∂x∂2

η − 2∂η:∂xðη:∂η þ 2ÞÞα
�
; ð4:11Þ

where α is the solution of Eq. (4.10), and δχ ½χT � denotes
the gauge transformations obtained from Eq. (4.2) with
χðη; xÞ ¼ χT (and similarly for δϵ). We note that the pure-
gauge residual is independent of ρ!
We thus see that W2Ψ ¼ −ρ2Ψ up to gauge trans-

formations, as claimed. This shows that the action (4.1)
propagates CSP degrees of freedom with a definite spin
scale ρ—a considerable advance over [17], which propa-
gated a continuum of CSPs of every real ρ. We will see
below, by constructing an explicit basis of states, that Ψ
represents precisely one CSP.

B. Plane waves and polarizations

To identify the polarization content in Ψ more explicitly,
we now exhibit a convenient basis of solutions (up to
gauge) to the harmonic-gauge equations of motion (4.5).
We will decompose the solutions into helicity eigenmodes,
as can always be done in asymptotically flat space. When
the Pauli-Lubanski spin invariantW2 vanishes, this decom-
position is Lorentz invariant. When W2 is nonzero, as we
expect it is for ρ ≠ 0, the helicity modes will mix under
boosts. We will see this explicitly in the transformation of
our basis wave functions.
The helicity decomposition is readily carried out in a

plane wave basis,Ψkðη; xÞ ¼ ψðη; kÞe−ik·x, where of course
k2 ¼ 0 and the function ψðη; kÞ is analytic in both argu-
ments and satisfies

δðη2 þ 1Þðik · ∂η þ ρÞψðη; kÞ ¼ 0: ð4:12Þ
As before, we can introduce a set of null frame vectors q; ϵ�
with q · k ¼ 1, ϵþ · ϵ− ¼ −2, and all other products vanish-
ing. The helicity operator is just

5As we noted in our earlier work [17], this equation is related
to the equation of motion proposed in Ref. [16]. Specifically, if
we define ϕðw; xÞ≡ R

d4ηδ0ðη2 þ 1Þeiw:ηΨðη; xÞ (which can be
inverted for any function ϕ satisfying an appropriate double-trace
condition), then ϕ satisfies the non-Lagrangian equation of
motion of Ref. [16]. This connection motivated generalizing
our action in Ref. [17] from η2 ¼ 0 localization to η2 � 1 ¼ 0,
and we thank X. Bekaert and J. Mourad for encouraging us to do
so. Since this paper appeared, the connection has been further
discussed in Ref. [28].
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RΨ ¼ 1

2
ðη · ϵ−ϵþ · ∂η − η · ϵþϵ− · ∂ηÞΨ: ð4:13Þ

For functions analytic in η, this operator necessarily has
integer eigenvalues.
One set of eigenstates satisfying the harmonic gauge

condition—which actually furnish a basis up to gauge
transformations—is

ψþhðη; kÞ ¼ ðη · ϵþÞheiρη·qψ−hðη; kÞ ¼ ðη · ϵ−Þjhjeiρη·q:
ð4:14Þ

To see that these are a basis, we first consider an arbitrary
function ψðη:k; η:q; η:ϵþ; η:ϵ−Þ at null momentum k
(we leave the k dependence of ψ implicit). The harmonic
gauge condition implies ðik:∂η þ ρÞψðηÞ ¼ ðη2 þ 1ÞαðηÞ;
when k2 ¼ 0, transforming by a gauge parameter ϵ satisfy-
ing ðik:∂η þ ρÞ2ϵ ¼ 2α brings ψ into a gauge where
ðik:∂η þ ρÞψ ¼ 0 everywhere (not just on the η2 þ 1 ¼ 0
surface), so that we can write ψ ¼ eiρη:q½fðη:ϵþ; η:ϵ−Þ þ η:
kgðη:k; η:ϵþ; η:ϵ−Þ�, where we have explicitly separated
out the η:k-independent part of ψ . Transforming by ϵ ¼
−eiρη:qg removes all η:k dependence, so that q:∂ηψ ¼ 0. At
this point, the remaining gauge freedom that preserves the
conditions ðik:∂η þ ρÞψ ¼ q:∂ηψ ¼ 0 are those generated
by ϵ ¼ eiρη:qq:ηhðη:ϵþ; η:ϵ−Þ, which generate δψ ¼
1
2
eiρη:qðη:ϵþη:ϵ− − 1Þhðη:ϵþ; η:ϵ−Þ. These can be used to

remove any dependence of ψ on the product η:ϵþη:ϵ−, so
that all that remains is a sum of the basis functions (4.14),
ψðηÞ ¼ eiρη:qðfþðη:ϵþÞ þ f−ðη:ϵ−ÞÞ. Thus, any function
satisfying the harmonic gauge conditions and equation
of motion can be decomposed into a linear combination of
basis functions of the form (4.14) plus pure gauge, and we
have already argued that a general solution to the covariant
equation of motion (4.4) can be brought into harmonic
gauge. In fact, the argument above applies whether or not q
is null, so we could for example reach a “Coulomb-like”
gauge where qμ ¼ ð1=k0; 0; 0; 0Þ and ∇η:∇xψ ¼ 0. This
construction also justifies the description of ψ as a sum of
holomorphic and antiholomorphic functions on a complex
plane introduced in Sec. III B.
The basis functions (4.14) are also orthonormal under the

natural inner product

hψhðkÞjψh0 ðkÞi≡
Z

d4ηδ0ðη2 þ 1Þψhðη; kÞ�ψh0 ðη; kÞ

¼ δh;h0 : ð4:15Þ

Evaluating this integral using the Euclidean η-space
techniques is very simple, and is done explicitly in
Appendix A 3.
Given an arbitrary wave function Ψðη; kÞ in momentum

space satisfying the equation of motion, we can project
out helicity components a�hðkÞ (for positive energy null
k0 > 0) as

a�hðkÞ
2jkj ¼

Z
d4ηδ0ðη2 þ 1Þψhðη; kÞΨðη;−kÞ ð4:16Þ

where the normalization is chosen to coincide with rela-
tivistic conventions. This projection is gauge invariant.
The variation of Eq. (4.16) under a gauge transformation is

Z
d4ηδ0ðη2 þ 1Þψh

× ðη; kÞ
�
−ik · η −

1

2
ðη2 þ 1Þð−ik · ∂η þ ρÞ

�
ϵ

¼
Z

d4ηψhðη; kÞð−ik · ∂η þ ρÞðδðη2 þ 1ÞϵÞ ð4:17Þ

which vanishes after integrating by parts in η because
δðη2 þ 1Þðik · ∂η þ ρÞψhðη; kÞ ¼ 0 (i.e. ψh satisfies the
harmonic-gauge condition).
The helicity decomposition for a real field Ψðη; xÞ is

therefore

Ψðη; xÞ ¼
Z

d3k
2jkj

×
X
h

ðahðkÞψhðη; kÞe−ik·x þ a�hðkÞψ�
hðη; kÞeik·xÞ

ð4:18Þ

where a�hðkÞ denotes complex conjugation and we are
allowed of course to add a pure-gauge term to the right-
hand side.
Now we can see how the gauge symmetry allows CSPs

to be encoded in the wave function Ψ. Let us consider how
a�hðkÞ defined by Eq. (4.16) transforms under the combi-
nations of rotations and boosts that leave k invariant,
namely transformations generated by T� ¼ ϵ� ·W.
These generators should act like raising and lowering
operators on a�hðkÞ. Starting from the covariant trans-
formation rule UðΛÞ†Ψðη; kÞUðΛÞ≡ΨðΛ−1η;Λ−1kÞ, we
have

UðΛÞ† a
�
hðkÞ
2jkj UðΛÞ

≡
Z

d4ηδ0ðη2 þ 1Þψhðη; kÞΨðΛ−1η;−Λ−1kÞ

¼
Z

d4ηδ0ðη2 þ 1ÞψhðΛη; kÞΨðη;−Λ−1kÞ:

Specializing to transformations UðΛÞ ¼ eiðβþTþþβ−T−Þ
generated by T�, and working infinitesimally, we have

½T�; a�hðkÞ� ¼
Z

d4ηδ0ðη2 þ 1Þ½T�;ψhðη; kÞ�Ψðη;−kÞ;
ð4:19Þ
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where we have used the fact that T� annihilates k. We are
free to work in the harmonic gauge δðη2 þ 1ÞΔΨ ¼ 0,
where any pure-gauge terms in ½T�;ψhðη; kÞ� give vanish-
ing contributions to the integral (4.19), by an integration-
by-parts argument analogous to that used in deriving
Eq. (4.18). For h > 0, we have ψhðη; kÞ ¼ ðη · ϵþÞheiρη·q
and

½Tþ;ψhðη; kÞ� ¼ iðη · kϵþ · ∂η − η · ϵþk · ∂ηÞψhðη; kÞ
¼ ρη · ϵþψhðη; kÞ ¼ ρψhþ1ðη; kÞ;

so that Tþ acts as expected on the mode a�hðkÞ, i.e.
½Tþ; a�hðkÞ� ¼ ρa�hþ1ðkÞ. On the other hand

½T−;ψhðη; kÞ� ¼ iðη · kϵ− · ∂η − η · ϵ−k · ∂ηÞψhðη; kÞ
¼ −2ihη:kψh−1ðη; xÞ þ ρη · ϵ−ψh ð4:20Þ

¼ ρψh−1 þ δϵ½−2ðhþ iη · qÞψh−1�: ð4:21Þ

To see that the last two lines are indeed equivalent up to
pure-gauge terms [which contribute nothing to the integral

(4.19)], it is useful to note that gμν ¼ − 1
2
ϵðμþ ϵνÞ− þ qðμkνÞ

so that η2 ¼ −η:ϵþη:ϵ− þ 2η:qη:k and therefore ϵ ¼
−2iðq · ηÞψh−1 generates the gauge transformation

δψ ¼
�
ik · η −

1

2
ðη2 þ 1Þðik · ∂η þ ρÞ

�
ϵ

¼ 2k · ηq · ηψh−1 − ðη2 þ 1Þψh−1

¼ ð2k · ηq · η − η2Þψh−1 − ψh−1

¼ ϵþ · ηϵ− · ηψh−1 − ψh−1;

while ϵ ¼ −2hψh−1 simply generates δψ ¼ −2ihη:kψh−1.
We therefore obtain

½T−;ψhðη; kÞ�≃ ρψh−1; ð4:22Þ

so that going back to Eq. (4.19) we find

½T�; a�hðkÞ� ¼ ρa�h�1ðkÞ ð4:23Þ

as expected for the polarizations of a CSP with a spin
scale W2 ¼ −ρ2. Similar manipulations show that T� act
correctly for h ≤ 0 as well.
We will take up a covariant quantization of this theory in

Ref. [29], but much of the free quantum theory is already
easy to anticipate from the mode expansion. The coef-
ficients ahðkÞ will become annihilation operators with
commutation relations

½ahðkÞ; ah0 ðk0Þ�� ¼ 2jkjδ3ðk − k0Þδhh0 ; ð4:24Þ

with the interpretation of creating or annihilating states
with momentum k and polarization h. This fact, together

with Eq. (4.23), shows that the quantum theory indeed
describes a single CSP.

C. The action and equation of motion in tensor form

To gain more intuition, it is useful to decompose the
action into tensor fields as we did for ρ ¼ 0 in Sec. III C.
As before, we decompose Ψðη; xÞ into tensor fields as

Ψðη; xÞ ¼
X
n

cn

�
ηn −

1

2
g ∘ ηn−2ðη2 þ 1Þ

�
ϕðnÞ; ð4:25Þ

with the coefficients cn ¼ 2n=2 chosen so that the fields ϕðnÞ
are canonically normalized. We can again fix a gauge where
the ϕðnÞ are double traceless using χ gauge invariance; the
gauge transformations that preserve this double-traceless
gauge are parametrized by ϵðη; xÞ ¼ P

nðnþ 1Þcnþ1

ηnϵðnÞðxÞ where ϵðnÞðxÞ is an arbitrary traceless rank-n
tensor. The component fields vary under these gauge
transformations as

δϕðnÞ ¼ ∂ ∘ ϵðn−1Þ þ ρffiffiffi
2

p
�
ϵðnÞ þ 1

nðn − 1Þ g ∘ ϵðn−2Þ
�
:

ð4:26Þ

The action for the Fronsdal-like fields can be found by
the same methods used in Sec. III C. Here

ΔΨ≃X
n≥1

ηn−1 ·

�
ncn

�
∂x · ϕðnÞ −

1

2
∂x · ϕðnÞ0

�

þ ρcn−1ϕðn−1Þ
�
; ð4:27Þ

where ϕðnÞ0 ¼ TrϕðnÞ and≃ denotes that terms proportional
to η2 þ 1, which vanish on the δ-function support, have
been dropped. With the inclusion of theOðρÞ term this is no
longer traceless (but it is double traceless), so when we
compute Gði∂ηÞðΔΨÞ2 as in Sec. III C using the series

expansion for the generating function Gði∂ηÞ ¼ J0ð
ffiffiffiffiffi
∂2
η

q
Þ

we must keep terms where zero or one ∂2
η act on the series

expansion of each ΔΨ. The resulting action can be
written as

S ¼
X
n

ð−1Þn
Z

d4x
1

2
ð∂μϕ

ðnÞÞ2 − nðn − 1Þ
8

ð∂μϕ
ðnÞ0Þ2

−
n
2
ðDðn−1Þ

ρ Þ2 ð4:28Þ

where
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Dðn−1Þ
ρ ðxÞ≡ ∂x · ϕðnÞ −

1

2
∂x ∘ ϕðnÞ0

þ ρffiffiffi
2

p
n

�
ϕðn−1Þ −

1

2ðn − 1Þ g ∘ ϕðn−1Þ0
�

−
ρ

2
ffiffiffi
2

p ϕðnþ1Þ0: ð4:29Þ

The action, which was rank diagonal at Oðρ0Þ, exhibits
rank mixing at OðρÞ. Of course, the action becomes rank
diagonal in harmonic gauge (which corresponds to

Dðn−1Þ
ρ ¼ 0), but then the gauge condition itself mixes

ranks.
Similarly, the CSP equation of motion mixes tensors of

different ranks:

−□ϕðnÞ þ ∂ ∘ Dðn−1Þ
ρ þ ρffiffiffi

2
p DðnÞ

ρ

þ ρffiffiffi
2

p
nðn − 1Þ g ∘ Dðn−2Þ

ρ ¼ 0: ð4:30Þ

While the tensor decomposition makes manifest that we
smoothly recover the Schwinger-Fronsdal equations and
action in the ρ → 0 limit, it is more cumbersome for
nonzero ρ than the simple vector-superspace description.
Firstly, the equation of motion (4.30) is a bit complicated
(this is, of course, not invariant under field redefinitions;
for example, tensors defined as Taylor coefficients of
~Ψðω; xÞ≡ R

d4ηδ0ðη2 þ 1Þeiη:ωΨðη; xÞ, which by defini-
tion respects a double-trace condition ð□ω − 1Þ2 ~Ψ ¼ 0,
satisfy a different equation of motion of the form found
in Ref. [16]). Another drawback—and a much more
invariant one—is that our helicity eigenmodes ψðη; kÞ ¼
ðη:ϵ�Þjhjeiρη:q (for q with q · k ¼ 1 and q · ϵ� ¼ 0) from
Sec. IV B do not correspond to a single tensor mode when

ρ ≠ 0. For example, for h ¼ 0 we have ϕð0Þ ¼ 0, ϕð1Þ
μ ¼

iρqμ=
ffiffiffi
2

p
, ϕð2Þ

μν ¼ −ρ2qμqν=2, etc. It is tempting to look for
a Lorentz-covariant field redefinition where the helicity-�h
modes are encoded only in a rank-h tensor, but in fact such
a representation is at odds with the action of the little group
on single-particle CSP states. In particular, any rank-h
tensor is annihilated by ðT�Þhþ1, while this would simply
raise (lower) the helicity-h mode of a CSP to a mode with
helicity ð2hþ 1Þ or −1. Thus, a covariant representation of
any CSP state in terms of tensors must involve infinitely
many nonzero tensor components, so that T� can act
arbitrarily many times without annihilating the state.
These and other considerations underscore the value of
the vector-superspace formulation emphasized in this paper.

V. A WINDOW ON CSP INTERACTIONS

Though we have thus far focused on the free action, it is
straightforward to couple the gauge fieldΨ to a background
current by adding a source term

Sint ¼
Z

d4x½d4η�δ0ðη2 þ 1ÞΨðη; xÞJðη; xÞ: ð5:1Þ

This is, in fact, the most general linear current that we
can couple to the degrees of freedom of Ψ in the first
neighborhood of the η2 þ 1 ¼ 0 surface. The coupling is
allowed by gauge invariance so long as J satisfies a
“continuity condition”

δðη2 þ 1Þð∂x:∂η þ ρÞJ ¼ 0; ð5:2Þ

or in other words

ð∂x:∂η þ ρÞJ ¼ ðη2 þ 1Þαðη; xÞ; ð5:3Þ

for arbitrary analytic αðη; xÞ.
This section explores some simple features of this

current coupling, for ρ ¼ 0 and nonzero ρ. In Sec. VA
we sketch how standard scattering amplitudes involving
helicities 0, 1, and 2 can be obtained in the vector-
superspace formalism. Section V B describes how the
usual conservation conditions are modified with nonzero ρ,
and the pattern of nonzero currents at all ranks suggested by
the helicity correspondence of CSP-emission amplitudes.
Finally, Sec. V C demonstrates the consistency of this
formalism with the candidate single-CSP amplitudes found
in Refs. [3,10], albeit with an ad hoc and nonlocal ansatz
for current matrix elements.

A. Helicity interactions in vector superspace

It is straightforward to calculate simple helicity ampli-
tudes using η space, and in fact this formalism is appeal-
ingly universal, regardless of whether the emitted particle
has helicity 0, 1, or 2. Before doing these calculations,
however, we pause to make contact between the vector-
superspace continuity condition (5.3) and the more familiar
conservation conditions, and in particular to comment on
the significance of the arbitrary function α.
It will be convenient to expand Jðη; xÞ into tensor

components so that the current coupling in tensor compo-
nents is rank diagonal, i.e. so that Eq. (5.1) reduces toP

nð−1ÞnϕðnÞðxÞ · JðnÞðxÞ. This is achieved by decompos-
ing Jðη; xÞ as

Jðη; xÞ ¼
X
n

2n=2
�
ηn þ 1

2ðn − 1Þ η
ðn−2Þ ∘ g

�
JðnÞ

¼
X
n

2n=2ηn
�
JðnÞ þ nþ 2

2
Jðnþ2Þ0

�
: ð5:4Þ

In this case, allowing nonzero α is analogous (and, for
ρ ¼ 0, equivalent) to the well-known consistency of
coupling high-spin fields to currents that are only con-
served up to traces (i.e. “weakly conserved”), e.g.

∂μJð3ÞμνρðxÞ ¼ gνραðxÞ with arbitrary α. Thus, the possibility
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of nonzero α can be ignored for helicities ≤ 2. For ρ ¼ 0,
the continuity condition does not constrain Jð0Þ and
imposes the usual conservation requirements ∂:Jð1Þ ¼ 0,
and ∂:Jð2Þ for the rank-1 and -2 currents.
Returning to the vector-superspace formalism, it is

simple to calculate emission amplitudes for a polariza-
tion-h component of Ψ with momentum k in the presence
of the background Jðη; xÞ which we assume to have
only Jð0Þ, Jð1Þ, and/or Jð2Þ nonzero, i.e. Jðη; xÞ ¼ Jð0Þþffiffiffi
2

p
η · Jð1Þ þ ð2η2 · Jð2Þ þ Jð2Þ0Þ. Representing the single-

particle states as a†hðkÞj0i, the amplitude is just

AJðfk; hgÞ ¼
Z

d4xd4ηδ0ðη2 þ 1Þhk; hjΨðη; xÞj0iJðη; xÞ

¼
Z

d4xd4ηδ0ðη2 þ 1Þψ�
hðη; kÞeik·xJðη; xÞ

¼
Z

d4ηδ0ðη2 þ 1Þψ�
hðη; kÞ ~Jðη;−kÞ ð5:5Þ

where ~Jðη;−kÞ is the Fourier transform of Jðη; xÞ. For the
current Jðη; xÞ given above, we find that all helicity modes
with jhj > 2 have vanishing emission amplitude, while for
jhj ≤ 2 we obtain

AJðfk; h ¼ 0gÞ ¼ ~J0ð−kÞ; ð5:6Þ

AJðfk; h ¼ 1gÞ ¼ ϵþ;μðkÞ~J1μð−kÞ; ð5:7Þ

AJðfk; h ¼ 2gÞ ¼ ϵþ;μðkÞϵþ;νðkÞ ~J2μνð−kÞ ð5:8Þ

which precisely reproduces familiar results for helicity
degrees of freedom.
We can similarly calculate current-current correlators,

and hence matter amplitudes provided the matter sector can
furnish an appropriately conserved current (which we know
how to do for ρ ¼ 0 of course). As will be discussed in
Ref. [29], the harmonic-gauge propagator for Ψ is

δ0ðη2 þ αÞδ0ðη̄2 þ αÞh0jTΨðη; xÞΨðη̄; yÞj0i
¼ δ0ðη2 þ αÞδð4Þðη − η̄ÞDFðx − yÞ; ð5:9Þ

where DFðx − yÞ is the Feynman propagator. Suppose we
have a particle of type Awith current JAðη; xÞ and of type B
with current JBðη; xÞ. Then the first-order scattering ampli-
tude AðA;B → A0B0Þ mediated by Ψ exchange is

AðA; B → A0B0Þ ¼
Z

d4xd4ηδ0ðη2 þ 1Þ
Z

d4yd4η0δ0ðη02 þ 1ÞhA0jJAðη; xÞjAih0jTΨðη; xÞΨðη0; yÞj0ihB0jJBðη0; yÞjBi

¼
Z

d4xd4yd4ηδ0ðη2 þ 1ÞhA0jJAðη; xÞjAiDFðx − yÞhB0jJBðη; yÞjBi:

For a scalar current Jðη; xÞ ¼ J0ðxÞ, this obviously repro-
duces standard results. For a vector current Jðη; xÞ ¼
η · J1ðxÞ, the η integration yields a gμν contraction between
Jμ1ðxÞ and Jν1ðyÞ, again as expected. For a tensor current,
the η integration yields the expected symmetric tensor
contractions. In fact, it is straightforward to recast simple
theories like QED in this language, and calculations of
correlators and scattering amplitudes are straightforward,
as the above examples illustrate. It would be interesting to
express the self-interactions of Yang-Mills theories and
general relativity in vector-superspace language, but we
have not done so.

B. Deformed conservation conditions
for currents coupled to CSPs

For ρ ¼ 0, we could consistently consider sources with
only one nonzero JðnÞ at a time. Of course, in flat space
nontrivial interacting conserved currents only exist up to
rank 2. For ρ ≠ 0, the continuity condition (5.3) in general
requires that if any single component of Jðη; xÞ is nonzero,
all higher-rank components must be nonzero as well. This
is easy to see by breaking down Eq. (5.3) into components:

∂ · J1 þ
ρffiffiffi
2

p
�
J0 þ

1

2
J02

�
¼ 0;

∂ · Jμ2 þ
ρ

2
ffiffiffi
2

p
�
Jμ1 þ

1

2
J0μ3

�
¼ 0;

�
∂ · Jμν3 þ ρ

3
ffiffiffi
2

p
�
Jμν2 þ 1

2
J0μν4

��
¼ 0;

…�
∂ · Jn þ

ρ

n
ffiffiffi
2

p
�
Jðn−1Þ þ

1

2
J0ðnþ1Þ

��
¼ 0;

where h…i denotes the traceless part of the enclosed tensor.
If the scalar current J0ðxÞ is nonzero, the first continuity
condition requires a nonzero Jμ1ðxÞ at OðρÞ, with nonzero
divergence. The next continuity condition in turn implies a
nonzero Jμν2 ðxÞ at Oðρ2Þ, and so on. If we instead started
with a conserved vector current Jμ1ðxÞ at Oðρ0Þ, the
continuity condition would imply that there is a nonzero
Jμν2 ðxÞ at OðρÞ with nontrivial divergence, though J0 can
consistently vanish. Finally, a similar pattern of currents
can be initiated by a conserved rank-2 tensor, with
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vanishing scalar and vector current, and all higher ranks of
successively higher order in ρ. This structure is a field
theory version of the helicity correspondence discovered
in Ref. [10]: all tree-level amplitudes that consistently
factorize and obey perturbative unitarity constraints all
approach helicity-0, -1, or -2 amplitudes in the high-energy
or nonrelativistic limit (or ρ → 0 limit).

C. Making contact with soft-emission amplitudes

We do not yet know of any local matter sector that
furnishes an appropriately conserved current that can serve
as a source for Eq. (5.1) when ρ ≠ 0. This is the central
open problem to solve in formulating a complete CSP
theory. If we sacrifice manifest locality, then we can readily
guess appropriate current matrix elements, and they will
in general (as required by Lorentz symmetry) reproduce
the soft factors found in Refs. [3,10]. As a specific
example, we consider an ansatz for a correlation function
hp0jJðη; xÞjp�i. Here, the notation jp�i means that instead
of a matrix element with an external state, we are instead
considering the correlator of a matter field at a (slightly)
off-shell momentum p� with the current. We then expect
that the soft factor for emission of a soft CSP with
momentum k and polarization h is of the form

Sðfk; hg; pÞ ¼
Z

d4xd4ηδ0ðη2 þ 1Þ

× hk; hjΨðη; xÞj0ihp0jJðη; xÞjp�i ð5:10Þ
where kþ p0 ¼ p�. One guess that satisfies the continuity
condition (5.3) is

hp0jJðη; xÞjp�i ¼ eiq·xe
iρη·ðp

�þp0Þ
q·ðp�þp0Þjq¼p�−p0 : ð5:11Þ

This guess is one of many that satisfy Eq. (5.3), and
actually satisfies a stronger continuity condition than is
required, since ΔJ ¼ 0 vanishes even off the δ-function
support (i.e. it has α ¼ 0).6 Integrating, we obtain (for
h ≥ 0)

Sðfk; hg; pÞ ¼
Z

d4ηδ0ðη2 þ 1Þðη · ϵþðkÞÞheiρ
η·p
q·p:

These integrals are easy to do using the generating function
formula, or by direct integration in Euclidean η space as is
illustrated by example in Appendix A 3. Using standard
integral representations of Bessel functions, we have

Sðfk; hg; pÞ ¼ eih arg zJhðρzÞ; ð5:12Þ
where z≡ ϵþ·p

k·p . This is precisely the soft factor found in
Refs. [3,10]! The underlying gauge symmetry of our field

theory formalism is maintained by the ansatz above, so this
answer was essentially guaranteed by Lorentz symmetry,
but it is reassuring to see that such CSP soft factors can be
obtained from our field theory.

VI. COMMENTS ON GAUGE-INVARIANT
OPERATORS

While the preceding discussion focused on the consis-
tency requirements for a CSP to couple to a background
current, we turn now to explore physically significant
quantities that can be constructed from the CSP field
Ψðη; xÞ itself. Our focus in Sec. VI A is on the stress-
energy tensor, which is not gauge invariant, and its spatial
integrals, which are gauge invariant. This situation is quite
reminiscent of general relativity, where the energy density
of a gravitational wave at a point is not physically
observable, but the average energy density in a sufficiently
large physical region is [30]. In Sec. VI B we turn to single-
field gauge-invariant operators. It is straightforward to
show that no local gauge-invariant operators exist that
involve two or fewer derivatives, except for those which are
proportional to the free equation of motion and therefore
vanish on radiation. This is again reminiscent of GR, albeit
slightly less local (the Riemann curvature Rμνρσ is not
invariant under a a full coordinate transformation, but it
is invariant under the linearized gauge transformations).
But then, in light of the helicity correspondence, what

happens to operators like FμνðxÞ? We will show that there
are operators local in time, but noncovariant and spatially
nonlocal, that approach these local field strengths in the
ρ → 0 limit. In fact, with a covariant quantization one can
show that these objects commute at arbitrary spacelike
separation, and are therefore causal. It is still not clear that
these are physically relevant objects, but they do indicate
that Cauchy problems involving only physical data con-
tinue to be well posed.

A. Energy, momentum, and angular
momentum of a CSP

Canonical Poincaré generators can be obtained in the
usual way from the Belinfante stress-energy tensor

ΘμνðxÞ≡ −gμνLðxÞ þ
Z

d4η
δL

δð∂μψÞ
ð∂νψÞ

þ ∂κðAκμν − Aμκν − AνκμÞ ð6:1Þ
where

Aκμν ≡ i
2

Z
d4η

δL
δð∂κψÞ

J μνψðη; xÞ; ð6:2Þ

andJ μν ≡ iη½μ∂ν�
η are the Lorentz generators on the η space.

Here and throughout this section, we use η½μ∂ν�
η ¼ ημ∂ν

η−
ην∂μ

η . Because Θμν is conserved and symmetric, the
3-tensor

6However, this guess cannot be directly applied to matter-
matter scattering mediated by a CSP.
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Mκμν ≡ xμΘκν − xνΘκμ ð6:3Þ
is also conserved. Its conserved charges

Jμν ≡
Z

d3xM0μν ¼
Z

d3xðx½μT0ν� − 2A0μνÞ ð6:4Þ

¼ −
Z

d3xx½μg0ν�LðxÞ

þ
Z

d3xd4η
δL
δ _ψ

ðx½μ∂ν� þ η½μ∂ν�
η Þψðη; xÞ ð6:5Þ

of course generate homogeneous Lorentz transformations
on fields. The total energy, momentum, and angular
momentum in harmonic gauge are

H ¼
Z

d3xΘ00

¼
Z

d3x½d4η�δ0ðη2 þ 1Þ
�
1

2
_ψ2 þ 1

2
j∇ψ j2

�
; ð6:6Þ

Pi ¼
Z

d3xΘ0i ¼
Z

d3x½d4η�δ0ðη2 þ 1Þ _ψ∂iψ ; ð6:7Þ

Jij ¼
Z

d3xΘij

¼ −
Z

d3x½d4η�δ0ðη2 þ 1Þ _ψðx½i∂j� þ η½i∂j�
η Þψ : ð6:8Þ

The Belinfante tensor Θμν and the associatedMμνρ change
under gauge transformations (even those that maintain
harmonic gauge), but only by total derivatives so that these
spatial integrals are gauge invariant. For example, under
gauge transformations that maintain harmonic gauge

δM0ijðxÞ ¼
Z

½d4η� _ψðη; xÞRijΔðδðη2 þ 1Þϵðη; xÞÞ

þ Δðδðη2 þ 1Þ_ϵðη; xÞÞRijψðη; xÞ;

where Rij ¼ x½i∂j�
x þ η½i∂j�

η . Because δðη2 þ 1ÞΔψ ¼ 0 in
harmonic gauge, this can be rewritten as a total derivative
−∂xμ

R ½d4η�δðη2 þ 1Þðð∂η
μ _ψðη; xÞÞRijϵðη; xÞ þ _ϵðη; xÞÞ∂μ

η

Rijψðη; xÞÞ. As usual, although the total time-derivative
term cannot be removed by integration by parts in the
definition of Jij, it can be rewritten in terms of total spatial
derivatives using the equation of motion □ψ ¼ 0 and the
restriction □ϵ ¼ 0 on the gauge parameter.
The noncovariance of the Belinfante stress-energy tensor

is not surprising. Even for ρ ¼ 0, the same phenomenon is
observed in linearized general relativity, where gravita-
tional waves do not have a well-defined stress-energy
density. The absence of a conserved, gauge-invariant
stress-energy density for CSPs does motivate the expect-
ation that, like in GR, the flat coordinate space xμ used in
our free formulation will have no invariant meaning in the
presence of CSP interactions.

In GR, gravitational waves do of course carry energy-
momentum, and if we integrate Tμν over a spacetime region
of size Lmuch larger than the wavelength λ of gravitational
radiation, then the spatial average over this region of
Tμν is gauge invariant up to effects suppressed by λ=L.
This follows simply from the fact that Tμν is gauge invariant
up to spatial total derivatives (after using the equation of
motion to remove time total derivatives). Because the
same is true for the radiation in our CSP theory, there is
no obstacle to answering the physical question of how
much energy a CSP wave carries through a large spatial
region, at least at the free level.
We can also ask if the spatially averaged stress-energy

tensor Tμν
avgðxÞ has properties compatible with causality in

the quantum theory. In the quantum theory, it follows from
Eq. (4.24) that the gauge potentials Ψðη; xÞ (in a Feynman-
like gauge) satisfy familiar commutation relations

δ0ðη2 þ 1Þδ0ðη02 þ 1Þ½Φðη; xÞ;Φðη0; x0Þ�
¼ δ0ðη2 þ 1Þδð4Þðη0 − ηÞΔðx − yÞ; ð6:9Þ

where Δðx − yÞ ¼ R d3p
2jpj ½e−ip:ðx−yÞ − c:c:� is the usual sca-

lar-field commutator. It follows that in this gauge
½TμνðxÞ; Tρσðx0Þ� ¼ 0 for x − x0 spacelike, and therefore
that the spatial averages commute in any gauge, provided
the averaging regions are small compared to jx − x0j.

B. Some single-field gauge-invariant operators

Besides the stress-energy carried by a wave, another very
important class of physical objects in familiar gauge theories
are the field strengths. Of course, in non-Abelian gauge
theories and in GR these are not gauge invariant beyond
the linear level. But Fμν ¼ ∂ ½μAν� is invariant under the free
gauge transformation of a vector field, and so is the
linearized curvature for a helicity-2 field, Rμ1μ2ν1ν2 ¼
∂ ½μ1∂ ½μ2hν1�ν2�, where we antisymmetrize μi with νi, but
not with νj. In fact, all of the higher-spin field strengths in the
ρ ¼ 0 theory can be grouped into a single object

Rðξ; xÞ ¼
Z

d4ηδ0ðη2 þ 1Þeξμνημ∂νΨðη; xÞ; ð6:10Þ

where ξμν is an antisymmetric matrix variable. The nth
Taylor component of R is precisely the rank-2n mixed-
symmetry field strength for the rank-n gauge field.
Are there analogous gauge-invariant, and hence possibly

physical, local objects in the theory with ρ ≠ 0?
It is straightforward to show that the only local and

covariant gauge-invariant objects in the CSP theory involv-
ing two or fewer derivatives of Ψðη; xÞ are equivalent
to the equations of motion. To show this explicitly, one
may note that a completely general function Fðξ;xÞ¼R ½d4η�δ0ðη2þ1Þfðη;ξ;∂xÞΨðη;xÞ has gauge variation
δFðξ; xÞ ¼ R ½d4η�δðη2þ 1Þð−∂ημþ ρÞfðη;ξ;∂xÞ∂μ

xϵðη; xÞÞ;
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requiring the latter to vanish, we find that F must be a
multiple of the equation of motion (4.4). This result is not
surprising, since a CSP’s helicity states cannot be invar-
iantly distinguished and the high-helicity modes in
Eq. (6.10) require increasingly high powers of ∂x to build
gauge invariants.
On the other hand, the preceding result raises a basic

question: if CSP theories are continuously connected to
familiar gauge theories, then what has happened to the
linear-level gauge invariants ϕð0Þ, Fμν, Rμνρσ, etc.? It is
possible to build gauge invariants that approach these in the
ρ → 0 limit, but the covariant ones are spatially and time-
nonlocal functions of fields. We can invent such an
operator, but to do so requires that we introduce an
unphysical auxiliary object. For example, if we introduce
another 4-vector ωμ, we can construct invariants

ϕðω; xÞ ¼
Z

d4ηd4yδ0ðη2 þ 1Þfðω; η; x − yÞΨðη; yÞ;

Fμνðω; xÞ ¼
Z

d4ηd4yδ0ðη2 þ 1Þfðω; η; x − yÞ

× η½μ∂ν�Ψðη; yÞ;… ð6:11Þ

with

fðω; η; x − yÞ ¼
Z

d4keik·ðx−yÞeρ
η·ω
k·ω: ð6:12Þ

Because they are so nonlocal, it is completely unsurprising
that ½ϕðω; xÞ;ϕðω0; x0Þ� does not vanish for spacelike-
separated x − x0, except for special ω and ω0 such as
ω ¼ ω0. Note that ω does not package the spin content of
the CSP the way that vector superspace does; these
functions are not analytic in ω, and it is not clear what
physical meaning the ω space (or spinor analogues of it)
has, if any. However, the fact that such covariant operators
do not simply commute for spacelike-separated x − x0 for
arbitrary ω and ω0 was the cause for concern flagged by
several earlier authors [11,12,14,15,31,32].
If we relax the requirement of manifest Lorentz covari-

ance, we can construct gauge-invariant objects that are at
least local in time. The existence of such objects is a
prerequisite for setting up the Cauchy problem in an
interacting theory, starting only from physical initial data.
If we single out a time direction, we can define

fðη; ~x − ~yÞ ¼
Z

d3~ke−i~k·ð~x−~yÞeρ
~η·~k
~k2 ð6:13Þ

and then construct noncovariant but time-local and gauge-
invariant “curvature” tensors

ϕð~x; tÞ≡
Z

d3~y½d4η�δ0ðη2 þ 1Þfðη; ~x − ~yÞΨðη; ~y; tÞ;

ð6:14Þ

Fμνð~x;tÞ≡
Z

d3~y½d4η�δ0ðη2þ1Þfðη; ~x− ~yÞη½μ∂ν�Ψðη; ~y;tÞ;

ð6:15Þ

Rðξ; ~x;tÞ¼
Z

d3~y½d4η�δ0ðη2þ1Þeξμνημ∂νxfðη; ~x− ~yÞΨðη; ~y;tÞ;

ð6:16Þ
where the last line generalizes the series of curvatures in
Eq. (6.10). We have explicitly separated the time and spatial
dependencies to underscore that the objects above are
spatially nonlocal functions of Ψ, but local in time. In
the ρ → 0 limit, fðη; ~x − ~yÞ → δ3ð~x − ~yÞ so that we recover
the familiar curvature forms in that limit. Moreover, even
though these are spatially nonlocal we nevertheless find
½Rðξ; ~x; tÞ; Rðξ0; ~x0; t0Þ� ¼ 0 for spatially separated ð~x; tÞ and
ð~x0; t0Þ, and arbitrary ξ; ξ0 by using the commutator (6.9).
In closing this section, we should emphasize that the

generalized curvatures considered here are simply moti-
vated by their relation to familiar field strengths; even
though they obey nice causality properties, they are not
especially natural objects in the vector-superspace formal-
ism, and may not be physically significant at all in the
context of CSP interactions. This is an important open
question.

VII. DISCUSSION AND CONCLUSION

In this paper, we have presented a Lorentz-invariant,
local action for a free continuous-spin degree of freedom.
The action naturally generalizes to allow couplings of
the CSP to a suitably conserved background current. The
continuity condition allows a tower of tensor currents JðnÞ,
of which only the lowest-rank component is conserved; this
structure is compatible with no-go theorems against high-
rank conserved currents in 3þ 1-dimensional Minkowski
space, and with the covariant soft factors found in
Refs. [3,10]. Like other local field theories for massless
particles, it is a gauge theory; the canonical field from
which the action and equations of motion are built is not
directly observable. This feature is a key difference
between our theory and various failed attempts in the
literature [11–15].
Although the action is superficially similar to the one

considered in our earlier work [17], the new action is
superior in two dramatic ways. First, the action (4.1)
propagates a single species of CSP (with an arbitrary value
of the Pauli-Lubanski spin invariant ρ), whereas the theory
in Ref. [17] propagated a continuum of CSPs with every ρ.
Second, the ρ → 0 limit of this theory exhibits the expected
helicity correspondence [10] in a much sharper way than
Ref. [17]; it becomes a direct sum of Schwinger-Fronsdal
actions for integer-helicity particles, of which the helicity-
0, -1, and -2 modes can consistently couple to the usual
conserved currents.
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These two advances are made possible by the introduc-
tion of a new kind of auxiliary space, which we call “vector
superspace.” Vector superspace simply unifies all integer-
helicity actions in flat space, with a straightforward
generalization to a CSP with nonzero spin scale ρ.
Vector superspace starts from the old idea of grouping
tensors of different ranks by contracting them into an
auxiliary 4-vector ημ, then viewing their sum as a Taylor
series for a function of x and η. We take this basic idea
further, showing that spin can be encoded by geometry in η
space, and that integrals localized on invariant η-space
hyperboloids can be unambiguously defined by analytic
continuation of η. For ordinary (ρ ¼ 0) integer-helicity
particles, the vector-superspace action is an almost trivial
rewriting of a sum of Schwinger-Fronsdal actions, though
simplified and formulated in terms of unconstrained fields
and gauge variations. A simple relevant deformation of the
integer-helicity action in vector superspace, which deforms
the gauge invariance rather than breaking it, turns the tower
of helicities into a CSP with nonzero ρ. In this case, the
vector-superspace form is much simpler than its tensor
equivalent; the tensor action and equations of motion are
not rank diagonal, but feature rank-mixing terms of OðρÞ.
Likewise, even modes that are helicity eigenstates involve
nonzero tensor components of arbitrarily high ranks.
The vector-superspace action has a straightforward

generalization to higher and lower dimensions, but the
resulting representation content has not been thoroughly
explored. In the 2þ 1-dimensional case the CSP has just
two degrees of freedom related by parity, which to our
knowledge has not been discussed previously in the
literature; it may be possible for such degrees of freedom
to arise in gapless condensed matter systems, and they
display an intriguing connection to anyons at the kinemati-
cal level. The action likely has simple generalizations to
describe fermionic and/or supersymmetric CSPs, which
have not yet been explored. Another interesting open
question is whether Fronsdal-type equations for massless
particles in de Sitter or anti–de Sitter spacetimes can be
recast in a vector superspace, and whether analogous ρ
deformations of these theories have a sensible physical
interpretation.

A. In search of a covariance principle

A few further comments—and a good deal more
exploration—is called for on the questions of locality,
causality, and the general form that we might expect an
interacting CSP theory to take.
Past work has presented general arguments against

covariant, single-particle gauge-invariant operators with
microcausal commutation relations [11,12,14,15,31,32].
Yet here, we have a local gauge theory action where
covariantly quantized fields (see Ref. [29]) have standard,
causal commutation relations. These two findings are, of
course, not incompatible, since our fields have nontrivial

gauge variation and are therefore not directly observable.
Indeed, one can show that no local, single-field gauge-
invariant operators with two or fewer derivatives exist,
except those that are proportional to the CSP equation of
motion and therefore vanish on physical states. Though we
have not carried out the general analysis explicitly, this
trend likely continues to any finite order in derivatives, and
is consistent with the absence of gauge invariants with
fewer than h derivatives for helicity-h degrees of freedom,
even for ρ ¼ 0.
Covariant GI operators [Eq. (6.11)] in our theory, which

Lorentz transform like the operators considered in earlier
work, can be constructed at the price of introducing
nonlocality in both space and time. Moreover, these are
not natural objects to write down in vector superspace, and
likely have no physical meaning. So it is hardly surprising
that they do not have standard commutation relations.
We can, however, construct gauge-invariant operators that
are local in time (but still nonlocal in space), at the expense
of manifest Lorentz covariance. Remarkably, the operators
in this class become local in the ρ → 0 limit, and commute
at arbitrary spacelike separations even for nonzero ρ [29]!
Nonetheless, they too are somewhat artificial in vector
superspace, and may well not be particularly relevant to an
interacting theory.
Interpreted from the point of view of our free theory,

these findings offer a clue. It seems likely that no physical
role is played by operators linear in the gauge fields that are
invariant under the gauge transformations. This would
have strong precedent in non-Abelian gauge theories and
general relativity, which also have no local single-field
gauge-invariant operators (and in GR, no local gauge-
invariant operators at all). Instead, physics in those theories
is covariant under general coordinate and gauge trans-
formations. For example, the equation of motion for matter
in GR is not gauge invariant even at the linear level, and this
noninvariance reflects the covariant transformation law of
the spacetime coordinates used to describe the physics.
This is to be contrasted with QED for example, where the
simplest interactions exploit the existence of gauge-invari-
ant electric and magnetic fields, and no broader covariance
principle is needed.
Likewise, we should perhaps expect that the gauge

invariance of the CSP action should be interpreted as a
linearized version of some coordinate transformation—
perhaps one that acts on the vector superspace (or some
generalization thereof), as well as coordinate space.
Understanding consistent CSP self-interactions or cou-
plings to matter is the next important step towards finding
such a covariance principle for CSPs. It may be fruitful
to “bootstrap” up such interactions by expanding both in
coupling and in ρ, starting from familiar self-interacting
theories. We expect that the free theory formulated
in this paper will be a useful stepping stone in that
direction.
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Note added.—After this paper appeared, we learned of a
related formalism for high-spin fields on constant-curvature
spacetimes [33]. Indeed, the action (52) of Ref. [33] is also
localized on the first neighborhood of an auxiliary space,
and its flat-space limit is readily seen to be the same as the
ρ ¼ 0 limit of our action (4.1) after an integration by parts
in the auxiliary space.

APPENDIX A: DEFINITION AND EXAMPLES OF
REGULATED VECTOR-SUPERSPACE

INTEGRALS

In Sec. III, we noted that integrals of the formR
dDηδðη2 þ 1ÞFðηÞ diverge for generic smooth functions

FðηÞ [and even for simple cases, e.g. FðηÞ ¼ constant]
because the hyperboloid on which the integral is evaluated
has infinite volume. Nonetheless, these integrals can be
computed either by analytic continuation in η space (which
we take as a definition) or equivalently, up to normaliza-
tion, directly from their symmetry properties in Minkowski
space. This appendix carefully defines these measures and
presents useful results and examples. Section A 1 defines
the measure ½dDη� using analytic continuation and derives
generating functions for integrals over both δðη2 þ 1Þ and
δ0ðη2 þ 1Þ. In Sec. A 2, we explain how the same integrals
could alternately be derived (up to an overall normaliza-
tion) using symmetries and integration by parts directly in
Minkowski space, and present a simple example. As a
further illustrative example of η-space computations,
Sec. A 3 demonstrates the orthonormality of the basis
wave functions for CSPs introduced in Sec. IV B.

1. Regulated measure over vector superspace
from analytic continuation

For any smooth function FðηÞ we define η integration
over the hyperboloid η2 þ 1 ¼ 0 via analytic continuation.
Specifically,

Z
½dDη�δðη2 þ 1ÞFðηÞ≡ 2

SD−1

Z
dDη̄δðη̄2 − 1ÞFðη̄Þ;

ðA1Þ

where η̄μ ¼ ðiη0; η1;…ηD−1Þ are Wick-rotated coordinates,
Fðη̄Þ is defined by analytic continuation from real η, and
SD−1 is the surface area of a unit ðD − 1Þ-sphere, so that

with the normalization above
R ½dDη�δðη2 þ 1Þ ¼ 1.

Similarly, integrals over a δ0 are given by
Z

½dDη�δ0ðη2 þ 1ÞFðηÞ

≡ 2

SD−1

Z
dDη̄δ0ð−η̄2 þ 1ÞFðη̄Þ

¼ −
1

SD−1

Z
dDη̄δ0ðη̄2 − 1ÞFðη̄Þ; ðA2Þ

where we have used δ0ð−xÞ ¼ −δðxÞ. The above expres-
sions are clearly finite for any smooth F, since they are
integrals of smooth functions over a compact surface.
In fact, since any smooth FðηÞ ¼ ½Fði∂wÞeiη:w�w¼0, we

can rewrite the Wick-rotated integrals (A1) and (A2) as
Z

½dDη�δðη2þ 1ÞFðηÞ ¼ ½Fði∂wÞGðwÞ�w¼0

¼ ½Gði∂ηÞFðηÞ�η¼0
≡F �G; ðA3Þ

Z
½dDη�δ0ðη2 þ 1ÞFðηÞ ¼ ½Fði∂wÞG0ðwÞ�w¼0

¼ ½G0ði∂ηÞFðηÞ�η¼0
≡ F � G0

ðA4Þ
where F �G is a common shorthand for the preceding
expressions. The generating functions G and G0 are defined
via analytic continuation as

GðwÞ≡ 2

SD−1

Z
dDη̄δðη̄2 − 1Þe−iη̄:w̄jw̄¼iw0;wi

¼ Γ
�
D
2

�
ðr=2Þ−D−2

2 JD−2
2
ðrÞjr¼ ffiffiffiffiffiffi

−w2
p ; ðA5Þ

G0ðwÞ≡ 2

SD−1

Z
dDη̄δ0ðη̄2 − 1Þe−iη̄:w̄jw̄¼iw0;wi

¼ Γ
�
D
2

�
ðr=2Þ−D−4

2 JD−4
2
ðrÞjr¼ ffiffiffiffiffiffi

−w2
p : ðA6Þ

That these are built from Bessel functions is not surprising,
since the condition

R
d4η̄δðη2 þ 1Þðη2 þ 1Þe−iη:w is

equivalent to ð∂2
w − 1ÞGðwÞ ¼ 0. Using the invariance of

G under Lorentz transformations of w, we can write
GðwÞ ¼ GðrÞ with r ¼

ffiffiffiffiffiffiffiffiffi
−w2

p
; this implies d2G=dr2 þ

D−1
r dG=dr −G ¼ 0. This is precisely the D-dimensional

analogue of the Bessel equation!
For D ¼ 4 and D ¼ 3, the general formulas above

reduce to

G4dðrÞ ¼ 2J1ðrÞ=r; G0
4dðrÞ ¼ J0ðrÞ; ðA7Þ

G3dðrÞ¼ j0ðrÞ¼ sinðrÞ=r; G0
3dðrÞ¼ cosðrÞ=2: ðA8Þ
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Thus, for example, we can easily verify that in four
spacetime dimensionsZ

½d4η�δ0ðη2 þ 1ÞημηνAμν

¼
h
Aμνði∂μ

wÞði∂ν
wÞJ0

	 ffiffiffiffiffiffiffiffiffi
−w2

p 
i
w¼0

ðA9Þ
¼ Aμν½−gμνJ1ðrÞ=rþ wμwνJ2ðrÞ=r2�w¼0

¼ −Aμ
μ=2: ðA10Þ

With Eqs. (A5) and (A6) in hand, we can reexpress the
action (3.3) as

S¼
�
Gði∂ηÞ

1

2
ð∂αΨÞ2−1

4
ðη2þ1ÞðΔΨÞ2

�
η¼0

: ðA11Þ

The qualitative resemblance of our η space to superspace
(where integration in the fermonic coordinate θ can also
be reexpressed as differentiation, there owing to the
Grassmann nature of θ) is apparent. But here, because η
is bosonic, we are led to include an infinite tower of same-
statistics fields rather than a finite tower of fields with
alternating statistics.

2. Vector superspace integrals from
symmetry arguments

The regulated η-space measure defined by Eq. (A1)
respects the δ-function and integration-by-parts identitiesZ

½dDη�δðη2 þ 1Þðη2 þ 1ÞFðηÞ ¼ 0;
Z

½dDη�∂μ
ηðδðη2 þ 1ÞFðηÞÞ ¼ 0; ðA12Þ

which in turn guaranteeZ
½dDη�δ0ðη2þ1ÞFðηÞ

¼
Z

½d4η�δðη2þ1Þ1
2
ðD−2þη ·∂ηÞFðηÞ: ðA13Þ

In fact, we can essentially derive the correct measure, up to
an overall normalization, from these identities. To take a
concrete example, if we define a constant V by

V ≡
Z

½d4η�δðη2 þ 1Þ; ðA14Þ

then by symmetryZ
½d4η�δ0ðη2þ1Þημην ¼

Z
½d4η�δðη2þ1Þ

�
1þ1

2
η ·∂η

�
ημην

¼ 2

Z
½d4η�δðη2þ1Þημην

¼ 1

2

Z
½d4η�δðη2þ1Þη2gμν

¼ 1

2
gμν

Z
½d4η�δðη2þ1Þð−1Þ

¼−
1

2
gμνV; ðA15Þ

which is readily seen to agree with the result of Eq. (A10)
when we adopt the normalization V ¼ 1.
The style of argument in Eq. (A15) is readily generalized

to relate the rank-n tensor
R ½d4η�δðη2 þ 1Þηn to

R ½d4η�
δðη2 þ 1Þηn−2 and similarly for the integrals over δ0.
The results of this argument precisely reproduce what is
expected from a series expansion of Eqs. (A3)–(A6).

3. Orthonormality of basis wave functions

As an example of vector-superspace computations, we
explicitly compute the orthonormality relation

hψhðkÞjψh0 ðkÞi≡
Z

½d4η�δ0ðη2 þ 1Þψhðη; kÞ�ψh0 ðη; kÞ

¼ δh;h0 ðA16Þ
for the basis wave functions

ψþhðη; kÞ ¼ ðη · ϵþÞheiρη·q
ψ−hðη; kÞ ¼ ðη · ϵ−Þjhjeiρη·q: ðA17Þ

Upon analytic continuation, we can choose a coordinate
system with

ημE ≡ ðη⊥ cos θ; η⊥ sin θ; ~η cosϕ; ~η sinϕÞ;
where η2⊥ ¼ η · ϵþη · ϵ− labels the magnitude of ηE in the
plane spanned by ϵ�. In this coordinate system, we can
write η · ϵþ ¼ η⊥eiθ. Using ½d4η� ¼ 1

π2
d4ηE, we can write

the integral measure as 1
π2
η⊥dη⊥ ~ηd~ηdθdϕ and easily

evaluate Eq. (A16) as

Z
½d4η�δ0ðη2 þ 1Þψhðη; kÞ�ψh0 ðη; kÞ ¼ −

1

π2

Z
η⊥dη⊥ ~ηd~ηdθdϕδ0ðη2⊥ þ ~η2 − 1Þηjhjþjh0j

⊥ eðh0−hÞθ

¼ −δh;h0
1

π2

Z
η⊥dη⊥ ~ηd~ηdθdϕδ0ðη2⊥ þ ~η2 − 1Þη2h⊥

¼ −δh;h0
Z

∞

0

du
Z

∞

0

δ0ðuþ v − 1Þuh

¼ δh;h0
Z

∞

0

duδðu − 1Þuh ¼ δh;h0 : ðA18Þ
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Similar calculations in vector superspace are carried out in
the same manner.

APPENDIX B: DIAGONALIZING THE
VECTOR-SUPERSPACE ACTION

WITHOUT CONSTRAINTS

The results of the preceding appendix make clear that,
if we expand Ψ about η ¼ 0 as Ψðη; xÞ ¼ ψ ð0ÞðxÞ þ
ημψ ð1Þ

μ ðxÞ þ ημηνψ ð2Þ
μν ðxÞ þ � � �, with the tensor fields ψ ðnÞ

unconstrained, the action (A11) will mix ψ ðnÞ with
Trtψ ðnþ2tÞ for all integer t, even for ρ ¼ 0.
This rank mixing is related to the fact that we defined our

polynomials via Taylor expansion about η ¼ 0, but in fact
the action is evaluated at nonzero η. It can be simply
removed by a (nonunique) change of variables. We have
shown already in Sec. III C that an appropriate decom-
position of Ψ in terms of the tensor fields (3.15) yields a
rank-diagonal action, provided we first partially fix gauge
so that the tensor fields ϕðnÞ are double traceless. It is,
however, possible to construct tensor fields from Ψ such
that the action is both simple and rank diagonal before any
gauge fixing.
Concretely, we can introduce unconstrained tensor fields

AðnÞðxÞ ¼
X∞
t¼0

ð−1Þtð2nþD − 4Þ!!ð2tþ nÞ!
2n=2þtð2nþ 2tþD − 4Þ!!t!n! Tr

tψ ðnþ2tÞðxÞ

ðB1Þ

¼
X∞
t¼0

ð−1Þtð2nþD − 4Þ!!ð∂2
ηÞt∂μ1

η …∂μn
η

2tð2nþ 2tþD − 4Þ!!t!n!
×Ψðη; xÞjη¼0 ðB2Þ

in D spacetime dimensions. For D ¼ 4, these decomposi-
tions simplify to

AðnÞ
4d ðxÞ ¼

X∞
t¼0

ð−∂2
η=4Þt∂μ1

η …∂μn
η

2n=2t!ðtþ nÞ! Ψðη; xÞjη¼0; ðB3Þ

which is precisely the Taylor expansion of ½Jnð
ffiffiffiffiffi
∂2
η

q
ÞΨ

ðη; xÞ�η¼0 up to the normalization and additional Lorentz
index structure. In terms of these new fields, the ρ ¼ 0
action (3.11) becomes rank diagonal

S ¼
X
n

Sn ðB4Þ

where (for D ¼ 4)

Sn ¼ ð−1Þn
Z

d4x
1

2
ð∂αhAðnÞiÞ2 − 1

8
ð∂αhAðnÞ0iÞ2

−
n
2
h∂ · AðnÞi2; ðB5Þ

where A0 ¼ TrA and hAi denotes the “trace subtraction” of
A, i.e. the unique fully symmetric, traceless rank-n tensor
built from only A itself. For example, in 3þ 1 dimensions
we have hAiμν ≡ Aμν − 1

4
gμνA0, hAiμνρ ≡ Aμνρ − 1

6
ðgμνA0ρ þ

gρμA0ν þ gνρA0μÞ and so on, with the general form

hXi≡ X þ
Xn=2
t¼1

ð−1Þtðn − tÞ!
2tn!

ηðtÞ ∘ TrtX: ðB6Þ

Appropriate decompositions of εðη; xÞ and χðη; xÞ into
components εðnÞ and χðnÞ relates the η-space gauge varia-
tions (3.9) to component gauge variations

δAðnÞ ¼ ∂ ∘ εðn−1Þ−g ∘ ð∂ · εðn−1ÞÞþg ∘ g ∘ χðn−4Þ; ðB7Þ

which are easily seen to leave the action (B5) invariant.
The gauge-invariant equation of motion is

−□hAi þ 1

2sðs − 1Þ η ∘ □hA0i þ ∂ ∘ h∂ · Ai ¼ 0: ðB8Þ

This is readily seen by using the tracelessness of h…i,
which implies hδAi:hAi ¼ δA:hAi (since hδAi − δA is
proportional to the metric, and hence annihilates hAi upon
contraction), and similarly for the other two terms in the
variation of the action.
As was noted earlier, the gauge transformation (B7) is

redundant because any transformation generated by χ can
also be generated by ϵ ¼ g ∘ ξ with ∂ · ξ ¼ −χ. In other
words, we can parametrize an arbitrary gauge variation
either by ϵ alone (with χ ¼ 0) or by a traceless ϵ and an
arbitrary χ.
We can again check that we have only two massless

propagating degrees of freedom permitted by this
system of equations subject to the gauge redundancies
generated by hϵi. A double traceless rank-n field has
1
6
½ðnþ3Þðnþ2Þðnþ1Þ−ðn−1Þðn−2Þðn−3Þ� independent
components. The constraint h∂ · Ai ¼ 0 and the remaining
gauge parameters hϵi both have n

6
½ðnþ 2Þðnþ 1Þ−

ðn − 1Þðn − 2Þ� independent components. The number of
field components minus the number of constraints and
gauge parameters is therefore 2, as we would expect for a
massless helicity-n degree of freedom.
This action can be rewritten in the Schwinger-Fronsdal

form by first using the χ gauge invariance to fix a double-
traceless gauge for AðnÞ, then rewriting the action in terms
of a trace-reversed field ϕðnÞ ≡ hAi − 1

2ðs−1Þ g ∘ hA0i (this is
analogous to the gauge-fixing used in Sec. III C), which is
readily seen to transform in the usual way under the
remaining gauge variations, parametrized by traceless ϵ.
Incidentally, using the relation

h∂:Ti¼ ∂:hTiþ 1

2n

�
∂ ∘ hT 0i− 1

n−1
g ∘ ∂:hT 0i

�
; ðB9Þ
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the equation of motion (B8) (the variation of the action with
respect to AðnÞ, not ϕðnÞ) can be written as

ð□ − ∂ ∘ ∂ ·þ∂2 ∘ g·ÞϕðnÞ ¼ 0; ðB10Þ

which is precisely the Fronsdal equation for ϕðnÞ.
In the AðnÞ language, Fronsdal’s double-trace condition

is most naturally viewed as a partial gauge fixing. The
restriction to traceless ϵ is replaced by the statement that
trace terms in ϵ either have trivial action on the fields AðnÞ
or violate the double-trace condition. It is, of course, well
known that trace conditions can be replaced by projections

in the action, which is essentially what we have done here,
but in a convenient basis for making contact with the
vector-superspace action.
For nonzero ρ, the action (B5) changes only by the

substitution

h∂:Ai →
�
∂:AðnÞ þ ρffiffiffi

2
p

n

�
Aðn−1Þ þ 1

2
Aðnþ1Þ0

��
;

with a corresponding modification to both the gauge
transformation (B7) and the equation of motion (B8).
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