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We study, for SUð2Þ Yang-Mills theories discretized on a lattice, a nonlocal topological order parameter,
the center flux z. We show that i) well-defined topological sectors classified by π1ðSOð3ÞÞ ¼ Z2 can only
exist in the ordered phase of z; ii) depending on the dimension 2 ≤ d ≤ 4 and action chosen, the center flux
exhibits a critical behavior sharing striking features with the Kosterlitz-Thouless type of transitions,
although belonging to a novel universality class; and iii) such critical behavior does not depend on the
temperature T. Yang-Mills theories can thus exist in two different continuum phases, characterized by an
either topologically ordered or disordered vacuum; this reminds us of a quantum phase transition, albeit
controlled by the choice of symmetries and not by a physical parameter.

DOI: 10.1103/PhysRevD.91.025021 PACS numbers: 11.15.Ha, 12.38.Aw

I. INTRODUCTION

Of all ideas applied to the confinement problem in non-
Abelian Yang-Mills theories [1,2], the most popular still
involve topological degrees of freedom of some sort
[3–11]. Among these, center vortices [12–14] have enjoyed
broad attention, in particular, in the lattice literature.
Although most of the effort was put in dealing with gauge
fixed schemes,1 some investigations actually attempted to
tackle the problem in a gauge invariant way [17–23] and are
therefore directly related to ’t Hooft’s original idea.
SUðNÞ non-Abelian gauge field theories transform

under the group’s adjoint representation, SUðNÞ=ZN .
Such a group is not simply connected, with a nontrivial
first homotopy class:

π1

�
SUðNÞ
ZN

�
¼ ZN; ð1Þ

the center of SUðNÞ. Following Ref. [13], let us consider
the Euclidean Yang-Mills theory on a d-dimensional torus,2

i.e., with all directions compactified, and choose one of the
d Euclidean directions as time. If large gauge transforma-
tions classified by Eq. (1) induce a superselection rule, we
can decompose the physical Hilbert space H of gauge
invariant states [25] in subspaces H~k; ~m labeled by topo-
logical indices, the ZN electric and magnetic fluxes
(vortices) ~k ¼ ðk1;…; kntÞ and ~m ¼ ðm1…; mnsÞ [13]:

H ¼ ⨁
N−1

ki;mj¼0

H~k; ~m: ð2Þ

Here, nt ¼ d − 1 counts the space-time, ns ¼ ðd−1Þðd−2Þ
2

counts the space-space planes, and ki; mi ∈ ZN . As ’t
Hooft pointed out, a sufficient condition for confinement
is realized if the low-temperature phase of pure Yang-Mills
theories corresponds to a superposition of all (electric)
sectors, while above the deconfinement transition, such
ZN symmetry must get broken to the trivial topological
sector [12,13].3

One can check such a scenario by calculating, e.g., in
lattice simulations, how the free energy forZN flux creation

Fð~kÞ ¼ ΔU~k − TΔS~k ¼ − log
Zð~kÞ
Zð~0Þ

ð3Þ

changes with the temperature T across the deconfinement
transition. Here, ΔU~k is the energy (action) cost to generate

the ~kth (electric) vortex from the vacuum, ΔS~k is the

corresponding entropy change, and Zð~kÞ is the partition

function restricted to the topological sector labeled by ~k.4

For the one-vortex sector, F is nothing but the free energy
of a maximal ’t Hooft loop,5 giving a confinement criterion
dual to Wilson’s: in the thermodynamic limit, F should
vanish in the confined phase, while it should diverge as
~σðTÞL2 above the deconfinement temperature Tc, where
~σðTÞ is the dual string tension [2,13,17–21,27]. In other
words, a perimeter law for the Wilson loop implies an area
law for the ’t Hooft loop and vice versa [12,13].
Of course, when considering the theory at T ¼ 0, the

distinction between electric and magnetic fluxes is artifi-

cial. In this case all the N
dðd−1Þ

2 topological sectors must be

1See, e.g., Refs. [15,16] for early results and Ref. [2], Chaps. 6
and 7, for a comprehensive review. The goal here is to isolate
some relevant degrees of freedom, usually called P vortices,
assumed to be related to ’t Hooft’s topological excitations; we
will comment on this in Sec. IV.

2See, e.g., Ref. [24] for an extensive introduction to the
subject.

3Magnetic sectors, on the other hand, can remain unbroken and
be responsible for screening effects.

4In the deconfined phase, all electric sectors must be sup-
pressed relatively to the trivial one, while in the confined phase,
all ~k and ~m should be equally probable.

5For a representation of the ’t Hooft loop in the continuum, see
Ref. [26]
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taken into account when establishing whether ZN sym-
metry is unbroken, i.e., whether the vacuum jΨ0i is indeed
a symmetric superposition of states belonging to H~k; ~m

6:

jΨ0i ¼
X
~k; ~m

jΨ~k; ~m
0 i: ð4Þ

In the following, wewill use either definition, depending on
whether we are considering the T ¼ 0 or the T > 0 case.
The above ideas generalize naturally to the lattice

discretization of Yang-Mills theories; the specific action
used plays, however, a key role in their actual implemen-
tation. If one wishes to preserve the symmetries of the
continuum theory, the natural choice should fall on a
discretization transforming under the “correct” group
SUðNÞ=ZN . One possibility among many (see, e.g.,
Ref. [28]) is given by the adjoint Wilson action with
periodic boundary conditions [27],

SA ¼ βA
X
P

�
1 −

1

N2 − 1
TrAUP

�
; ð5Þ

where UP is the standard plaquette. For N ¼ 2, it was
indeed shown in Refs. [21,22,29] that for simulations based
on Eq. (5) the following are true:

(i) Z2 topological sectors are well defined in the
continuum limit, both below and above Tc; i.e.,
the decomposition in Eq. (2) holds.

(ii) The partition function ZA ¼ R
exp ð−SAÞ dynami-

cally includes all sectors.
(iii) In the deconfined phase, all nontrivial sectors are

suppressed, while as T → 0, all sectors are equiv-
alent; i.e., the vacuum can be described by Eq. (4).

The main difficulty of such a setup lies of course in the
implementation of an algorithm capable of tunneling
ergodically among all vortex topologies. Simulations are
therefore quite demanding: reaching enough statistics to
check whether the symmetry among sectors postulated in
Eq. (2) remains unbroken from T ¼ 0 all the way up to Tc
is difficult; the evidence given in Refs. [21,22] seems to
point to a more complicated picture.
Alternatively, universality [30] should allow the use of

the fundamental Wilson action,

SF ¼ βF
X
P

�
1 −

1

N
ℜ½TrFUP�

�
; ð6Þ

which is the quenched (mass → ∞) limit of the physical
action coupling Yang-Mills theories to fundamental fer-
mions, e.g., full QCD. In this case, however, some care

must be taken in defining a SUðNÞ=ZN invariant theory.
Indeed, in the presence of fundamental fermions, the
topological classification of Eq. (1) breaks down.7 The
extension to full QCD has been indeed one of the main
obstacles in establishing the ’t Hooft vortex picture as a
viable model for confinement. We will comment on this in
Sec. IV; for the moment, let us note that one can still
introduce vortex topological sectors “statically” by simply
imposing twisted boundary conditions [19,20,27].8 We
should then be able to reconstruct the “full” partition
function ZF by taking the weighted sum of all partition

functions ZFð~k; ~mÞ ¼ R
exp ð−SFð~k; ~mÞÞ with boundary

conditions corresponding to the sector labeled by ~k and

~m [19,20]. Since each ZFð~k; ~mÞ must be determined via
independent simulations, their relative weights can only be
calculated through indirect means.9 Still, such simulations
are computationally more efficient than in the ZA case
and have therefore been the method of choice in most
investigations of Eq. (3) [17–20,23].
Investigations using Eq. (6) rely on the assumption that

fixing the boundary conditions is enough to ensure that the
Hilbert-space decomposition defined in Eq. (2) works.
However, it is well known that upon discretization of
Yang-Mills theories ZN magnetic monopoles are generated
at strong coupling [28,35–39], causing bulk phenomena in
the βF − βA phase diagram. Now, since the ZN fluxes
defining our topological sectors live on the coset of a two
dimensional plane, they have a simple geometrical inter-
pretation: they are described in d ¼ 4 by a closed world
sheet, i.e., they are stringlike objects, and in d ¼ 3 by a
closed worldline, i.e., particlelike. On the other hand,
topological lattice artifacts as the above-mentioned ZN
monopoles are themselves sources of ZN flux: in d ¼ 4,
they will be particlelike objects, their closed worldlines
bounding open ZN flux world sheets, while in d ¼ 3, they
will be instantonlike objects and will be end points of open
ZN flux lines [27,35–37,39]. ZN monopoles are therefore
in one-to-one correspondence with open center vortices; in
other words, universality between the fundamental and
adjoint actions can only be invoked when just closed, i.e.,
truly topological, ZN vortices winding around the com-
pactified directions can form. Notice how in d ¼ 2, where
no ZN monopoles can exist, ZN fluxes are instanton-type
objects. The distinction between open and closed vortices is
in this case blurred, but in a nonergodic setup it can
eventually be made through the flux allowed by the
boundary conditions chosen.

6Actually, in virtue of cubic symmetry, one can regard the
subspaces H~k; ~m with indices equal up to a permutation as
equivalent and recombine them in Eq. (4) into weights given
by their combinatorial multiplicity [17–19].

7See, e.g., Ref. [31] for a recent discussion.
8Such topological boundary conditions, relevant, e.g., in inves-

tigations of large N reduction [24,32,33], allow adjoint fermions
but no fundamental ones. Flavor twisted boundary conditions, on
the other hand, are well established in full QCD [34].

9See, e.g., Ref. [23], Chap. 3, for a detailed review of the
methods involved.
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The above discussion has a straightforward conse-
quence. If one could “measure” whether open ZN vortices
are absent in a given discretization, i.e., whether only
topological vortices can be generated from the vacuum,
there would be no need to monitor ZN monopoles to
establish universality between SA and SF in the first place,
since these must be absent anyway. This would have two
advantages. First, such a criterion could be generalized to
d ¼ 2. Second, the absence of lattice artifacts, whether for
SF, for SA, or for both, would get “promoted” to a necessary
condition for the superselection rule of Eq. (2), and hence
for the conjectured vacuum symmetry of Eq. (4), to be
realized. Indeed, consider states belonging to distinct
topological sectors labeled by the indices k, k0 ∈ ZN .
The presence of open vortices immediately blurs the
distinction among them; does the state pictured at the
top of Fig. 1 belong to the kth sector, resulting from
the superposition of k closed vortices with modðk0 − kÞN
open ones (middle picture), or does it belong to the k0th
sector, coming from the superposition of k0 closed vortices
with modðk − k0ÞN open ones winding in the other direction
(bottom picture)? Clearly, there is no way to distinguish
between them and assign the configuration to ZðkÞ rather
than Zðk0Þ in Eq. (3). In other words, a Wilson loop will
never know if the vortex piercing it to generate the area law
for its expectation value [12,13] is open or closed; a
confinement criterion based on the vortex free energy F
and hence on the ’t Hooft loop can only make sense if open
vortices are absent at any temperature.
In this paper, we will investigate a topological order

parameter, the center flux z, for the transition between
phases characterized by the presence of open or closed Z2

vortices in SUð2Þ Yang-Mills theories at T ¼ 0, discretized
through standard plaquette actions. We will show that,

depending on the action, the dimensions, and the volume,
the theory can be either in a topologically ordered or
disordered phase; such a distinction will persist at finite
T. In the disordered phase, open vortices dominate the
vacuum, and Z2 topological sectors are ill defined; the
Hilbert space of Yang-Mills theories cannot be classified by
a superselection as in Eq. (2). Such a disordered phase is
compatible with the presence of fundamental fermions; the
ordered phase, on the other hand, should be the correct one
when coupling SUð2Þ with adjoint fermions, a popular
candidate for infrared conformal gauge theories.
Besides this (perhaps lengthy) introduction, the rest of

the paper is organized as follows. Section II contains details
on the lattice setup, observables, and simulation techniques.
In Sec. III, the main results will be presented. Section IV
contains the conclusions and outlook. Preliminary results of
this investigations have been presented in Refs. [40,41].

II. SETUP

A. Action and observables

We will consider the SUð2Þ mixed fundamental-adjoint
Wilson action with periodic boundary conditions in
2 ≤ d ≤ 4 Euclidean dimensions, as given in Eqs. (5)
and (6),

S ¼ βA
X
P

�
1 −

1

3
TrAUP

�
þ βF

X
P

�
1 −

1

2
TrFUP

�
1

a4−dg2
¼ 1

4
βF þ 2

3
βA; ð7Þ

where a is the (dimensionful) lattice spacing and UP
denotes the 1 × 1 plaquette; all results can be easily
generalized to different boundary conditions. For higher
groups SUðNÞ, the general picture should not change
dramatically [29,42–46]. However, other representations
than just the fundamental and adjoint are allowed. Many
details might therefore depend on N; direct investigations
of at least the SUð3Þ case would be welcome.
In d ≥ 3, Z2 monopoles can be defined for each

elementary cube c through the product,

σc ¼
Y
P∈∂c

signðTrFUPÞ; ð8Þ

over all plaquettes UP belonging to its surface ∂c
[27–29,38,47]. Notice how rescaling any link by a Z2

factor will leave σc unchanged.
The Z2 monopole density should vanish in the con-

tinuum limit g2 → 0. This happens, however, in different
ways, depending on the dimensions d or the direction along
which such a limit is taken in the βF − βA plane, and has
been the subject of intense investigations in the pioneering
years of lattice gauge theories [38,42–46,48–54]. For the
SUð2Þ − SOð3Þ case considered here, the resulting phase

mod(k’−k)N

k k

k

k’

k’

mod(k−k’)N
mod(k−k’)N

FIG. 1. Illustration of the ambiguity in labeling the ZN
topological sectors in the presence of open vortices. Should
the given configuration (top) be counted to the kth (middle) or to
the k0th (bottom) sector?
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diagrams in d ¼ 3 and 4 are sketched in Figs. 2 and 3, and
similar ones have been established for N ≥ 3; see, e.g.,
Refs. [42–46]. Continuous lines indicate bulk transitions
[38,49,50,52], dashed lines indicate the roughening tran-
sition [48], and dotted lines indicate the crossover regions
associated with Z2 monopoles [38,52]. The vertical bulk
transition line coming down form βA ¼ ∞ corresponds to
the underlying Z2 gauge theory: in d ¼ 3, it ends at a finite
point [52–54], while in d ¼ 4, it joins the bulk transition
line associated with Z2 monopoles [38,49,50]. From the
endpoint of the latter, a crossover region starts, extending
beyond the βF axis. In d ¼ 2, Z2 monopoles are of course
absent. Furthermore, the Z2 gauge theory has no phase
transition; apart from the roughening transition [48], the
corresponding phase diagram should therefore be free of
any bulk effects, including crossovers.
From Fig. 3, it is obvious that two distinct continuum

limits in d ¼ 4 exist, depending if g2 → 0 in Eq. (7) is taken
within phase I or II. Phase II at fixed twist has been shown
in Refs. [27,29] to be equivalent to a positive plaquette
model [14,55,56] with fixed twisted boundary conditions.
Although such a model and the fundamental Wilson action
seem to describe the same physics, the two phases are
always separated by a bulk transition line.10 What is thus
the difference, if any, between them?
A first hint toward an explanation to this (long neglected)

puzzle is given by the results of Refs. [21,22,29,47,57–62]:
in the continuum limit, the d ¼ 4 adjoint theory (βF ≡ 0),
which lies precisely within phase II, possesses well-defined

Z2 topological sectors, i.e., no open vortices, and the
Hilbert-space decomposition defined in Eq. (2) works.
On the other hand, one can easily check that in phase I,
across all crossovers, the Z2 monopole density vanishes
quite slowly as g2 → 0; their persistence in the weak
coupling phase should reflect itself in the presence of open
Z2 vortices, possibly spoiling Eq. (2). Could the difference
between phases I and II lie in whether such a superselection
rule is indeed realized for the Hilbert space of Yang-Mills
theories? To find out, we can start from the twist operator,
which “counts” the Z2 vortices piercing all parallel planes
for a fixed choice of μ-ν [13,27]:

zμν ¼
1

Ld−2

X
ŷ⊥μν-plane

Y
x̂∈μν-plane

signðTrFUμνðx̂; ŷÞÞ: ð9Þ

Uμν and x̂, respectively, denote a 1 × 1 plaquette and point
lying in the μ-ν plane, while ŷ denotes a point on its coset,
which is obviously empty in d ¼ 2; only a single plane
contributes to the sum in this case. Notice how zμν, like σc,
is unaffected by any multiplication of links by a center
element; i.e., it is insensitive to the spurious Z2 gauge
degrees of freedom.
If topological sectors are well defined, all parallel planes

will contribute with the same sign to the sum in Eq. (9). For
any fixed μ and ν, zμν can thus only take the values �1,
depending on the boundary conditions chosen.11 For
example, for the periodic boundary conditions considered

Fβ

β
A

3d SU(2)

Z   gauge theory2

FIG. 2. Phase diagram of the fundamental-adjoint plane for
d ¼ 3. Continuous lines indicate bulk transitions, dashed lines
indicate the roughening transition, and dotted lines indicate the
crossover regions associated with Z2 monopoles. Similar dia-
grams hold for higher N.

FIG. 3. Phase diagram of the fundamental-adjoint plane for
d ¼ 4. Continuous lines indicate bulk transitions, dashed lines
indicate the roughening transition, and dotted lines indicate the
crossover regions associated with Z2 monopoles. Similar dia-
grams hold for higher N.

10The authors of Ref. [27] also proved that the first-order line
separating the two phases is just a finite volume effect: at high
enough volume, phases I and II will be always separated by a
second-order line.

11Only for βF ¼ 0, i.e., along the βA axis, the zμν are allowed to
tunnel among different topological sectors, provided that an
ergodic algorithm capable of overcoming the large barriers
among them is used. In this case, the zμν can take both values
�1 [21,62].
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in this paper, the topological sector must always be trivial:
zμν ≡ 1∀ μ; ν. When, however, topological sectors are ill
defined, the contributions to the sum in Eq. (9) can change
from plane to plane; in particular, if open Z2 vortices pierce
the planes randomly, all zμν will average to zero. To make
such a statement quantitative and characterize how the
transition from the disordered to the ordered regime takes
place, we define a (nonlocal) order parameter, the center
flux z, such that its expectation value hzi≡ 1 if, whatever
the boundary conditions, vortex topology takes the correct
value expected from the superselection rule, while hzi≡ 0
when Z2 fluxes are maximally randomized. For d ≥ 3,

z ¼ 2

dðd − 1Þ
Xd
μ>ν¼1

jzμνj; ð10Þ

while for d ¼ 2, since jz12j≡ 1, we will define

z ¼ 1 − jz12 − hz12ij: ð11Þ
Notice that the latter definition will only work as long as
βF ≠ 0, i.e., when the d ¼ 2 theory cannot tunnel among
topological sectors.12 In the following, we will investigate,
either analytically (in d ¼ 2) or via Monte Carlo simu-
lations (for d ≥ 3), the behavior of the center flux and its
susceptibility13:

χz ¼ Ldðz − hziÞ2: ð12Þ

B. Algorithm

Simulations for βA ¼ 0, i.e., along the βF axis, have been
performed using a standard heat-bath algorithm followed
by microcanonical steps. Although this cannot be extended
to βA ≠ 0, as long as also βF ≠ 0, one can use the biased
Metropolis þ microcanonical algorithm introduced in
Refs. [63,64].14 The lookup tables for the pseudo-heat-
bath probability need to be fixed beforehand; sizes between
32 × 32 and 64 × 64 were found to be sufficient [63,64].
As long as βF ≫ βA, the algorithm is for all practical

purposes just as efficient as a heat bath, as the amount of
accepted proposals stays well above 95%. On the other
hand, whenever βF ≪ βA, the rejected pseudo-heat-bath
and microcanonical updates increase considerably. This
becomes a real issue when simulating around the peaks of
the susceptibility Eq. (12), where autocorrelations for z and
χz become quite large.15 One can try to combat such critical
slowing down,16 unavoidable when dealing with any phase
transition, by increasing the number of microcanonical
steps per biased Metropolis update. Unfortunately, this
turns out to be less efficient than for the βF ≳ βA case or for
the heat-bath algorithm; only with runs of order ∼108
sweeps does one eventually reach a good signal-to-noise
ratio for χz. Since the d ¼ 3 case will anyway turn out to be
the most interesting from the point of view of the critical
behavior, while in d ¼ 2 analytic results allow us to
otherwise gain control of the problem, we have limited a
precise finite size scaling (FSS) [67] analysis to determine
the properties of the transition to the βA ¼ 0, d ¼ 3 case.
Still, we have performed simulations for a whole range of
parameters and lattice sizes L in 2 ≤ d ≤ 4, trying to
explore the whole βF − βA plane. We have nevertheless
avoided phase II of the d ¼ 4 phase diagram in Fig. 3, since
it would have called for completely different simulation
techniques; see Refs. [21,22,29,47,57–62] for results in this
parameter region.

III. RESULTS

A. d ¼ 2

The SUð2Þ theory in d ¼ 2 offers the chance to tackle
our problem analytically [68,69]. The probability distribu-
tion for the mixed action in Eq. (7) reads

dρðθ; βF; βAÞ ∝ dθsin2θeβF cos θþ4
3
βAcos2θ ð13Þ

so that the probability for a plaquette to have negative trace
is simply given by

pðβF; βAÞ ¼
R
π
π
2
dθsin2θeβF cos θþ4

3
βAcos2θR

π
0 dθsin2θeβF cos θþ4

3
βAcos2θ

: ð14Þ

The limiting cases βF;A → 0;∞ can be carried out explic-
itly, giving

pðβF ≡ 0; βAÞ ¼
1

2

pðβF ≡∞; βAÞ ¼ 0 ð15Þ

12The definition of the center flux in d ¼ 2 might also be
adjusted to the pure adjoint theory as long as no ergodic algorithm
is available in the ordered phase. The issue is similar to that
encountered for, e.g., an Ising model when simulating the
low-temperature phase with a cluster algorithm.

13Since z is nonlocal, one could argue that the volume factor
should be substituted by the number of planes dðd−1Þ

2
Ld−2. This

would, however, just change the critical exponent for χz from
Lγ → Lγ−2, which could be reabsorbed in the definition of the
hyperscaling relations. Moreover, for each plane up to L2,
vortices can form, summing up again to Ld. To underline the
analogies of our results with the Kosterlitz-Thouless literature, we
will thus stick to the standard definition. Anyhow, critical
behaviors are controlled by a diverging correlation length ξ,
which remains unaffected by any rescaling of χz.14See, e.g., Ref. [65] for a recent application. A similar
algorithm had been proposed in Ref. [66] for SUð3Þ.

15Other observables remain, on the other hand, mostly un-
affected.

16The critical slowing down appears, of course, also in the limit
g2 → 0, i.e., for large βF and/or βA.
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pðβF; βA ≡ 0Þ ¼ 1

2

�
1 −

L1ðβFÞ
I1ðβFÞ

�

pðβF; βA ≡∞Þ ¼ 1

1þ e2βF
; ð16Þ

where L and I denote the modified Struve and Bessel
functions, respectively [70].
For fixed volume L2, the order parameter z and its

susceptibility χz are given by [71]17

hzi ¼ e−4L
2pðβF;βAÞ

hχzi ¼ L2½e−4L2pðβF;βAÞ − e−8L
2pðβF;βAÞ�: ð17Þ

The above expressions are plotted, for βA ¼ 0, in Figs. 4
and 5; a similar behavior extends to the whole ðβF; βAÞ
plane, see Fig. 6, where the center flux is plotted for
fixed L ¼ 128.
We can clearly distinguish a low βF, “strong” coupling

regime, in which hzi ¼ 0 and the topology is ill defined,
from a high βF, “weak” coupling one, in which hzi ¼ 1, the
correct value it should have if the vacuum satisfies Eq. (4).
For higher L, the transition “front” simply moves to the
right, i.e., higher βF; see Fig. 7, in which the curves along
which the susceptibility χz peaks are plotted for L ¼ 64,
256, 1024, and 4096.
As usual in a FSS analysis, we can determine the

properties of the transition by defining the pseudocritical
couplings ðβcFðLÞ; βcAðLÞÞ at finite L as those for which the

correlation length ξ≃ L [67]. These can be identified
through the peaks of the susceptibility χz (see Fig. 7);
since pðβF; βAÞ has no stationary points, from Eq. (17), one
simply needs to solve

pðβcF; βcAÞ ¼
log 2
4L2

: ð18Þ

Substituting the above value into Eq. (17), we get for the
scaling of the center flux and its susceptibility with L

zðβcF; βcAÞ ¼
1

2

χzðβcF; βcAÞ ¼
L2

4
: ð19Þ
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FIG. 4 (color online). Order parameter hzi in d ¼ 2 along βF for
L ¼ 512, 1024, 2048, and 4096.
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FIG. 5 (color online). Susceptibility χz in d ¼ 2 along βF for
L ¼ 512, 1024, 2048, and 4096.

FIG. 6 (color online). Order parameter hzi in d ¼ 2 for fixed
L ¼ 128.

17We are indebted to F. Bursa for precious correspondence on
the derivation of the above expressions for z and χz. Just to be on
the safe side, we have also cross-checked all analytic results with
Monte Carlo simulations up to L ¼ 1024; these become, of
course, inefficient as βA gets large.
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As for the scaling of the pseudocritical points with L,
from Eqs. (15), we have that along lines parallel to the βA
axis hzi ¼ 0. Otherwise, we can fix a line βA ¼ fðβFÞ and
solve

pðβF; fðβFÞÞ ¼
log 2
4L2

ð20Þ

for βF. In particular, from Eq. (16) and using the asymptotic
expansion [70]

pðβF; βA ≡ 0Þ ∼
ffiffiffiffiffiffiffiffi
2βF
π

r
e−βF

�
1þO

�
1

βF

��
; ð21Þ

we get for the two limiting cases βA → 0;∞,

βcFðLÞjβA¼0 ∼ logL2 þ 1

2
log logL2 þOð1Þ ð22Þ

βcFðLÞjβA¼∞ ∼
1

2
logL2 þOð1Þ; ð23Þ

shifting Eqs. (17) by Eqs. (22) and (23), hzi and hχzi will
fall on top of each other.
Inverting Eqs. (22) and (23), one can extract the critical

behavior of the correlation length ξ ∼ L for βA → 0;∞,
where the prefactors come from the Oð1Þ terms:

ξjβA¼0 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πlog22
2βF

4

s
· e

1
2
βF ð24Þ

ξjβA¼∞ ∼
ffiffiffiffiffiffiffiffiffiffi
log 2
4

r
· eβF : ð25Þ

Similar expressions will hold for any direction βA ¼ fðβFÞ
along which the continuum limit βF → ∞ is taken.18 At
T > 0, one can simply substitute L2 → Ls · Lt in Eqs. (18),
(19), (22), and (23). The scaling behavior remains thus, up
to a factor, unchanged when taking the thermodynamic
limit Ls → ∞; the critical behavior will persist for any
fixed Lt, i.e., at any temperature.
Compare now the above scaling with the critical behav-

ior of the Kosterlitz-Thouless universality class [72–74] as
a function of the reduced coupling βred:

ξKT ∼ KeAβ
ν
red ð26Þ

β−1red ¼ jβ−1 − β−1c j ∝ jT − Tcj: ð27Þ

Albeit with a different critical exponent, ν ¼ 1 and
ν ¼ 1=2, respectively, both cases show essential scaling;
i.e., the correlation length diverges exponentially as one
approaches the critical coupling, which in our case is
βcF ¼ ∞. Mimicking now a well-known argument [73,74],
we can give a simple explanation for the behavior found in
Eqs. (24) and (25). At weak coupling, the free energy cost
to change the sign of a plaquette is f ∼ 2βF; the density of
negative plaquettes will thus be controlled by a Boltzmann
factor ρ ∼ exp ð−fÞ. On the other hand, the possible
positions for this sign flip will scale like L2, and the
balance between free energy and entropy gives
L ∼ ρ−1=2 ¼ expðβfÞ≃ ξ.19 Up to the power correction
for the βA ¼ 0 case, Eq. (24), this simple argument works
quite well, contrary to the XY model, in which it cannot
explain renormalization effects leading to the nontrivial
critical exponent ν ¼ 1=2. Moreover, since the minimal
distance among vortices can be reliably estimated with that
along a plane intersecting them, such a picture should
(roughly) hold in higher dimensions as well.
We could in principle explore the similarities with the

Kosterlitz-Thouless transitions further. Although, as far as
we know, for the XY model, no local order parameter is
available, one can couple the theory to an external magnetic
field h and study the analytical continuation of the partition
function Zðβ; hÞ to the complex plane. (Hyper)scaling
relations will then hold among the critical exponents of
ξ, of the magnetic susceptibility χh ∼ ξ2−ηlog−2rξ, of the
specific heat Cs, and of the edge of the Lee-Yang zeroes
[72]. Wewill avoid such a thorough analysis in our case, for
which a dedicated paper would be needed. Let us, however,
just briefly comment on two points. First, from Eq. (13), we
can explicitly calculate the reduced partition function and
the specific heat in our usual limiting cases:
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L=4096

FIG. 7 (color online). Peak curves of the susceptibility χz in the
βF − βA plane for L ¼ 64, 256, 1024, and 4096.

18Of course, this only holds as long as fðβFÞ ∼ βF for large βF.19We wish to thank P. de Forcrand for useful comments about
this point.
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Z ∝
βA→0

1

βF
I1ðβFÞ ð28Þ

Z ∝
βA→∞

eβAffiffiffiffiffi
β3A

p cosh βF ð29Þ

Cs ¼
βA→0

3

2β2F
ð30Þ

Cs ¼
βA→∞

1 − tanh2βF: ð31Þ

Inserting Eqs. (22) and (23) into Eqs. (30) and (31) and
assuming that no other contribution besides the singular
one exists [72], we see that the critical behavior for Cs
should change (continuously?) from log−2 L to L−2.
Second, in our case, we have direct access to a nonlocal,
topological order parameter, for which we can determine a
critical exponent, z ∼ML−β; from Eq. (19), we have β ¼ 0.
If we would like to study the extended partition function
ZðβF; βA; hÞ, we could simply add a term Sh ¼ hz to the
action. Although a direct calculation would go beyond the
scope of this paper, it is obvious that for fixed L a sufficient
condition to align the center flux z is realized if βF → ∞;
the fundamental coupling plays the role of a “mock” Z2

magnetic field. Indeed, from Eqs. (28) and (29), the zeros of
Z in the complex βF plane all lie on the imaginary axis, in
agreement with the Lee-Yang theorem [75].
Let us finally turn to the continuum limit. From the

above discussion, it is clear that taking the thermodynamic
limit L → ∞ before the weak coupling limit βF → ∞, as
one should, i.e., taking the Euclidean volume V ¼ ðaLÞ2 →
∞ [or, at finite temperature, Vs ¼ ðaLsÞ → ∞], the theory
remains stuck in the disordered phase hzi ¼ 0: no vortex
topological sector can be defined, and the superselection
rule of Eq. (2) is not realized.
On the other hand, assuming that the scaling of the string

tension σ with the lattice spacing a, known analytically for
βA ¼ 0,

βF ¼ 4

a2g2

σ ¼ 3

8
g2; ð32Þ

will hold up to a different prefactor along any line
fðβFÞ ∝ βF, we get

V ¼ ðaLÞ2 ¼ 3

2

L2

σβF
: ð33Þ

Keeping now the volume V fixed as the continuum limit is
approached, the values of the coupling at which one needs
to simulate for fixed L will scale as βF ∼ L2, i.e., much
higher than the pseudocritical coupling βcF ∼ logL.
The theory will thus be in a pseudo-ordered phase with

hzi ¼ 1: on a finite Euclidean d ¼ 2 torus, the Wilson
action can admit well-defined Z2 topological sectors.20

B. d ¼ 3

Increasing the dimensions to d ¼ 3, we expect inter-
actions to arise among parallel planes, since vortices are
now extended, one-dimensional objects. The simple picture
we have found in d ¼ 2 will probably not work anymore,
and less trivial critical exponents might arise. Still, fluxes
are inherently two-dimensional objects, and most of the
dynamics should thus take place on planes; many features
of the d ¼ 2 case should therefore survive. To check this,
we have performed sets of Monte Carlo simulations along
different lines in the βF − βA plane. Results are reported for
βA ¼ 0, βF ¼ 0.5, 0.75 and lattice sizes between L ¼ 24
and L ¼ 80; other parameters have been checked and give a
consistent picture.
In the βA ¼ 0 case, approximately 20 to 50 simulations

at coupling steps δβF, each with 106 independent configu-
rations, were performed for each volume L3. The data have
been reweighted [79,80] to determine the peak values
βcFðLÞ and χzðβcFðLÞÞ; this was viable only up to L ∼ 64.
Indeed, as we shall see below, the d ¼ 3 case shows a
similar scaling behavior as Eq. (22), i.e., a logarithmic
scaling of βcFðLÞ to a critical coupling βcF ¼ ∞. This has a
practical drawback: the absolute width of the transition, i.e.,
the overall interval ΔβF one needs to simulate, varies very
slowly, while the step width δβF one must scan in order to
keep the density of states computationally feasible
decreases dramatically with L, and the computational cost
becomes eventually unmanageable.
Results for all volumes considered are resummed in

Table I, where the steps δβF are also listed, along with the
value of the center flux and, for sake of completeness, of
the specific heat at the pseudocritical point. To cross-check
scaling results, similar simulation steps and statistics have
also been used for the other volumes not included in the
reweighting. The data can be well fit with the ansatz:

χzðβcFðLÞÞ ∼ AL2−ηlog−2rLð1þOðL−1ÞÞ ð34Þ

zðβcFðLÞÞ ∼ML−βð1þOðL−1ÞÞ ð35Þ

βcFðLÞ ∼ C logL2 þD log logL2 þOð1Þ: ð36Þ

For χz, we get A ¼ 0.21ð1Þ, r ¼ −0.134ð10Þ,
η ¼ 0.0001ð100Þ, and χ2=d:o:f: ¼ 5.7; constraining

20Some interpretation issues, of course, arise in this case. For
example, speaking of zero temperature for a compactified,
periodic time is at best misleading. Of course, one could also
consider the case L2

s ∼ βF, but to fix the temperature independ-
ently, one must resort to an anisotropic (Hamiltonian) setup [76].
Transitions on finite toruses in the large N limit of the d ¼ 2
Yang-Mills theories have been the subject of intense investiga-
tions; see Refs. [77,78] and references therein.
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η ¼ 0 gives again A ¼ 0.21ð1Þ, r ¼ −0.134ð10Þ with
χ2=d:o:f: ¼ 2.8. For βcF, we get C ¼ 0.61ð3Þ and D ¼
−0.42ð5Þ with χ2=d:o:f: ¼ 0.7; on the other hand, con-
straining D ¼ 0, we get C ¼ 0.56ð3Þ, χ2=d:o:f: ¼ 0.6.
Finally, for the order parameter, we get M ¼ 1.26ð5Þ
and β ¼ 0.35ð1Þ with χ2=d:o:f: ¼ 1.4. Overall, the biggest
source of systematic error is given by the parametrization of
the subleading corrections; leaving them out or parame-
trizing them differently leads to changes of up to 10% for
some of the critical exponents, not included in our error
estimates. Obviously, more data at higher volumes are
needed to pin the numbers down.21 The data for the
susceptibility χz, rescaled by Eqs. (34) and (36), are plotted
in Fig. 8, showing very good agreement also for the
volumes that have not been included in the reweighting
analysis. In Fig. 9, we show the scaling of the order
parameter z according to Eqs. (35) and (36); the agreement
for L≳ 40 is again very good. As for the specific heat, a fit
of the data in Table I with a logarithmic ansatz Cs ∼ log−α L
gives α ¼ 1.4ð1Þ with a χ2=d:o:f: ¼ 0.5. The signal-to-
noise ratio for the Monte Carlo is, however, not so good in
this case, reflecting itself in the quality of the reweighted
data; more statistics would be definitely needed, and,
anyway, checking any (hyper)scaling relation is beyond
our goals.
The above result is quite surprising. Indeed, in contrast to

d ¼ 2, one could have expected theZ2 monopole to control
the open center vortices, since the density of the latter is
proportional to that of the former. However, although
monopoles per unit volume steadily decrease beyond the
crossover, open vortices “connecting” them still cause a
critical behavior cumulating to g2 → 0.22 A possible

explanation could be that their length increases more than
linearly with the lattice size; multiple bendings in orthogo-
nal directions would be enough to randomize the fluxes.
A direct investigation of any geometrical properties of open
vortices is, however, beyond the scope of this paper, since
Eq. (9) is nonlocal and gauge invariant and does not allow
us to isolate the topological defects on the planes.
Going now to the βA ≠ 0 case, since the Z2 monopoles

undergo a crossover also in the low βF region of the phase
diagram of Fig. 2, one would expect the center flux to
behave as in the βF case: one should find along βA a similar
scaling as in Eqs. (34) and (36). Also, the transition lines
should not be effected by the bulk transition associated with
the unphysical Z2 gauge degrees of freedom. However,
such a strong transition unavoidably makes any simulation
near it quite noisy; on top of that, the biased Metropolis
algorithm, with, e.g., three microcanonical steps, gets
inefficient as βF gets small and βA gets large, reaching
for z and χz, around the peaks of the latter, integrated
autocorrelation times of the order 104–105 for
24 ≤ L ≤ 40. Passable data were therefore only accessible
for three volumes, while gathering enough statistics to
reweight the susceptibility was out of the question. We have
thus limited ourself to a consistency check near the bulk
transition with a scaling ansatz similar to Eqs. (34)–(36):

χzðβcAðLÞÞ ∼ AL2log−2rLþOðLÞ ð37Þ

zðβcAðLÞÞ ∼ML−βð1þOðL−1ÞÞ ð38Þ

βcAðLÞ ∼ C logL2 þOð1Þ; ð39Þ

no fit has been attempted. The scaling of the pseudocritical
point and of the order parameter are consistent with the
d ¼ 2, βA ¼ ∞ case, C ¼ 1=2 and β ¼ 0, as can be seen
from Fig. 10. On the other hand, the peaks of χz are quite
noisy, and even a consistency check for the logarithmic
exponent is hopeless. In Figs. 11 and 12, we show the
results for the simulations along βF ¼ 0.5 and βF ¼ 0.75,
lying, respectively, left and right of the bulk transition,
rescaled by Eqs. (37) and (39) with a “guessed” value for
r ¼ −1=2; of course, further work would be needed to
determine the critical exponents reliably.

TABLE I. Position and height of the susceptibility peaks along βF in d ¼ 3. The third and fourth lines give the values of the order
parameter and of the specific heat at the pseudocritical point βcFðLÞ; the last line gives the coupling steps for the simulations used in the
reweighting.

L ¼ 24 L ¼ 32 L ¼ 40 L ¼ 48 L ¼ 64

βcFðLÞ 5.61(1) 5.930(5) 6.174(2) 6.383(5) 6.700(5)
χzðβcFðLÞÞ 152.90(4) 282.83(8) 454.24(12) 666.6(2) 1217.4(3)
zðβcFðLÞÞ 0.392(3) 0.3610(15) 0.3364(13) 0.3213(16) 0.2908(16)
CsðβcFðLÞÞ 0.1078(3) 0.0957(1) 0.0877(2) 0.0817(3) 0.0739(4)
δβF 0.025 0.0125 0.00625 0.003125 0.0015625

21Another possible issue could be the nonergodicity of our
setup in the ordered phase. Indeed, a “good” algorithm would
need to change boundary conditions to enable tunneling among
different topological sectors around the transition, just like a
cluster algorithm in an Ising model allows tunneling among
different orientations of the spins in the spontaneously magnet-
ized phase. See, e.g., Ref. [23] for possible solutions to the
problem. Implementing such algorithm is obviously beyond
the scope of this paper.

22A somewhat cryptic comment regarding a possible critical
behavior, going as far as taking the XY model as a paradigm, can
be found in Ref. [37].
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We have also checked via Monte Carlo simulations that
all of the above results generalize to T > 0 by simply
substituting L2 → Ls · Lt in all the scaling relations for
temporal fluxes, while the behavior of all spacial fluxes
remains unchanged. Again, as in the d ¼ 2 case, this
implies that, along any line in the βF − βA plane, when

taking the thermodynamic limit before the weak coupling
limit, i.e., sending the volume to infinity, the d ¼ 3 theory
remains stuck in the disordered phase hzi ¼ 0; again,
Eq. (2) is not realized.
What about the fixed volume limit? Taking as a blueprint

for the continuum limit along any direction the scaling of
the string tension along βF [81],

FIG. 8 (color online). Data for the susceptibility of the order parameter in d ¼ 3, including the reweighted curves, rescaled with the
FSS ansatz in Eqs. (34) and (36).
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FIG. 9 (color online). FSS for the order parameter z as a
function of the rescaled coupling as in Eq. (35).
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FIG. 10 (color online). FSS for the order parameter z along the
βF ¼ 0.5 line with the ansatz in Eqs. (37) and (38).
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βF ¼ 4

ag2

a
ffiffiffi
σ

p ¼ c0
βF

þ c1
β2F

þO
�
1

β3F

�
; ð40Þ

we get immediately

V ¼ ðaLÞ3 ∝ L3

β3F
ffiffiffiffiffi
σ3

p : ð41Þ

Keeping again V fixed as the continuum limit is
approached, the values of the coupling corresponding to
a given L will now scale as βF ∼ L; again, as in d ¼ 2, they
will always be much higher than the pseudocritical

coupling βCF ∼ logL, and the Wilson action could admit
well-defined Z2 topological sectors on a finite d ¼ 3 torus.

C. d ¼ 4

The positions of the peaks of χz, as obtained in the
simulations along the βA ¼ 0, βF ¼ 1.0, βF ¼ 1.2,
and βF ¼ 1.3 lines, all within phase I of Fig. 3, are
shown in Tables II and III. We have again limited
ourselves to a consistency check with a scaling ansatz
of the form

χzðβcFðLÞÞ ∼ AL2 þOðLÞ ð42Þ

zðβcFðLÞÞ ∼ML−βð1þOðL−1ÞÞ ð43Þ

βcFðLÞ ∼ C logL2 þOð1Þ: ð44Þ

Results are shown in Figs. 13 and 14 for the order
parameter and its susceptibility along the βF axis; up to
the values of C, the behavior along the lines parallel to
the βA axis is basically the same (see, e.g., Fig. 15). From
the data in Table II, we can estimate C ¼ 0.46ð3Þ,
compatible with 1=2, while for those in Table III, we
get C ¼ 0.18ð3Þ; in all cases, β is compatible with 0.
Direct simulations at T > 0 give again the same scaling

with L2 → Ls · Lt for the temporal fluxes, while spacial
fluxes remain unchanged. As in the d ¼ 2 and d ¼ 3 cases,
in the thermodynamic limit, the theory remains therefore
stuck in the disordered phase. Moreover, starting from the
two-loop beta function, the running of the physical scale
with αlat ¼ g2=ð4πÞ is given by

log ða2σÞ ¼ −
4π

β0
α−1lat þ

2β1
β20

log

�
4π

β0
α−1lat

�
þ cþOðαlatÞ;

ð45Þ
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FIG. 11 (color online). FSS for the susceptibility χz along the
βF ¼ 0.5 line with the ansatz in Eqs. (37) and (39).
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FIG. 12 (color online). FSS for the susceptibility χz along the
βF ¼ 0.75 line with the ansatz in Eqs. (37) and (39).

TABLE II. Position and height of the susceptibility peaks along
βF in d ¼ 4.

L ¼ 12 L ¼ 16 L ¼ 20 L ¼ 24

βcFðLÞ 3.15(5) 3.40(5) 3.60(5) 3.75(5)
χzðβcFðLÞÞ 24(1) 42(1) 66(1) 95(1)

TABLE III. Position of the susceptibility peaks along βA in
d ¼ 4 for βF ¼ 1.0, 1.2, and 1.3; the heights are all compatible
with the results in Table II.

L ¼ 16 L ¼ 20 L ¼ 24

βF ¼ 1.0 1.845(25) 1.923(25) 1.987(25)
βF ¼ 1.2 1.695(25) 1.773(25) 1.837(25)
βF ¼ 1.3 1.62(1) 1.70(10) 1.76(1)
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where c ¼ log σ
Λ2
lat

and β0 ¼ 22
3
, β1 ¼ 68

3
, i.e., from

Eq. (7):

V ¼ ðaLÞ4 ∝ L4

�
4π2

β0
βF

�4β1
β2
0 e−

8π2

β0
βF : ð46Þ

When trying to keep the volume V fixed as βF → 0, up
to log log corrections, the coupling should scale as

βF ∼
β0
4π2

logL2; ð47Þ

the coefficient C in Eq. (44) is, however, larger than that
coming from the beta function, and the simulation
parameters will lie in the disordered phase. Topological
sectors will always be ill defined also on a finite torus
T4. The same holds along the lines parallel to the βA axis
(see Table III); in this case, from Eq. (7), the coefficient
in Eq. (47) coming from the beta function Eq. (45) is
3β0=ð32π2Þ, again smaller than the corresponding value
of C.
As discussed in Sec. II B, we have excluded phase II (see

Fig. 3) from the simulations. As mentioned above, vortex
topology is, however, well understood in this case: the
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FIG. 13 (color online). FSS as in Eqs. (43) and (44) for z in d ¼ 4 along the βF axis.
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FIG. 14 (color online). FSS as in Eqs. (42) and (44) for χz in d ¼ 4 along the βF axis.
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results of Refs. [21,22,29,47,60] show that, in contrast to
phase I in d ¼ 4 and to the d ¼ 2 and 3 cases, the theory
possesses well-defined Z2 topological sectors in the con-
tinuum limit.

IV. CONCLUSIONS

We have studied a topological order parameter, the center
flux z defined in Eqs. (10) and (11), for the SUð2Þ mixed
action in 2 ≤ d ≤ 4. Its ordered phase, hzi ¼ 1, corre-
sponds to well-defined π1ðSOð3ÞÞ ¼ Z2 topological sec-
tors, i.e., to a vacuum satisfying the superselection rule of
Eqs. (2) and (4), while for hzi ¼ 0, the vacuum state is
disordered, and no center topology can be defined. This
reminds us of a quantum phase transition; however, one
does not switch between vacua by tuning a physical
parameter. Rather, the choice of dimensions and the
symmetry of the discretized action control in which phase
the theory will be in the continuum limit.
More specifically, discretized actions transforming in the

fundamental representation possess a disordered vacuum,
with z showing an essential scaling to the critical coupling
βc ¼ ∞. The critical exponent for the correlation length ξ is
ν ¼ 1, i.e., βcðξÞ ∝ log ξ; explicit log log ξ corrections to
scaling can be shown to exist for some choice of param-
eters. The susceptibility of the center flux scales as χzðξÞ ∝
ξ2 in d ¼ 2 and d ¼ 4, while the order parameter itself
scales trivially in these cases. On the other hand, in d ¼ 3,
at least along the βF axis, the center flux has a nontrivial
critical exponent, zðξÞ ∝ ξ−β, with β ¼ 0.35ð1Þ, while a
logarithmic correction can be explicitly determined for the
scaling of its susceptibility, χzðξÞ ∼ ξ2log−2rξ, with
r ¼ −0.134ð10Þ; similar corrections might also be present
along other lines in the βF − βA diagram, but more statistics
would be needed to reach a conclusive result. A tentative

critical exponent for the specific heat,CsðξÞ ∼ log−αξ, gives
α ¼ 1.4ð1Þ, but with still high systematic errors. We have
made no attempt to investigate any (hyper)scaling relations
among such exponents; this would probably require a full
analysis of the Lee-Yang zeros [72]. Such behavior persists
in all dimensions at T > 0.
Vice versa, the topological classification of Eq. (1) and

thus the superselection rule of Eqs. (2) and (4) can be
realized by the vacuum state of lattice actions transforming
in the adjoint representation; phase II in d ¼ 4 (see Fig. 3)
is such an example [21,22,29]. Large-scale simulations
with the adjoint action are hampered by strong finite-
volume effects [27,28,38]. Therefore, although the tech-
niques used in Refs. [21,22,29] to tame them could also
work in d ¼ 3, a more viable alternative, applicable also in
d ¼ 2, would be to resort to positive plaquette models
[14,55,56], where topological sectors are always well
defined since the operator given in Eq. (9) takes “by
construction” the values dictated by the assigned boundary
conditions. Indeed, a one-to-one mapping between con-
figurations in such a lattice discretization and those of the
adjoint Wilson action with well-defined vortex sectors was
conjectured in Ref. [27] and explicitly constructed in
Ref. [29]. Finally, an ordered vacuum could also be realized
for a finite torus in d ¼ 2; 3; here, one could exploit the
power-law scaling of the physical mass with the coupling to
define topological sectors when L → ∞ and a → 0with the
volume V ¼ ðaLÞd kept fixed.
The above findings do not contradict universality, since

nonperturbatively the equivalence between fundamental
and adjoint actions can only hold as long as no lattice
artifacts are present [27–29,36–39], while as we have seen
for some discretizations, the density of Z2 monopoles
cannot vanish at any finite coupling [37]. Does, however,
such a result have any physical consequences? The vacua of
the two different phases can be essentially characterized by
the type of Z2 vortices they can carry:

(i) The ordered phase allows topological center vorti-
ces “à la ’t Hooft” [12,13]. A confinement mecha-
nism based on the superselection rule of Eqs. (2)
and (4) can be realized; at finite temperature, the
change in the vortex free energy as measured via
Eq. (3) is thus a valid test to establish how the
symmetry is broken in the transition to the decon-
fined phase [21,22,29]. No fundamental fields are
allowed in this case [12,13,31]; however, adjoint
fermions can be easily incorporated in such a
scenario. It might therefore be interesting to inves-
tigate the vacuum properties of the SUð2Þ gauge
theory coupled to adjoint fermions, a popular
candidate for infrared conformality [65]. Numerical
tests with the adjoint Wilson action or positive
plaquette model should be viable.

(ii) The disordered phase is dominated by (one huge,
percolating?) open vortices, reminding us of the

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

β
A
−β

A
c (L)

χ/
χ (

(β
Ac
(L

))
L=16
L=20
L=24

FIG. 15 (color online). FSS as in Eqs. (42) and (44) for χz in
d ¼ 4 along the βF ¼ 1.3 axis.
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Nielsen-Olesen “spaghetti vacuum” [4]. Such open
vortices are not topological according to Eq. (1);
Eqs. (2) and (4) cannot be applied. One might
conjecture some relationship with P vortices
[2,15,16], although it is still unclear how to test such
a hypothesis, since the center flux z is gauge invariant
and constructed out of pure SOð3Þ variables while P
vortices are gauge dependent and built out of the Z2

gauge degrees of freedom. Moreover, such open
vortices persist at any temperature, not disappearing
above TC. This disordered vacuum is detached from
the boundary conditions chosen and is therefore
compatible with the presence of fundamental matter
fields. Of course, Eq. (3) is ill defined in this case;
whether any vortex related order parameter for the

confinement-deconfinement phase transition could
be defined remains an open question.
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