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To assess the possibility of homogeneous nucleation of quark matter in magnetars, we investigate the
formation of chirally symmetric droplets in a cold and dense environment in the presence of an external
magnetic field. As a framework, we use the one-loop effective potential of the two-flavor quark-meson
model. Within the thin-wall approximation, we extract all relevant nucleation parameters and provide an
estimate for the typical time scales for the chiral phase conversion in magnetized compact star matter. We
show how the critical chemical potential, critical radius, correlation length and surface tension are affected,
and how their combination to define the nucleation time seems to allow for nucleation of quark droplets in
magnetar matter even for not so small values of the surface tension.
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I. INTRODUCTION

The thermodynamics of strong interactions in cold and
dense matter under the influence of strong magnetic fields
is of clear relevance in the description of magnetars. These
objects correspond to a class of compact stars [1] whose
magnetic fields can reach up to 1015 G at the surface [2]
and even higher, yet unknown, in the core. (Reference [3]
presents an upper limit of 1020 G ∼ 60m2

π , which could be
achieved in the core of self-bound strange stars. This value
exceeds even the magnetic fields generated in peripheral
heavy ion collisions at high energy [4] and would certainly
affect the phase structure and phase conversion of strong
interactions.)
The full description of the structure and dynamics of

formation of these objects depends on the knowledge of the
equation of state for the matter they are built of, including
possible condensates and new phases that are energetically
more favored as baryon density is increased [5]. In
particular, for high enough energy densities, one expects
that strongly interacting matter becomes deconfined and
essentially chiral [6], so that chiral quark matter could
provide the relevant degrees of freedom in the core of
compact stars [7,8].
In fact, it was shown that deconfinement can happen at

an early stage of a core-collapse supernova process, which
could result not only in a delayed explosion but also in a
neutrino signal of the presence of quark matter in compact
stars [9]. However, as discussed in Ref. [10] (see also [11]),
this possibility depends crucially on the time scales of
phase conversion. Since one expects a first-order nature
for the chiral and the deconfinement transitions in cold
and dense matter, this process would be guided by
bubble nucleation, which is usually slow, or spinodal

decomposition, depending on how fast the system reaches
the spinodal instability as compared to the nucleation rate.
It has been shown in Ref. [10] that a key ingredient is the
surface tension, which was later estimated in Refs. [12–16].
The surface tension for magnetized quark matter was

estimated within the Nambu–Jona-Lasinio model in
Ref. [17], exhibiting an interesting nonmonotonic behavior
as a function of the magnetic field. However, as has become
clear in the analysis of Ref. [12], different ingredients in the
nucleation process (such as the critical radius, the critical
chemical potential, and the surface tension) can react very
differently to variations of an external control parameter.
Since the time scales for the phase conversion process are
built from a nontrivial combination of these quantities, one
needs to compute how each of them is affected by an
external magnetic field to assess whether nucleation can be
the driving mechanism for the chiral transition in the case
of magnetar matter.
In this paper we assess the possibility of homogeneous

nucleation of quark matter in magnetars by investigating
the formation of chirally symmetric droplets in a cold and
dense environment in the presence of an external magnetic
field. As a framework, we use the linear sigma model
coupled to quarks, also known as the two-flavor quark-
meson model. From the one-loop effective potential, and
within the thin-wall approximation, we extract all relevant
nucleation parameters and provide an estimate for the
typical time scales for the chiral phase conversion in
magnetized compact star matter. We show how the critical
chemical potential, the correlation length, the critical
radius, the surface tension and the nucleation rate are
affected. The nucleation time is obtained from a nontrivial
combination of these quantities and seems to favor nucle-
ation even for not so small values of the surface tension.
The paper is organized as follows. In Sec. II we briefly

describe the effective model and the approximations used to
compute the effective potential. Section III shows how we
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proceed in order to obtain all nucleation parameters in the
thin-wall approximation. Our results for the relevant
quantities related to the nucleation process are presented
in Sec. IV. Section V presents our summary.

II. EFFECTIVE THEORY

A. General framework

To study the phase conversion process, we adopt the
linear sigma model coupled to quarks (LSMq) [18] as our
effective theory description of the chiral sector of strong
interactions. The Lagrangian is given by

L ¼ ψ̄f½iγμ∂μ − gðσ þ iγ5τ · πÞ�ψf

þ 1

2
ð∂μσ∂μσ þ ∂μπ · ∂μπÞ

−
λ

4
ðσ2 þ π2 − v2Þ2 þ hσ: ð1Þ

The model contains a fermionic SU(2) chiral doublet,
ψf, representing the up and down constituent quarks, and
four mesons—one scalar, σ, and three pseudoscalars, π.
The mesons can be grouped into a single Oð4Þ chiral field
ϕ≡ ðσ;πÞ. It is well known that the LSMq reproduces
correctly all the chiral low energy phenomenology of
strong interactions, such as meson masses and the sponta-
neous and (small) chiral symmetry breaking, which are
present in the mesonic self-interaction potential. The model
parameters are fixed accordingly [18]. Moreover, it was
argued [19] that both QCD with two flavors of massless
quarks and the model we consider belong to the same
universality class, thus exhibiting the same behavior at
criticality.1

Due to spontaneous symmetry breaking, the σ field
acquires a nonvanishing vacuum expectation value.
However, for sufficiently high temperatures, the condensate
melts and chiral symmetry is approximately restored.
Therefore, in this context the expectation value of the σ
field plays the role of an approximate order parameter for
the chiral transition, being exact only in the limit of
vanishing quark (and pion) masses, which happens for
h ¼ 0. In this limit, the model becomes truly chiral, and the
pions behave as Goldstone bosons. So, to investigate the
phase conversion in the LSMq, one ultimately needs to
study how the expectation value hσi ¼ σ̄ varies as a
function of the relevant control parameters, such as temper-
ature, chemical potentials and external fields. As usual in
this approach, the effective potential formalism rises as the
appropriate means for the description of phase transitions.
In the spirit of effective theory descriptions, we will not be
concerned with numerical precision, but rather in obtaining

qualitative information about the system under consider-
ation. Moreover, in order to perform a semianalytic study,
some simplifying approximations are needed.
The first regards the fermionic contribution to the

effective potential. As the action is quadratic in the fermion
fields, we can formally integrate over the quarks, so that
their contribution to the effective potential is given by a
determinant. However, as the quarks couple to σ, one is left
to compute a fermionic determinant in the presence of an
arbitrary background field, which cannot be done in closed
form, unless for systems in 1þ 1 dimensions under some
special circumstances [21–23]. As is customary, we con-
sider the quark gas as a thermal bath in which the long-
wavelength modes of the chiral field evolve, so that the
calculation is performed considering a static and homo-
geneous background field. This procedure can be further
improved, e.g., via a derivative expansion [24–26].
The contribution from the mesons to the effective

potential is also subject to simplifying approximations.
First, it has been shown that the pions do not appreciably
affect the phase conversion process, so their dynamics is
usually discarded and the whole analysis can be done by
setting π ¼ hπi ¼ 0. Second, since λ ≈ 20, quantum cor-
rections arising from the sigma self-interaction are usually
ignored, and its contribution to the effective potential is
taken to be classical.2

B. Effective potential at one loop in a
magnetic background

Our aim is to study the chiral transition in a cold and
dense environment in the presence of an external constant
and homogeneous magnetic field, as a very simplified
model for the core of a magnetar. Adapting the previous
setup to describe such a system is straightforward. The
interaction with the magnetic field is introduced via
minimal coupling; i.e., the derivatives acting on quarks
are traded for Dμ ≡ ∂μ þ iqAμ. Following previous work,
we use the aforementioned approximations when comput-
ing the effective potential.
In this setup, the effective potential for two flavors of

quarks with Nc colors in the presence of a homogeneous
and static magnetic field B in the cold and dense limit can
be written as the sum of three contributions [28]:

Veffðσ̄Þ ¼ Uclðσ̄Þ þ Uvac
f ðσ̄; BÞ þUmed

f ðσ̄; μ; BÞ: ð2Þ

The first term is just the classical potential for σ; the
second gives the fermionic vacuum contribution

1Recent lattice results seem to challenge this connection in the
chiral limit [20], although further detailed studies are still
necessary.

2See, however, Ref. [27], where the authors consider thermal
meson fluctuations using resummations, and Ref. [12], where the
authors compute the one-loop correction to the classical potential
and systematically treat vacuum terms.
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Uvac
f ¼ −

Nc

2π2
X
f

ðqfBÞ2
h
ζ0Hð−1; xfÞþ

−
x2f − xf

2
log xf þ

x2f
4

i
; ð3Þ

where xf ¼ M2
q=ð2jqfjBÞ, Mq ¼ gσ̄ is the quark dynami-

cally generated mass, qf is the electric charge of quark
species f and ζ0H denotes the derivative with respect to the
first argument of the Hurwitz ζ function. Finally, the last
term of Eq. (2) is the medium contribution due to the quarks
(see, e.g., Ref. [29]):

Umed
f ¼ −

Nc

4π2
X
f

Xνmax

ν¼0

ð2 − δν0ÞjqfjB
"
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −M2

fB

q
þ

−M2
fB log

 
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −M2

fB

q
MfB

!#
: ð4Þ

In this last expression we assume that both fermion species
have the same chemical potential μ. In addition, M2

qB ¼
M2

q þ 2νjqfjB denotes the magnetic correction to the
quark mass and ν is an integer value that labels Landau
levels. The last occupied level is given by

νmax ¼
�
μ2 −M2

f

2jqfjB
�
: ð5Þ

This effective potential exhibits a first-order phase tran-
sition for a critical value μcðBÞ of the chemical potential.
Recent lattice QCD results have shown that the critical

temperature for the chiral and deconfinement transitions
decreases as the external magnetic field is increased.
However, models like the one we adopt are not able to
reproduce this behavior. It is true that we are considering
the cold and dense scenario, which for the time being is not
accessible to lattice simulations; nevertheless, if the mecha-
nism behind inverse magnetic catalysis is related to the
running of the coupling constant, as argued in Ref. [30] for
instance, one should expect to see the same behavior when
looking at the critical chemical potential. Our analysis will
not take this into consideration, as our point is not to give
numerically accurate results, but to discuss how different
quantities compete when one computes the typical time
scales.

III. SURFACE TENSION AND NUCLEATION

Given the effective potential, we can proceed to the study
of the phase conversion process driven by the chiral
transition. The physical setup we have in mind is that of
a collapsing star and, more specifically, the scenario of
magnetar formation. Thus, we investigate whether chirally
symmetric matter can be nucleated as the density increases
in the presence of a strong magnetic field.

In our analysis, we focus on homogeneous nucleation.
Dynamically, there are two ways by which nucleation can
occur: thermal activation and quantum tunneling. At the
temperatures that correspond to the scenario at hand, of
the order of 10–30 MeV, and in the presence of a barrier in
the effective potential, thermal activation is by far the
dominant way [10]. Once the barrier disappears, the initial
state of the system is no longer in a metastable vacuum, so
that spinodal decomposition takes place and the phase
conversion is explosive [31].
It is important to state that there is no contradiction in

considering thermal activation of bubbles and taking the
cold, i.e., T ∼ 0, limit to compute the effective potential
[see Eq. (4)]. When we focus on thermal nucleation, we are
ultimately comparing temperature with the height of barrier
separating true and false vacua, whereas when we consider
the cold limit we compare it with the quark chemical
potential. Indeed, in our setup the temperature is high
enough to enable thermal activation and low enough to
justify the use of the zero-temperature effective potential.
Furthermore, thermal corrections were computed in

Ref. [12]; the results vary within ∼10% when compared
to the zero-temperature approximations. Thus, the quali-
tative behavior and the order of magnitude of our estimates
will not change drastically by including or not the thermal
corrections.3

Our aim is to estimate typical times scales for the
nucleation process and to understand under which conditions
it is favored. In other words, which are the features that can
make nucleation happen effectively in magnetar matter,
producing chirally symmetric matter in the core of such
stars? As mentioned previously, a key quantity seems to be
the surface tension, since it is the amount of energy needed to
build up a barrier separating the two phases. In other words,
the surface tension is the energetic cost to create a bubble.

A. Extracting nucleation parameters
from the effective potential

Since we are not concerned with numerical precision, but
rather with obtaining reasonable estimates and the qualitative
functional behavior, it is convenient to work with approxi-
mate analytic relations by fitting the effective potential in the
relevant region. This can be done conveniently by using a
quartic polynomial and imposing the thin-wall limit. In the
range between the critical chemical potential μc and
the spinodal μsp, the effective potential can be written in
the following Landau-Ginzburg form [25,32]:

Veff ≈
X4
n¼0

anϕn: ð6Þ

3It has also been shown that thermal fluctuations and quantum
vacuum corrections compete when they are included in Veff [12].
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Although this approximation is not able to reproduce the
three minima of Veff , the polynomial form gives a good
quantitative description of the function in the region con-
taining the two minima representing the symmetric and
broken phases as well as the barrier between them.
A quartic potential such as Eq. (6) can always be written

in the form

VðφÞ ¼ αðφ2 − a2Þ2 þ jφ; ð7Þ

with the coefficients above defined in terms of the an as
follows [25,32]:

α ¼ a4; ð8aÞ

a2 ¼ 1

2

�
−
a2
a4

þ 3

8

�
a3
a4

�
2
�
; ð8bÞ

j ¼ a4

�
a1
a4

−
1

2

a2
a3

þ 1

8

�
a3
a4

�
3
�
; ð8cÞ

φ ¼ ϕþ 1

4

a3
a4

: ð8dÞ

The new potential VðφÞ reproduces the original VeffðϕÞ
up to a shift in the zero of energy. We are interested in the
effective potential only between μc and μsp. At μc, we will
have two distinct minima of equal depth. This clearly
corresponds to the choice j ¼ 0 in Eq. (7), so that V has
minima at φ ¼ �a and a maximum at φ ¼ 0. The mini-
mum at φ ¼ −a and the maximum move closer together as
the chemical potential is shifted, and they merge at μsp.
Thus, the spinodal requires j=αa3 ¼ −8=3

ffiffiffi
3

p
in Eq. (7).

The parameter j=αa3 falls roughly linearly from 0, at
μ ¼ μc, to −8=3

ffiffiffi
3

p
at the spinodal.

In the thin-wall limit the explicit form of the critical
bubble is given by [22]

φbðr; ξ; RcÞ ¼ φf þ
1

ξ
ffiffiffiffiffiffi
2α

p
�
1 − tanh

�
r − Rc

ξ

��
; ð9Þ

where φf is the new false vacuum, Rc is the radius of the
critical bubble, and ξ ¼ 2=m, with m2 ≡ V 00ðφfÞ, is a
measure of the wall thickness. The thin-wall limit corre-
sponds to ξ=Rc ≪ 1 [22], which can be rewritten as
ð3jjj=8αa3Þ ≪ 1. Nevertheless, it was shown in [32,33],
for the case of zero density and finite temperature, that the
thin-wall limit becomes very inaccurate as one approaches
the spinodal. (This is actually a very general feature of this
description [31].) In this vein, the analysis presented below
is to be regarded as semiquantitative, and it provides
estimates, not accurate results.
In terms of the parameters α, a, and j defined above, one

finds [25,32]

φt;f ≈�a −
j

8αa2
; ð10Þ

ξ ¼
�

1

αð3φ2
f − a2Þ

�
1=2

ð11Þ

in the thin-wall limit. The surface tension Σ is given by

Σ≡
Z

∞

0

dr

�
dφb

dr

�
2

≈
2

3αξ3
; ð12Þ

and the critical radius is obtained from Rc ¼ ð2Σ=ΔVÞ,
where ΔV ≡ VðϕfÞ − VðϕtÞ ≈ 2ajjj. Finally, the free
energy of a critical bubble is given by Fb ¼ ð4πΣ=3ÞR2

c,
and from knowledge of Fb one can evaluate the nucleation
rate Γ ∼ e−Fb=T . In calculating thin-wall properties, we shall
use the approximate forms for ϕt, ϕf, Σ, and ΔV for all
values of the potential parameters.

IV. RESULTS

In this section we use the method described above to
describe quantitatively the nucleation process in the LSMq
in the presence of a magnetic background field. We
compute different nucleation parameters for the formation
of chirally symmetric droplets in a chirally asymmetric
medium for values of the external magnetic field that are
compatible with what one expects to be relevant to
magnetar matter. As an initial step, we analyze how the
critical chemical potential depends on B.

A. Landau level filling and oscillations

When studying the critical behavior of the LSMq in the
presence of an external magnetic field, the first question we
should consider is how the position of the critical line is
affected by B. The plot in Fig. 1 shows the behavior of the
critical chemical potential μcðBÞ normalized by the critical
chemical potential in the absence of the external
field, μcð0Þ ¼ μ0c ≈ 305 MeV.
From the plot it is clear that μc has a nonmonotonic

dependence on B; it oscillates and reaches a minimum
value for eB ≈ 10m2

π. The results show clearly that the
presence of a moderate external magnetic field can reduce
the value of μc up to 15%.
The small oscillations observed for eB≲ 4m2

π are
analogous to the de Haas–van Alphen oscillations in
metallic crystals. They are related to the fact that, as we
vary the magnetic field, the degeneracy of the Landau
levels and the spacing between them are modified, so that
the level filling varies with B. On the other hand, the
behavior for eB≳ 4m2

π is purely due to the lowest Landau
level filling. For a detailed discussion see Ref. [34].
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B. Nucleation parameters

Oscillations are not only seen in the behavior of μcðBÞ.
In fact, as the following plots show, all the nucleation
parameters have a nontrivial oscillatory dependence on the
magnetic field.
Recall that whenever a bubble is formed, its interior

tends to lower the free energy of the system, since the field
within it sits on the true vacuum. On the other hand, the
surface of the bubble tends to increase it, as discussed
previously. The critical bubble is the one whose energetic
gain due to the volume exactly compensates the cost of the
surface. Thus, to minimize the energy, any bubble smaller
than the critical one will shrink, and the ones that are bigger
will expand. Therefore, the radius of the critical bubble, or
critical radius, sets the threshold between suppressed and
favored bubbles.
In Fig. 2 we show this quantity as a function of the quark

chemical potential for different values of magnetic field. It
is interesting to notice that, as a consequence of the critical

chemical potential oscillation, the metastable region shifts
when the magnetic field varies: first to lower values of μ
and then in the opposite direction.
As mentioned in the previous section, the correlation

length ξ provides a measure of the thickness of the bubble
wall. The thin-wall approximation relies on the assumption
that ξ=Rc ≪ 1 or, equivalently, that the free energy differ-
ence between both vacua is small compared to the barrier
between them. In Fig. 3 we plot this quantity as a function
of quark chemical potential. As one should expect, this
assumption is reasonable far from the spinodal, in the
vicinity of the critical line. Nevertheless, in the spirit of
providing estimates and the qualitative behavior, we apply
the thin-wall limit in the whole range of chemical potentials
between μc and μsp.
Finally, in Fig. 4 we present the results for the surface

tension as a function of quark chemical potential for
different magnetic fields. This plot shows clearly that for
B≲ 5m2

π the presence of an external magnetic field can
actually reduce the energetic cost to build up the bubble
wall, which would, in principle, favor nucleation in this
scenario. However, the behavior of μc as a function of the
magnetic field already gives a hint that the situation is not
so straightforward.

C. Estimating typical time scales

To obtain an estimate of the typical time scales involved
in the nucleation of chirally symmetric matter in a cold and
dense medium under the influence of an external magnetic
field, we first need an estimate of the nucleation rate per
unit volume, which can be written as Γ ∼ T4

fe
−Fb=Tf , where

Fb is the free energy of the critical bubble and the prefactor
just gives an upper limit with the correct dimensions [31].
Here, we take Tf ¼ 30 MeV as a typical temperature for
protostars. In doing so, we are neglecting the temperature
dependence of the critical-bubble free energy or, as we
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FIG. 2 (color online). Critical radius of chirally symmetric
droplets as a function of the quark chemical potential for different
values of eB.
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FIG. 3 (color online). Ratio between the correlation length ξ
and the critical radius as a function of quark chemical potential
for different values of eB.
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FIG. 1 (color online). Critical chemical potential μc as a
function of B.
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discussed before, using the cold and dense effective
potential since the difference scales justify this procedure.
In Fig. 5 we show the results for Γ as a function of the

chemical potential for the same values of magnetic field
adopted before. Again, a nontrivial oscillation with the
magnetic field can be detected.
In order to estimate the typical time scales for the phase

conversion process, i.e., the formation of chiral quark matter
in the core of magnetars, we follow Ref. [10] and define the
nucleation time as being the time it takes for the nucleation
of a single critical bubble inside a volume of 1 km3, which
is typical of the core of a protoneutron star, i.e.,

τ≡
�

1

1 km3

�
1

Γ
: ð13Þ

Figure 6 exhibits this quantity as a function of the chemical
potential for different values of eB. The relevant time scale
to compare is the time interval the system takes from the
critical chemical potential to the spinodal during the star
collapse. Implicitly, in the expression above we are using an

approximation of constant density and temperature over the
core, which should give a good estimate as the density
profile in this region of the star is quite flat [1]. The plot
shows that moderate magnetic fields, B≲ 20m2

π , can
actually favor nucleation, as a given nucleation time is
achieved for lower values of chemical potential.

V. SUMMARY AND FINAL REMARKS

In this paper we have used the LSMq minimally coupled
to an external classical magnetic field in a cold and dense
environment as a simple model to describe critical proper-
ties of strongly interacting matter in the core of a magnetar,
in particular, the likelihood of nucleating approximately
chiral quark droplets. Using the one-loop effective potential
we computed all relevant nucleation parameters within the
thin-wall approximation and obtained an estimate for the
typical time scales. Our findings indicate that nucleation
may be present in the phenomenologically interesting range
of magnetic fields. Of course, one also has to simulate in
detail the evolution of the density profile of the protostar to
make any stronger assertion.
The results obtained for the surface tension and nucle-

ation time are very interesting, showing that many different
effects sum up in a nontrivial fashion yielding a small
nucleation time for cases whose surface tension are not so
small. Specifically, the B dependence of μc and the fact
that the difference between the free energy of the vacua
increases faster for higher values of magnetic field can
combine in such a way that cases with a higher surface
tension could have a smaller critical radius, ultimately
favoring the nucleation picture. Therefore, for magnetars it
is not enough to consider the behavior (and value) of the
surface tension to address the competition between relevant
time scales.
Despite its content of quarks and mesons, the linear

sigma model provides essentially a chiral description; i.e., it
does not contain essential ingredients to describe nuclear
matter, such as the saturation density and the binding

a eB 0

b eB 5m2

c eB 10m2

d eB 15m2

e eB 20m2

0.90 0.95 1.00 1.05 1.10 1.15
0

10

20

30

40

50

c
0

M
eV

fm
2

a
b

c

d

e

FIG. 4 (color online). Surface tension as a function of quark
chemical potential for different values of eB.
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FIG. 5 (color online). Nucleation rate as a function of the quark
chemical potential for different values of eB.
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FIG. 6 (color online). Nucleation time as a function of quark
chemical potential for different values of eB.
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energy. Nevertheless, this analysis has unveiled how the
process of Landau level filling affects the nucleation
parameters in a nontrivial way, bringing new forms of
competition between them and affecting qualitatively the
dynamics of quark matter formation in compact stars.
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