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vertex. We also compare our results with those obtained in previous calculations, where bare vertices were
used in the loop diagrams.
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I. INTRODUCTION

In recent years many efforts have been undertaken to
develop nonperturbative approaches to continuum quan-
tum chromodynamics (QCD). Among these are varia-
tional approaches to Yang-Mills theory in Coulomb
gauge which use Gaussian trial Ansätze for the Yang-
Mills vacuum wave functional [1–3]. The approach of
Ref. [3] has given a decent description of the infrared
sector of the theory yielding, among other things, an
infrared divergent gluon energy [4], a perimeter law for
the ’t Hooft loop [5] (both are manifestations of confine-
ment), a color dielectric function of the Yang-Mills
vacuum in accord with the dual superconductor picture
of the QCD vacuum [6], and a critical temperature of the
deconfinement phase transition in the right ballpark (of
about 275 MeV) [7,8]. Furthermore, the obtained static
gluon propagator is in satisfactory agreement with the
lattice data [9], both in the infrared and in the ultraviolet,
but misses some strength in the midmomentum regime.
Preliminary studies of Ref. [10] show that the missing
strength can be attributed to the absence of non-Gaussian
terms in the trial Yang-Mills vacuum wave functional
ignored in previous considerations.
In Ref. [10] a general variational approach to quantum

field theories was developed, which is capable of using
non-Gaussian trial wave functionals. The crucial point in
this approach was to realize that once the vacuum wave
functional is written as the exponential of some action
functional given by polynomials of the fields whose
coefficients are treated as variational kernels, one can
exploit Dyson-Schwinger equation techniques to express
the various vacuum expectation values of the fields (viz.
propagators and vertices) and, in particular, the vacuum
expectation value of the Hamiltonian in terms of the
variational kernels. In this way the variational approach
can be carried out for non-Gaussian vacuum wave

functionals. In Ref. [10] the approach was worked out
for pure Yang-Mills theory using an Ansatz for the
vacuum wave functional which contains up to fourth-
order polynomials in the gauge field, see Eqs. (6) and (8)
below. In particular, the corresponding Dyson-Schwinger
equations for the propagators and leading vertices were
derived. In the present paper we solve the resulting
Dyson-Schwinger equations for the ghost-gluon and
three-gluon vertices.
The organization of the paper is as follows: In Sec. II we

briefly review the essential ingredients of the approach of
Ref. [10]. In Sec. III we present the Dyson-Schwinger
equations for the ghost-gluon and three-gluon vertices. The
numerical solutions of these equations are presented in
Sec. IV. Our conclusions are given in Sec. V. The Appendix
contains some explicit expressions for the integral kernels.

II. HAMILTONIAN APPROACH TO
YANG-MILLS THEORY

The Hamiltonian approach to Yang-Mills theory rests
upon the canonically quantized theory in the temporal
(Weyl) gauge, Aa

0 ¼ 0. As a consequence of this gauge,
Gauss’s law does not show up in the Heisenberg equations
of motion but has to be imposed as a constraint on the
wave functional, which in the absence of matter fields
guarantees its gauge invariance. Furthermore, this gauge
does not fix the gauge completely but still leaves invariance
with respect to time-independent gauge transformations.
Fixing this residual gauge invariance by imposing the
Coulomb gauge ∂iAa

i ¼ 0 one can explicitly resolve
Gauss’s law for the longitudinal part of the momentum
operator. The longitudinal part of the kinetic energy results
then in an extra term in the Hamiltonian, the so-called
Coulomb Hamiltonian, mediating a two-body interaction
between color charges. One ends with a theory defined
entirely in terms of the transverse gauge field. In this theory
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the vacuum expectation value (VEV) of an operator K½A�
depending on the transverse gauge field A is given by

hK½A�i ¼
Z

DAJ AjΨ½A�j2K½A�; ð1Þ

where Ψ½A� is the vacuum wave functional, and J A ¼
DetðG−1

A Þ is the Faddeev-Popov determinant of Coulomb
gauge with

G−1
A

abðx; yÞ ¼ ð−δab∂2 − gfacbAc
i ðxÞ∂iÞδðx − yÞ ð2Þ

being the Faddeev-Popov operator. In Eq. (2) g is the
coupling constant and facb are the structure constants of the
suðNcÞ algebra. The functional integration in Eq. (1) runs
over transverse field configurations ∂iAa

i ¼ 0 and is,
strictly speaking, restricted to the first Gribov region.
In the following we use a compact notation in which a

numerical index stands for the continuous spatial coordi-
nate as well as for the discrete indices (color and, possibly,
Lorentz), e.g. Að1Þ≡ Aa1

i1
ðx1Þ. A repeated label implies

summation over the discrete indices and integration over
the coordinates.
In this work we focus our attention on the Yang-Mills

three-point functions, namely the ghost-gluon and the
three-gluon vertex. The full ghost-gluon vertex ~Γ is
defined by

hGAð1; 2ÞAð3Þi ≕ − ~Γð10; 20; 30ÞGð1; 10ÞGð20; 2ÞDð30; 3Þ:
ð3Þ

Here, GA is the inverse Faddeev-Popov operator [see
Eq. (2)], and G and D are, respectively, the ghost
propagator

Gð1; 2Þ ≔ hGAð1; 2Þi ð4Þ

and the gluon propagator

Dð1; 2Þ ≔ hAð1ÞAð2Þi:

Similarly we define the three-gluon vertex Γ3 by

hAð1ÞAð2ÞAð3Þi ≕ −Γð10; 20; 30ÞDð10; 1ÞDð20; 2ÞDð30; 3Þ:
ð5Þ

The vacuum wave functional has in principle to be
found by solving the (functional) Schrödinger equation,
which of course cannot be done rigorously in 3þ 1
dimensions.1 Writing the square modulus of the vacuum
wave functional as

jΨ½A�j2 ≕ expf−S½A�g; ð6Þ
Eq. (1) is formally equivalent to a Euclidean field theory
described by an “action” S½A�. We can exploit this
equivalence to derive Dyson-Schwinger-type equations,
which allow us to relate the various n-point functions to
the variational kernels of the vacuum wave functional,
i.e. of the action S½A�. These equations are derived from
the expectation values Eq. (1) of the canonical theory in a
recursive way and will hence be referred to as canonical
recursive Dyson-Schwinger equations (CRDSEs) To
derive these equations we start from the functional
identity

0 ¼
Z

DA
δ

δA
fJ Ae−S½A�K½A�g: ð7Þ

The action S½A� defines the trial Ansatz for our vacuum
wave functional. In Ref. [10] an Ansatz of the form

S½A� ¼ ωA2 þ 1

3!
γ3A3 þ 1

4!
γ4A4 ð8Þ

was considered, where ω, γ3, and γ4 are variational
kernels to be determined by minimization of the
vacuum energy. With this Ansatz the CRDSEs derived
from Eq. (7) resemble the usual Dyson-Schwinger
equations (DSEs) of Landau gauge Yang-Mills theory
in d ¼ 3 dimensions with the bare vertices of the usual
Yang-Mills action replaced by the variational kernels.
The CRDSEs are not equations of motion in the

usual sense, but rather relations between the Green
functions and the (so far undetermined) variational
kernels. In fact, the CRDSEs are needed when non-
Gaussian trial wave functionals are used in order to
express the various correlation functions, and, in par-
ticular, the vacuum energy density, in terms of the
variational kernels.
In Ref. [10] the CRDSEs were used to calculate the

VEV of the Hamiltonian in the vacuum state defined
by Eqs. (6) and (8), resulting in an energy functional

hHYMi ¼ E½ω; γ3; γ4�:
By using a skeleton expansion, the vacuum energy
can be expanded at the desired order of loops. In
Ref. [10] the vacuum energy was calculated up to two-
loop order. Extremizing the vacuum energy density
with respect to γ3 and γ4 results in the following
equations for the three- and four-gluon variational
kernels [10]:

γabcijk ðp;q;kÞ ¼
2gTabc

ijk ðp;q;kÞ
ΩðpÞ þ ΩðqÞ þ ΩðkÞ ð9Þ

and
1In 1þ 1 dimensions the Schrödinger equation can be solved

exactly [11].
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½Ωðk1Þ þ Ωðk2Þ þΩðk3Þ þΩðk4Þ�γabcdijkl ðk1;k2;k3;k4Þ

¼ 2g2Tabcd
ijkl −

1

2
fγabeijmðk1;k2;−k1 − k2Þtmnðk1 þ k2Þγcdekln ðk3;k4;k1 þ k2Þ

þ γaceikmðk1;k3;−k1 − k3Þtmnðk1 þ k3Þγbdejln ðk2;k4;k1 þ k3Þ
þ γadeilm ðk1;k4;−k1 − k4Þtmnðk1 þ k4Þγbcejknðk2;k3;k1 þ k4Þg
− 2g2ffabefcdeδijδkl½Ωðk1Þ − Ωðk2Þ�Fðk1 þ k2Þ½Ωðk3Þ −Ωðk4Þ�
þ facefbdeδikδjl½Ωðk1Þ −Ωðk3Þ�Fðk1 þ k3Þ½Ωðk2Þ − Ωðk4Þ�
þ fadefbceδilδjk½Ωðk1Þ −Ωðk4Þ�Fðk1 þ k4Þ½Ωðk2Þ − Ωðk3Þ�g; ð10Þ

where ΩðkÞ is the gluon energy defined by the static gluon
propagator

hAa
i ðkÞAb

j ðqÞi ¼ δab
tijðkÞ
2ΩðkÞ ð2πÞ

3δðpþ qÞ;

with

tijðkÞ ¼ δij −
kikj
k2

being the transverse projector. In the equation for the
four-gluon variational kernel the Coulomb interaction
kernel FðkÞ appears, which is given in Eq. (14) below.
Furthermore

Tabc
ijk ðp;q;kÞ
¼ ifabc½δijðp − qÞk þ δjkðq − kÞi þ δkiðk − pÞj� ð11Þ

and

Tabcd
ijkl ¼ fabefcdeðδikδjl − δilδjkÞ

þ facefbdeðδijδkl − δjkδilÞ
þ fadefbceðδijδkl − δikδjlÞ ð12Þ

denote the tensor structures of the three- and four-gluon
couplings occurring in the Yang-Mills Hamiltonian. The
four-gluon kernel Eq. (10) is schematically illustrated in
Fig. 1. The variational equation for the two-gluon kernel ω
can be combined with the CRDSE for the gluon propagator
Ω, resulting in the so-called gap equation [3,10].

Lattice data for the gluon propagator [9] can be well
fitted by Gribov’s formula

ΩðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm4

A

k2

r
ð13Þ

with an effective mass mA ≃ 880 MeV (for Nc ¼ 2).
Alternatively, this can be expressed via the so-called
Coulomb string tension as m2

A ¼ 0.6σC [see Eq. (14)
below].
A comment is here in order: The lattice data do not

really go into the deep infrared (IR). So the precise value
of the IR exponent α of Ωðp → 0Þ ∼ p−α cannot be
accurately determined from the lattice data of Ref. [9].
However, the same IR exponent is also found in the
continuum calculation [4], see below.
The ghost propagator Eq. (4) is represented in momen-

tum space as

GðkÞ ¼ hGAi ¼
dðkÞ
gk2

;

where dðkÞ is the ghost form factor. Assuming the so-
called horizon condition d−1ð0Þ ¼ 0 and a bare ghost-
gluon vertex one finds from the variational calculation
carried out with a Gaussian vacuum wave functional [3]
two scaling-type solutions2: one with a gluon IR expo-
nent α ¼ 0.6 [3] and one with α ¼ 1 [4]. Both solutions
are also obtained in an IR analysis of the equations of
motion (gap equation and ghost DSE) [12]. We prefer
here to use the solution with α ¼ 1 as input for the
CRDSEs since this solution not only seems to be in
better agreement with the lattice data for the gluon
propagator but leads also to a linearly rising non-
Abelian Coulomb potential

FðpÞ ¼ p2G2ðpÞ →
p→0 8πσC

p4
; ð14Þ

FIG. 1. Schematic representation of the four-gluon variational
kernel γ4 [Eq. (10)]. Empty boxes represent variational kernels,
while the small empty dot stands for the trivial tensor structure
Eq. (12). The double line represents the Coulomb propagator
Eq. (14).

2Note that this is different from Landau gauge, where one finds
a “scaling” and a family of “decoupling” solutions but only one of
the latter is consistent with lattice data.
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which again is consistent with the lattice data. Here σC is
the Coulomb string tension, which is found on the lattice
to be about two to three times larger than the Wilson
string tension. For later use we also note that the ghost
form factor d obtained in Ref. [4] for the α ¼ 1 solution
can be fitted by [10]

dðxÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x2
þ 1

lnðx2 þ c2Þ

s
; x2 ≡ p2

σC
;

c≃ 4; a≃ 5: ð15Þ

To simplify the numerical solution of the CRDSEs we
will parametrize the gluon energy by the Gribov formula
Eq. (13) and the ghost form factor by Eq. (15).
Equations (13) and (15) constitute the input of our

calculations. They also set the scale and we represent all
results in units of the Coulomb string tension σC. All
calculations were done for SU(2). The coupling g was
set to 3.5. This corresponds to a renormalization point of
μ ¼ 2.4

ffiffiffiffiffiffi
σC

p
[4].

III. CANONICAL RECURSIVE
DYSON-SCHWINGER EQUATIONS

FOR VERTEX FUNCTIONS

The CRDSEs for the vertices have been derived in
Ref. [10], to which we refer the reader for the details;

here we give merely a short summary of the derivation and
quote the relevant one-loop results.

A. Ghost-gluon vertex

The Faddeev-Popov operator Eq. (2) can be inverted to
give the operator identity

GAð1; 2Þ ¼ G0ð1; 2Þ −GAð1; 3ÞAð4Þ ~Γ0ð3; 5; 4ÞG0ð5; 2Þ:
ð16Þ

In Eq. (16), ~Γ0 is the bare ghost-gluon vertex [see Eq. (19)
below], and G0 ¼ GA¼0 is the bare ghost propagator.
Multiplying Eq. (16) by the (spatial) gauge field A

and taking the expectation value yields for the ghost-
gluon vertex Eq. (3) at one-loop level the following
CRDSE:

~Γð1; 2; 3Þ ¼ ~Γ0ð1; 2; 3Þ þ ~Γð1; 4; 60ÞGð4; 40Þ ~Γð40; 5; 3ÞGð5; 50Þ ~Γ0ð50; 2; 6ÞDð6; 60Þ
þ ~Γð1; 6; 4ÞDð4; 40ÞΓð40; 5; 3ÞDð5; 50Þ ~Γ0ð60; 2; 50ÞGð6; 60Þ þ…; ð17Þ

which is represented diagrammatically in Fig. 2. An alternative equation can be obtained by putting K ¼ GA in Eq. (7); this
leads to the CRDSE

~Γð1; 2; 3Þ ¼ ~Γ0ð1; 2; 3Þ þ ~Γð1; 4; 60ÞGð4; 40Þ ~Γ0ð40; 5; 3ÞGð5; 50Þ ~Γð50; 2; 6ÞDð6; 60Þ
þ ~Γð1; 6; 4ÞDð4; 40Þγð40; 5; 3ÞDð5; 50Þ ~Γð60; 2; 50ÞGð6; 60Þ þ…; ð18Þ

represented diagrammatically in Fig. 3. The two CRDSEs
for the ghost-gluon vertex read schematically (trivial color
factor fabc suppressed)

~Γiðp;q;kÞ ¼ ~Γ0;iðp;q;kÞ þ ΣAb
i ðp;q;kÞ

þ Σnon-Ab
i ðp;q;kÞ þ…

where the bare vertex ~Γ0;i is given by

~Γ0;iðp;q;kÞ ¼ igtijðkÞpj: ð19Þ

Furthermore, ΣAb
i and Σnon-Ab

i represent the second and
third diagrams, respectively, on the rhs of the CRDSEs

shown in Figs. 2 and 3. For each version of the two
CRDSEs the ellipses denote different diagrams neglected
in our truncation, namely all two-loop diagrams (which
only appear in the CRDSE with a three-gluon kernel) and

FIG. 2. The CRDSE (17) for the ghost-gluon vertex, arising
from the operator identity Eq. (16). Wiggly and dashed lines
represent the bare gluon and ghost propagators, respectively. If
these lines are augmented by a full dot they represent full
propagators. Empty and full (fat) dots stand for bare and full
(dressed, one-particle-irreducible) vertices.

FIG. 3. Alternative form of the CRDSE for the ghost-gluon
vertex, arising from the functional identity Eq. (7). For notation
see caption of Fig. 2. Furthermore, empty boxes represent
variational kernels.
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diagrams with nonprimitively divergent Green functions.
At one-loop level these two equations differ by the leg
attached to the bare vertex: the antighost in Fig. 2 and the
gluon in Fig. 3. Furthermore, the full (dressed) three-
gluon vertex of the second loop diagram in Fig. 2 is
replaced in Fig. 3 by the variational kernel γ3. As we will
see in the next subsection, at leading order the dressed
three-gluon vertex is given by the variational kernel γ3,
see Fig. 4 or Eq. (22). In the numerical calculation we
will solve the CRDSE for the ghost-gluon vertex given
by Eq. (17) (Fig. 2) but replace the three-gluon vertex by
the variational kernel γ3. The resulting CRDSE differs
then from the one shown in Fig. 3 only by the leg
attached to the bare vertex.
Due to the transversality of the gluon propagator, the

color and Lorentz structure of the full ghost-gluon vertex is
the same as the bare one [Eq. (19)]. Hence there is only one
relevant dressing function for the full ghost-gluon vertex,
which can be chosen as

~Γiðp;q;kÞ ¼ igtijðkÞpjDc̄cAðp;q;kÞ:

The arguments of the dressing function Dc̄cAðp;q;kÞ are
the incoming three-momenta of the antighost, the ghost,
and the gluon legs. Alternatively also the moduli of the

antighost and gluon momenta and the angle between them
will be used: Dc̄cAðjpj; jkj; αÞ. To obtain a scalar integral
equation for the dressing function, the CRDSE (17) [or
Eq. (18)] is contracted with the projector

Pc̄cA
i ≔ −

i
g

pi

pjtjlðkÞpl
: ð20Þ

This results in the following integral equation:

Dc̄cAðp;q;kÞ¼ 1þΣAbðp;q;kÞþΣnon-Abðp;q;kÞ; ð21Þ

where the two contributions ΣAb and Σnon-Ab (without
Lorentz index) correspond to the projected diagrams ΣAb

i

and Σnon-Ab
i , respectively. The explicit expressions for the

kernels are given in the Appendix. Although the projector
Eq. (20) is ill defined for p ¼ �k, the projected diagrams
are free of kinematical singularities.

B. Three-gluon vertex

The CRDSE for the three-gluon vertex Γ3 [Eq. (5)] is
obtained from Eq. (7) by taking K½A� to be the product of
two gauge fields. It reads [10]

Γð1; 2; 3Þ ¼ γð1; 2; 3Þ − 2 ~Γ0ð1; 4; 5ÞGð40; 4ÞGð5; 50ÞGð60; 6Þ ~Γð2; 6; 40Þ ~Γð3; 50; 60Þ
þ γð1; 4; 5ÞDð4; 40ÞDð5; 50ÞDð6; 60ÞΓð2; 40; 6ÞΓð3; 50; 60Þ

−
1

2
γð1; 4; 5ÞDð4; 40ÞDð5; 50ÞΓð40; 50; 2; 3Þ

−
1

2
½γð1; 2; 4; 5ÞDð4; 40ÞDð5; 50ÞΓð40; 50; 3Þ þ 2 ↔ 3� þ…; ð22Þ

and is represented in Fig. 4. In Ref. [10] this equation has
been studied at leading IR order, i.e. only the ghost
triangle was considered. In this work we will consider
also the gluonic contributions given by the gluon triangle
and the three swordfish diagrams. The full four-gluon
vertex will be replaced by the variational kernel, and the
rhs of Fig. 4 will be properly Bose symmetrized in the
three gluon legs. Writing out explicitly the Lorentz
indices and the momentum variables but suppressing a
trivial color factor fabc the CRDSE of the three-gluon
vertex reads schematically

Γijkðp;q;kÞ ¼ γijkðp;q;kÞ − 2Σgh-tr
ijk ðp;q;kÞ

þ Σgl-tr
ijk ðp;q;kÞ − 1

2
Σsw1

ijk ðp;q;kÞ

−
1

2
Σsw2

ijk ðp;q;kÞ −
1

2
Σsw3

ijk ðp;q;kÞ þ…

ð23Þ

where each term represents a diagram of Fig. 4. The
variational kernel γ3 is given by Eqs. (9) and (11).
The ellipses represent diagrams neglected within the

FIG. 4. CRDSE for the three-gluon vertex.
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present truncation, namely two-loop terms and a diagram
containing the ghost-gluon four-point function. For the
full three-gluon vertex we will assume the same Lorentz
structure as for the bare one:

Γabc
ijk ðp;q;kÞ ¼ gDA3ðp;q;kÞTabc

ijk ðp;q;kÞ: ð24Þ

Other dressing functions do exist, but it was shown
in the case of the Landau gauge by direct calculation
[13] and by comparison with lattice results [14] that they
are very small. This motivates the use of the same
approximation here. The arguments of the dressing
function DA3ðp;q;kÞ are the incoming three-momenta.
Also here the moduli of the first two momenta and the
angle between them will be used as well: DA3ðjpj; jqj; αÞ.
To obtain a scalar integral equation for the dressing
function we contract the CRDSE (22) with the following
projector3:

PA3;abc
ijk ðp;q;kÞ

≔
γabclmnðp;q;kÞtliðpÞtmjðqÞtnkðkÞ

γdefopqðp;q;kÞtoo0 ðpÞtpp0 ðqÞtqq0 ðkÞγdefo0p0q0 ðp;q;kÞ
:

ð25Þ
On the left-hand side of the CRDSE (23) we get then

PA3;abc
ijk ðp;q;kÞΓA3;abc

ijk ðp;q;kÞ

¼ DA3ðp;q;kÞΩðpÞ þΩðqÞ þΩðkÞ
2

:

On the right-hand side the term from the variational kernel
becomes just 1 (i.e. a momentum independent constant).
This is important to handle the divergences on the right-hand
side, because now a simple momentum subtraction can be
used. (For other projections the divergent integrals have
prefactors that depend on the external momenta and mo-
mentum subtraction does not work.) The subtraction point is
chosen as jpj ¼ jqj ¼ jkj ¼ jp0j ¼ p0 with jp0j in the UV:

DA3ðp;q;kÞΩðpÞþΩðqÞþΩðkÞ
2

−DA3ðp0;p0;2π=3Þ
3Ωðp0Þ

2
¼Σðp;q;kÞΩðpÞþΩðqÞþΩðkÞ

2
−Σðp0;p0;p0Þ

3Ωðp0Þ
2

¼Σsub;projðp;q;kÞ; ð26Þ

where Σðp;q;kÞ denotes the sum of all projected inte-
grals with the γ-dependent part from the projection
factored out. The renormalization condition is chosen
as DA3ðp0;p0;2π=3Þ¼ γ3ðp0;p0;2π=3Þ¼2=3Ωðp0Þ. The
result for the three-gluon vertex dressing reads then

DA3ðp;q;kÞ¼ 2

ΩðpÞþΩðqÞþΩðkÞð1þΣsub;projðp;q;kÞÞ;

ð27Þ

where Σsub;proj is given by Eq. (26). In our numerical
calculations we used p0 ¼ 600

ffiffiffiffiffiffi
σC

p
.

The full three-gluon vertex is totally symmetric with
respect to a permutation of the external gluon legs. The rhs
of the CRDSE (22) and the corresponding diagrams in
Fig. 4 do not respect this symmetry due to the truncation.
We restore this symmetry by averaging the final integral
equation over inequivalent permutations of the external
gluon legs, resulting in

DA3;symmðp;q;kÞ ¼ 1

3
ðDA3ðp;q;kÞ þDA3ðk;p;qÞ þDA3ðq;k;pÞÞ

¼ 2

ΩðpÞ þ ΩðqÞ þ ΩðkÞ
�
1 −

2

3
ðΣgh-tr;subðp;q;kÞ þ Σgh-tr;subðk;p;qÞ þ Σgh-tr;subðq;k;pÞÞ

þ 1

3
ðΣgl-tr;subðp;q;kÞ þ Σgl-tr;subðk;p;qÞ þ Σgl-tr;subðq;k;pÞÞ

−
1

6
ðΣsw1;subðp;q;kÞ þ Σsw1;subðk;p;qÞ þ Σsw1;subðq;k;pÞÞ

−
1

3
ðΣsw2;subðp;q;kÞ þ Σsw2;subðk;p;qÞ þ Σsw2;subðq;k;pÞÞ

�
þ… ð28Þ

3Note that we project the full vertex Γ3 onto the kernel γ3 Eq. (9); we do not project it onto the perturbative vertex, which is given by
Eq. (9) with ΩðpÞ replaced by jpj.
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Due to this symmetrization the two swordfish diagrams with variational four-gluon vertex kernels can be subsumed
(diagrams five and six in Fig. 4).
To alleviate the algebraic manipulations performed before creating the kernel files for the numeric code, the expression

Eq. (10) is split into three parts:

γð1Þ;abcdijkl ðk1;k2;k3;k4Þ ¼
2g2Tabcd

ijkl

½Ωðk1Þ þ Ωðk2Þ þ Ωðk3Þ þΩðk4Þ�
ð29Þ

γð2Þ;abcdijkl ðk1;k2;k3;k4Þ ¼ −
1

2

1

½Ωðk1Þ þΩðk2Þ þ Ωðk3Þ þ Ωðk4Þ�
× fγabeijmðk1;k2;−k1 − k2Þtmnðk1 þ k2Þγcdekln ðk3;k4;k1 þ k2Þ
þ γaceikmðk1;k3;−k1 − k3Þtmnðk1 þ k3Þγbdejln ðk2;k4;k1 þ k3Þ
þ γadeilm ðk1;k4;−k1 − k4Þtmnðk1 þ k4Þγbcejknðk2;k3;k1 þ k4Þg ð30Þ

γð3Þ;abcdijkl ðk1;k2;k3;k4Þ ¼
−2g2

½Ωðk1Þ þΩðk2Þ þ Ωðk3Þ þ Ωðk4Þ�
× ffabefcdeδijδkl½Ωðk1Þ −Ωðk2Þ�Fðk1 þ k2Þ½Ωðk3Þ − Ωðk4Þ�
þ facefbdeδikδjl½Ωðk1Þ −Ωðk3Þ�Fðk1 þ k3Þ½Ωðk2Þ − Ωðk4Þ�
þ fadefbceδilδjk½Ωðk1Þ −Ωðk4Þ�Fðk1 þ k4Þ½Ωðk2Þ − Ωðk3Þ�g: ð31Þ

From the IR behavior of the gluon energy Ω [Eq. (13)] and
of the Coulomb kernel F [Eq. (15)] follows that the third

part γð3Þ4 [Eq. (31)] of the four-gluon kernel behaves
quantitatively like p−5 for p → 0. This is the same degree
of IR divergence as expected from the analysis of the ghost
box of the four-gluon vertex DSE [15]. As a consequence,
the swordfish diagrams containing both the variational
four-gluon kernel and one full three-gluon vertex [last
two terms on the rhs of Eq. (22)/Fig. 4] diverge like
p−5þ2×1þ3−3 ¼ p−3 and contribute at the same order as the
ghost triangle [the second term on the rhs of Eq. (22)/
Fig. 4]. This comes as somewhat unexpected as typically
ghost dominance is manifest.
In Ref. [10] the three-gluon vertex was calculated in the

symmetric momentum configuration, for which k2
i ¼ p2

and ki · kj ¼ −p2=3, i ≠ j, and γð3Þ;abcdijkl ðk1;k2;k3;k4Þ¼0

holds. This considerably simplifies the variational four-
gluon kernel. Here, however, we will resolve the full
momentum dependence of the three-gluon vertex. Due to
the quite involved expression for the variational four-gluon
kernel the derivation of the final integral kernels becomes
very cumbersome and more complicated than in the
Landau gauge. Thus the use of a computer algebra system
is almost unavoidable and we used the Mathematica [16]
package DOFUN for this task [17,18].

IV. NUMERICAL RESULTS

For the numerical calculation the vertices are put on a
grid. Up to 40 points for each of the external momenta and

up to 18 points for the external angle were used. For
intermediate points linear interpolation was employed.
Naturally also values outside of the grid are required.4 In
the IR the boundary values were used. For the ghost-gluon
vertex this is a trivial choice, as it becomes constant in the
IR. Also for the three-gluon vertex this prescription was
adopted. The only diagram that could be affected by this
choice is the swordfish diagram with a full three-gluon
vertex.5 However, we demonstrate in Fig. 13 that for the
chosen IR parameters it is not affected either and follows
the expected power law. In the UV the boundary value is
taken as well. This choice does not respect the anomalous
dimensions of the vertices. To clarify its influence we
varied the grid size for the ghost-gluon vertex but found no
visible change, which validates this procedure a posteriori.
The three-dimensional integrals are done using spherical

coordinates:Z
d3ω ¼

Z
dωω2

Z
dθ2 sinðθ2Þ

Z
dθ1: ð32Þ

To avoid possible problems with the denominators of the
integrands, we split the integration regions at their zeros

4For the angle this does not apply as it is a bounded variable.
However, to avoid expressions of the type 0=0, which are ill
defined numerically but still finite in the sense of de l’Hopital, the
nodes for the numerical integration are in a range slightly
narrower than the whole integration range.

5The other diagram with a full three-gluon vertex is the gluon
triangle. It is IR suppressed and thus any effect on its IR behavior
does not couple back on the vertex itself.
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[19]. Thus the radial integration contains three regions
with up to 70 points each and the angle integrations two
regions with up to 35 points. Besides this aspect the
integration is rather trivial and a simple Gauss-Legendre
quadrature is sufficient. The IR (UV) cutoff was set a
factor 100 (10) times lower (higher) than the lowest
(highest) grid point. The cutoff independence was veri-
fied by varying the cutoff by a factor of 10, which has no
effect.
As starting values we used for the ghost-gluon vertex

the bare vertex and for the three-gluon vertex the ghost-
triangle-only calculation. The final result is obtained by a
fixed point iteration. All calculations were performed
with the CRASYDSE framework [20]. Further numerical
details can also be found in Ref. [20] and references
therein.

A. Ghost-gluon vertex

Figure 5 shows the dressing function of the ghost-gluon
vertex as a function of the modulus of the two external
momenta for a fixed angle of roughly 2π=3. The two panels
show the dressing function of the ghost-gluon vertex
obtained from the CRDSE (17) [Fig. 2] and Eq. (18)
[Fig. 3], respectively. In general the differences are small
and largest for the ridge with constant gluon momentum.

A detailed comparison of the results from the two different
ghost-gluon vertex CRDSEs is shown in Fig. 6 for specific
momentum configurations.
Figure 7 shows the ghost-gluon vertex dressing function

for equal momenta and different angles. There is only a
slight dependence on the angle between the momenta.
The selected values of the angle contain the two extreme
points of parallel and antiparallel momenta [cosðαÞ ¼ −1
and 1] and the symmetric point [cosðαÞ ¼ −0.5]. A
comparison with lattice data from Landau gauge [21] in
three dimensions is shown in Fig. 8. Qualitatively, the

FIG. 6 (color online). Comparison of the results from the two different ghost-gluon vertex CRDSEs. Continuous/dashed lines are from
the versions with the antighost/gluon legs attached to the bare vertices. (Left panel) Equal antighost and gluon momenta, different
angles. (Right panel) Zero gluon momentum.

FIG. 5 (color online). Dressing function of the ghost-gluon vertex. The antighost momentum is denoted by p, the gluon momentum
by k. (Left panel) Antighost legs attached to bare vertices, see Fig. 2. (Right panel) Gluon legs attached to bare vertices, see Fig. 3.

FIG. 7 (color online). Ghost-gluon vertex dressing function for
equal momenta and various angles.
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bump in the midmomentum regime is reproduced.
However, quantitative agreement is not achieved. Most
notably, the UV regime is different. In Coulomb gauge the
vertex possesses an anomalous dimension. In three-dimen-
sional Landau gauge, on the other hand, it approaches the
tree level very quickly, because the gauge coupling is
dimensionful in three dimensions and thus the vertex
dressing must be suppressed as 1=p in the UV. Lattice
calculations [21] and semiperturbative DSE calculations
[22] indeed show this behavior. At small momenta the lattice
results drop back to 1, while our results settle at a higher
value. This presumably reflects the two different type of
solutions realized in Landau and Coulomb gauge, respec-
tively. Lattice calculations support the decoupling solution
in Landau gauge [23–27] but the scaling solution in
Coulomb gauge [9]. Thus it might not be appropriate to
compare the results obtained from the CRDSEs in
Coulomb gauge with the lattice data for the Landau gauge.
The propagators of the two types of solutions differ mainly
in the IR [28] and the same is expected for the correspond-
ing ghost-gluon vertices as analogous investigations in
Landau gauge show [29]: The ghost-gluon vertex
approaches the tree-level vertex for the decoupling solution
but receives a (finite) IR enhancement for the scaling
solution. This explains the difference between our results
and lattice data in the IR.

In general, the results obtained for the ghost-gluon vertex
are in accord with previous investigations in Coulomb
gauge [30] and look also very similar to results from
Landau gauge [21,22,29,31–35] except for the anomalous
UV dimension. For example, as anticipated for a scaling-
type solution the ghost-gluon vertex stays finite in the IR
[15,30]. Also, it does not develop kinematic singularities in
agreement with an IR analysis in three dimensions [31].
Furthermore, the presently obtained dressing function of
the ghost-gluon vertex has qualitatively the same behavior
as the one obtained in a semiperturbative calculation [30]
using full propagators (as in the present approach) but bare
ghost-gluon vertices in the loop diagrams of the CRDSEs.
In Fig. 9 we compare the results of our full calculation with
those of the semiperturbative calculation of Ref. [30].
While the non-Abelian diagram, which contains one
dressed ghost-gluon vertex, is not so much affected, the
Abelian diagram gets much more enhanced in the mid-
momentum and IR regimes by using dressed vertices.

B. Three-gluon Vertex

The dependence of the form factor of the three-gluon
vertex on the magnitude of the external momenta is shown
in Fig. 10 for a fixed angle α [see the comment after
Eq. (24)] of roughly 2π=3. The angle dependence of the
dressing function is shown in Fig. 11. The selected values

FIG. 9 (color online). Comparison of the full nonperturbative calculation carried out in the present paper with the semiperturbative
calculation [30] of the ghost-gluon vertex. (Left panel) Dressing function of the ghost-gluon vertex. (Right panel) Contributions from the
Abelian and non-Abelian diagrams. The values for the non-Abelian diagram are larger than those in Fig. 2 of Ref. [30], where the
coupling constant g was factored out.

FIG. 8 (color online). Comparison to lattice results [21] at the symmetric point (left panel) and for vanishing gluon momentum (right
panel). Different colors correspond to different lattice sizes N ∈ f40; 60g and values for β ∈ f4.2; 6g; see Ref. [21] for details.
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of the angle contain the two extreme points of parallel and
antiparallel momenta [cosðαÞ ¼ −1 and 1] and the sym-
metric point [cosðαÞ ¼ −0.5]. For comparisons with results
in Landau gauge [13,14,21,31,35] one should use the ratio
of the dressing function over the variational kernel,
DA3

=γ3ðp; q; αÞ. The qualitative similarity from the UV
down to the midregime is then obvious. Only in the deep IR

is the qualitative behavior different as we have a scaling-
type solution in the Coulomb gauge and the dressing thus
diverges with a power law.
A comparison between the full calculation and various

approximative calculations is shown in Fig. 12. The
roughest approximation considered includes only the ghost
triangle diagram. We also show the result of the calculation
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FIG. 11 (color online). (Left panel) Dressing function of the three-gluon vertex. (Right panel) Three-gluon vertex over variational
kernel. Both plots for equal magnitude of two momenta with various angles between them.
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FIG. 12 (color online). The three-gluon vertex from the full calculation (continuous line), from a simplified four-gluon kernel
(dashed line), from a triangles-only calculation (dot-dashed line) and from a ghost-triangle-only calculation (dotted line). (Left panel)
Three-gluon vertex dressing function. (Right panel) Ratio of the three-gluon vertex to the variational kernel. Colors correspond to the
same angles as in the left panel.

FIG. 10 (color online). (Left panel) Dressing of the three-gluon vertex. (Right panel) The ratio of three-gluon vertex to the variational
kernel. The deviation from Bose symmetry at the boundaries is a numerical artifact due to the smallness of γ3 which enhances small
numerical errors considerably.
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where all triangle diagrams were included. As can be seen it
makes little difference to take all triangle diagrams or only
the ghost triangle. However, a comparison with the full
calculation clearly shows that neglecting the swordfish
diagrams completely is too drastic an approximation. Quite
surprisingly, the calculation with a simplified four-gluon

kernel, where the contribution γð3Þ4 [Eq. (31)] which
contains the Coulomb propagator is neglected, can indeed
reproduce the results from the full calculation rather well.
This is somewhat unexpected since, as mentioned in

Sec. III B, the term γð3Þ4 [Eq. (31)] of the four-gluon kernel
diverges like p−5 for small momenta. As a consequence, the
swordfish diagram with a full three-gluon vertex diverges in
the IR with the same power as the ghost triangle. This is a
peculiarity of Coulomb gauge, which has no analog in
Landau gauge. We have verified this explicitly and show a
direct comparison in Fig. 13. As can be seen, both diagrams

(ghost triangle and the swordfish diagram with γð3Þ4 ) diverge
as p−5 [p−3 from the diagram and p−2 from the projector
Eq. (25)]. Within the current truncation scheme, the
magnitude of the IR dominant part of the swordfish
contribution is roughly 8% of the ghost triangle; however,
the sign is opposite. As illustrated in Fig. 12, neglecting this
contribution leads to very small deviations. Numerically,

however, this contribution is one reason why, compared to
similar calculations in the Landau gauge [14,29], a higher
precision is required here. Taking into account the sum of
the gluon energies in Eq. (27) and the tensor structure T3 in
Eq. (24), the overall IR exponent of the full three-gluon
vertex is −3, in agreement with the results obtained in
Refs. [10,15].
In the results presented so far for the three-gluon vertex

we have used a bare ghost-gluon vertex. We have also
solved the CRDSE (28) for the three-gluon vertex using
the dressed ghost-gluon vertex obtained in Sec. IVA. The
resulting dressing function is shown in Fig. 14 and
compared to that obtained with a bare ghost-gluon vertex.
As can be seen the difference is rather small. Both curves
differ mainly in the IR, where the coefficient of the power
law is different. Also, the positions of the zeros of the
dressing functions differ.

V. SUMMARY

We have numerically solved the CRDSEs for the ghost-
gluon and three-gluon vertices self-consistently in a one-
loop truncation using the ghost and gluon propagators
obtained previously with bare vertices as input. The ghost-
gluon vertex is somewhat infrared enhanced (but finite) and
drops gently with increasing momentum. It also shows little
dependence on the angle between two momenta. Contrary
to this, the dressing function of the three-gluon vertex is
strongly infrared enhanced, in agreement with previous
analytic analyses. The Coulomb propagator enters the
CRDSE for the three-gluon vertex through the four-gluon
kernel; while its contribution in the IR has the same power
as the ghost loop, numerically it turns out to be almost
negligible. At higher momenta the gluon loop diagrams
become important and dominate the quantitative behavior.
Furthermore, our numerical results show that in the
calculation of the three-gluon vertex the dressing of the
ghost-gluon vertex can be ignored to good approximation.
The vertex dressings obtained in the present paper will
serve as input in forthcoming studies within the variational
approach to QCD in Coulomb gauge.

FIG. 13 (color online). IR behavior of ghost triangle (green,
upper line) and the IR dominant part of the dynamic swordfish
(red, lower line) projected as in Eq. (26). The dashed blue line is
shown to illustrate the power law p−5.

FIG. 14 (color online). Three-gluon vertex dressing function at the symmetric point calculated with the full ghost-gluon vertex
obtained here (green, dashed line) compared to results calculated with a bare ghost-gluon vertex (red, continuous line). The right panel
shows the region around the zero crossing.
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APPENDIX: KERNELS OF THE GHOST-GLUON
VERTEX EQUATION

The kernels of the ghost-gluon vertex CRDSE are
expressed in the following variables:

x ¼ p2; y ¼ q2; z ¼ k2; ω ¼ l2;

u ¼ p · k; s ¼ k · l; v ¼ p · l; ðA1Þ

where p, q, and k are external momenta and l is the loop
momentum. The arguments of the dressing functions are
squared momenta. The external momenta were chosen such
that p defines the 3-direction and k lies in the 2-3-plane.
The scalar products given in Eq. (A1) are then

u ¼ ffiffiffiffiffi
xz

p
cosφ;

s ¼ ffiffiffiffiffiffi
ωz

p ðcosφ cos θ2 þ sinφ cos θ1 sin θ2Þ;
v ¼ ffiffiffiffiffiffi

xω
p

cos θ2;

where φ is the angle between p and k and the integration
angles are θ1 and θ2.
The self-energies of the ghost-gluon vertex, see Eq. (21),

are given by

ΣAbðp;q;kÞ ¼ g2Nc

Z
dωdθ1dθ2

ffiffiffiffi
ω

p
sinðθ2Þ

16π3
Kghgðp;k; lÞ

×
dðωÞdð2sþ ωþ zÞDc̄cAðx;ω;−2vþ ωþ x�ÞDc̄cAð2sþ ωþ z; 2uþ xþ z;−2vþ ωþ xÞ

4ωð−2vþ ωþ xÞð−u2 þ xyÞð2sþ ωþ zÞΩð−2vþ ωþ xÞ ;

Σnon-Abðp;q;kÞ ¼ g2Nc

Z
dωdθ1dθ2

ffiffiffiffi
ω

p
sinðθ2Þ

16π3
Lghgðp;k; lÞ

×
dð2vþ ωþ xÞDc̄cAðx;−2vþ ωþ x;ωÞDc̄cAð−2vþ wþ x; 2uþ xþ z; 2sþ wþ zÞ
2ωð−2vþ ωþ xÞð−u2 þ xyÞΩðωÞΩð2sþ ωþ zÞðΩðωÞ þ ΩðzÞ þΩð2sþ ωþ zÞÞ ;

for the equation with the gluon leg attached to the variational kernel [Eq. (17)] and

ΣAbðp;q;kÞ ¼ g2Nc

Z
dωdθ1dθ2

ffiffiffiffi
ω

p
sinðθ2Þ

16π3
Kghgðp;k; lÞ

×
dðωÞdð2sþ ωþ zÞDc̄cAðω; 2sþ ωþ z; zÞDc̄cAð2sþ ωþ z; 2uþ xþ z;−2vþ ωþ xÞ

4ωð−2vþ ωþ xÞð−u2 þ xyÞð2sþ ωþ zÞΩðxþ ω − 2vÞ ;

Σnon-Abðp;q;kÞ ¼ g2Nc

Z
dωdθ1dθ2

ffiffiffiffi
ω

p
sinðθ2Þ

16π3
Lghgðp;k; lÞ

×
dð−2vþ ωþ xÞDA3ðz;ω; 2sþ ωþ zÞDc̄cAð−2vþ ωþ x; 2uþ xþ z; 2sþ ωþ zÞ

2ωð−2vþ ωþ xÞð−u2 þ xyÞΩðωÞΩð2sþ ωþ zÞ
for the equation with the antighost leg attached to the bare vertex [Eq. (18)]. The explicit kernels read

Kghgðp;k; lÞ ¼ ðv2 þ uðv − ωÞ þ sðv − xÞ − ωxÞðsu − vzÞ;
Lghgðp;k; lÞ ¼ ðð−u2 þ xyÞð−s2ð−2vþ ωÞ þ svzþ ωð−vþ ωÞz − uωðsþ zÞÞ

þ ðsu − vzÞðs2vþ sðv2 − 2ωxþ vðωþ zÞÞ þ ωðv2 þ vz − xðωþ zÞÞ
− uðsð−vþ 2ωÞ þ ωð−vþ ωþ zÞÞÞ:
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