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The quest for finding self-consistent background solutions in quantum field theory is closely related to
the way one decides to set the renormalization scale k. This freedom in the choice of the scale setting can
lead to ambiguities and conceptual inconsistencies such as the nonconservation of the stress-energy tensor.
In this paper a setting for the “scale field” is proposed at the level of effective action, which avoids such
inconsistencies by construction. The mechanism and its potential is exemplified for scalar ϕ4 theory and for
Einstein-Hilbert-Maxwell theory.
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I. INTRODUCTION

The effective action approach [1] can be seen as an elegant
way of defining a generating functional for one-particle-
irreducible Green’s functions. Following Wilson’s idea [2]
one can study the effect of integrated quantum degrees of
freedom at different scales k. The scale dependent effective
action Γk is to be understood as interpolation between the
ultraviolet (UV) bare action Γ∞ and the fully integrated
action in the IR Γ0 as it is sketched in Fig. 1. Γk contains
scale dependent couplings gak which are obtained from a
suitable flow equation k∂kΓk ¼ � � �. The space of solutions
gak is called the “coupling flow” [3]. A specific trajectory is
selected out of this flow by imposing conditions for the
couplings at an initial scale k0. The evaluation of the
effective action Γk is typically hampered by various technical
difficulties such as singularities, anomalies, and nonlocal-
ities. However, in many cases those difficulties can be
overcome by the “regularization-renormalization” technique,
where infinities are absorbed in the initial conditions at a
scale k0. The technical details of this procedure will not
be presented here, since they are not relevant for the
following discussion. It will be assumed that the effective
action Γk has already been calculated.
Minimizing a given effective action with respect to

variations of its (average) field content ϕa gives the
equations of motion of the effective action

δΓk

δϕa
¼ 0: ð1Þ

Those equations are typically nonlinear and sometimes
nonlocal differential equations and are frequently referred
to as “gap equations” [4]. Solutions of those equations have
minimal energy (Gibbs free energy in statistical mechan-
ics). Therefore, finding solutions for the gap equations is
highly relevant for defining a self-consistent background
in quantum field theory.
However, even if it is technically possible to solve the

gap equations, the physical interpretation of such a solution

is still biased by the way the scale k is related to the
quantities xi; Qi;… (for example positions and charges)
that are used to describe the physical system. Choosing a
relation k ¼ kðxi; Qi;…Þ is called “scale setting.” The main
focus of this article is on the role of scale setting in the quest
of finding self-consistent solutions of (1).
The paper is organized as follows: In Sec. II the approach

of improving classical solutions is studied and a criterion
for scale setting is proposed. Section III goes beyond
improving classical solutions by studying the gap equa-
tions. A scale setting is proposed in terms of an additional
equation of motion. The self-consistency and predictively
of this approach is then studied for specific examples such
as scalar ϕ4 theory in Sec. IV and the Einstein-Hilbert-
Maxwell action in Sec. V. Conclusions can be found
in Sec. VI.

II. A PROBLEM WITH SCALE SETTING IN
IMPROVING SOLUTIONS SCHEMES

The method of improving solutions has been success-
fully applied in many different contexts [5–29]. This

FIG. 1. Effective action Γk in theory space where ideally
Λ → ∞ and the dotted line indicates an integration of ϕa over
momentum degrees of freedom with p ≥ k.
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intuitive method is potentially useful when perturbation
theory has limited reliability such as for strong coupling or
for nonrenormalizable theories.
Instead of turning to one of the particular examples, this

approach will be discussed in quite generic fashion. Let us
assume a quite general ϕ4 quantum field theory with bare
fields ϕi and generic couplings α; g with the equations of
motion

DðαϕaÞ þ
X

gabcdðϕbϕcϕdÞ ¼ 0; ð2Þ

where D is some differential operator (for example ∂μ∂μ).
Let us further assume that the classical solution of (2) is
given by

ϕa ¼ ϕ0
aðr; α; gn; AÞ; ð3Þ

where r are the coordinates and A are integration constants.
Renormalization methods allow one to calculate quantum
corrections to the couplings at arbitrary scale k, such that
the couplings of the bare theory become scale dependent
quantities (αk; gk). How do those supposedly small quan-
tum corrections modify the form of the classical solution?
One approach to address this question is given the
improving solutions procedure [5,6], where one assumes
that the classical solution is actually the quantum solution
at a certain scale say k ¼ k0. For the case of simplicity let us
choose k0 ¼ 0, just as it is done for the electromagnetic
coupling in the standard model. At this scale the classical
equation of motion,

Dðα0ϕ0
aÞ þ

X
gabcd0 ðϕ0

bϕ
0
cϕ

0
dÞ ¼ 0; ð4Þ

is solved by ϕ0
a and the k dependence is a small correction

to this solution. In this scheme one assumes that at first
order the functional form of the solution stays unchanged,
and only the couplings have to be replaced by the scale
dependent couplings in ϕ:

ðα0; g0Þ → ðαk; gkÞ: ð5Þ

Now one makes the ansatz that the classical solution
obtains its first order quantum correction only due to the
scale dependence of the couplings

ϕa ¼ ϕ0
aðr; α0; g0; AÞ þ

d
dk

ϕaðr; αk; gk; AÞjk¼0 · kþOðk2Þ;

αk ¼ α0 þ
d
dk

αkjk¼0 · kþOðk2Þ;

gk ¼ g0 þ
d
dk

gkjk¼0 · kþOðk2Þ: ð6Þ

The second step is to perform a scale setting which relates
the arbitrary scale k to the physical coordinates,

k → kðrÞ: ð7Þ

The explicit form for this scale setting is however a priori
not uniquely determined (in static spherically symmetric
problems it has for example been proposed to use k ∼ 1=r).
One first consistency check for this procedure would be to
improve the equations of motion (2) in the same way and
to check whether the improved solution (6) is actually a
solution (up to order k1) of those equations. Inserting (6)
into (2) one obtains

0¼Dðα0ϕ0
aÞþ

X
gabcd0 ðϕ0

bϕ
0
cϕ

0
dÞþD

��
k
d
dk

�
ðαkϕaÞjk¼0

�

þ
�
k
d
dk

�X
gabcdk ðϕk

bϕ
k
cϕ

k
dÞjk¼0þOðk2Þ: ð8Þ

Using (4) the first line is identically zero and one obtains
that the second line has to be zero too, if one wants to insist
on the improved equations. In most of the articles cited
above it was not imposed that the improved equations of
motion stay valid and the scale setting was performed
basically based on dimensional analysis. At this point an
important questions arises: “Is the coupling αk inside or
outside the square brackets of the differential operator D?”
This is a priori not clear since starting from the equation
of motion (4) both alternatives would be equally possible.
However, this question can be “answered” (or say evaded)
if one imposes a particular scale setting (7) such that the
differential operator commutes with the scale function

½D; kðrÞ� ¼ 0: ð9Þ

In this case the second line of (8) is equivalent to

0¼
�
k
d
dk

��
D½ϕk

aÞ�þ
X

α−1k gabcdk ðϕk
bϕ

k
cϕ

k
dÞ
�
jk¼0þOðk2Þ:

ð10Þ

Thus, the remaining task would be first solving (9) for k
and then solving (10) for ϕk

i .
The fact that (9) can actually serve as a useful way of

defining a scale setting can be seen from a simple example:
For the three-dimensional Laplace operator with spherical
symmetry, the condition (9) reads�

1

r2
∂rðr2∂rÞ; kðrÞ

�
¼ 0: ð11Þ

It is solved for r ≠ 0 by

kðrÞ ¼ ξ

r
; ð12Þ

which indeed agrees perfectly with the ad hoc intuition
coming from a dimensional analysis.
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However, there is (at least) one other consistency
condition one would like to impose, the conservation of
the stress-energy tensor, even at the quantum-improved
level. Let T0

μν be the classically conserved stress-energy
tensor

∇μT0
μν ¼ 0; ð13Þ

then the straightforward improved stress-energy tensor
would be taken to be

Tμν ¼ T0
μν þ

�
d
dk

Tk
μνjk¼0

�
· kþOðk2Þ: ð14Þ

Imposing conservation of (14) and using (13) one finds to
leading order in k,

∇μTμν ¼ ∇μ

��
d
dk

Tk
μνjk¼0

�
· k
�
≡ 0: ð15Þ

If one would try to solve this problem in the same spirit
as (9) by imposing ½∇μ; kðrÞ�≡ 0 one easily finds that this
is overly restrictive allowing only for trivial solutions. To
circumvent this problem one can modify the definition (5)
of the stress-energy tensor (for example by using a different
equation of state [25]) but such an ad hoc redefinition is not
completely satisfactory.
To summarize, one sees that the method of improved

solutions (8) can be made consistent, even at the level of
improved equations of motions if one imposes an adequate
scale setting (9) (for example k ∼ 1=r for the spherical
symmetric Laplacian). However, it has limitations in the
sense that this procedure raises questions in the context of
symmetries and conservation laws and that it is restricted
to first order corrections only.
This can be taken as motivation for seeking a more

elegant way for obtaining a description in the context of
scale dependent couplings.

III. THE PROPOSAL: SCALE-FIELD SETTING
AT THE LEVEL OF EFFECTIVE ACTION

In the previous section it was shown how scale setting
can be realized in the improving solutions approach. In this
section a more general scale setting at the level of effective
action will be proposed.
Let us assume that within the quantum field theoretical

model it was possible to evaluate the corresponding
coupling flow and to select a particular trajectory due to
the choice of initial conditions [giðk0Þ ¼ gi;0]. Thus, one
can start with the effective quantum action [1]

ΓkðϕaðxÞ; ∂ϕaðxÞ; gakÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LðϕaðxÞ; ∂ϕaðxÞ; gakÞ;

ð16Þ

where ϕa are actually the expectation values of the quantum
fields and gak are the scale dependent couplings, including
the coupling multiplying the kinetic term that is frequently
expressed in terms of field renormalization (see the first two
subsections of IV).
Note that doing this, one frequently has to truncate

higher order or nonlocal couplings [30–32] from the
model, which might appear due to the quantum integration
procedure. In the following discussion it will however be
assumed that all relevant couplings are taken into account.
Now, one can derive the equations of motion for the
average quantum fields ϕa from

δΓk

δϕa
¼ 0: ð17Þ

As mentioned in the Introduction, the solutions ϕ̄aðx; kÞ of
those gap equations will also be functions of the arbitrary
scale k. From a physical point of view this is however
not yet satisfactory since no possible observable can be a
function of an a priori arbitrary scale. In order to obtain a
physical quantity one has to define some kind of scale
setting procedure, which establishes a relation between
the physical quantities (charges Qi and positions xj)
of a given problem and the scale k. When doing this
one can borrow an idea from the calculation of observ-
ables hTϕðxiÞ…ik in standard quantum field theory. Also
there, the observables turn out to be scale k dependent
quantities.1 Subsequently, the scale setting for those
observables in terms of initial conditions and kinematical
variables k ¼ kðxi;Qi…Þ is chosen such that any k
dependence of the time ordered correlation function is
minimized:

d
dk

hTϕ1ðx1Þϕ2ðx2Þ…ik
���
k¼kopt

≡ 0: ð18Þ

This is the key philosophy that is used when deriving the
“Callan-Symanzik”equations [33,34], theminimal sensitivity
setting, or the “principle of maximal conformality” [35,36].
It is proposed to implement an analogous philosophy

at the level of the effective action Γk. This means that
one should choose an optimal scale setting prescription
for which a variation of k has a minimal impact on the
self-consistent background ϕ̄i. This principle can be
implemented by promoting the a priory arbitrary scale to
a physical scale-field in the effective quantum action

ΓkðϕaðxÞ; ∂ϕaðxÞ; gakÞ → ΓðϕaðxÞ; ∂ϕaðxÞ; kðxÞ; gakÞ:
ð19Þ

This leads to the coupled equations of motion

1It is argued that this k dependence is an artifact of the
truncation in the loop expansion.
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δΓ
δϕa

¼ 0;
d
dk

LðϕaðxÞ; ∂ϕaðxÞ; kðxÞ; gakÞ
���
k¼kopt

¼ 0:

ð20Þ

Clearly it is not guaranteed that a solution for (20) can be
found, but such a prescription is not limited to be a variation
of a classical solution or to a saddle point approximation.
The procedure (20) has already been applied for some
particular gravitational actions [13,28,37–39] but in this
paper it is discussed in a broader context. A nice feature of
such a procedure is that any solution of the equations (20)
is automatically independent of k, which is actually the
fundamental precondition for a physical observable in the
language of the renormalization group approach.
Promoting the scale k to a scale field kðxÞ raises the

question whether this new field only appears in the
couplings gak , or whether it has to be equipped with other
additional couplings, for instance a proper kinetic term.
A standard procedure when introducing new fields into a
Lagrangian is to incorporate actually all couplings that are
in agreement with the symmetry of the Lagrangian. This
abundant freedom is then restricted by imposing some other
additional conditions such as renormalizability, simplicity,
and/or agreement with experimental constraints. However,
in the presented approach the philosophy is different. The
scale field k is understood to have its origin in the process
of renormalization and, throughout this process, no such
extra couplings are taken into account. In particular, the
beta functions of the couplings gak are calculated without
any additional couplings. Therefore, the presented version
of scale-field setting is chosen in a sense “minimal,” since
it contemplates the appearance of kðxÞ only as dictated by
the running couplings gak .
Even though the prescription (19) looks quite convincing

from this perspective, it might be insufficient for example
in the sense that the space of solutions of (20) is actually
empty, apart from a trivial configuration or it is insufficient
in the sense that the conservation of the stress-energy tensor
cannot be guaranteed either. Therefore, the idea will be
studied for some examples, where self-consistency of the
approach can be shown explicitly.

IV. SCALE-FIELD SETTING FOR
SCALAR ϕ4 THEORY

As a most simple example without any further compli-
cations due to gauge symmetry let us study the scale-field
setting procedure for scalar ϕ4 theory. There are various
ways of writing the effective action for ϕ4 theory. One of
them is in terms of a scale dependent wave function
renormalization Zk, running mass mk, and running quartic
coupling gk. The other way of writing this action is terms
of separate couplings for every term appearing in the
Lagrangian, which are a coupling for the kinetic term
αk, a coupling for the ϕ2 term ~m2

k, and a coupling for the

quartic term ~gk. As long as the scale k is assumed to be
fixed, the formalism for both is exactly equivalent.
However, in the context of scale-field setting k → kðxÞ,
derivatives do not necessarily commute with kðxÞ and both
formulations could be treated differently. This subtlety will
be exemplified in the following subsection, before applying
the scale setting to ϕ4 theory at the one-loop level.

A. Consistency in scalar ϕ4 theory

If one works with separate couplings for every term
appearing in the Lagrangian, including the kinetic term, the
effective action is

Γ ¼
Z

d4x

�
αk
2
ð∂ϕÞ2 − ~m2

k

2
ϕ2 −

~gk
4!

ϕ4

�
ð21Þ

with two fields ϕ and k. The couplings αk, ~m2
k, and ~gk are

functions of the field k. This implies an equation of motion
for δϕ:

∂μðαk∂μϕÞ þ ~m2
kϕþ ~gk

6
ϕ3 ¼ 0; ð22Þ

and another equation of motion for k:

α0kð∂ϕÞ2 − ð ~m2
kÞ0ϕ2 −

1

12
~g0kϕ

4 ¼ 0; ð23Þ

where α0 ¼ ∂kα ¼ ð∂xαÞdx=dk.
The conserved energy momentum tensor is obtained as a

variation with respect to the metric tensor,

Tμν ¼ αkð∂μϕÞð∂νϕÞ − gμν

�
αk
2
ð∂ϕÞ2 − ~m2

k

2
ϕ2 −

~gk
4!

ϕ4

�
:

ð24Þ

The corresponding conservation law reads

0 ¼ ∂μTμν

¼ ∂μðαk∂μϕÞ∂νϕþ αkð∂μϕÞ∂μ∂νϕ

−
1

2
∂ν

�
αkð∂ϕÞ2 − ~m2

kϕ
2 −

~gk
12

ϕ4

�

¼ −
1

2
ðα0kð∂ϕÞ2 − ð ~m2

kÞ0ϕ2 −
1

12
~g0kϕ

4

�
· ∂νk; ð25Þ

where in the second line the ϕ equation of motion (22) was
used. One easily observes that (25) is identical to the
equation of motion for k (23). This shows that the approach
at the level of effective action (20) is on the one hand
implementing the idea of minimal scale dependence and
on the other hand maintaining the validity of improved
equations of motion and the fundamental conservation law
(see Sec. II).
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Instead of writing a coupling for the kinetic term one
frequently works with wave function renormalization
where the bare field is ϕB ¼ ffiffiffiffiffi

Zk
p

ϕ. In this case one could
simply identify αk ¼ Zk, ~m2

k ¼ Zkm2
k, and ~gk ¼ gkZ2

k and
observe that the corresponding effective action is com-
pletely equivalent to (21). However, if one allows for field
valued scales k ¼ kðxÞ, this identification is not the only
possibility, since the derivatives of the kinetic term acting
on the scale field might contribute to the action. Still, even
in this case it can be shown that the scale setting procedure
is consistent with the conservation law, just as in (25).

B. Scale-field setting in the one-loop
expansion of ϕ4 theory

The loop expansion of ϕ4 theory has been calculated up
to high order in perturbation theory [40]. The following
example will be restricted to the one-loop expansion of the
beta functions (see [41]):

γZ ¼ d lnZk

d ln k2
¼ 0;

βg ¼
dgk
d ln k

¼ 3

16π2
g2k;

βm2 ¼ dm2
k

d ln k
¼

�
−2þ gk

16π2

	
m2

k: ð26Þ

Now one can integrate those flow equations with initial
conditions for k ¼ k0:

Zk0 ≡ 1 and gk0 ¼ g0 and m2
k0
¼ m2

0: ð27Þ

This determines the particular flow trajectory:

Zk ¼ 1;

gk ¼
g0

1 − 3
16π2

g0 ln ðk=k0Þ
;

m2
k ¼

k20
k2

m2
0

ð1 − 3
16π2

g0 logðk=k0ÞÞ1=3
¼ k20m

2
0

k2

�
gk
g0

�
1=3

: ð28Þ

In order to maintain legibility, the subscript of the scale
dependent couplings will be omitted (m2

k → m2 and
gk → g) in the following calculation. Due to the constant
wave function renormalization, the equation of motion for
ϕ simplifies to

∂2ϕþm2ϕþ g
6
ϕ3 ¼ 0 ð29Þ

and the scale setting equation of motion (23) simplifies to

ϕ3g0 þ 12ϕðm2Þ0 ¼ 0: ð30Þ

The two equations of motion [(29) and (30)] have to be
solved for the two functions k and ϕ. One way to approach
this is to first solve (30) as a nondifferential equation for ϕ2

giving

ϕ2 ¼ 4
k20m

2
0

k2
ð32π2 − gÞ

g2

�
g
g0

�ð1=3Þ
: ð31Þ

This can now be inserted into (29) inducing a second order
differential equation for the scale setting, which after using
the running couplings (28) reads

Ak

�
ð4ð4πÞ8 þ 11ð4πÞ6g − ð4πÞ4

12
g2 þ 40g3 − g4

�
ð∂kÞ2 − 8π2

�ð4πÞ6
4

þ ð4πÞ4
6

g − 96π2g2 þ g3
�
k · ∂2k

�

þ 2k30m
2
0ðgþ 64π2Þ

3g2ðg0=gÞ1=3k3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

0ð32π2 − gÞÞðg=g0Þ1=3
q

¼ 0; ð32Þ

where

Ak ¼
k0

64π2g5=6k3ð−32π2 þ gÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0ð32π2 − gÞ
g1=30

s
: ð33Þ

Within the validity of the beta functions (28), which
corresponds to first order in g0, this equation simplifies
after the cancellation of a global factor to

k20m
2
0ð64π2 − 3g0 − 56g0 lnðk=k0ÞÞ
þ 6g0ð∂kÞ2 − 3g0k∂2k ¼ 0: ð34Þ

The use of this relation, in terms of scale setting, will now
be exemplified for a specific system.
For static spherical symmetry the only allowed coor-

dinate dependence is with respect to the radial distance
k ¼ kðrÞ. In this case (34) reads

k20m
2
0ð64π2 − 3g0 − 56g0 lnðk=k0ÞÞ − 6g0ð∂rkÞ2

þ 3g0k
r2

ð2r∂rkþ r2∂2
rkÞ ¼ 0: ð35Þ

Due to the nontrivial structure of the differential operator it
is hard to find a general solution of (35) but one observes
that, if k0 ≠ 0, this equation has actually a constant
solution,
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ki ¼ k0 exp

�
−

3

56
þ 8π2

7g0

�
: ð36Þ

From this expression one finds that demanding that
ki ¼ k0 ≠ 0 would imply g0 ≈ 210, which is clearly not
in the validity range of the small g0 approximation. Thus, it
is safe to say that ki ≠ k0. One can now investigate the scale
setting in the vicinity of this constant scale ki:

kðrÞ ¼ ki þ δkðrÞ þOðδk2Þ: ð37Þ

Inserting this in (35) and expanding to first order in δk
one obtains a simpler differential equation for the radial
dependence of the scale field,

56m2
0rδk − 3

k2i
k20

ð2∂rδkþ r∂2
rδkÞ ¼ 0: ð38Þ

This differential equation can be directly solved by

δkðrÞ ¼ exp

�
−2

ffiffiffiffiffi
14

3

r
k0
ki
m0r

�
c1
r

þ exp

�
þ2

ffiffiffiffiffi
14

3

r
k0
ki
m0r

�
c2
r
; ð39Þ

where c1 and c2 are the constants of integration. They have
to be set by additional conditions, for example one might
impose that δk does not diverge for large radii, which
implies that c2 ¼ 0. The scale-field setting is then

kðrÞ ¼ ki þ exp

�
−2

ffiffiffiffiffi
14

3

r
k0
ki
m0r

�
·
c1
r
: ð40Þ

One notes that (40) actually reproduces the standard 1=r
behavior for very small radii, but it has two additional
features with respect to the naive guess. The first difference
consists in the constant factor, which might be suppressed
for the case of a small scale k0 in the initial conditions (27).
The second difference is an exponential suppression factor
which is controlled by the mass m0 and by the value of g0.
In Fig. 2 this r dependence of the scale setting is shown
in comparison to the usual setting k ∼ 1=r. The figure
confirms the intuitive behavior for small r and shows the
exponential suppression for larger r.

V. SCALE-FIELD SETTING FOR
EINSTEIN-HILBERT-MAXWELL ACTION

A. Consistency in Einstein-Hilbert-Maxwell case

In order to show the consistency of the proposed scale
setting, with conservation laws in a less-trivial example,
one can study the approach for gravity coupled to a Uð1Þ
gauge field and to a cosmological constant. Gravity is
exemplary for a nontrivial field theory that is notoriously

perturbatively not renormalizable and the situation
becomes even less favorable when it is coupled to matter.
Still, there exist nonperturbative methods that allow one to
calculate effective actions and scale dependent couplings
for this theory [31,42–60].
Therefore, it is reasonable to investigate the proposed

scale setting procedure in the context of a gravitational
action coupled to matter. As an example for such a coupled
gravitational system the Einstein-Hilbert-Maxwell action
will be discussed:

Γk½gμν;Aα�¼
Z
M
d4x

ffiffiffiffiffiffi
−g

p �
R−2Λk

16πGk
−

1

4e2k
FμνFμν

�
; ð41Þ

where R is the Ricci scalar and Fμν ¼ DμAν −DνAμ is the
antisymmetric electromagnetic field strength tensor. The
scale dependent couplings are thus, Newton’s coupling Gk,
the cosmological coupling Λk, and the electromagnetic
coupling ek. Please note that the flow of those couplings
has been derived nonperturbatively in [58]. As in (19) and
(20) the scale k2 will be considered as a field without
kinetic term. The equations of motion for the metric field
in (41) are

Gμν ¼ −gμνΛk − Δtμν þ 8
πGk

e2k
Tμν; ð42Þ

where the possible coordinate dependence ofGk induces an
additional contribution to the stress-energy tensor [47]:

Δtμν ¼ Gkðgμν□ −∇μ∇νÞ
1

Gk
: ð43Þ

Further, the stress-energy tensor for the electromagnetic
part is given by

Tμν ¼ Fν
αFμα −

1

4
gμνFμνFμν: ð44Þ

2 108 4 108 6 108 8 108 1 109
r 1 GeV

1 10 9

2 10 9

5 10 9

1 10 8

2 10 8

5 10 8

k r GeV

FIG. 2 (color online). Radial dependence of the scale setting
(40) in comparison to the naive 1=r setting (dashed curve). The
parameters used for the plot are m0 ¼ 1 GeV, g0 ¼ 0.5, c1 ¼ 1,
c2 ¼ 0, and k0 ¼ 0.
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The equations of motion (Maxwell equations) for this Uð1Þ
gauge field are

Dμ

�
1

e2k
Fμν

�
¼ 0; ð45Þ

and finally the equations of motion for the scale field k are

�
R∇μ

�
1

Gk

�
− 2∇μ

�
Λk

Gk

�
−∇μ

�
4π

e2k

�
FαβFαβ

�
· ð∂μkÞ ¼ 0:

ð46Þ

The above equations of motion are complemented by the
relations corresponding to gauge invariance of the system.
For the case of diffeomorphism invariance one has

∇μGμν ¼ 0 ð47Þ

and for the internal Uð1Þ gauge symmetry the correspond-
ing equations are

∇½μFαβ� ¼ 0: ð48Þ

Please note that one has to work with (48) and not with
∇½μe−1Fαβ� ¼ 0 since the factor e−2 appears explicitly in
the action (41) and not in the covariant derivatives.
The new ingredient due to the scale field is the

equation (46), therefore it is important to check whether
this equation is actually nontrivial and consistent with the
Eqs. (42) and (45). The consistency can be shown by
explicitly deriving (46) from (42) and (45) and further
imposing that the gauge symmetries reflected by (47) and
(48) are maintained. Starting from (42) one imposes (47).

∇μGμν ¼ 0 ¼ −gμνΛ0
k∂μK þ∇μΔtμν þ 8πG0

ke
−2
k Tμν∂μK

þ 8πGk∇μðe−2k TμνÞ ð49Þ

By using

∇μð∇μ∇ν −□gμνÞ
1

Gk
¼ Rμν∇μ 1

Gk
ð50Þ

one can factorize a ð∂μkÞ in the whole expression except of
a single term involving the electromagnetic stress-energy
tensor

0 ¼ ½−gμνGkΛ0
k þG0

kðGμν þ Λkgμν − 8πe−2k GkTμνÞ
− RμνG0

k þ 8πG0
kGke−2k Tμν�ð∂μkÞ

þ 8πGk
2∇μðe−2k TμνÞ: ð51Þ

However, by using (48) and the antisymmetry of Fμν one
can show that ð∂μkÞ can also be factorized from this term:

∇μðe−2k TμνÞ ¼
�
−
gμν
4

ðe−2k Þ0FαβFαβ

�
ð∂μkÞ: ð52Þ

Thus, one has

0 ¼
�
−gμνGkΛ0

k þG0
kðGμν þ Λkgμν − 8πe−2k GkTμνÞ

− RμνG0
k þ 8πG0

kGke−2k Tμν

− 8πGk
2
gμν
4

ðe−2k Þ0FαβFαβ

�
ð∂μkÞ: ð53Þ

Since in this proof no scale setting k → kðxÞ has been
applied yet, one can choose any direction for the vector
ð∂μkÞ and still the above relation has to hold. The only
nontrivial way for this to happen is that the quantity in
squared brackets has to vanish. Tracing this quantity over
its two indices one gets

0 ¼ 2
Λ0
k

Gk
þG0

kðR − 2ΛkÞ
G2

k

þ 4πððe−2k Þ0F2Þ; ð54Þ

which is indeed identical to (46).
Therefore, the equation of motion (46) is indeed con-

sistent with the other equations of motion of the system
[(42) and (45)] in combination with the symmetry relations
[(47) and (48)]. This consistency does not guarantee that
the system has physically reasonable and nontrivial sol-
utions. But it confirms again that, even for gauge and
gravitational systems, the approach at the level of effective
action (20) is on the one hand an elegant way of minimizing
scale setting ambiguities and on the other hand maintaining
the validity of improved equations of motion and the
fundamental conservation laws of the effective action
(see Sec. II).
Please note that given the fact that the functional form of

the scale dependent couplings Gk, Λk, and ek is in most
known cases highly nontrivial [58] one can hardly expect to
obtain an analytical solution of the equations (42) and (45).
However, in [61] it will be shown that with just one
simplifying assumption it is actually possible to find
meaningful black hole solutions for two different trunca-
tions of (41).

B. Integrating out the scale field: UV scale-field
setting for Einstein-Hilbert-Maxwell action

in asymptotic safety

Since in the proposed method, the scale k is actually a
scale field and since fields can be integrated out of an
effective action by solving their equations of motion and
inserting back into the action, kðxÞ can be treated in the
same way. By this, the method (19) can actually be used in
order to construct a scale-independent effective action ~Γ, by
integrating out kðxÞ of the scale dependent action Γk. In a
general setting one proceeds by first solving the equation of
motion for k in momentum space,
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∂L
∂k ¼ ∂μ

∂L
∂k;μ ; ð55Þ

giving k ¼ kðϕÞ. This can be inserted back into the
effective action which then gives

Γðϕ; kÞ → Γðϕ; kðϕÞÞ ¼ ~ΓðϕÞ: ð56Þ
By this procedure one can “integrate out” the scale field k
and one obtains a new effective action ~ΓðϕÞ which is a
function of ϕ only. This new scale free effective action
differs from the original effective action ΓkðϕÞ in the sense
that it automatically contains a self-consistent scale setting.
Let us exemplify this with the Einstein-Hilbert-Maxwell

action (41). In the deep UV limit (k → ∞) there is strong
evidence [43,44,46] for the existence of a non-Gaussian
fixed point for the two gravitational couplings,

Gk ≈
g�

k2
;

Λk ≈ λ�k2; ð57Þ
and there exists further evidence for (at least) one UV fixed
point for the electromagnetic couplings [58]:

lim
k→∞

1

e2k;2
≈

1

e�22
: ð58Þ

Since this fixed point in the electromagnetic coupling is not
an attractor it is only approached by particular trajectories
in the corresponding flow. Other trajectories either run into
a Landau pole type of divergence at finite k, or they run to
vanishing values of ek;1 at infinite k [58]:

lim
k→∞

1

e2k;1
≈

1

e�21
· ðk2ÞB: ð59Þ

The value of the exponentiating factor B for the second
fixed point depends on the method of calculation. Since the
numerical value of B ranges from 0.8 to 1.6 [58], in this
example the simplest possibility of B≡ 1 will be chosen.
The behavior of this flow projection using the functions of
[58] is shown in Fig. 3. One observes three fixed points in
this flow: apart from the Gaussian fixed point at vanishing
couplings one sees, one fixed point with finite g� but
vanishing e2 (labeled Γ1), which corresponds to the limit
(59), and another fixed point with finite g� and e2 (labeled
Γ2), which corresponds to the limit (58). In order to
integrate out the scale field from the effective action
(41) one has to solve the corresponding equation of motion
(46) for k2. In the UV limit (57) one finds for the fixed
point in (58)

k22jUV ¼ R
4λ�

ð60Þ

and for the asymptotic behavior (59) one finds in the same
limit

k21jUV ¼
R − 4πg�

e�2
1

F2

4λ�
: ð61Þ

Those field-scale settings relate the UV scale k2 propor-
tional to the curvature scalar R, in agreement to what is
frequently intuited in the literature [29,62–65]. But the
relations (60) and (61) go beyond this intuition since
they also determine the constant proportionality factor
and possible modifications due to the electromagnetic
field strength.
Now follows the integrating out (56), where the scale

field is eliminated from the original action. The effective
actions valid in the deep UV are obtained, from (41) after
using again the approximation (57). For the fixed point
in (58) and the corresponding scale setting (60) this gives

~ΓUV;2 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R2

128πg�λ�
−

F2

4e�22

�
: ð62Þ

For the asymptotic behavior (59) and the corresponding
scale setting (61) the UV effective action results to be

~ΓUV;1 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
"ðR − 4πg�

e�2
1

F2Þ2
128πg�λ�

#
: ð63Þ

One observes that for vanishing F2 ¼ 0, the R2 dependence
of the UVeffective action in asymptotic safe gravity, which
is indeed renormalizable [66], is recovered in agreement
with other studies in the literature [29,63,64]. However, in
addition to this expectable result, the scale-field procedure
in combination with integrating out the additional k-field
dependence, allowed one to predict a generalization of
those results to the coupling to a finite electromagnetic field

21

0 5 10 15 20 25
0.0

0.5

1.0

1.5

2.0

2.5

e2

g

FIG. 3 (color online). Coupling flow projected to the dimen-
sionless gravitational coupling g and the electromagnetic coupling
e2. The arrows point in the direction of increasing k.
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strength F2 ≠ 0. Those UV results confirm that the fixed
points (58) and (59) correspond to different physical
systems with different effective equations of motion for
the background. Therefore, the UV behavior of the self-
consistent background, which is the solution of one of
those equations of motion, can be largely different for
different trajectories, depending on the fixed point which
is approached by a specific trajectory in the RG flow
(see Fig. 3).

VI. SUMMARY AND CONCLUSION

In this paper the problem of scale setting in the context
of finding self-consistent solutions of the effective action
was discussed. First, the procedure of improving solutions
for nonperturbative problems was reviewed by the use of a
quite generic example. It was shown that one might define
a scale setting (9) that keeps consistency at the level
of improved equations of motion, but it was also shown
that usually the conservation of the stress-energy tensor
cannot be guaranteed throughout the improving solutions
procedure.
Then, in Sec. III a novel procedure for the scale setting is

proposed, by promoting the scale k to a scale-field kðxÞ at
the level of effective action Γ. This proposal is the essential
idea of the presented paper.
In order to demonstrate the functionality of the new

procedure, the following sections are devoted to discuss
the approach for emblematic field theories. As a first
example scalar ϕ4 theory is discussed and the consistent
conservation of the stress-energy tensor, even after the scale
setting, is shown explicitly. The self-consistency is shown
for two common forms of the ϕ4 effective action. In order
to complement this general result, by a more practical

example, an approximated self-consistent scale setting for
spherically symmetric backgrounds in ϕ4 theory is calcu-
lated at the one-loop level.
In its generality the scale-field method is not limited to

the simple scalar ϕ4 model. Instead it is expected to work
for a very broad class of theories. For example, it also is
meant to work in the context of much richer gauge theories.
This much broader applicability is exemplified by studying
the scale setting prescription in gravity coupled to an
electromagnetic stress-energy tensor, represented by
Einstein-Hilbert-Maxwell theory. It is explicitly shown that
also in this example the conservation of a generalized
stress-energy tensor is guaranteed by the scale-field setting.
As application, the UV scale-field setting of asymptotically
safe gravity coupled to an electromagnetic field strength
is calculated and the scale independent effective action
(valid in the UV) of this theory is derived by integrating the
scale field out. Finally, we would like to mention that the
idea is not limited to background calculations, but it should
also be applicable to scale setting problems in scattering
theory in the conventional Feynman sense.
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