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We show that pure Yang-Mills theories with Lorentz violation are renormalizable to all orders in
perturbation theory. To do this, we employ the algebraic renormalization technique. Specifically, we control
the breaking terms with a suitable set of external sources, which eventually attain certain physical values.
The Abelian case is also analyzed as a starting point. The main result is that the renormalizability of the
usual Maxwell and Yang-Mills sectors are both left unchanged. Furthermore, in contrast to Lorentz-
violating QED, the CPT-odd violation sector of Yang-Mills theories renormalizes independently.
Moreover, the method induces mass terms for the gauge field in a natural way, while the photon remains
massless (at least in the sense of a Proca-like term). The entire analysis is carried out in the Landau gauge.
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I. INTRODUCTION

Lorentz and gauge symmetries play an important and
perhaps indispensable role in quantum field theory and
particle physics [1-4]. From the classification of particles
to renormalizability proofs, these symmetries are crucial.
However, theories for which Lorentz symmetry is not
required have received considerable attention in the last
few decades [5-10]. Although direct effects of such theories
would only appear beyond the Planck scale, some “cumu-
lative” effects could arise as well [11-14]. Even though these
types of theories originate as effective models from an
extremely high-energy theory [15,16], they should be studied
in the context of quantum field theory. And, in order to
provide reliable and consistent theoretical predictions, cer-
tain attributes—such as stability, renormalizability, unitarity,
and causality—are very welcome features. For example,
stability requires that the Hamiltonian of the theory is
bounded from below, and causality refers to the commuta-
tivity of observables at space-like intervals; see, for instance,
Refs. [5,6,17—-19] for more details. In this work we confine
ourselves to a detailed analysis of the renormalizability of
pure non-Abelian gauge theories with Lorentz violation.

Models with broken Lorentz and CPT symmetries are
characterized by the presence of background tensorial
fields coupled to the fundamental fields of the theory.
Typically, the Lorentz-violation background fields arise
in the scenario of effective field theories originating from
fundamental models, such as string theories [15], non-
commutative field theories [20-24], supersymmetric field
theories [25-27], and loop quantum gravity [28]. In string
theory, for instance, the Lorentz symmetry breaking arises
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from a spontaneous symmetry breaking, specifically from
the nontrivial vacuum expectation value of the tensorial
fields. Such background fields could contain effects of an
underlying fundamental theory at the Planck mass scale
Mp ~ 10" GeV. In fact, there is some hope of detecting
possible signals for bounds of these violating coefficients,
such as in high-precision experiments in atomics processes
[12,29-31]. A theoretical proposal to describe the Lorentz
symmetry breaking at this scale is the standard model
extension (SME). In this model, the Lorentz-breaking
coefficients are introduced through couplings with funda-
mentals fields of the standard model and the model is
power-counting renormalizable [6]. Another theoretical
proposal for Lorentz violation are the modified dispersion
relations (MDRs) [32]. Essentially, these new dispersion
relations carry extra contributions that depend on the
energy scale, and which are only meaningful at ultrahigh
energies and suppressed in the low-energy limit. In prin-
ciple, ultrahigh-energy cosmic rays at the Planck energy
scale where Lorentz and CPT symmetry breaking would
take place are generated in astrophysical processes. A
possible explanation for the observation of the apparent
excess of cosmic rays in this region of energy [33] are the
MDRs which, in this case, suggest that these cosmic rays
could develop velocities faster than light.

Concerning the renormalization properties of Lorentz-
violating QED, a one-loop renormalization analysis was
discussed in Ref. [34] and a full algebraic study at all orders
in perturbation theory was established in Ref. [35]. Another
interesting study of renormalizability issues in Lorentz- and
CPT-violating QED was performed in Ref. [36]. In that
work, it was assumed that the fields of this model reside in
a curved manifold, and the Lorent- and CPT-violating
parameters were treated as classical fields rather than
constants, which happens to be very similar to the approach
employed in the present work.

© 2015 American Physical Society
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Until now, the non-Abelian sector of the standard model
extension has received little attention from both theoretical
studies and experimental tests for the bounds of the
Lorentz-violating background parameters. As pointed out
in Ref. [37], the ultraviolet behavior of the CPT-even
coupling may give a great bound for these coefficients, in
contrast to CPT-odd couplings. In what concerns the
renormalization properties of pure Yang-Mills (YM) theory
with Lorentz violation, it was shown in Ref. [37] that this
model can be renormalized at one-loop order. It is worth
mentioning that a non-Abelian Chern-Simons-like term can
be induced from the Abelian Lorentz-violating term at the
level of one-loop radiative corrections [38].

In the present work we focus on the non-Abelian sector
of the SME, i.e., pure Yang-Mills theory with Lorentz
violation. In particular, we employ the algebraic renorm-
alization approach [39] to prove that this model is renor-
malizable, at least to all orders in perturbation theory. In our
analysis we include all possible breaking terms. Besides
Becchi-Rouet-Stora-Tyutin (BRST) quantization, we intro-
duce a suitable set of sources that controls the Lorentz-
breaking terms. Eventually, in order to regain the original
action, these sources attain specific physical values. This
trick is originally due to Symanzik [40] and was vastly
employed in non-Abelian gauge theories in order to
control a soft BRST symmetry breaking; see, for instance,
Refs. [41-45]. Essentially, the broken model is embedded
in a larger theory where the relevant symmetry is respected.
Then, after renormalization, the theory is contracted down
to the original model. We will also give attention to the
Abelian theory in the presence of Lorentz violation and in
the absence of fermions as starting point.1 Adopting the
Symanzik source approach, we can introduce the most
general action which carries, for instance, vacuum-type
terms as well as dimension-two condensate terms. The
price we pay is that extra independent renormalization
parameters are needed to account for the extra vacuum
divergences. Remarkably, the extra condensate-type term
Ay A{ arises due to a coupling with the CPT-odd sector of
the model and also carries an independent renormalization
coefficient. We then have an induced mass term for the
gluon originating from the Lorentz-violating terms.
However, these terms are ruled out in the Lorentz-violating
Maxwell theory due to the fact that the ghost equation is not
integrated, making it stronger than its non-Abelian version.
These different characteristics between the Ward identities
of the Abelian and non-Abelian models will result in
different renormalization properties among Maxwell and

'In fact, the presence of fermions in a Lorentz-violating model
(even an Abelian model) will make the study of renormalizability
very difficult, at least in our approach. Thus the Abelian model
is studied here in the absence of fermions in order to compare it
with the non-Abelian case; the latter introduces many difficulties
compared with the former, even in the absence of fermions. The
study of the fermionic sector is left for future investigation [46].
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Yang-Mills Lorentz-violation coefficients. For instance, we
will show that the CPT-odd breaking term in the Maxwell
theory, eﬂmﬁvﬂAy&‘aAﬁ, does not renormalize. Nevertheless,
the CPT-odd breaking term in Yang-Mills theory renorm-
alizes independently.

This work is organized as follows. Section Il is dedicated
to the renormalizability proof of the Maxwell theory with
Lorentz violation. In Sec. III, we provide the definitions
and conventions of the pure Yang-Mills theory with
Lorentz violation and the BRST quantization of the model
with the extra set of auxiliary sources. Then, in Sec. IV
we study the renormalizability of the model. Our final
considerations are given in Sec. V.

II. LORENTZ-VIOLATING MAXWELL THEORY

We consider the U(1) Abelian gauge theory with Lorentz
violation. For convenience the scenario for this theory
(and also for the non-Abelian case) is Euclidean four-
dimensional Spacetime.2 The action of the model is as
follows™: [34]

So = 8w+ Stve + Stvos (1)

where

1
Sy = i / d*xF,,F,,. (2)

is the Maxwell action. The field strength is defined as
F,, =0,A, - 0,A,, where A, is the gauge field. The CPT-
even Lorentz-violating sector is given by

1
Sive = Z/ d4x’<a/i;wFaﬁF;w» (3)

while the CPT-odd Lorentz-violation term is defined as

SLVO —/d4xeﬂm/jU”Ay8aA/j. (4)

The Lorentz violation is characterized by the fields v,,, with
mass dimension one, and k,z,,, Which is dimensionless.
These tensors fix privileged directions in spacetime, doom-
ing it to anisotropy. Tensorial fields with even numbers of
indices preserve CPT, while tensors with odd numbers of
indices do not. The tensor kg, obeys the same properties
as the Riemann tensor, and is double traceless:

“Besides the fact that the Euclidean metric is easier to handle,
this choice is convenient in the treatment of nonperturbative
effects where it is unknown if the Wick rotation is valid.

We are not considering fermions in this work, as mentioned in
the Introduction.
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Keapuw = Kyvap = ~Kpoyw
Kapuw —+ Kaywp + Kovpy = 0,
~0. (5)

K}ll/ﬂl/
As the reader can easily verify, the action (1) is a Lorentz
scalar, which is invariant under Lorentz transformations in
the observer’s frame; in contrast, it also presents a violation
with respect to particle Lorentz transformations.

In the present work, we employ the BRST quantization
method and adopt the Landau gauge condition 9,4, = 0.
Thus, besides the photon field, we introduce the Lautrup-
Nakanishi field b, and the Faddeev-Popov ghost and
antighost fields ¢ and ¢, respectively. The respective
BRST transformations are
sc=0, sc=b, sb=0, (6)
where s is the nilpotent BRST operator. The quantum
numbers of the fields and background tensors are displayed
in Table I. The full Landau gauge fixed action is

So =Su + Seve + Scvo + Sy, (7)

where

Sy = s/d“xé@,,A,, = /d4x(b5‘”Aﬂ +cd*c) (8)

is the gauge-fixing action enforcing the Landau gauge
condition. The Landau gauge is chosen for a few simple
reasons [39]: 1) it is a covariant gauge; ii) it has a rich
symmetry content; iii) it is a fixed point of the renormal-
ization group; iv) it is the simplest case, so it is a convenient
starting choice; and v) it is renormalizable in the ordinary
case.

Lorentz symmetry plays a fundamental role in the
renormalizability of gauge theories, and thus the presence
of a Lorentz-violating sector demands extra care. To deal
with this obstacle we replace each of the background
tensors by an external classical source and, possibly, its
BRST doublet counterpart (if needed). Thus, the local
composite operator (whose background tensors are coef-
ficients) will be coupled to one of these sources. Indeed,
there will be two classes of sources: BRST-invariant
sources and BRST doublet sources. The first class will
be coupled to the BRST-/gauge-invariant composite oper-
ators, while the second class couples to the other operators.

TABLE 1. Quantum numbers of the fields and background
tensors.

fields/tensors A b c v

UV dimension 1 2 0 2 1

Ghost number 0 0 1 -1 0 0
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TABLE II. Quantum numbers of the sources.

sources A J

UV dimension
Ghost number -1

S O A

Thus, we define the following invariant source:
SKopuy = 0. 9)
The BRST doublet sources are given by
Shwa = Jyar 5 ja = 0. (10)

The quantum numbers of the sources are displayed in
Table II. Eventually, these sources will attain the following
physical values:

J;u/a|phys = Vg€uva>
l;uxa|phys =0,

Kopuvlphys = Kapuu- (11)
Thus, we replace the action (7) by4
S=8u+Sro+Sce+ Sy, (12)
where now

1 _
S p= i / d* xR oy F g F

SLO = S/d4JC/1m/aAﬂayAa

/d4x(J”mA”8yAa + Ae0,c0,A,)  (13)

is the embedding of the Lorentz-violating bosonic sector.
The BRST symmetry demands that all possible terms (i.e.,
integrated local polynomials in the fields and sources with
dimension four and vanishing ghost number) that respect
BRST symmetry must be added to the model. Then, by
using the algebraic renormalization techniques, the Ward
identities will select the terms that are actually needed (see
next section). Power-counting renormalizability also allows
one more term to be added to the action (12), namely

SV =9 / d4x(§ﬂ'uua‘];4ﬁy‘,uﬁk']yka + SkyuaﬂiupwJv/)o"]awrs']ﬁo‘ﬁ)

= / d4x<é’~]/wa‘]uﬂy~]vﬁk']yka + '9kﬂbaﬂ‘]/4pw~]vpa']aw5‘]ﬂ6§) .
(14)

“Since the Lorentz breaking is now controlled by the external
sources, we rename the original actions without the letter “V” (for
violation).
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The dimensionless parameters ¢ and § are introduced to
absorb possible vacuum divergences. A remark must be
made at this point. In principle (from a power-counting
analysis), we could add a series of terms of the type
’_caﬁpo”z.po'/u/FaﬁF/Aw fcaﬂpo’kpo‘wﬁkwﬁﬂuF(lﬂFﬂw and so on.
Nevertheless, all these terms could be rearranged into only
one term coupled to the operator F,, F,,,. This infinite series
can then be recast as a single source term by means of
the first equation of Eq. (13), preserving the original term.
In fact, this argument is valid for all terms that mix with
Kuqp 10 the Abelian or non-Abelian cases. Formally, one
can consider the infinite tower of terms (and their respective
counterterms), and the redefinition only applies after the
absorption of the divergences. Obviously, the classical
character of k,,,s is crucial to this argument (see also
Refs. [47,48]).
The complete action we have is

2E=54+38y. (15)
Explicitly, the action (15) has the following form:
1 4 1 4 -
o= Z d XF,MDF/U/ + Z d XKaﬁ/,wFa/)’Fuy
+ / d*x(J oA 0,A g + Aa0,c0,4,)

—I—/d“x(baﬂAﬂ +cd*c)

+ / d4x(z:‘]ﬂl/a‘]ﬂﬂ7‘]l/ﬂk“]}’l<a =+ ’9’?ﬂvaﬂ‘]ppw‘]ppa‘]am5‘]ﬂm5) .

(16)

The action (16), at the physical value of the sources (11),
reduces to

— 1 1

Ephys = Z/ d4xFWFW + Z/d4x’<a/3quaﬂ uw
+ / d* XV €407, 0, A + / d*x(b9,A, + cd*c)
+ 202 / d*x(350% = Iy VaVs)- (17)

A remark is now in order. The source J is introduced as a
BRST doublet, where its BRST counterpart is the source 4.
As a consequence, the entire term depending on J and A is
an exact BRST variation. Thus, it belongs to the nonphysi-
cal sector of the model. However, the model suffers a
contraction in order to be deformed to the action of interest
(the physical action). Under such a contraction, this term is
moved to the physical sector of the theory. In fact, the terms
depending on v, in the physical action can no longer be
written as a BRST exact variation. Let us put this in other
words. The physical action (17) is the true action (i.e., it
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violates Lorentz symmetry) and the violating terms cannot
be written as a BRST exact variation. Thus, in order to
study its renormalizability, the theory is embedded into a
larger theory which displays full Lorentz and BRST
symmetries. The embedding is characterized by the aux-
iliary sources which appear in place of the violating
parameters. The physical theory is recovered from a
specific choice of these sources (the physical values).
These values are attained by contracting the functional
space of the sources into the R* space of the vector v, The
main idea of the method is that the model is renormalized
in its embedded form, and only after the renormalization is
the model contracted to the physical sector.

For completeness, we compute the propagator for
the photon, in the Landau gauge, taking’ Kepuw = 0. The
result is

1 [ _ 4rke)?
W) = [0, -5, 125,
4(1](1k(l)
+ey, —4A,w], (18)

where Q = k* — 4[v*k* — (v,k,)?], and the operators

k.k,
Oy = By — 2
k,k,
Opy = 22 )

S/u/ = ieﬂyaﬁvakﬂ9
%, = vk, +vk

"
A, = v, (19)
form a closed algebra (see, for instance, Ref. [50] for more
details). It is worth mentioning here that the physical modes
of the gauge field, i.e., the photon, do not change with
respect to the usual Maxwell theory with Lorentz violation;
our approach does not change the kinetic part of this model
and does not generate any Proca-like terms. Thus, the
causality and unitarity of the model are maintained [17].
However, as is clear from Eq. (17), the vacuum of the model
changes when we take the physical limit of the sources in
the action (14). We will discuss these points again in the
non-Abelian case.

A. Renormalizability

In order to prove that this model is renormalizable to
all orders in perturbation theory, let us now display the full
set of Ward identities obeyed by the action (16).

The presence of a general k,,, makes the computation highly
nontrivial. For a detailed study of this sector see, for instance,
Ref. [49].
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(i) Slavnov-Taylor identity:

o= o= o=
S(E) :/d4x<—8ﬂc—+b—+fﬂm > =0.

A, e 52

pra
(20)
(i1) Gauge-fixing and antighost equations:
o= o=
—_— = 8 A . - = 82 . 21
ob e T 0 2
(iii) Ghost equation:
o= 0
50 0, (A0, Ay) — 0°C. (22)

In Egs. (21) and (22), the breaking terms are linear in the
fields, and thus they will remain at the classical level [39].
From Eq. (22) it is possible to predict that the CPT-odd
Lorentz-violating sector of the Maxwell theory will not
suffer renormalization. This is due to the fact that this
term induces a violation of the ghost equation. As a
consequence, a counterterm associated with the CPT-
odd Lorentz-violating sector will be eliminated by the
Ward identity (22).

In order to obtain the most general counterterm that can
be freely added to the classical action = at any order in
perturbation theory, we define a general local integrated
polynomial =¢ with dimension bounded by four and
vanishing ghost number. Thus, by applying the Ward
identities (20)—(22) to the perturbed action = + €=¢, where
€ 1s a small parameter, it is easy to find that the counterterm
must obey the following constraints:

— — —
—C —C =C
— — —

= 0’ =
oc

:EC - O -
Bz ’ ob oc

0. (23)

where the operator Bz is the nilpotent Slavnov-Taylor
operator,

5 5 5
Be= [d*x(=0,c-2+p24y %) (24
= / x( ”C§Aﬂ+ 5o T mag > (24)

Hvo

The first constraint of Eq. (23) states that finding the
invariant counterterm is a cohomology problem for the
operator Bz in the space of the integrated local field
polynomials of dimension four. From the general results
of algebraic renormalization [39], it is an easy task to find

1 1
¢ —Z/d4xa0FﬂbFﬂ,, +—/d4xall?aﬂWFaﬁFW +BEA(_1),

4
(25)

[1]
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where A1 is the most general local polynomial counter-
term with dimension bounded by four and ghost number
—1, given by

ACD = / d*x(a,20,A, +aseh+ayduh,0,A,

+ a5§/1ﬂuajuﬁyjuﬁkjyka + aé'gkﬂyaﬁﬂﬂpw*]upojawé*]ﬁdé) ’
(26)

where the parameters a; are free coefficients. Defining
Z = B=A"Y, one finds

E=a, / d*x(b0,A, + c0%c) + a; / d*xb?
+ay / d*x(J 1aA0,A 4 + Aa0,c0,A,)
+ as / d* X ad s ped i
+ aq / d4x8f<,,mﬁJﬂpw.lwajaw(;Jﬁm;. (27)

From the second or third constraints in Eq. (23), it follows
that a, = a3 = 0. Moreover, from the ghost equation,
ay = 0. It then follows that the most general counterterm
allowed by the Ward identities is given by

o 1 ]
= — 4_1/ d*xagF,,F,, + 4_1/ d*xaiRopu FapF
+ ds / d4xCJMD(lJﬂﬁyJDﬂKJyK(l
+ dg / d4x'gl_cﬂua[f‘]ﬂpa)‘]l/po']aw(s‘lﬂaé' (28)

It remains to be inferred whether the counterterm = can
be reabsorbed by the original action = by means of the
redefinition of the fields, sources, and parameters of the
theory through

(P, J,E) + e26(D,J, &) = Z(Dy, Jo, &) + O(€7),  (29)

where the bare fields, sources, and parameters are defined
as

o, =7/’  ®e{A.b.E.c)
J():ZJJ, JE{J,/LI_(},
So = Ze€, e {d.¢h (30)

It is not difficult to check that this can be performed, which
provides the multiplicative renormalizability proof of the
theory to all orders in perturbation theory. In fact, for the
independent renormalization factor of the photon, we have
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1
Zi‘/z =1 +5eap. (31)

The ghost fields do not renormalize,
zZVr =77 =1, (32)

and the Lautrup-Nakanishi field renormalization is not
independent,

z)?=z'% (33)

Thus, the standard QED sector remains unchanged with
respect to the ordinary case. For the violating sector we
have

Z, =22 =73

Zy = 1+ ¢e(as + 4ay),

Zi=1+e¢la; —ay),

Zg =1+ e€(ag — a, + 3ay). (34)

From the first equation in Eq. (34), as we have pointed out
before, we see that the CPT-odd Lorentz-violating coef-
ficient v, does not renormalize independently, namely, its
renormalization depends only on the photon renormaliza-
tion. This is also clear from the final counterterm (28),
where the CPT-odd part is not present and thus does not
renormalize. This ends the renormalizability of the Lorentz-
violating Abelian gauge theory, at least to all orders in
perturbation theory.

The study of the renormalizability of pure QED might be
seen as an unnecessary effort since the theory is free (we are
not considering fermions at this point). In fact, no inter-
action terms would be generated from the analysis of
quantum stability and no parameters would be renormal-
ized; only the fields would be renormalized. Nevertheless,
the study of the quantum stability of Maxwell theory with
Lorentz violation using the method of external auxiliary
sources can establish whether the model accepts other
quadratic terms involving the sources (for instance, a mass
term of the type UQA”AM could appear in the physical limit).
Thus, the study of the free Abelian case can be used as a
first consistency check of the method. Nevertheless, the
presence of the quartic J-source terms generate indepen-
dent renormalizations of the vacuum energy. Moreover,
the study of the free theory is always a first step before
considering interacting theories and the respective violating
terms, which is the case for non-Abelian theories as well as
the Abelian theory with fermions.
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III. PURE YANG-MILLS THEORY WITH
LORENTZ VIOLATION

From now on (unless otherwise stated), we consider
pure® Yang-Mills theory for the SU(N) symmetry group
with Lorentz violation. The gauge fields are algebra valued,
A, = AJT“, where T“ are the generators of the SU(N)
algebra. They are chosen to be anti-Hermitian and have
vanishing trace. The typical Lie algebra is given by
[Te, T?] = fobeT¢, where f¢ are the skew-symmetric
structure constants. The latin indices run as {a, b,c, ...} €
{1,2,...,N* - 1}.

The model is described by the following action’ [37]:

2y = Sym +Zrve + Zrvo, (35)

where
1 4 a ra
SYM = Z d XF/AUF/IU (36)

is the classical Yang-Mills action. The field strength is
defined as F9, = 0,A¢ — 0,A% — gf**°AbA¢. The CPT-
even Lorentz-violating sector is

1
XivE = 4/ d4x’<aﬁquz/)’Fﬁw (37)

and the CPT-odd Lorentz-violation term is
g
ZLVO = / d4)€€m/a/ﬂ)ﬂ (A,‘faaA; + §fabcAgAZA/§) . (38)

The Lorentz violation is characterized by the fields v, with
mass dimension one, and k,z,,, Which is dimensionless.
These tensors have the same symmetry properties as those
described in Sec. II for the Abelian case.

A. BRST quantization and the restoration
of Lorentz symmetry

Gauge fixing is also required in the process of quantiz-
ing the pure Yang-Mills theory with Lorentz violation. In
the following, we employ the BRST quantization method
and adopt the Landau gauge condition d,A] = 0. Thus,
besides the gluon field, we also need the Lautrup-
Nakanishi field »* and the Faddeev-Popov ghost and
antighost fields ¢ and ¢“, respectively. The BRST
transformations of the fields are

®Just like the Abelian case, we are not considering fermions.
"No confusion is expected with the Abelian case.
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9 cabe b _
sA;j:—D;jbC”, sc“zif“”‘c”c‘, sct=b, sb*=0,

(39)

where D4> = 590, — gf**“A¢, is the covariant derivative.
Thus, the Landau gauge fixed action is

2o = Sym + Zrve + Zrvo + Zyf, (40)

where

Sy = [ deroag— [ ai(bra,a;+ 0,0
(1)

is the gauge-fixing action enforcing the Landau gauge
condition. The Landau gauge is chosen here for the same
reasons as in the Abelian case.® The quantum numbers of
the fields and background tensors are the same as those in
the Abelian case (see Table I).

To deal with the renormalizability issue we will proceed
in the same way as in Sec. II, namely, we replace each
background tensor by an external source and (possibly) its
BRST doublet counterpart. However, the non-Abelian case
is a bit more subtle than the Abelian case. For instance, let
us take the Chern-Simons term. To ensure the renormaliz-
ability of the model we need two BRST doublets: one
coupled to the bilinear term and another coupled to the
trilinear term in the gauge field. Both terms have to be
treated separately since they are independent composite
operators (in the Abelian case the Chern-Simons term has
only one composite operator); see Eq. (45) below. The set
of sources are characterized by

s’?a/};w =0, S/Lwa = J;wm s‘luua =0,

SNyuva = Tuvas STya = 0. (42)

Eventually, these sources will attain the following physical
values:

8Nevertheless, the renormalizability of YM theories with
Lorentz violation could also be analyzed in other renormalizable
gauges, e.g., the linear covariant £ gauges, the maximal Abelian
gauge, and the Curci-Ferrari gauge. All of these are very
important in nonperturbative QCD studies. However, the last
two cases consist of nonlinear gauges, a fact that demands the
introduction of quartic ghost interacting terms for renormaliz-
ability and generates a large amount of extra counterterms,
making the whole analysis much less interesting and much more
technical. The linear covariant gauges could be easily imple-
mented, although extra terms depending on the gauge parameter
would appear. However, as mentioned above, the Landau gauge
is a natural fixed point of the linear covariant gauges, making
them equivalent on some level.

PHYSICAL REVIEW D 91, 025008 (2015)

TABLE III. Quantum numbers of the sources.
sources Q L A J n T K
UV dimension 3 4 1 1 1 1 0
Ghost number -1 -2 -1 0 -1 0 0
J;wa|phys = Tﬂyalphys = Vp€uvas
/1/41/(1|phys = nmxalphys =0,
l_ca/i/w|phys = Krl/)’;w' (43)
Thus, we replace the action (40) by9
Y =Sym+Z0+Zig+ ngv (44)
where now
1 4~ a fa
ZLE = Z d XKaﬂﬂl/FaﬁF,ul/’
S0=>5 | dx(2,,A%,40 + Iy pabcpapbac
LO uauYvia 377/41/05 uvia
g ¢ c
= [ x| a0, + S AL,
+ AyvaapcaauAg + g(’hwa - Apua)fabcAzASaacc}
(45)

is the embedding of the Lorentz-violating bosonic sector.
It is a trivial exercise to check that the new action is BRST
invariant. The quantum numbers of the auxiliary sources
follow the quantum numbers of the background fields, as
displayed in Table III.

To face the issue of the renormalizability of the model,
we need one last set of external BRST-invariant sources,
namely, Q and L, in order to control the nonlinear BRST
transformations of the original fields,

Ty = § / d*x(—QUAY + L)

— / d*x <—Q;;D;jbcb + f“bCL“cbcC>. (46)

However, from a power-counting analysis and BRST
symmetry, extra bilinear terms in the gauge fields coupled
to the auxiliary sources can still be added to the action,
namely,

%Since the Lorentz breaking is controlled by the external
sources, we rename the original actions without the letter “V” (for
violation).
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1

ZLCO =9 / d4x{ (alﬂllua‘]ﬂmx + a2ﬂﬂua7ﬂm + a3'7/wa‘];wrx + a4’7ﬂua7ﬂua) 2

A
+ (Brduapd vap + PrluapTuap + Pslluapd vap + BalluapTuap) ALAL

+ R (V1 2appd uvp + V2 2appTurp + Y3llappd uvp + ¥ alappTup) %AgAg

+ Rapu 14806 vpo T X224 8p6Tups + X3Mppod vps + XalppoTups ) AGAL

+ ’?(l/){f{i(glj’yﬂ(g‘]ﬂ(l{i + QZlup(STmm + 03’71//)57:;4(10 + Q4]1D/)5Tﬂ(lﬂ)AZAla/ }

2
+ (ﬂl J/m/i‘]uaﬁ + ﬂZJ/mﬁTuaﬂ + ﬂ31ya/i‘,uaﬁ + ﬁ4T/mﬂ7uaﬁ)AZAZ

1
= / d4x{ ((11 J;wa*];wa + a2JﬂyaT;wa + a37yua‘]pwa =+ a47pva7ﬂva) _A/I;Az

_ 1
+ K(l[)’ﬂv(yljaﬁ/)]yup + Y2J(1/)’/)T;wp + 7/37(1/3/1'1/11//) + },4Taﬁ/)T/w/)) EAzAra;

+ R 19 ppod vpo X2 ppoTupe + X3Tpped vps + X4TppoTupe ) AGAS,

+ Rapos (01 vpsd yao + 029 yps yas + @3Tupsd yao + QaTupsd yac ) ALAL

+ (W hwed jwa + O AwaTiwa + OMwel jwa + CaMuwaTwa) AfOpct

+ (B14uapd vap F PrluapTuap + Palluapd vap + PalluapTuap) (A0, ¢ + 0,c?AY)

+ R (V1 2appd uvp + V2 2appTurp + Y3llappd wvp + ¥ allappTunp) AgO s

+ Rapu 14806 vpo T X228p6Tups + X3Mpped vps + XaMppeTups) (Ag0,c® + 0,c?Af)

+ kapaé(glﬂupéjﬂav + QZlup(ST;wm + QBnupé‘,uaa + 04771//)67;4050) (Azauca + a”CaAg) } . (47)

Clearly, a term of this type does not arise in the Abelian model. This property is due to the fact that the Abelian ghost
equation is a nonintegrated identity, making it stronger than its non-Abelian version [we will discuss this issue after we
define the physical action (50)]. Just like the Abelian case, a vacuum action, i.e., a term that only depends on the sources, is
also allowed,

2‘V =S / d4x{€llyua‘lﬂﬁy']vﬂx‘,yxa + gZAﬂvaJuﬁbiﬂKTyka + C3/1u1/a]y/iy7yﬂ1<']yka + C42MD(1J}I/}}/TD/jKT}'K(Z

+ CshuwaTupyd vped yea + CoAuwaTuprd peTrna T C1humaTupy Tuped yea  C8huwa®upy TupeTya

+ Cotwad sy vpxcd yea T C10Muad wpyd vpxTrca T S11Muwad upy Tuped yea T S12Muwad upy TopTyxa

+ Ci3uwaTupyd vped yea + S1aMuva®upyd vpcTrea + C15Muwaupy Tuped yea + S16MuwaTupy TupeTrra

+ Kvap (81 Aupwd vpod awsd pos T 82 upwd vpod awsTpos + 3Aupad vpoTawsd pos + S42upwod vpoTawsTpos
+ I54ipwTupod awsd pos T 6 upaTupod awsTpos + 914upwTupoTawsd pos T 98AupaTupoTawsTpos

+ 9Mupad vpod awsd pos + 10Mupwd vpod awsTpes T iMupad poTawsd pos + 12Mupad poTaws Tpos

=+ 1913’7;4pa)7up0‘]aw5‘]ﬁ05 =+ '914’7/4pw71/pa‘]aw57ﬂ05 + '9157];4pa)71/p07aw5']ﬁ55 + 19167];4pw7vp57aw57ﬂ05)}
= / d4X{C1 Jﬂva‘]y[)’y‘]vﬂk‘]yka + CZJﬂva‘]y/inyﬂKTyka + C3 Jﬂya‘]ﬂ/}yTDﬂKJyKa + C4Jﬂ1/a‘]uﬂyrvﬂkfyka

+ 6.:5‘] ;w(lTﬂ/}yJ D/JKJ yKa + C6J /waTﬂ/}yJ vpkCyka + 4’7‘] yU{lT/,tﬁyTy/)’KJ yKa + CSJﬂvaTﬂﬂyTUﬁKTyka
+ €9Tﬂua‘]ﬂ/iy]yﬂx‘]yxa =+ CIOTﬂyaJﬂ[)’ny/JKTyKa =+ cllfuya']y/)’yfy/ik-,yxa + €12TMD(1J/4/7’yTy/)’KTyKa
+ CI3TﬂUGTﬂ/}}/JVﬂK‘]7Ka =+ Cl4ryyafﬂ/)’y‘]yﬂkryka + Z.:ISTMyaTy/)’yTyﬂKJyKa + Cl6ruva7ﬂﬁy1yﬁxryka

=+ Eﬂyaﬂ (&ljﬂpw']upa‘]aw(s]ﬂmi + 192Jypa)‘]upa‘]aw§7ﬂm$ + 193 Jypw']uparamé‘]ﬂaﬁ + 194J;4pa1‘]vp07aa)67,605
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+ 195 JﬂprypGJawéjﬂaé + '96Jypw7vp0‘]aw57ﬂ05 + 197 Jﬂpwrvpo‘fawé']ﬁo'& + 198J/4pw7up57aw57ﬂ65
+ 1997ﬂpw']vp0‘]aw5~]ﬂa§ + '9107;tpw']ypa]aw§7ﬂ05 + '9117ﬂpwjupafaw5~]ﬂ65 + '9121ﬂpw']yp07aa)§7ﬂ05

+ 813Tﬂpw7ypa‘]a(u6]ﬁo'§ + 814Tﬂpw1ypa‘]aa)§7ﬂ05 + 815Tﬂpw7vparaw5‘]ﬂ65 + 19161-#/)(07:1//)0'7&(05‘[,565) } . (48)

Nevertheless, this action is larger than the Abelian action due to the number of auxiliary sources and their quantum numbers
(see Table III). The dimensionless parameters a;, f;.7;. x;» and ¢; (with i = {1,...,4}),and {; and 9; (with j = {1,...,16})
are required in order to absorb possible vacuum divergences. This extra term is inevitable due to the quantum numbers of the
sources and the symmetries of the full action (see next section). Moreover, some of the terms appearing in the actions (47)
and (48) (as we will see) always survive at the physical value of the sources. Thus, the vacuum of the model is directly
affected. Just like the Abelian case, all infinite towers of the dimensionless source can be rearranged and redefined as the

same original terms. The full action is then

E=3%+Zx+Zc0 + v (49)

At the physical value of the sources (43), the action (49) reduces to

1 1 g
thys = Z/ d4xF2yF2D -+ Z/ d4xKaﬂﬂvFgﬂFZu -+ / d4x1}/3€/;”ya <A28UA3 + gfabCAZA§A2>

+ / d4x(b"8ﬂAﬁ + E“@,,Dﬁbcb) + / d*x{((Ba+2p)v> = 2(y + 0)KaopoValp)ALAS

- z(ﬁvﬂ v, + (Z - Q)K(mﬂyvavﬂ - ()( - Q)Kﬂayavz - 2QK/){zv(xUpUM)AZAZ + 6504 - 2'9’((1”0;4 ’Ua’Uo_Uz}, (50)

where

4 4 4 4 4 16
a=>a  p= P x=> a0 r=d.r. e=> 0 =) {.
i=1 i=1 i=1 i=1 i=1 j=1

from where it is evident that the vacuum is modified by
the last two terms. Moreover, a typical Proca term is also
generated, as well as a quadratic gauge-field term with
mixed indices. These two quadratic terms will change the
tree-level propagator in a more dramatic way than the usual
Lorentz-violating Yang-Mills models. It is worth mention-
ing here that, in contrast to the Abelian case, the physical
content of the gauge field will change drastically when the
physical limit of the sources is taken. The only similarity
with the Abelian case is the emergence of a vacuum term.
More specifically, by deforming the theory into a larger one
and contracting it back down, the theory returns with extra
terms (massive terms) that were not present before. We
interpret this as a kind of mass (parameter) generation.
Then, the field equations are indeed affected. This can also
be seen from the propagators (see below), which are
different from the typical non-Abelian Lorentz-violating
theories. The second point is that the pure source term Xy,
also generates extra terms in the physical limit. These terms
are constants and have no dependence on the quantum
fields. They are pure vacuum terms, i.e., they do not affect
the field equations, but they do affect the vacuum of the
theory.

It is important to emphasize once again the fact that
the mass terms do not necessarily define a mass per se.

16

9=>"9, (51)

J=1

We refer to these terms as “mass terms” only because they
appear as typical terms of massive theories. However,
determining whether these masses are actually physical
poles of the model is a task that goes beyond the scope of
this work. Strictly speaking, these terms are related to mass
parameters and not actual masses of the physical spectrum;
thus, the task can be rephrased as determining whether
these mass parameters correspond to the propagation of
massive physical modes, i.e., that they are not tachyons or
ghosts. In QCD, the appearance of many mass parameters
is quite typical; however, they do not necessarily describe
physical poles of the gluonic field (see, for instance,
Refs. [42,45]). Nevertheless, we have and will refer to
these terms as mass terms.

For the propagator in the Landau gauge, a straightfor-
ward computation leads to (again, for technical reasons, we

set Kgpu = 0)

(Afi (k)AL (=k)) = 5°(A0,, + Bw,, + CS,,
+ DX, +EA,), (52)

where
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k2 4+ Av?

(€ + &7 =408 = (0,7

B = _(Uaka)D7
2

(K> + Av?)? = 4[0°k? = (v4k,)?]
(vakq)[QK* + Av?) + 4K7]
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D=

E=-

[K2(K* + Av? + Qu?) — Q(v,k,) Y] [(K* + Av?)? — 4(02k> — (v,ke)?)]’
K*[Q(K* + Av?) + 4k2)

(K2 (k> 4+ Av? + Qu?) — Q(v,ky)?|[(K* + Av?)? — 4(0?k> — (v.ky)?)]’

where A = 6a + 4f and Q = —44.

IV. RENORMALIZABILITY
A. Ward identities

In order to prove the renormalizability of the model, we
start by displaying the full set of Ward identities enjoyed
by the action (49).

(i) Slavnov-Taylor identity:

5L 6% 6T 6T 6%
SE) = [ & b
®) / x(agg 5Az oLeac | 5ol
5% 5%
s+ Ty ) =0, 54
+ Hva S /1/41/05 + Tllva 577/41/&) ( )

(i) Gauge-fixing equation and antighost equation:

oZ oX ox
— =0,A4 — —=0.
ob? i oc + " oQs 0 (53)
(iii) Ghost equation:
G'S = A9, (56)
with
0 12
a 44 abc =b 57
o= [ax(Zrarme 5) o)
and

A4 = /d4xg abe(QhAC — LPc?).  (58)

In Egs. (55) and (56), the breaking terms are linear in
the fields, and thus they will remain at the classical
level [39].

|
B. The most general counterterm

In order to obtain the most general counterterm that can
be freely added to the classical action X at any order in
perturbation theory, we define the most general local
integrated polynomial ¢ with dimension bounded by four
and vanishing ghost number. As usual, we apply the Ward
identities (54)—(56) to the perturbed action X + X, where
€ is a small parameter. It is easy to find that the counterterm
must obey the following constraints:

0x¢
SsX¢ =0, =0,
= 5b*
o o
—4+0,— |2 =0, a¥¢ =0, 59
<5E.a + H 593) g ( )

where the operator Sy is the nilpotent linearized Slavnov-
Taylor operator,

4 [ OX 6 ox o oX o 60X o
8): = d X +
5QU5AY " 5AL QS T SLYSc T 5c® SLE
0 19 0
b Jova = — . 60
+ b Yod + Hra 5/1/wa + Tllua 6’7/”0[) ( )

The first constraint of Eq. (59) identifies the invariant
counterterm as the solution of the cohomology problem
for the operator Sy in the space of the integrated local
field polynomials of dimension four and vanishing ghost
number [39]. It follows that ¢ can be written as

1 1 ) )
e :Z/d4xa0FZDFZy +Z/d4xa1’<a/myFZ/;Fﬁy+SZA< N,
(61)

where A(=1 is the most general local polynomial counter-

term with dimension bounded by four and ghost number
—1, given by10

10 . . P . —
Just like the Abelian case, any infinite series in k,,,; can be
redefined as a single term linear in &, .
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1
ACD = / d‘bc{azQZA,‘j +a30,E AL + aLfc” + as 5 b + ag g el + (a72q + ghuwe)ALO, AL

g 1
+ g (09/1/41/01 + alO’/lyua)fabCAzAtleccl + (allalﬂm/a‘];wa =+ a12a2l/wa7ﬂva + a13a3’7;wa']/41/a + al4a4’7/,wa7ﬂua> _AHA;

2k

+ (1581 Auapd vap + @16P2 2 uapTuap + @1783Muap vap + A18PaMluapTuap) ALAL

_ 1
+ Kaﬂyv(al9J/1/1aﬂp‘]ﬂyp + aZOyZ/IaﬁpT/wp + (12173’1aﬁp']/wp —+ 022747]aﬁp7ﬂvp> _AgAg

2

+ fca/}’m/(aZ?a)(ll/)’/va/m + a24)(2/1/}p(77y/m + a25)(3’7/}p(7‘,y/m + a26)(4’1/}/)(77y/)0)AZAZ

+ ’?u/){fﬁ(a27gl/lup5‘]yaﬂ + aZSQZ/{y/MiTﬂ(m + a2903’7U/)5TM(16 + a30Q4’7y/)§T/ma)A/(jAg + aSICIi,uyaJy/)’y‘ly[)’KJyKa

+ a324’2/"’ﬂl/(l‘lﬂﬂy‘]l/ﬁk‘1]/l<{l + a33¢3)“;4m1',/,t/}771//)’x']ym1 + a34é’4/1}4D{1JM/}}’TD/}KT]/K{I + a35¢5)*;waruﬂy‘]uﬁx']yka

+ a36€6)“ﬂl/{lrﬂﬂy‘ll/ﬁkf}/l({l + a37z:7/'tﬂb(l1ﬂ/}}’fl/ﬂk“]yk{l + a38€8/1;wa7y/7'y7v/)’1<7yka + a39£:9’7;wa‘];4/)’y*]y/31<~]y1<a

+ as0810Muwad uprd vpxTrxa + @111 Muwad upy Tuped yea + @128 12Muwad upy TopTyxa

=+ a43z:13’7;waruﬂy‘]uﬂx‘]yka =+ a44€14’1ﬂvaTﬂﬂ}’JUﬂKT}’K(1 =+ Ays ClSnuvaTﬂﬂyTvﬂKJyka

+ a46C16nyuaTyﬂyTyﬂKTyka + ]_C/waﬂ<a47191j'ypwjlzpa‘]aa)5‘]ﬂ05 + Qqg 192/1;4pa)']up0*]aa)57ﬂ05

+ a49193ﬂ;4pwjvpa7:aw5*]ﬂ05 + a50194)";4pw‘]vp07:aw57:ﬁ05 + aSISSAyprvpaJawé‘]ﬂoé

+ aSZlgéﬂyprupﬁjawéTﬂaé + a53'97)“/4pw7up61aw5‘]/}66 + a54'98j’ﬂpw1up57awﬁfﬁa§

+ a5519977/zpw']up0‘,aw6]ﬂ05 + aSG&lonupwapnjawérﬁms + Cl57191 1 nﬂpwjupaTawéjﬁaé

+ a581912’7/4pw‘]up67aw57/}65 + a591913’7/4pwz-up17]aw5]/}65 + a601914’7/4pw7up6'](1w67/}65

+ a611915’7/4/)wTU/)6Taw6][3(76 + a621916’7/4/)wTU/)6T(lu)6T/3(75) } ’

where the parameters a; are free coefficients. The ghost
equation implies a4 = 0. Moreover, from the second or third
equations in Eq. (59), it follows that a, = as. Still, from the
second equation in Eq. (59) one finds that as = ag = 0.
Then, it is straightforward to verify that the explicit form
of the most general counterterm allowed by the Ward
identities is the one given by Eq. (Al) in Appendix A.

C. Stability

Finally, to prove the renormalizability of the model we
need to show that the counterterm X¢ can be reabsorbed
by the original action £ by means of the redefinition of
the fields, sources, and parameters of the theory. Thus,

(P, &) +eX(D,J,E) = Z(Py. T, &) + O(e7),  (63)

where the bare fields, sources, and parameters are defined
as

®,=27/*d,  ®e{A.b.c.c)
Jo=2,J, Je{linnrQ L,
éozchf, ée{gvahﬂi?)(i’yivQiagjvgj}' (64)

It is not difficult to check that this can be performed, which
proves that the theory is renormalizable to all orders in

(62)

perturbation theory. Explicitly, the renormalization factors
are listed below.

For the independent renormalization factors of the gluon
and coupling parameter, we have

Z};/zz 1 +8<%+a2),

Ay
Z,= 1—8?, (65)

while the renormalization factors of the ghosts, the
Lautrup-Nakanishi field, and the Q and L sources are
not independent:

Z.=27,=7,'""z;",
ZQ _ Z;1/4Z;1/2’
7, =27, =7/ (66)

Thus, the renormalization of the standard Yang-Mills sector
remains unchanged. For the sector associated with the
vector v, i.e., the CPT-odd breaking term, there is a
mixing between their respective operators, i.e., A;0,Ay and
gf**cAALAG (due to the quantum numbers of J,,, and
T,ue)- Thus, matrix renormalization is required, namely,
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To=247. (67)

where 7 is a column matrix of sources that share the same
quantum numbers. The quantity Z ; is a square matrix with
the associated renormalization factors. In this case,

e Z, Z.
j1:<”> and ZI:<” J)zﬂ—keA,
T ZTJ ZTT
(68)

pva

where A is a matrix depending on q;. It is found that

a; —a a
len+s< T s > (69)
2] ajp — do

The same rule will be used for the sources 4,,, and 7,4,
namely,

A Z, Z
J2:<” > and ZZ:< & "’):HSA,

nﬂva Z;M an/ (70)
where we find
L_N4q a
zz_u+g<2 e 0 > (71)
dg 7—7+ ajg

For the CPT-even breaking sector, the tensor k,,,; renorm-
alizes through the factor

Ze=1+¢la; —ay), (72)

while the renormalization factors of the corresponding
parameters are given in Appendix B. This ends the
multiplicative renormalizability proof of the Lorentz-
violating pure Yang-Mills theory. An alternative (but
equivalent) way of presenting the renormalization coeffi-
cients of the massless parameters is briefly displayed in
Appendix C.

V. CONCLUSIONS

In this work we have shown the multiplicative renorma-
lizability of the Lorentz-violating pure Yang-Mills theories,
at least to all orders in perturbation theory. We have
considered the Abelian and non-Abelian cases separately.
In Ref. [37], using the analytical renormalization technique
(i.e., the explicit one-loop computation of the renormaliza-
tion factors), the authors have already discussed the
renormalizability of the non-Abelian case. In our prescrip-
tion we employ only the algebraic technique [39]. This
method allows for an all-order analysis in perturbation
theory. Remarkably, we have found that the CPT-odd term
induces mass terms for the non-Abelian gauge field, while
no mass is generated for the photon. It is known that

PHYSICAL REVIEW D 91, 025008 (2015)

massive parameters are already present due to the back-
ground v,. However, the induced mass parameters come
from the typical mass term of the action, namely L2A4A%,
and a mixing mass term V,, AjA}, where V,, is a constant
tensor [see Eq. (50)]. Furthermore, it was found that the
renormalization properties of the usual sector of these
theories remain unaffected. The violating terms, however,
have new renormalizations properties, except for the
Abelian Chern-Simons-like term, which does not
renormalize.

In fact, in the Abelian case, there are only three new
renormalizations: one is associated with the even sector of
the breaking, and the other two are associated with pure
vacuum terms. On the other hand, the odd sector of the
Abelian breaking does not renormalize. In the non-Abelian
case, however, 59 independent renormalizations are
present. Besides the typical two renormalizations, the
theory presents five independent renormalizations for the
odd and even violating terms and 32 parameters associated
with a pure vacuum term. It is exactly the odd-sector
parameter that induces the extra mass terms, which also
renormalizes independently with 20 more parameters.

In Ref. [47], the authors argued that quantum corrections
in Lorentz- and CPT-violating QED in a curved manifold
can induce, in a natural way, an effective action for gravity.
In addition, as was shown in Ref. [48], the original vacuum
of the model is affected as well. It is worth mentioning that in
the latter work the non-Abelian case was included. However,
there exist some differences between Refs. [47,48] and the
method presented here: the main one is that here we work in
a flat manifold, i.e., Euclidean spacetime. Furthermore,
besides the fact that the Lorentz-violating coefficients have
been treated here as local sources, their physical values are
simply constant coefficients, in contrast with Refs. [47.48].
Moreover, in those works the CPT-even Lorentz-violating
coefficient does not have double vanishing trace. A non-
vanishing double trace of the CPT-even Lorentz-violating
coefficient could generate important consequences in a non-
Abelian model (such as the presence of dimension-four
operators [51]) and for the ghost sector of the model. A
common assumption between our work and Refs. [36,47,48]
was that higher towers in the dimensionless parameters
(sources) are suppressed assuming that they behave classi-
cally. In our case, however, nothing can be said about
whether the vacuum terms presented here could generate
cosmological effects, at least in a phenomenological way, in
contrast to what was discussed in Refs. [47,48].

An interesting point to be studied is the explicit
computation of the background tensors by applying the
renormalization group equations combined with some
extra condition to each of the tensors. For instance,
following the Gribov-Zwanziger method, a minimal sensi-
tivity principle could be applied. Such a condition may also
be combined with phenomenological information in order
to provide reliable bounds for these tensors. In this context,
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it will be important to choose a renormalization scheme that
works in the present approach. The first reliable choice
would be a minimal subtraction scheme because it works
nicely in similar contexts such as the Gribov-Zwanziger
analysis; see Refs. [42,45].

Another interesting point would be the all-orders proof
of the renormalizability of the electroweak theory and QCD
theory with Lorentz violation considering the fermionic
and bosonic sectors [52,53]. Moreover, the Gribov ambi-
guity problem [54-57] is also manifest in the Lorentz-
violating Yang-Mills action. Thus, the inclusion of the
refined Gribov-Zwanziger terms could also lead to non-
trivial effects that could be visualized through the propa-
gators. In fact, the analysis of the poles of the propagators
(18) and (52) and the respective restrictions on the back-
grounds is currently under investigation [58]. Nevertheless,

|

OSym DNg 6210

Ay +

2C:CloSYM4'6112LE+612/‘Z4X[ AL+ BAG

SAY BAG
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all these analyses might be very difficult and tricky and,
for this reason, we leave them to future investigation.
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APPENDIX A: COUNTERTERM

The counterterm of the non-Abelian theory is found to be

a apa
A (a] ]/wa‘l;wa + a2‘,;wa7;wa +o3 T;wa‘,;wa + a4T/waT;wa)A/}A/}

+2(81J g vap + P yapTuap + B3Tuapd vap + PaTuapTuap) AL AL

R V1 appd yp + V2 appTup T V3Tappd uvp ¥ 4TappTup ) AGAS

+ 28 a0 1 ppod upo T X2 BpoTups + X300 vpo T X aTppoTupe ) AGAL

+ 2K 0p05 (@19 1psd yao + 020 1psd yao + 03T ups s + QaTupsd yao ) ALAD

+ (1wl jwa + O AwaTuwa + O3Muwad pa + a4’1ﬂya7ﬂm)A§8ﬁCa

+ (B14apd vap T PrruapTuap + Baluapd vap & PalluapTuap) (A0, ¢ 40, A7)
R (V1 2appd wvp V2 2appTuvp + ¥ 3Mappd wwp ¥ a1app T ) As 05

FRapuw W1 48p09 upo T X 22806 Tups T X3Mppod vps + X aMppoTupe ) (Ag0,c® + Oy Asy)

+ kapvé (Qllupéj;wm + QZlup(ST;wm + 93771475‘]/4(10' + Q477up67mw) (Azav c+ 8/4 CaAﬁ)

+ / d4x{.]ﬂm <a7AI‘j8DAZ +ay gf“bCA;’AfA§,> + 72,40, 0,A5 + (ag—az )gﬂ”mf“bcAzAgaycb

+ Tuva <a8AZavAg +aj gfabcAZAfA(Cx) + aS’/]ﬂmxaucaayAg + (Cl 10— aS)QnﬂuafabcAﬁAgcaucb

apa
allal‘]ﬂua*];wa + a12a2‘]/41/a Hva =+ a13a37ﬂya‘];u/a =+ a14a4T/u/aT;wa) A A

ap o )'/wa‘,/u/a + alZaZXﬂuaT/Aua +a 1 3a377/wa‘,;wa + a14a477/u/aT/wa Aj aﬁc

+(
+(
+ (15811 uapd vap + @16P2d uapTuap + A17B3Tuapd vap + A18BaTpapTuap
+ (1581 A uapd vap + A16P2AuapTuap + A1783Muapd vap + A18BaMluapTuap

AjAY

)
)(A4D,c“ +8,c ALY

_ 1
+ Kapu\ 1971 Jaﬁp‘l;wp + aZOyZJaﬂpT;wp +ay J/3Ta/3p‘,;wp + a22Y4Ta/}pTuup)§AgAg

(
R (@197 1Aappd yp + @20 2appTpp + 21730 appd yup + @227 aMappTusp ) AGOC”
F Rapun (@231 ppod ypo + 24120 BpoTupe + @a5X3Tpod upo + Q26 4T ppoTups ) AGA;,
F Rapur (@301 2p6d 1po T 02422806 Tupe + Q25X 3B pe vps + Q26 aM1ppoTups ) (Ag0, % + 0, ¢ AG)
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+ Ropos (27019 1psd yae + @28020 15T pao + 02903TpsTuas + A3004T1p5Tpao ) ALAL

+ Kapos (02701 0p6) yao + @280221psTpas + 42903Mp5Tpas + 43004Myp5Tuac ) (A0, + 0,c?AY)
+ a3181 wad upyd vped yea + 432629 jwad uprd piTrxa + 433839 wad upy Tuped yea

+ a348ad jwad upy TupeTyca T 43585 waTupyd vped yea + 36869 jwaTupyd vpeTyea

+ 37879 jwaTupy Tuped yea T 43888 jwaTupy TupTrea + 43980 Tmad upyrd uped yea

+ as08 10T e upyd vpcTrea + 41811 Twad upy Tuped yea + A28 12T e 1y Tupc Tria

+ 38 13T aTupyd vped yea + aa818TaTupyd upcTyca T 45815 waTupy Tuped yxa

+ 468 16TuaTupy TupeTrca T Kunap(@47919 ypord vpo awsd pos + 18920 wpard vpod awsTpos
+ a49193*]ypw']yp07aw§']ﬂa§ + a50194JupwJupaTaw§Tﬂa§ + a51195*]/4pw71/p0‘]aa)5']ﬂ05

+ a52196‘]/4pw1up6']aw§7ﬂ65 + a53197‘]/4pw1up6‘[aw5]ﬂ65 + a54198‘]/4pw7upafaw51ﬂ65

+ a551997ﬂpw']ypa']aw6']ﬁa§ + a5619107/4pw‘]vp6‘]aw67ﬁo'6 —+ a57'91 ITﬂpa)vaaTawé‘]ﬂa&

+ a5819127/4pw*]yp67aa)67[1’0'5 + a5919137;4pwrup6‘]aw5']ﬁo'6 + a60'914Tuprvpa~]aw67ﬁ65

+ agy 9 1 STﬂ/)u)Tuﬂ(rTaw(?Jﬁoﬁ + 616219 1 67;4/)0)711/){77(1(1)57[365) } . (A 1 )

APPENDIX B: RENORMALIZATION FACTORS OF THE PARAMETERS

The renormalization factors of the dimensionless parameters are found to be

a t+a
Za1:1+e<a11—2a7+a0— 2 3619),
ay
a ay
Za2:l+€<a12_a7_a10+a0_<_a8+_a9>>v
a [25)
ap ay
Za3:1+8(a13—a7—a10+a0—(—a8+—ag)>,
a3 as
a +o
Z(z4:1+€(al4_2a10+a0_ 2 3618),
Q4
Pr+ B3
Zﬁ1:1+£<a15—2a7+ao— 7 ag |,
7. —1 1 Pa
By — + & a16—a7—a10+a0— —a8+—a9 s
2 P2
7. 1 I P4
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3 p3
b+ P
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’ 73 73
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APPENDIX C: ALTERNATIVE RENORMALIZATION OF THE PARAMETERS

The renormalization of the coefficients related to the mass parameters, vertices, and vacuum terms was presented in
Sec. IV C. An alternative (but equivalent) way of presenting the renormalization of the dimensionless coefficients
(Appendix B) can be performed by using the matrix renormalization. This happens due to the fact that the mixing between
the quantum sources induces, in a natural way, a mixing between their respective parameters. Thus, we can simply write

Qo1 ]
Qp2 (2%)
(Xo3 = Za (X3 . (Cl)
Qo4 ay
Qps Qas
It is found that
ay — 2617 —+ ap —dg —dg 0
—dg ayp — ay; — dy -+ ap 0 —dg
Zy,=1T+¢ s (C2)
—dg 0 apz —ady —dap + apg— —dg
0 —ag —ag ayy —2ayp + ap

and it is a straightforward exercise to generalize the method to the other classes of parameters.
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