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We study the dynamics of the Nambu-Goto membranes with cohomogeneity one symmetry, i.e., the
membranes whose trajectories are foliated by homogeneous surfaces. It is shown that the equation of
motion reduces to a geodesic equation on a certain manifold, which is constructed from the original
spacetime and Killing vector fields thereon. A general method is presented for classifying the symmetry of
cohomogeneity one membranes in a given spacetime. The classification is completely carried out in
Minkowski spacetime. We analyze one of the obtained classes in depth and derive an exact solution.
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I. INTRODUCTION

Extended objects came out recently in various areas of
physics: topological defects in field theories and in con-
densed matter physics, and branes in string theories. In
cosmology, topological defects such as cosmic strings and
domain walls are supposed to have formed in the early
universe. In the brane-world universe models, the universe
itself is an extended object embedded in a bulk space [1].
Recently, configurations of extended objects in black hole
spacetimes are also of growing importance in discussions
of the strong coupling regime of gauge theories through
gauge/gravity duality [2].
Extended objects, compared with particles, have a wide

variety of motion. For example, in Minkowski spacetime, a
free particle moves with a constant velocity so that its only
possible trajectories are timelike straight lines. On the other
hand, the trajectories of a string can be two-dimensional
timelike surfaces with various deformations. It is of
fundamental importance to clarify the possible motion of
extended objects in a given spacetime. However, we do not
know much because the equations of motion (EOM) are
difficult to solve; the EOM for extended objects are partial
differential equations (PDEs) while those for particles are
ordinary differential equations (ODEs). Even in the case of
strings, where EOM are written as PDEs of two dimen-
sions, we cannot solve EOM except for a few cases such as
the Nambu-Goto strings in Minkowski spacetime, where

the EOM are reduced to wave equations in two dimensions
with constraint equations.
A way to make the EOM tractable is to assume

symmetry. The trajectory of an extended object, which
we call world volume, is a submanifold embedded in
the spacetime manifold M. Assuming symmetry on the
geometry of the world volume, we can simplify the EOM.
In particular, in the case when the cohomogeneity one
symmetry exists, the EOM are reduced to ODEs. Examples
are seen in stationary strings [3–9] and branes [10], and
cohomogeneity one strings [11–15].
A cohomogeneity one world volume Σ of m dimensions

is foliated by ðm − 1Þ-dimensional orbits of a group G
which consists of isometries of M. It is apparent that Σ is
homogeneous along the ðm − 1Þ-dimensional orbits. For a
cohomogeneity one string, its two-dimensional world
volume is foliated by one-dimensional orbits of G, so that
the group G is one dimensional, and hence there is no
variety on the structure of G. For higher dimensional
cohomogeneity one objects, the structures of the groups
G which act on the homogeneous orbits have a richer
variety. For example, in the case of two-dimensional
groups, Abelian and non-Abelian groups can act on the
orbits.
For cohomogeneity one strings, the Nambu-Goto equa-

tion is reduced to the geodesic equations on the orbit space,
M=G. The metric ~h which appears in the geodesic
equations is clearly identified as the one of the form
~h ¼ jξjh, where h is the metric determined by the require-
ment that the projection M → M=G, which identifies the
points on each orbit ofG, be a Riemannian submersion, and
jξj is the norm of the Killing vector ξ generating the group
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G [11]. The clarification of the metric structure in relation
to G makes it possible to study the integrability of the
geodesic equations. The present authors found exact
solutions for all of the cohomogeneity one strings in
Minkowski spacetime [13].
For higher dimensional cohomogeneity one objects, we

may also expect the reduction of the Nambu-Goto equation
to the geodesic equations. In the case that G is Abelian,
Kubiznak et al. showed that the reduction of the equations
of motion occurs in the higher dimensional Kerr-NUT-(A)
dS spacetime [10]. However, it is not clear that the same
reduction occurs in general. The structure of the metric
which appears in the geodesic equations is not deeply
understood.
In this paper, we study cohomogeneity one membranes,

that is, ð2þ 1Þ-dimensional world volumes embedded in
the spacetime, and we give a general formulation of
reducing their Nambu-Goto equations to a geodesic prob-
lem on the orbit space. We also give a thorough classi-
fication of the cohomogeneity one membranes in
Minkowski spacetime. A careful treatment is necessary
in the classification because different symmetry groups G,
which are subgroups of the isometry group of the spacetime
M, could give essentially the same solution to the Nambu-
Goto equation. For example, in Minkowski spacetime, a
subgroup acting on the x-y plane and another acting on the
y-z plane should be identified because the orbits are
equivalent geometrically. This identification is achieved
by an isometry, a rotation around the y axis, which maps the
one plane to the other. Using identification by isometries,
we can classify isometry subgroups in a given spacetime.
After the classification of the subgroups in Minkowski
spacetime, we choose one subgroup for a cohomogeneity
one membrane, as an example, and give solutions to
the EOM.
In the next section, we show that the Nambu-Goto

equations for the cohomogeneity one membranes are
reduced to the geodesic equations in the orbit space. The
structure of the metric used in the geodesic equations is also
clarified. In Sec. III, we discuss the classification of
cohomogeneity one symmetry for membranes. As an
example, we carry out the classification in Minkowski
spacetime in Sec. IV. After the classification, we take a
particular cohomogeneity one symmetry and solve the
Nambu-Goto equations in Sec. V. Finally, we summarize
and discuss the results in Sec. VI.

II. REDUCTION OF EQUATIONS OF MOTION
OF COHOMOGENEITY ONE MEMBRANES

We shall give a general formulation for reducing the
Nambu-Goto equations of cohomogeneity one membranes.
We first give a setup for cohomogeneity one membranes.
There exist two cases, where the action of the symmetry
group G on the orbits is simply or multiply transitive. Then

we present the method of reducing the equations of motion
in each case.
A membrane has a trajectory which is a three-

dimensional surface embedded in a spacetime manifold
M. Let IsomM be the isometry group ofM. A membrane
is cohomogeneity one if its world volume Σ is foliated by
two-dimensional orbits of a subgroup G of Isom M. We
assume that the orbits are non-null. Let π be the projection
M → M=G which identifies the points on each orbit of G
in M. By the projection π, the spacetime manifold M is
reduced to the orbit space M=G, and the world volume Σ
of cohomogeneity one membrane is reduced to a curve C in
M=G. Thus the world volume Σ is given as a preimage
π−1ðCÞ and is completely determined by the curve C. In the
following subsections, we will show that the curve C is a
geodesic on M=G, endowed with an appropriate metric,
when the membrane is governed by the Nambu-Goto
action.
Before proceeding, let us discuss the dimensionality of

G. The action ofG on the orbits may be simply transitive or
multiply transitive. In the simply transitive case, the
isotropy subgroups are trivial and the dimensionality of
G is equal to that of the orbits, dimG ¼ 2. In the multiply
transitive case, G includes a nontrivial isotropy subgroup,
so that dimG > 2. On the other hand, the maximal
dimensionality of the isometry group acting on a two-
dimensional surface is three, then we have dimG ¼ 3, and
each orbit is a space of constant curvature.

A. The case dimG ¼ 2

Let ðξ1; ξ2Þ be a pair of Killing vectors which are
generators of G ⊂ IsomM. The Killing vectors ξIðI ¼
1; 2Þ are tangent to the orbits and constitute a basis of the
Lie algebra g of G. It is known that there are only two
distinct two-dimensional Lie algebras, commutative and
noncommutative. With an appropriate choice of the basis
ðξ1; ξ2Þ, the Lie bracket is given by

½ξ1; ξ2� ¼
�
0 ðg is commutativeÞ
ξ1 ðg is noncommutativeÞ: ð1Þ

For commutative g’s, it was shown that the Nambu-Goto
equations in a particular spacetime are reduced to the
geodesic equations [10]. It has not been known whether
such a reduction is possible for noncommutative g’s. In the
following, we show that this is also true.

1. Coordinate system in M

We shall provideMwith a coordinate system by making
use of the group action of G on M. First, we consider a
two-dimensional surface S0 such that each orbit of G
intersects with S0 once. Introducing a coordinate system
ðx1; x2Þ on S0, we can specify the orbit by the point ðx1; x2Þ
of intersection with S0, which we will denote by Oðx1;x2Þ
(see Fig. 1).
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Next, we consider the action of an element g of G on the
points of S0. Since G does not admit fixed points, each
point on S0 is necessarily moved along its orbit except in
the case that g is the identity element e of G. The moved
points form a new surface which does not intersect with S0.
We denote this surface by Sg and consider a family of the
surfaces fSgg ≔ fSgjg ∈ Gg where Se ¼ S0. It is clear
that the surfaces of fSgg fill the spacetime without
intersecting with each other.
Let us now choose an orbit, which we denote by O0. All

the surfaces of fSgg cross the orbit O0 at different points,
and hence the surfaces are specified by the intersections on
O0. Let ðy1; y2Þ be an internal coordinate system ofO0. We
can denote by Sðy1;y2Þ the surface which intersects with O0

at ðy1; y2Þ (see Fig. 2).
Now that we have two different ways of fillingM—one

is with the orbits of fOðx1;x2Þg and the other is with the
surfaces of fSðy1;y2Þg—we can specify a point of M by the
orbitOðx1;x2Þ and the surface Sðy1;y2Þ on which the point lies.
Using the parameters of the orbit and the surface, we can
assign the coordinates ðx1; x2; y1; y2Þ to the point. This
coordinate system is convenient for studying the EOM of
cohomogeneity one membranes.

2. Metric

To describe the metric, let us introduce an invariant dual
basis on each orbit, which is possible when the group action
of G on the orbits is simply transitive. Let fχ1; χ2g be an
invariant dual basis on O0, which satisfies

LξIχ
J ¼ 0; ðI; J ¼ 1; 2Þ; ð2Þ

where Lξ represents the Lie derivative along a vector field
ξ. With respect to the coordinate system ðy1; y2Þ on O0, χI

is written as

χI ¼ χI iðy1; y2Þdyi: ð3Þ

Considering y1 and y2 as the spacetime coordinates, we can
extend χI to 1-forms in M satisfying Eq. (2).
Using the invariant dual basis fχ1; χ2g, we can write the

spacetime metric as

ds2 ¼ gpqdxpdxq þ 2gpIdxpχI þ gIJχIχJ: ð4Þ

Here, gpq; gpI and gIJ are functions of x1 and x2 only, which
is due to the Killing equations

LξI g ¼ 0; ð5Þ

and Eq. (2). For later convenience, we write the metric as
follows:

ds2 ¼ hpqdxpdxq þ gIJðχI þ NI
pdxpÞðχJ þ NJ

qdxqÞ;
ð6Þ

where
gIJNJ

p ¼ gIp; ð7Þ

hpq ¼ gpq − gIJNI
pNJ

q: ð8Þ

3. Equations of motion

When we identify the orbits with the points on S0, the
world volume Σ is reduced to a curve on S0. We denote this
curve by C0ðλÞ,

C0∶ R ∋ λ ↦ ðx1ðλÞ; x2ðλÞÞ ∈ S0: ð9Þ

Then we can label the foliating orbits with the parameter λ,

Oλ ≔ Oðx1ðλÞ;x2ðλÞÞ ð10Þ

(see Fig. 3). A point on Σ is specified by the orbit Oλ and
the surface Sðy1;y2Þ on which the point lies. Then the set of
parameters ðλ; y1; y2Þ is considered as a coordinate system
on Σ. With this coordinate system, the embedding of Σ into
M is given by

FIG. 1. The surface S0 and the orbits of G. The orbits are
depicted as curves though they are actually two dimensional.
Each orbit has only one intersection with S0.

O0

y1

y2

(y1, y2)

S(y1,y2)

FIG. 2. The orbitO0 and the surfaces of fSgg. Two-dimensional
surfaces are depicted as curves.
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ðλ; y1; y2Þ ↦ ðx1ðλÞ; x2ðλÞ; y1; y2Þ; ð11Þ

and the Nambu-Goto action is given by the three-volume
integral

S ¼
Z
Σ

ffiffiffiffiffi
jγj

p
dλdy1dy2 ¼

Z
C0

�Z
Oλ

ffiffiffiffiffi
jγj

p
dy1dy2

�
dλ;

ð12Þ

where γ is the determinant of the induced metric on Σ, and
hence

ffiffiffiffiffijγjp
is the volume of the parallelepiped spanned by

the coordinate basis ð∂λ; ∂1; ∂2Þ ≔ ð∂=∂λ; ∂=∂y1; ∂=∂y2Þ.
The volume of the parallelepiped is given by a product of

the area of the base and the height from the base.
Considering the parallelogram spanned by ∂1 and ∂2 as
the base (see Fig. 4), we obtain the area of the base as

j det χIjj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gIJj

p
; ð13Þ

and the height of the parallelepiped, which is given by the
magnitude of the normal component of ∂λ ¼ _xp∂=∂xp to
the base, as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhpq _xp _xqj

q
; ð14Þ

where the dot denotes the derivative with respect to λ.
Thereby the volume is written as

ffiffiffiffiffi
jγj

p
¼ j det χIjj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gIJj

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhpq _xp _xqj

q

¼ j det χIjj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðdet gIJÞhpq _xp _xqj

q
: ð15Þ

Noting that χIj are functions of y1 and y2 and that gIJ and
hpq are functions of λ, we can write the Nambu-Goto
action (12) as

S ¼
Z
C0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðdet gIJÞhpq _xp _xqj

q Z
Oλ

j det χIjjdy1dy2
�
dλ

ð16Þ

¼
Z
O
j det χIjjdy1dy2

Z
C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðdet gIJÞhpq _xp _xqj

q
dλ: ð17Þ

Here, we have used the fact that the integration over the
orbit Oλ does not depend on λ. Integrating out the variables
y1 and y2, we can reduce the Nambu-Goto action as follows:

S ∝
Z
C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðdet gIJÞhpq _xp _xqj

q
dλ: ð18Þ

This is identical to the action of a particle moving on the
surface S0 with the metric ðdet gIJÞhpq. The original
problem has therefore been reduced to that of finding a
geodesic on S0.
We have derived the equations of motion on the surface

S0. It is also possible to do so on other surfaces of fSgg.
The surfaces can be mapped to each other by the action of g
(or g−1) and lead to the same form of (18). The reductions
on the surfaces of fSgg are put together by identifying the
surfaces with the orbit space M=G by

Sg ∋ ðx1; x2Þ ↔ Oðx1;x2Þ ∈ M=G: ð19Þ

We can then conclude that the equations of motion are
reduced to the geodesic equations onM=G. If we consider
ðx1; x2Þ to be a coordinate system of M=G, the projection
map π∶ M → M=G is explicitly given as

π∶ M ∋ ðx1; x2; y1; y2Þ ↦ ðx1; x2Þ ∈ M=G: ð20Þ
Let ðx1ðλÞ; x2ðλÞÞ be a geodesic in M=G. The solution of
the membrane is given as a preimage: π−1ðx1ðλÞ; x2ðλÞÞ ¼
ðx1ðλÞ; x2ðλÞ; y1; y2Þ. By the use of the projection π, we can

FIG. 3. The curve C0 on the surface S0 and the orbits Oλ

determine the world volume Σ. The dimension of Σ is three, and
of Oλ is two.

FIG. 4. The parallelepiped spanned by the coordinate basis:
ð∂λ; ∂1; ∂2Þ. The shaded parallelogram is spanned by ∂1 and ∂2.
We should note that ∂λ is not necessarily perpendicular to the
parallelogram.

HIROSHI KOZAKI, TATSUHIKO KOIKE, AND HIDEKI ISHIHARA PHYSICAL REVIEW D 91, 025007 (2015)

025007-4



naturally induce a metric on M=G in order that π is a
Riemannian submersion. Such an induced metric is given
as the symmetric tensor hpq of (8). Weighting hpq with
det gIJ, we obtain the metric used in the geodesic action
(18) for the cohomogeneity one membrane.

B. The case dimG ¼ 3

In the case dimG ¼ 3, the orbits are two-dimensional
spaces of constant curvature. The metric of the orbit with
constant curvature K can be written in the form

dσ2 ¼ R2fðdy1Þ2 þ ϵF2ðy1Þðdy2Þ2g ð21Þ

with

ϵ ≔
�þ1 ðspacelike orbitsÞ
−1 ðtimelike orbitsÞ ð22Þ

and

Fðy1Þ ≔
8<
:

sin y1 ðK > 0Þ
y1 ðK ¼ 0Þ
sinh y1 ðK < 0Þ

; ð23Þ

where R is a constant. By using coordinates x1 and x2

which are constant on each orbit, we can write the
spacetime metric as [16,17]

ds2 ¼ e2λðdx1Þ2 − ϵe2νðdx2Þ2
þ R2fðdy1Þ2 þ ϵF2ðy1Þðdy2Þ2g; ð24Þ

where λ; ν and R are functions of x1 and x2. We can
consider ðx1; x2Þ as a coordinate system of the orbit space
M=G, and the projection π∶ M → M=G is again given
by Eq. (20). We see that

ds2M=G ≔ e2λðdx1Þ2 − ϵe2νðdx2Þ2 ð25Þ

is the metric on M=G with π being a Riemannian
submersion. Following the same derivation presented in
the case dimG ¼ 2, the Nambu-Goto action is separated as

S ¼
Z
O
jFjdy1dy2

Z
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR4fe2λð_x1Þ2 − ϵe2νð_x2Þ2gj

q
dλ:

ð26Þ

Integrating out the variables y1 and y2, we obtain a reduced
action

S ∝
Z
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR4fe2λð_x1Þ2 − ϵe2νð_x2Þ2gj

q
dλ: ð27Þ

Therefore the problem is reduced to solving the geodesic
equations on M=G with the weighted metric

~ds2M=G ≔ R4ds2M=G ¼ R4fe2λðdx1Þ2 − ϵe2νðdx2Þ2g:
ð28Þ

We finally note the Lie algebra g of G. In the case
dimG ¼ 3, the action of G is described by three Killing
vector fields, ξIðI ¼ 1; 2; 3Þ. The triple ðξ1; ξ2; ξ3Þ repre-
sents a basis of g. The commutation relations are those of
the two-dimensional spaces of constant curvature, which
are listed in Table I in terms of the Bianchi classification of
the three-dimensional Lie algebras. As seen in Table I, the
Lie algebras of Bianchi VI0 and VII0 have two-dimensional
commutative subalgebras spanned by ξ1 and ξ2. As for the
Bianchi VIII, taking new bases

ξ01 ≔ ξ2 − ξ3; ξ02 ≔ ξ1; ð29Þ

which satisfy

½ξ01; ξ02� ¼ ξ01; ð30Þ

we find that the Bianchi VIII also has a two-dimensional
solvable subalgebra. Since the Lie algebras of Bianchi VI0,
VII0 and VIII include two-dimensional subalgebras, the
groups associated with these Lie algebras include two-
dimensional subgroups, whose actions on the orbits are
simply transitive. Then, for the groups of Bianchi VI0, VII0
and VIII, the reduction of the EOM can be explained in the
case dimG ¼ 2.

III. GENERAL CLASSIFICATION METHOD
FOR COHOMOGENEITY ONE MEMBRANES

The cohomogeneity one symmetries can be assumed in
the spacetimes whose isometry groups admit subgroups G
with two-dimensional orbits. In a given such spacetime,
different G may give the cohomogeneity one membranes
which are essentially the same. To discard such redun-
dancy, we shall introduce the notion of geometrical
equivalence of world volumes and present the method of
classifying cohomogeneity one membranes up to the
equivalence.
Let Σ and Σ0 be world volumes. We say that they are

geometrically equivalent if there is an isometry ϕ on M

TABLE I. The commutation relations of three Killing vectors
ðξ1; ξ2; ξ3Þ of the two-dimensional spaces of constant curvature.

Spaces of constant curvature
Bianchi
type ½ξ1; ξ2� ½ξ2; ξ3� ½ξ3; ξ1�

Euclid space E2 VII0 0 −ξ1 −ξ2
Sphere S2 IX −ξ3 −ξ1 −ξ2
Hyperbolic space H2 VIII ξ3 −ξ1 −ξ2
Minkowski spacetime E1;1 VI0 0 ξ1 −ξ2
de Sitter spacetime dS2 VIII ξ3 −ξ1 −ξ2
Anti–de Sitter spacetime AdS2 VIII ξ3 −ξ1 −ξ2
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which maps Σ onto Σ0. Suppose further that one of such
world volumes, Σ, is of cohomogeneity one with symmetry
group G. Then Σ0 is of cohomogeneity one with symmetry
group ϕGϕ−1. To see this, let Oλ be the orbits of G which
comprise a foliation of Σ. Then for each pair of points p and
p0 on ϕðOλÞ, there exists g ∈ G such that gðϕ−1ðpÞÞ ¼
ϕ−1ðp0Þ which implies ϕgϕ−1ðpÞ ¼ p0. Thus ϕðOλÞ com-
prise a homogeneous foliation of Σ0 with symmetry
group ϕGϕ−1.
It is natural to introduce an equivalence relation for

subgroups G and G0 of Isom M,

G ∼G0 ⇔ ∃ϕ ∈ IsomM s:t: G0 ¼ ϕGϕ−1: ð31Þ
Then subgroups G and G0 define geometrically equivalent
world volumes if and only if they are equivalent. Our task is
to find out the equivalence classes of the relation (31), or
the conjugacy class of the subgroups G of Isom M.
In the actual classification procedure, it is more conven-

ient to work with the Lie algebra g of G, which consists of
Killing vector fields on M. Because the conjugation for

g ∈ G by ϕ ∈ IsomM, g ↦ ϕgϕ−1, induces the pushfor-
ward ξ ↦ ϕ�ξ for ξ ∈ g. The equivalence relation on the
symmetry group G induces that on the symmetry Lie
algebra g,

g ∼ g0 ⇔ ∃ϕ ∈ IsomM s:t: g0 ¼ ϕ�g: ð32Þ

Thus we shall classify the Lie subalgebras g of the Lie
algebra of Isom M, up to the equivalence relation (32).
We further would like to derive a basis for each classified

symmetry Lie algebra g, so that it is convenient in
applications. Let V ≔ ðξ1;…; ξdimGÞ be a basis for a
symmetry algebra g. The bases V and V 0 ≔
ðξ01;…; ξ0dimGÞ give the same g when each element of V 0
is a linear combination of the elements of V: ξ0i ¼ Ai

jξj,
Ai

j ∈ GLðdimG;RÞ. Then the classification of all coho-
mogeneity one membrane in a given spacetime M reduces
to that of the bases for the symmetry algebras under the
equivalence relation

V ∼ V 0 ⇔ ∃ϕ ∈ IsomM; ∃Ai
j ∈ GLðdimG;RÞ s:t: ξ0i ¼ Ai

jϕ�ξj: ð33Þ

A concrete procedure to get a set of class representatives is
the following.
Step 1. Choose an abstract Lie algebra g of the symmetry

group G. It must be one of the following six:

R2; two-dimensional noncommutative algebra;

Bianchi typesVI0;VII0;VIII and IX: ð34Þ

As discussed in Sec. II, the above are the only Lie algebras
that allow two-dimensional orbits. Furthermore, as men-
tioned at the end of Sec. II, one can eliminate Bianchi types
VI0, VII0 and VIII from the list (34), because they are the
special cases of R2 and two-dimensional noncommutative
algebra. However, here we retain them so as to include all
possible cases that the orbits are spaces of constant
curvature and the metric on the orbit space has the simple
form (28).
Step 2. Find a general set of Killing vector fields on M,

V ¼ ðξ1;…; ξdimGÞ, that satisfy one of the commutation
relations (1) and those in Table I depending on the Lie
algebra chosen in Step 1. Check that the orbit of V is two-
dimensional.
Step 3-k (k ¼ 1;…; dimG). Canonicalize ξk. Namely,

reduce ξk to a certain simple form by using the degrees of
freedom of the equivalence relation (33) that preserves ξl
for l < k. We shall say that such ðξ1;…; ξkÞ has the
canonical form. [We might sometimes rearrange the
canonical form ðξ1;…; ξkÞ by using GLðk;RÞ in order to

make it look simpler as a whole.] Finally, with k ¼ dimG,
we obtain the canonical form of V.

IV. CLASSIFICATION IN MINKOWSKI
SPACETIME

We have obtained the general scheme to classify coho-
mogeneity one membranes in a given spacetime. In this
section, we carry out the complete classification in
Minkowski spacetime, which admits ten linearly indepen-
dent Killing vectors,

Pμ ðμ ¼ t; x; y; zÞ; Translations;

Ki ði ¼ x; y; zÞ; Lorentz boosts;

Li ði ¼ x; y; zÞ; Rotations: ð35Þ

Any Killing vector ξ is written as a linear combination of
them,

ξ ¼ αμPμ þ βiKi þ γiLi; ð36Þ

where αμ, βi and γi are constants.
In Minkowski spacetime, we have an advantage that

greatly simplifies the classification scheme because all
canonical forms of Killing vector fields are derived [11].
For any g, we can assume that ξ1 is one of the canonical
forms listed in Table II up to scalar multiplication. Thus
Step 3-1 is essentially done in advance.
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A. Classification of two-dimensional Abelian
symmetry groups

Let us choose the two-dimensional commutative algebra
R2 as the symmetry algebra g. We would like to derive the
equivalence classes of the set of commuting pairs of Killing
vector fields,

VC ≔ fðξ1; ξ2Þj½ξ1; ξ2� ¼ 0g: ð37Þ
As discussed above, Step 3-1 is already carried out and

we can take ξ1 as one of the canonical forms of Table II up
to scalar multiplication. We then divide VC essentially into
seven parts VJ

CðJ ¼ I; II;…;VIIÞ depending on the canoni-
cal form of ξ1. For example, VI

C is a set of the commuting
pairs of Killing vectors ðξ1; ξ2Þ with ξ1 being in the
canonical form of Type I, ξ1 ¼ aPt þ bLz, and in this case
ξ2 is written as linear combinations of the ten Killing
vectors (35) which commute with aPt þ bLz. Next, we
reduce the number of the Killing vectors (35) contained in
ξ1 and ξ2 by using isometries and GLð2;RÞ actions on the
pair ðξ1; ξ2Þ, so that ξ1 and ξ2 contain the smallest possible
number of parameters. A detailed calculation for one case is
given in the Appendix.
As a result, we obtain simple representatives in each of

VJ
C. However, we must be aware that two different VJ

C’s
may lead to equivalent pairs ðξ1; ξ2Þ. We eliminate this
redundancy and obtain a complete set of canonical forms.
The result is shown in Table III. Any element of VC falls
into one of the equivalence classes of these canonical
forms.

B. Classification of two-dimensional non-Abelian
symmetry groups

Let us choose the two-dimensional noncommutative
algebra as the symmetry algebra g. This is the classification
of VS ≔ fðξ1; ξ2Þj½ξ1; ξ2� ¼ ξ1g. As in the commutative
case, we can take ξ1 to be the seven types in Table II, and
we reduce the degree of freedom in VS by using ϕ ∈
IsomM and Ai

j ∈ GLð2;RÞ which preserves the

commutation relation. The resulting canonical forms are
listed in Table IV.

C. Classification of three-dimensional symmetry groups

Let us discuss the case that the symmetry algebra g is
three dimensional. As was discussed in the previous
section, g must be one of the Bianchi types VI0, VII0,
VIII and IX. The classification is for the triples of Killing
vector fields ðξ1; ξ2; ξ3Þ which satisfy either of the com-
mutation relations listed in Table I. The classification
procedure for each Bianchi type is described in the
subsequent subsections. The result of the canonical forms
for all Bianchi types are shown in Table V.

1. Bianchi VI0
Bianchi type VI0 algebra has a two-dimensional com-

mutative subalgebra h. The subalgebra h must be equiv-
alent to one of the Lie algebras defined by the pairs in
Table III. Then we should look for the third Killing vector
ξ3 which satisfies the commutation relations

½ξ2; ξ3� ¼ ξ1; ½ξ3; ξ1� ¼ −ξ2; ð38Þ
where we take a linear combination ξi if necessary.
Reducing the general expression of V ¼ ðξ1; ξ2; ξ3Þ by

TABLE II. Canonical forms of the Killing vectors in Minkow-
ski spacetime. Any Killing vectors are transformed by isometries
to these seven types. Killing vectors in the same canonical form
with different pairs of constants ða; bÞ cannot be transformed to
each other.

Type Canonical form

I aPt þ bLz
II aðPt þ PzÞ þ bLz
III aPz þ bLz
IV aPz þ bðKy þ LzÞ
V aPz þ bKy
VI aPx þ bðKy þ LzÞ
VII aKz þ bLz

TABLE III. The representatives of the equivalence classes of
VC: a set of commuting pairs of Killing vectors ðξ1; ξ2Þ. Those
pairs that are connected by a simple rescaling of ξ2 are equivalent,
though having different ða; bÞ.
ξ1 ξ2 (a, b: constants)

Pt aPz þ bLz
Pt þ Pz aPt þ bLz, aPz þ bðKx − LyÞ, aPy þ bðKx − LyÞ
Pz aPt þ bLz, aPx þ bKy, aPx þ bðKy þ LzÞ
Lz Kz
Ky þ Lz aPz þ bðKz − LyÞ

TABLE IV. The representatives of the equivalence classes of
VS: a set of noncommuting pairs of Killing vectors ðξ1; ξ2Þ.
ξ1 ξ2 (a: constant)

Pt þ Pz Kz þ aPx, Kz þ aLz
Ky þ Lz −Kx þ aPz

TABLE V. The representatives of the equivalence classes of
triples of Killing vectors ðξ1; ξ2; ξ3Þ that generate the isometry
group that has two-dimensional orbits.

Bianchi type ξ1 ξ2 ξ3

VI0 Pt Pz Kz
VII0 Pz Px Ly

Ky þ Lz Kz − Ly Lx
VIII Kz Kx Ly
IX Lz Lx Ly
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using the equivalence relation (33) leads to the canonical
form

V ¼ ðPt;Pz;Kz þ αμPμ þ γLzÞ; ð39Þ

where αμ and γ are arbitrary constants.
Let us require that the symmetry group G has the two-

dimensional orbits. The tangent space spanned by V at each
point must be two dimensional. The concrete expression of
the Killing vector fields,

ξ1 ¼ ∂t; ξ2 ¼ ∂z;

ξ3 ¼ z∂t þ t∂z þ αx∂x þ αy∂y þ γðx∂y − y∂xÞ;
ð40Þ

in Cartesian coordinate basis implies that ξ3 cannot have the
terms proportional to ∂x or ∂y. Thus, we must have αμ ¼ 0
and γ ¼ 0 so that

V ¼ ðPt;Pz;KzÞ: ð41Þ
The orbits of g are obviously the planes parallel to the t-z
plane. We note that the Lie algebra spanned by the basis V
contains both of the commutative and noncommutative
two-dimensional algebras, spanned by ðPt;PzÞ in Table III
and ðPt þ Pz;KzÞ in Table IV, respectively. Accordingly,
the two-dimensional orbits of (41) can be considered as
those generated by ðPt;PzÞ or by ðPt þ Pz;KzÞ. The orbit is
the two-dimensional Minkowski spacetime.

2. Bianchi VII0
Let us consider the case of g being the Bianchi VII0

algebra. Then ξ1 and ξ2 in V ¼ ðξ1; ξ2; ξ3Þ commute.
Following the same procedures as in the case of Bianchi
VI0, we obtain two representatives,

V ¼ ðPz;Px;LyÞ and ðKy þ Lz;Kz − Ly;LxÞ: ð42Þ

In the first case, which we call type VII0-1, the orbits are
parallels to the z-x plane and are intrinsically and extrinsi-
cally flat. In contrast, in the second case, which we call type
VII0-2, the orbits are flat intrinsically but are embedded inM
in a nontrivial way. Both types of embedding share common
features: intrinsic flatness and extrinsic homogeneity and
isotropy. The type VII0-2 with nontrivial embedding of orbits
seems worth further analysis. In Sec. V, we will clarify how
the orbits of type VII0-2 are embedded in Minkowski
spacetime, and we will explicitly construct a solution of a
cohomogeneity one Nambu-Goto membrane.

3. Bianchi VIII

Let the symmetry algebra g be the Bianchi VIII algebra.
We start with ξ1 of the V ¼ ðξ1; ξ2; ξ3Þ being one of the
canonical forms in Table II (up to rescaling). Next, for the
chosen ξ1, we look for ξ2 which satisfies the following
relations:

½ξ1; ½ξ1; ξ2�� ¼ ½ξ1; ξ3� ¼ ξ2; ð43Þ

½ξ2; ½ξ1; ξ2�� ¼ ½ξ2; ξ3� ¼ −ξ1: ð44Þ

The third Killing vector ξ3 is obtained through the
commutation relation

ξ3 ¼ ½ξ1; ξ2�: ð45Þ
We then have possible V. By using GLð3;RÞ that preserves
the commutation relations, we find that there is only one
equivalence class represented by

V ¼ ðKx;Ky;LzÞ: ð46Þ

The orbits are two-dimensional hyperboloids or de Sitter
spacetimes which are embedded in E2;1 with the equation

−t2 þ x2 þ y2 ¼ const: ð47Þ
As mentioned in Sec. II B, the Lie algebra g spanned by V
includes a solvable subalgebra spanned by ðKy þ Lz;−KxÞ,
which is a special case in Table IV.

4. Bianchi IX

Let g be the Bianchi IX algebra. As in the case of Bianchi
VIII, we first consider ξ1 to be in a canonical form in
Table II. We then look for ξ2 which satisfies

½ξ1; ½ξ1; ξ2�� ¼ ½ξ1;−ξ3� ¼ −ξ2; ð48Þ

½ξ2; ½ξ1; ξ2�� ¼ ½ξ2;−ξ3� ¼ ξ1: ð49Þ

The third Killing vector ξ3 is obtained through the
commutation relation

ξ3 ¼ ½ξ1; ξ2�: ð50Þ
By using isometries and GLð3;RÞ actions, we then find that
there is only one equivalence class represented by

V ¼ ðξ1; ξ2; ξ3Þ ¼ ðLz;Lx;LyÞ: ð51Þ

The orbits are spheres centered at the origin.

V. EXACT SOLUTION FOR TYPE VII0-2
MEMBRANE

Applying the results of Sec. II B, we solve the Nambu-
Goto equations for the cohomogeneity one membrane
whose world volume has the symmetry of Bianchi type
VII0. The symmetry algebra g has two possibilities: one is
type VII0-1 generated by ðPz;Px;LyÞ, and the other is type
VII0-2 generated by ðKy þ Lz;Kz − Ly;LxÞ,
In the case of type VII0-1, the orbits are the t ¼ const and

y ¼ const planes. The weighted metric of the orbit space,
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whose geodesics determine the dynamics of the membrane,
is flat. Then, the cohomogeneity one membrane of type
VII0-1 is a static plane or its equivalents.
Hereafter, we concentrate on type VII0-2. We follow

the same conventions as in Sec. II B: the coordinates on
the orbits are denoted by ðy1; y2Þ, and the orbits are
distinguished by ðx1; x2Þ.

A. Embbeding of type VII0-2 orbits

We begin with clarifying the embedding of the VII0
orbits: ~y ≔ ðy1; y2Þ ↦ ðt; x; y; zÞ, generated by the Killing
vectors

ðKy þ Lz;Kz − Ly;LxÞ: ð52Þ

Since the Killing vectors Ky þ Lz and Kz − Ly commute
with each other, we take them as a coordinate basis on the
orbit,

ð∂y1 ; ∂y2Þ ¼ ðKy þ Lz;Kz − LyÞ: ð53Þ

In Cartesian coordinates ðt; x; y; zÞ, Eqs. (53) are written as

∂y1 ¼ t;1∂t þ x;1∂x þ y;1∂y þ z;1∂z

¼ yð∂t − ∂xÞ þ ðtþ xÞ∂y; ð54Þ

∂y2 ¼ t;2∂t þ x;2∂x þ y;2∂y þ z;2∂z

¼ zð∂t − ∂xÞ þ ðtþ xÞ∂z; ð55Þ

where t, x, y and z are considered as embedding functions,
namely functions of yiði ¼ 1; 2Þ, and the commas denote
the differentiation with respect to yi. Comparing the
coefficients of the coordinate basis, we obtain equations
of the embedding:

∂t
∂y1 ¼ −

∂x
∂y1 ¼ y;

∂t
∂y2 ¼ −

∂x
∂y2 ¼ z;

∂y
∂y1 ¼

∂z
∂y2 ¼ ðtþ xÞ; ∂z

∂y1 ¼
∂y
∂y2 ¼ 0: ð56Þ

These equations are readily solved as

t ¼ a
2
~y · ~yþ aþ b

2
; x ¼ −tþ a;

y ¼ ay1; z ¼ ay2; ð57Þ

where a and b are arbitrary constants. Equations (57) are
equivalent to the following implicit equations:

−
�
t −

b
2

�
2

þ
�
xþ b

2

�
2

þ y2 þ z2 ¼ 0; ð58Þ

tþ x − a ¼ 0: ð59Þ

We see that each orbit is the cross section of a light cone
(58) and a null plane (59).
With the null coordinates u ≔ tþ x and v ≔ t − x,

Eqs. (58) and (59) are written as

−uðv − bÞ þ y2 þ z2 ¼ 0; ð60Þ

u − a ¼ 0: ð61Þ

Therefore each orbit is a two-dimensional paraboloid

−aðv − bÞ þ y2 þ z2 ¼ 0 ð62Þ

on a null plane u ¼ a. Since the paraboloid is specified by
the vertex, located at ðu; v; y; zÞ ¼ ða; b; 0; 0Þ, we identify
each such orbit with the point ða; bÞ in the u-v plane.
Therefore the u-v plane can be identified with the orbit
space. Hereinafter, we use the coordinate system ðu; vÞ of
the orbit space as the ðx1; x2Þ in Sec. II B.
Combining the coordinate system on the orbit space

ðu; vÞ and that on the orbit ðy1; y2Þ, we make up a
coordinate system ðu; v; y1; y2Þ in E3;1. By the coordinate
transformation between ðt; x; y; zÞ and ðu; v; y1; y2Þ
given by (57) with a ¼ u and b ¼ v, the metric of E3;1

is written as

ds2 ¼ −dudvþ u2d~y2: ð63Þ

This form has the same structure of (24); the first term is the
metric on M=G such that the projection is a Riemannian
submersion.

B. Solutions for type VII0-2 membranes

Following the results of Sec. II B, the Nambu-Goto
equations for the cohomogeneity one membrane is reduced
to the geodesic equations on M=G with the weighted
metric (28) where R2 ¼ u2,

ds2M=G ¼ u4ð−dudvÞ: ð64Þ

In order to solve the geodesic equations, we start with the
action

S ¼
Z �

L
N
− N

�
dλ; L ¼ −u4 _u _v; ð65Þ

where the dots denote the derivative with respect to the
parameter λ, and N is a function of λ which determines the
parametrization of the geodesic; indeed, variation with N
leads

−u4 _u _v ¼ −N2: ð66Þ

Variations with u and v give two conserved quantities Cu
and Cv,
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_v
N

¼
ffiffiffi
5

p
Cu;

u4 _u
N

¼ Cv: ð67Þ

The constraint condition (66) gives
ffiffiffi
5

p
CuCv ¼ 1. Then

Eqs. (67) are readily integrated as

vðλÞ ¼ Cu
2u5ðλÞ þ 2D; ð68Þ

where D is an arbitrary constant. This curve on the
u-v plane describes the trajectory of the vertex of the
paraboloid (62).
The embedding of the world volume is implicitly

written as

−uðv − Cu
2u5 − 2DÞ þ y2 þ z2 ¼ 0; ð69Þ

or, equivalently,

−ðt −DÞ2 þ ðxþDÞ2 þ y2 þ z2 þ C2
uðtþ xÞ6 ¼ 0:

ð70Þ

Though the solution has two free parameters Cu and D, we
can set D ¼ 0, i.e.,

−t2 þ x2 þ y2 þ z2 þ C2
uðtþ xÞ6 ¼ 0; ð71Þ

because the world volume with D ≠ 0 is identified with the
one withD ¼ 0 by using a translation for the null direction.
As depicted in Fig. 5, the t ¼ const slices of the world
volume are closed; then the solution represents a closed
membrane, which shrinks or expands. In contrast, the slices

with the null planes (61) give the paraboloids of revolution
(62) and hence are not closed. Since the paraboloids are the
orbits of the Killing vectors (52), the membrane is homo-
geneous and isotropic, actually flat, on these null slices.
From Eqs. (63), (66) and (67), the metric induced on the

world volume is written as

ds2Σ ¼ −dλ2 þ u2d~y2; uðλÞ ∝ λ1=3; ð72Þ

where we have chosen the parametrization of λ so that

NðλÞ ¼ u2ðλÞ: ð73Þ
The geometry on the world volume is analogous to the flat
Friedmann-Lemaître-Robertson-Walker universe. At the
null line u ¼ 0 on the world volume, i.e., tþ x ¼ 0,
y ¼ z ¼ 0, the scalar curvature of the induced metric
(72) diverges. Thus, the cosmological singularity is descri-
bed by the null line u ¼ 0. The orbits (60) and (61)
generated by the Killing vectors (52) are two-dimensional
spacelike surfaces, but is a null line at u ¼ 0. Therefore the
cosmological singularity is described by the singular orbit.
We remark that the orbit is singular at u ¼ 0 but the world
volume (71) itself is smooth everywhere except at the
origin of Minkowski spacetime. The embedding of the
membrane is very similar to that of the brane universe in
five-dimensional anti–de Sitter space [18].

VI. SUMMARY AND DISCUSSION

We have investigated the dynamics of cohomogeneity
one membranes. The three-dimensional world volume of
the cohomogeneity one membrane is foliated by two-
dimensional orbits of the symmetry group G that is a
subgroup of the isometry group, IsomM, of the spacetime
M. The symmetry suggests that the equations of motion
are reduced to ordinary differential equations. We have
explicitly shown that the Nambu-Goto equations are
reduced to the geodesic equations in the orbit space, or
the quotient space M=G, with a properly defined metric
thereon.
In a highly symmetric spacetime, there exists a variety of

symmetry groups G that allow two-dimensional orbits. We
have proposed a classification of the symmetry groups G
under the idea that the orbits of G are equivalent if they are
connected by an isometry of M. This leads to the
classification of the conjugacy classes of G in Isom M.
The classification is reduced to that of pairs and triples of
Killing vectors which form a Lie algebra. We have
presented a concrete procedure of the classification.
We have demonstrated the procedure in Minkowski

spacetime and have achieved the complete classification
of cohomogeneity one membranes (Tables III, IV and V).
The symmetry group G must be of two or three dimensions
in order to have two-dimensional orbits. In Minkowski
spacetime, there are two cases for dimG ¼ 2: the Abelian

FIG. 5 (color online). The world volume of the membrane with
Cu ¼ 1.1. The z direction is omitted. The lower world volume
shrinks to a point at t ¼ x ¼ 0, and the upper expands from there.
The dashed lines represent t ¼ const slices. The solid lines
represent tþ x ¼ const slices, which also represent the foliating
orbits of type VII0-2. The jagged line is a singular orbit
of dimension one with u ¼ 0, which corresponds to the
“cosmological singularity” of the intrinsic geometry.
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group and the non-Abelian group; and four cases for
dimG ¼ 3: Bianchi type VI0, VII0, VIII and IX. The orbits
in the latter four cases are two-dimensional maximally
symmetric timelike or spacelike surfaces. In addition,
because G is a subgroup of Isom M, the embeddings of
the orbits should be homogeneous and isotropic. It is
interesting that while Bianchi type VI0, VIII and IX allow,
up to geometric equivalence, a unique foliation by the orbits,
Bianchi type VII0 allows two inequivalent foliations by
intrinsically flat orbits. One is the flat embedding (type VII0-
1) and the other is an extrinsically curved one (type VII0-2).
For the membrane of type VII0-2, we have constructed an

exact solution. The solution describes a ð2þ 1Þ-dimensional
analog of the flat Friedman-Lemaître-Robertson-Walker
(FLRW) universe embedded in Minkowski spacetime.
The cosmological singularity is represented by a null line
on the world volume. The embedding is similar to that of the
flat FLRW brane universe in the five-dimensional anti–de
Sitter spacetime [18].
Our method is general and can be applied to a higher-

dimensional extended object in an arbitrary spacetime. The
equations of motion of an extended object become geodesic
equations on the orbit space M=G. As seen in an example
in this article, the solution of the geodesic equations may
correspond to a nontrivial configuration of membrane.
Therefore the concept of cohomogeneity one objects will
be helpful to understand the dynamics of extended objects
in spacetime.
It is interesting to classify cohomogeneity one objects in

spacetimes of high symmetry such as de Sitter space, anti–
de Sitter space and FLRW spacetimes. It can be carried out
in five-dimensional anti–de Sitter space, especially, in the
same manner as in the present work, because the canonical
forms of Killing vectors are already obtained in [12]. We
will consider them in our future work.
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APPENDIX: EQUIVALENCE CLASSES OF VI
C

We give simple representatives of equivalence classes in
VI
C, which consists of pairs of commuting Killing vectors

ðξ1; ξ2Þ, where ξ1 is in the canonical form of Type I, i.e.,

ξ1 ¼ aPt þ bLz; ða; b∶ arbitrary constÞ: ðA1Þ
In the case of a ≠ 0 and b ≠ 0, the general form of ξ2 which
commutes with ξ1 is simply

ξ2 ¼ a0Pt þ b0Lz þ c0Pz; ðA2Þ
where a0, b0 and c0 are constants. We require

ab0 − ba0 ≠ 0 ðA3Þ

or

c0 ≠ 0 ðA4Þ

so that ξ1 and ξ2 are linearly independent.1

By virtue of the equivalence under GLð2;RÞ action, we
can reduce the form of ðξ1; ξ2Þ to a simple one. For ξ2
satisfying Eq. (A3), we have

ðξ1; ξ2Þ ¼ ðPt þ cPz; a0Pt þ b0Lz þ c0PzÞ; ðA5Þ

where c is a constant determined by a, b, a0, b0 and c0.
Otherwise, for ξ2 ¼ Pz, we have

ðξ1; ξ2Þ ¼ ðaPt þ bLz;PzÞ: ðA6Þ

For further reduction of the pair (A5), we take
an isometry ϕ generated by Kz, namely Lorentz boost
for z direction. The Killing vector ξ1 ¼ Pt þ cPz is
transformed to

ϕ�ξ1 ¼ ðcosh θ þ c sinh θÞPt þ ðc cosh θ þ sinh θÞPz:

ðA7Þ

Choosing the parameter θ so that

c cosh θ þ sinh θ ¼ 0 for jcj < 1; ðA8Þ

cosh θ þ c sinh θ ¼ 0 for jcj > 1; ðA9Þ

we can reduce the form of the pair (A5) to

ðξ1; ξ2Þ ¼
� ðPt; a00Pt þ b0Lz þ c00PzÞ for jcj < 1;

ðPz; a00Pt þ b0Lz þ c00PzÞ for jcj > 1:

ðA10Þ

In the case jcj ¼ 1, ξ1ð¼ Pt � PzÞ is invariant under the
Lorentz boost ϕ. Using GLð2;RÞ action again, we have
three kinds of representatives,

ðξ1; ξ2Þ ¼

8><
>:

ðPt; c00Pz þ b0LzÞ;
ðPz; a00Pt þ b0LzÞ;
ðPt þ Pz; a00Pt þ b0LzÞ:

ðA11Þ

We should note that the pair (A6) is included in the second
case of (A11). Therefore these three kinds are the con-
clusive representatives of VI

C within the case a; b ≠ 0. It
should also be noted that pairs with different values of
constants a00, b0 and c00 except for overall scaling of ξ2 are
not equivalent.

1In the case of a ¼ 0 or b ¼ 0, the general form of ξ2 is more
complicated. For the sake of simplicity, we concentrate on the
case a; b ≠ 0.
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