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We consider the relation between spin and the Berry-phase contribution to the anomalous velocity of
massive and massless Dirac particles. We extend the Berry connection that depends only on the spatial
components of the particle momentum to one that depends on the space and time components in a covariant
manner. We show that this covariant Berry connection captures the Thomas-precession part of the
Bargmann-Michel-Telegdi spin evolution, and contrast it with the traditional (unitary, but not naturally
covariant) Berry connection that describes spin-orbit coupling. We then consider how the covariant
connection enters the classical relativistic dynamics of spinning particles due to Mathisson, Papapetrou and
Dixon. We discuss the problems that arise with Lorentz covariance in the massless case, and trace them
mathematically to a failure of the Wigner-translation part of the massless-particle little group to be an exact
gauge symmetry in the presence of interactions, and physically to the fact that the measured position of a
massless spinning particle is necessarily observer dependent.
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I. INTRODUCTION

There has been much recent interest in the fluid
dynamics of systems possessing anomalous conservation
laws [1–6]. An unexpected consequence of this work has
been the discovery that anomalies, which are usually
thought of as being purely quantum mechanical effects,
can be extracted from the classical kinetic theory of a
degenerate gas of Weyl fermions [7]. The incompressibility
of phase space allows the anomalous inflow of particles
from the negative-energy Dirac sea into the positive-energy
Fermi sea [8–10] to be reliably counted by keeping track of
the density flux near the Fermi surface where a classical
Boltzmann equation becomes sufficiently accurate for this
purpose. The only required quantum input is knowledge of
how to normalize the phase space-measure and the inclu-
sion of a Berry-phase effect. The Berry phase causes the
velocity of the particle to no longer be parallel to its
momentum. Instead an additional “anomalous velocity”
appears as a momentum-space analogue of the Lorentz
force in which the electromagnetic field tensor is replaced
by the Berry curvature, and the particle velocity by _k.
The Berry phase also alters the classical canonical structure
so that x andk are no longer conjugate variables, and d3kd3x
is no longer the element of phase space volume [11,12].
It is possible to extend these derivations to the non-

Abelian anomaly [13] and to higher dimensions [14],
but the kinetic theory used in all these papers is based
on Hamiltonian dynamics where time and space are treated
very differently. It is therefore a challenge to make the

formalism manifestly covariant so that a coupling to gravity
might be included. Indeed it is not easy to see how even
flat-space Lorentz invariance is realized in the Hamiltonian
kinetic theory. This issue was raised in [15] and the curious
manner in which the dynamical variables must transform
was made clear in [16].
The most obvious problem with extending the three-

dimensional Hamiltonian formulation to a covariant 3þ 1

version is that the Berry curvature is a differential form in
only the three spatial components of the momentum. In a
formalism that treats space and time on an equivalent
footing we would expect the connection to involve differ-
entials of all four components of the energy-momentum
vector. In this paper we show how to make such an
extension, and in doing so we make a connection between
the Hamiltonian formalism with its Berry phase modifica-
tion and the relativistic classical mechanics of spinning
particles.
In Sec. II we use a WKB solution to the massive-Dirac

equation to motivate an unconventional, but covariant,
Berry connection that captures the geometric Thomas
precession of the spin. We contrast the properties of
this Berry connection with the traditional, noncovariant
Berry connection whose importance in the dynamics of
charged Dirac particles was revealed in [17–19]. In
Sec. III we introduce a classical mechanical action for
a spinning particle interacting with a gravitational field.
This manifestly covariant action gives rise to the well-
known Mathisson-Papapetrou-Dixon equations [20–22],
and we show how these equations can be recast to make
explicit the role of the covariant Berry connection. In
Sec. IV we discuss the problems that arise when the
particle mass becomes zero, and show how these arise
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from a hidden gauge invariance of the free action. After
selecting a natural gauge fixing condition, the covariant
action reduces to the Berry-connection actions used in
[7,13,14]. Mathematically, it is the necessity of gauge fixing
that is responsible for the curious Lorentz transformation
laws that appear in [16], physically it is because the
“position” of a massless spinning particle is an observer-
dependent concept. The gauge invariance of the massless
action is only approximate in the presence of introduction of
interactions and this leads to the gauge-fixed action not being
exactly equivalent to the manifestly covariant action. We
argue that this is perhaps not surprising as in a massless
system the adiabatic approximation that is tacit in any system
involving a Berry connection can be violated by a suffi-
ciently large Lorentz transformation.
A discussion section addresses the physical origin of the

anomalous velocity. Finally, several derivations that would
be intrusive in the main text appear in Appendices A–D.

II. A COVARIANT BERRY CONNECTION

That a Berry phase gives rise to an anomalous velocity
correction was first observed in the band theory of solids.
We begin with a brief account of how the effect appears
there, and why a similar correction is expected in the
motion of Dirac particles.

A. Lorentz covariance versus the Berry phase

A semiclassical wave-packet analysis [23,24] shows that
the motion of a charge-e Bloch electron in an energy band
in a crystalline solid is governed by the equations

_k ¼ −
∂H
∂x þ eð _x × BÞ; ð1Þ

_x ¼ ∂H
∂k − _k ×Ω: ð2Þ

The effective Hamiltonian H ¼ εðkÞ þ eϕðxÞ includes the
band-energy εðkÞ as a function of the crystal momentum k,
together with the interaction with the scalar potential ϕ.
The vector Ω with components Ωi ¼ 1

2
ϵijkΩjk is a Berry

curvature that accounts for the effects of all other energy
bands. The magnetic field B is a function of x only, and Ω
is a function of k only. The − _k ×Ω term in (2) is the
anomalous velocity correction to the naïve group velocity
∂ε=∂k. This correction arises because different momentum
components of a localized wave-packet accumulate differ-
ent geometric phases when k is changing and the Berry
curvature is nonzero [25]. These k-dependent geometric
phases are just as significant in determining the wave-
packet position as the k-dependent dynamical phases
arising from the dispersion equation ω ¼ εðkÞ. A nice
illustration of the effect of the anomalous velocity on a
particle trajectory is to be found in [26].

Now a Dirac Hamiltonian can be thought of as a Bloch
system with two energy bands εðkÞ≡EðkÞ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

p
,

and each band possesses a nonzero Berry curvature
[17–19]. Consequently (1) and (2) should also describe
the semiclassical motion of a relativistic spin-1

2
particle.

This raises an interesting issue. We expect that the equation
of motion of a Dirac particle can be written in a manifestly
Lorentz invariant form, but it is not immediately obvious
how to massage the Dirac version of (1) and (2) into
covariant expressions. When −∂H=∂x is the force due to
an electric field [27], the first line (1) can be written as
_kμ¼eFμν _xν, but for (2) how does one define a 3þ1-
dimensional analogue of the Maxwell tensor Fμν for the
intrinsically three-dimensional Berry curvature Ωij?

B. Covariant WKB approximation for
the Dirac equation

In order to obtain a manifestly Lorentz invariant semi-
classical equation of motion for a Dirac particle, we need to
extend the noncovariant Berry connection to one in which
space and time components are treated equally. Now the
simplest semiclassical approximation to any wave equation
is that of WKB. We therefore construct a WKB approxi-
mation to the Dirac equation coupled to an externally
imposed Maxwell field. We maintain covariance at each
step, anticipating that a covariant version of Berry curvature
will play some role. WKB approximations to the Dirac
equation have a long history, going back to W. Pauli in
1932 [28]. More recent references are [29–31]. None of
these works make use of the particular covariant approach
that we introduce here.
We take the particle to have charge e (a positive number

when the charge is positive) and to have positive mass m.
Let xμ ¼ ðt;xÞ, and seek a positive-energy WKB solution

ψðxÞ ¼ aðxÞe−iφðxÞ=ℏ;
a ¼ a0 þ ℏa1 þ ℏ2a2 þ � � � ð3Þ

to the Dirac equation

ðiℏγμð∂μ þ ieAμ=ℏÞ −mÞψ ¼ 0: ð4Þ

Here fγμ; γνg ¼ 2ημν with Minkowski metric ημν ¼
diagðþ;−;−;−Þ, and Aμ ¼ ðϕ;−AÞ.
Setting pμ ¼def ∂μφ ¼ ðE;−pÞ, we have at order ℏ0

ðγμðpμ − eAμÞ −mÞa0 ¼ 0: ð5Þ

We satisfy (5) by setting a0ðxÞ ¼ uαðkðxÞÞCαðxÞ with kμ ¼
pμ − eAμ being the gauge-invariant kinetic momentum, and
uαðkÞ being a complete set of eigenspinor solutions to

ðγμkμ −mÞuα ¼ 0: ð6Þ
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In this equation the kinetic four-momentum kμ ¼ ðE;−kÞ
lies on the positive-energy mass shell: E2 ¼ k2 þm2,
E > 0. We take the eigenspinors to have the covariant
normalization ūαuβ ¼ δαβ. (See Appendix A for details)
At order ℏ1 we have

ðγμkμ −mÞa1 þ ðiγμ∂μÞa0 ¼ 0: ð7Þ

Now if

ðγμkμ −mÞuα ¼ 0; ð8Þ

then

ūαðγμkμ −mÞ ¼ 0: ð9Þ

We can therefore eliminate the influence of the unknown
coefficient a1 and deduce that

ūβγμ∂μa0 ¼ ūβγμ∂μðuαCαÞ ¼ 0: ð10Þ

Equation (10) tells us how both the amplitude and spin
components evolve along the classical trajectory. We rewrite
(10) as

ūβγμuαð∂μCαÞ þ ðūβγμ∂μuαÞCα ¼ 0; ð11Þ

and then use (B5) from Appendix B to write

ūβγμuα ¼ δαβ
kμ

m
≡ δαβVμ; ð12Þ

and so express the transport equation (10) as

�
δαβVμ ∂

∂xμ þMαβ

�
Cβ ¼ 0: ð13Þ

Here

Mαβ ¼ ūαγμ
∂
∂xμ uβ; ð14Þ

and Vμ ¼ γð1; vÞ ¼ kμ=m is the 4-velocity corresponding to
the ray-tracing group velocity

v ¼ ∂E
∂k : ð15Þ

Thus the combination

Vμ ∂
∂xμ ≡

d
dτ

ð16Þ

is a convective derivative with respect to proper time along
the particle’s trajectory. The ðx;kÞ trajectory itself is given
by Hamilton’s ray-tracing equations and coincides with that

of a spinless charged particle in the background field. There
is no sign of the anomalous velocity. As pointed out in [29],
this absence is to be expected because both the intrinsic spin
and magnetic moment of a Dirac particle are proportional to
ℏ, and vanish in the classical limit. Thus leading-order WKB
is not able to account for the effect of the spin on the
particle’s motion. Nonetheless the ratio of the magnetic
moment to the spin angular momentum is independent of ℏ.
As a consequence leading-order WKB is adequate for
obtaining the Bargmann-Michel-Telegdi (BMT) equation
[32] that describes the effect of the magnetic field on the
spin evolution. A Berry connection is a key ingredient in this
equation.
To isolate the Berry connection, we decompose

Mαβ ¼
1

2
ðMαβ þM�

βαÞ þ
1

2
ðMαβ −M�

βαÞ; ð17Þ

and, from equation (B5), recognize that

1

2
ðMαβ þM�

βαÞ ¼
1

2
δαβ

∂Vμ

∂xμ : ð18Þ

We now insert the completeness relation I ¼ uλūλ − vλv̄λ as
intermediate states in the definition of Mαβ. From the
positive-energy uλūλ terms we get

ðūαγμuλÞ
�
ūλ

∂̄
∂xμ uβ

�
¼

�
Vμ ∂kν

∂xμ
��

ūα
∂
∂kν uβ

�

¼ −iaαβ;ν
dkν

dτ
: ð19Þ

The quantity

aαβ;ν ¼def iūα
∂uβ
∂kν ð20Þ

is an unconventional Berry-phase-like connection. It is
unitary only with respect the non-positive-definite inner
product hψ jχi≡ ψ†γ0χ, but makes use of all four compo-
nents of dkν and is constructed out of Lorentz-covariant
objects. We will therefore refer to it as the covariant Berry
connection.
The contribution of the negative energy intermediate

states −vλv̄λ is an example of Littlejohn’s “no-name” phase
[33]. After some labor, we find that their contribution is

−
1

2

�
ūαγμvλv̄λ

∂
∂xμ uβ − ðα↔βÞ�

�
¼ ie

2m
SμναβFμνCβ; ð21Þ

where _kν ¼ dkν=dτ,

ðSμνÞαβ ¼ ūα

�
i
4
½γμ; γν�

�
uβ; ð22Þ

and we have used kμ ¼ ∂μφ − eAμ to write
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∂μkν − ∂νkμ ¼ −eFμν: ð23Þ

The combined contribution of both sets of intermediate
states therefore leads to

�
δαβ

�
Vμ ∂

∂xμ þ
1

2

∂Vμ

∂xμ
�
− i_kνðaνÞαβ þ

ie
2m

SμναβFμν

�
Cβ ¼ 0:

ð24Þ

The divergence of the 4-velocity in (24) accounts for the
change in amplitude due to geometric focussing. The
remaining terms describe how the spin evolves through
its interaction with the external field, and as a result of its
parallel transport under the Berry connection.
The combination SμνFμν is Lorentz invariant, so we can

evaluate it in the particle’s rest frame where

�
e
2m

�
ðSμνÞαβFμν → −

�
e
m

�
B ·

�
σ
2

�
αβ

: ð25Þ

Since the unitary operator for a rotation at angular velocity
ω is UðtÞ ¼ expf−iω · ðσ=2Þtg we see that (25) accounts
for the Larmor precession ωLarmor ¼ −jμjB of the spin due
to its μ ¼ ðe=mÞS Dirac-value magnetic moment. The two-
by-two matrix ðe=2mÞB · σ acts on the polarization spinor
χα that is defined in (A2). Polarization is the spin measured
in the rest frame of the particle [30].
To understand the origin of the Berry connection term we

use the explicit formulas for uαðkÞ given in (A1) to evaluate

aαβ;ν _k
ν ¼ 1

m2ð1þ γÞ ðk × _kÞ ·
�
σ
2

�
αβ

¼ γ2

1þ γ
ðβ × _βÞ ·

�
σ
2

�
αβ

¼ −ωThomas ·

�
σ
2

�
αβ

: ð26Þ

Here β≡ k=E, and

ωThomas ¼ −
�

γ2

1þ γ

�
ðβ × _βÞ ð27Þ

is a standard expression for the Thomas-precession angular
velocity. Our covariant Berry transport is therefore nothing
other than Thomas precession—i.e. parallel transport on the
tangent bundle of the positive-mass hyperboloid embedded
in Minkowski-signature momentum space [34]. The minus
sign occurs because the mass-shell hyperboloid is a negative-
curvature Lobachevskii space.
The matrix-valued connection one-form is defined by

a ¼def 1

m2ð1þ γÞ
�
σ
2

�
· ðk × dkÞ; ð28Þ

and the associated matrix-valued curvatureF ¼ da − ia2 is

F ¼ 1

2m2γ

�
1

2

�
σ þ ðk · σÞk

m2ð1þ γÞ
��

· ðdk × dkÞ: ð29Þ

The connection-form and the curvature do not look covar-
iant as they involve only the spatial components of dkμ.
This is a consequence of the way we wrote uαðkÞ in (A1).
In Appendix B we avoid explicit formulas for uα and use
only general properties of the Dirac equation to obtain
an expression for the curvature in arbitrary dimensions.
We find that

Fαβ ≡ ðda − ia2Þαβ ¼
1

2m2
ðSμνÞαβdkμ ∧ dkν; ð30Þ

where ðSμνÞαβ was defined in equation (22). This form of the
curvature is manifestly covariant and contains both space
and time components of dkμ. The dkμ are not independent
however, but are constrained by the mass-shell condition
k2 ¼ m2. If we desire, therefore, we may eliminate dk0 as
dk0 ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
¼ kidki=E ¼ −kidki=E and find

Fαβ ¼
1

2m2

�
Sij −

ki
E
S0j − Si0

kj
E

�
αβ

dki ∧ dkj; ð31Þ

where i; j run over space indices only. Evaluation of the
required Sμν matrix elements confirms that this reduced
expression coincides with (29). The combination of spin
components in parentheses on the right-hand side is a
general-dimension analogue of the space part of the
(3þ 1)-dimensional Pauli-Lubansky vector. We will
therefore refer to it as the Pauli-Lubanksy tensor (It is
tensor only under space rotations. It is not a Lorentz
tensor). It will appear frequently in the rest of the paper
and its geometric and physical significance is further
discussed in Appendixes A and D.
To verify that parallel transport via the covariant Berry

connection is nothing other than Thomas precession, we
show in Appendix C that under such transport (i.e. no
external torque or Larmor precession) the WKB approxi-
mation to the Dirac-field angular momentum tensor Sμν ¼
ψ̄ði½γμ; γν�=4Þψ obeys

∂Sμν
∂τ þ Vν ∂Vλ

∂τ Sμλ þ Vμ ∂Vλ

∂τ Sλν ¼ 0: ð32Þ

Since (B9) tells us that VμSμν ¼ 0, and so (32) states that
Sμν is Fermi-Walker transported along the particle trajec-
tory. Thomas precession is simply the evolution under
Fermi-Walker transport of vectors (such as the spin four-
vector S) that are perpendicular to the 4-velocity vector.
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C. Comparison with the noncovariant
WKB approximation

The traditional form of the WKB transport equation is
obtained by expanding ψ ¼ uαðkÞKαðxÞ where the uα are
given the noncovariant normalization u†αuβ ¼ δαβ, and
paired with negative-energy solutions that, in terms of
the covariant vα, are given γ−1vαð−kÞ. These noncovariant
spinors have completeness relation I ¼ uαu

†
α þ vαv

†
α.

On using them as intermediate states we obtain the
alternative form of transport equation found in [30,31]:

�
δαβ

�
d
dt

þ 1

2
divv

�
þ Nαβ

�
Kβ ¼ 0: ð33Þ

Here t is the lab-frame time, v ¼ β is the 3-velocity, and

Nαβ ¼ −iaαβ;i _ki − i

�
e
m

�
B ·

�
σ þ 1

m2

ðk · σÞk
γ þ 1

�
αβ

1

2γ2

¼ −iaαβ;iki − i

�
e
m

�
1

γ2
B · ðSlabÞαβ: ð34Þ

The term with the magnetic field B is again a “no-name”
phase that arises from the negative-energy intermediate
states [33]. The Berry connection aαβ;i is here of conven-
tional form

aαβ;idki ¼def iu†α
∂uβ
∂ki dk

i

¼ −
γ

1þ γ
ðβ × dβÞ ·

�
σ
2

�
αβ

: ð35Þ

Compared to the covariant connection, (35) lacks one
power of γ. More importantly, it has the opposite sign.
The associated matrix-valued curvature is [19]

F ¼ da − ia2

¼ −
1

4m2γ3

�
σ þ 1

m2

ðk · σÞk
γ þ 1

�
· ðdk × dkÞ: ð36Þ

Again compared to the covariant expression F, the non-
covariant Berry curvature F lacks two powers of γ, and
again has the opposite sign.
Both the covariant and the noncovariant transport equa-

tion lead to the same BMT equation, but there is a different
distribution between terms of the dynamical Larmor
precession and the geometric parallel transport. In the
covariant formulation we have precession of the rest-frame
polarization s due to the magnetic field as seen by the
particle in its rest frame, and augmented by the geometric
Thomas precession factor. This is how the BMTequation is
broken up in Jackson [35], in his Eq. (11.166). In the
noncovariant formulation we have precession of the same
rest-frame polarization s, but now due to the magnetic

field as seen by the spin in the lab frame and augmented
by the conventional Berry transport term. This is how
the BMT equation is decomposed in [19], where the
connection (35) and curvature (36) are obtained from a
wave-packet approach.
The difference in sign between the two connections is

accounted for by the different physical effects that they
capture. The covariant connection provides the purely
geometric Thomas precession effect. The noncovariant
Berry connection implements the spin-orbit coupling due
to the particle’s motion viewed from the lab frame [36].
As was famously explained by Llewellyn Thomas [37], this
spin-orbit coupling comes from two competing effects:
firstly the Lorentz transform of the external field that leads
to the motion through an E field being perceived as a B
field, and secondly the Thomas precession that half-undoes
the Lorentz transformation contribution. The net precession
rate therefore has opposite sign to its Thomas-precession
component.

III. CLASSICAL MOTION OF PARTICLES
WITH SPIN

Rather than attempt to extend the WKB approximation
to higher order, we will use symmetry consideration to
construct a Hamiltonian action-principle version of the
dynamics that is manifestly covariant, gives the same spin
transport as the WKB approximation, but also gives us an
anomalous-velocity correction. As our ultimate goal is to
understand the effect of gravity on the particle, wewill from
the outset take our space-time to be curved.

A. Mathisson-Papapetrou-Dixon equations

There is an extensive literature on the relativistic
classical dynamics of particles with spin, but a desire to
make contact with the Berry phase methods of [7,13,14]
suggests that we follow the particular approach of [38–40]
and take as our dynamical degrees of freedom the position
x ∈ M (where M is the d-dimensional space-time mani-
fold) and a vielbein frame ~ea with ~eμa ~eνbgμν ¼ ηab where
ηab ¼ diagðþ;−;−;…;−Þ. Our phase space is then the
total space P of a Lorentz-frame bundle π∶P → M
equipped with local coordinates ðxμ; ~eμaÞ and structure
group SOð1; d − 1Þ.
It is convenient to introduce a reference vielbein ea,

again with eμaeνbgμν ¼ ηab. This reference frame allows us to
write

~ea ¼ ebΛb
a; Λ ∈ SOð1; d − 1Þ; ð37Þ

and so equivalently regard the dynamical degrees of free-
dom to be x ∈ M and the Lorentz transformation Λ.
We assume that the space-time M is equipped with a

Riemann connection—and hence with covariant derivatives
∇μ. The reference vielbein then defines the components of
the spin connection ωa

bμ by
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∇μea ¼ ebωb
aμ: ð38Þ

We use these components to assemble the spin-connection
one-form

ωa
b ¼ ωa

bμdxμ; ð39Þ
which lives on the base-space M. The associated Riemann
curvature is the base-space two-form

Ra
b ¼ dωa

b þ ωa
c ∧ ωc

b: ð40Þ
As with any frame bundle, the connection on the base space
automatically provides a decomposition of the tangent
space at each point p in the total space P of the bundle
into horizontal and vertical subspaces: TðPÞ ¼ H⊕V.
We begin with particles with a nonzero mass m and

orient the frame so that k≡m~e0 is the 4-momentum. Thus
kb ¼ mΛb

0 are the vielbein components of the momentum
and kμ ¼ meμaΛa

0 are its coordinate components. We also
introduce a co-frame of one-forms

e�a ¼ e�aμ dxμ ð41Þ
where e�aðebÞ≡ e�aμ eμb ¼ δab and e�aμ ¼ gμνηabeνb. We then
set ~e�a ¼ ðΛ−1Þabe�b. With our ηab ¼ diagðþ;−;−;…;−Þ
signature we have m~e�0 ¼ kμdxμ ¼ kae�a.
In [13,14], the action integral was written in terms of

traces over some faithful representation of the spin or gauge
groups. In the present case we could use any faithful
representation of the Lorentz group, but it seems natural to
make use of Dirac matrices γa and the Dirac representation
Λ↦DðΛÞ that acts on them as

DðΛÞγaDðΛ−1Þ ¼ γbΛb
a: ð42Þ

We will simplify the notation by setting λ ¼ DðΛÞ. In this
section we use the matrices

σab ¼
1

4
½γa; γb� ð43Þ

as the Lorentz generators. These matrices obey

½σij; σmn� ¼ ηjmσin − ηimσjn − ηjnσim þ ηinσjm; ð44Þ
and

½σab; γc� ¼ γaηbc − γbηac: ð45Þ
We also have

trfσabσcdg ¼ −
1

4
trðIÞðηacηbd − ηadηbcÞ: ð46Þ

The covariant derivative acting on a spin field is

∇μψ ¼
� ∂
∂xμ þ

1

2
σabω

ab
μ

�
ψ ; ð47Þ

and, as usual, we regard the spin connection in the Dirac
representation

ω≡ 1

2
σabω

ab
μdxμ ð48Þ

as a matrix-valued one-form.
We can use the Lorentz transformation matrix λ to write

ka ¼ trfκλ−1γaλg; ð49Þ

where κ ¼ mγ0=trðIÞ. Similarly, we define a classical spin
angular-momentum tensor

Sab ¼ trfΣλ−1σabλg; ð50Þ

where Σ ¼ 1
2
Σabσab.

The quantities ka and Sab are the true dynamical
variables of the system. They are coordinates on the orbit
of κ and Σ under the co-adjoint action of the Lorentz group,
and the reduced phase space is the cartesian product of M
with this co-adjoint orbit [41]. After quantization of the co-
adjoint orbit, the quantities κ and Σ will define the highest
weights in the resulting representation of the Poincare
group [39]. Different choices of the matrix Σab lead to
different values for the intrinsic spin of the particle.
Similarly different choices for the matrix κ ¼ κaγa allow
us to consider both massive and massless particles within
one formalism.
If we compute

½Σ; κ� ¼ γaΣabκb; ð51Þ

we see that ½Σ; κ� ¼ 0 is equivalent to Σabκb ¼ 0, and by
Lorentz covariance this is in turn equivalent to Sabkb ¼ 0.
But ½Σ; κ� ¼ 0 means that Σ lies in the Lie algebra of the
little-group of κ. As Sabkb ¼ 0 is a property possessed by
the Dirac angular momentum Sab ¼ iψ̄σabψ [see Eq. (B9)]
we will accept this little-group property as a natural
constraint on the spin tensor. In the relativity literature it
is known as the Tulczyjew-Dixon condition [22,42]. It is to
be contrasted with the rival Mathisson-Pirani [20,43]
condition Sab _xb ¼ 0, where

_xb ¼ ebμ
dxμ

dτ
: ð52Þ

Here τ can be any coordinate that parametrizes the space-
time trajectory xμðτÞ. It does not have to be the proper time.
When λ depends on τ we have

d
dτ

Sab ¼ −trf½Σ; λ−1 _λ�λ−1σabλg
¼ −trf½λΣλ−1; _λλ−1�σabg: ð53Þ
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The covariant derivative of Sab along the trajectory xμðτÞ is
therefore given by

D
Dτ

Sab ¼def d
dτ

Sab − ðScbωc
aμ þ Sacωc

bμÞ_xμ

¼ −trf½Σ; ðλ−1 _λþ λ−1ðωμ _xμÞλÞ�λ−1σabλg:
¼ −trf½λΣλ−1; _λλ−1 þ ωμ _xμ�σabg: ð54Þ

Similarly, from ka ¼ mtrfκλ−1γaλg, we get

dka
dτ

¼ −trf½λκλ−1; _λλ−1�γag ð55Þ

and hence

D
Dτ

ka ¼
d
dτ

ka − kcωc
aμ _xμ

¼ −trf½λκλ−1; _λλ−1 þ ωμ _xμ�γag: ð56Þ

Now we introduce some one-forms that we will use to
build the classical action functional for our particle.
Let e� ¼ e�aγa so we can write ~e�a ¼ ½Λ−1�abe�b as
~e� ¼ λ−1e�λ. We use this to write

kμdxμ ¼ trfκλ−1e�λg ¼def Ω1: ð57Þ

which is to be considered as a one-form on the total space
P, rather than on the base space M.
Next define

~ω ¼ 1

2
σab ~ω

ab ¼def λ−1
�
dþ 1

2
σabω

ab

�
λ ¼ λ−1ðdþ ωÞλ:

ð58Þ

This is again 1-form on the total space of the bundle π:
P → M. The ~ωab are zero on the horizontal subspace of
H ⊂ TðPÞ each point on the fibre, while the ~e�a are zero on
the vertical subspace of V ⊂ TðPÞ. We use these forms to
define

Ω2 ¼ trfΣλ−1ðdþ ωÞλg: ð59Þ

We take as the action functional

S½x; λ� ¼
Z

Ω; ð60Þ

where

Ω ¼ Ω1 −Ω2; ð61Þ

and the integral is taken along the curve parametrized by τ.
As shown in [14], the equations of motion are

iXdΩ ¼ 0: ð62Þ

where X is a vector field tangential to the trajectory in P.
To compute dΩ1 we will assume that the spin connection

is torsion free, so that

de�a þ ωa
b ∧ e�b ¼ 0: ð63Þ

We can then use

½σab; γc� ¼ ðγaηbc − γbηacÞ ð64Þ

to see that

dΩ1 ¼ dtrfκλ−1e�λg

¼ −tr
��

λκλ−1; dλλ−1 þ 1

2
σabω

ab

�
e�
�
: ð65Þ

For dΩ2 we need the matrix-valued Riemann curvature
tensor

dωþ ω ∧ ω ¼ 1

2

�
1

2
σabRab

�
μν

dxμdxν ≡ R; ð66Þ

and observe that if ~ω ¼ λ−1ðdþ 1
2
σabω

abÞλ we have

d ~ωþ ~ω ∧ ~ω ¼ λ−1
�
1

2
σabRab

�
λ≡ λ−1Rλ: ð67Þ

Consequently

dΩ2 ¼ dtr

�
Σλ−1

�
dþ 1

2
σabω

ab

�
λ

�

¼ trfλΣλ−1RÞg − tr

�
λΣλ−1

�
dλλ−1 þ 1

2
σabω

ab

�
2
�
:

ð68Þ

We will write dλλ−1 þ ω ¼ ~ωR ¼ 1
2
σab ~ω

ab
R . (The subscript

“R” is because ~ωab
R includes the right-invariant Maurer-

Cartan form dλλ−1.) We note that e�a and ~ωab
R are linearly

independent and between them span T�ðPÞ.
We can evaluate the contractions iXdΩ≡ dΩðXÞ by

using

e�ðXÞ ¼ _xaγa ¼ _xμe�aμ γa;

dλλ−1ðXÞ ¼ _λλ−1;

RðXÞ ¼ −
1

2
σabRab

μνdxμ _xν ¼ −
1

2
σabRab

μν _xνe
μ
ae�a;

ωðXÞ ¼ 1

2
σabω

ab
μ _xμ: ð69Þ

Here _xμ denotes dxμ=dτ. We find that
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iXdΩ1 ¼ −trf½λκλ−1; _λλ−1 þ ωμ _xμ�γage�a
þ trfλκλ−1½σab; γc�g_xc ~ωab=2

¼ −trf½λκλ−1; _λλ−1 þ ωμ _xμ�γage�a

þ trfλκλ−1ðγaηbc − γbηacÞ_xcÞ
1

2
~ωab
R

¼
�
Dka
Dτ

�
e�a þ ðka _xb − kb _xaÞ

1

2
~ωab
R ð70Þ

and

iXdΩ2¼−trfλΣλ−1Rμν _xνe
μ
age�a

− trfλΣλ−1; _λλ−1þωμ _xμ�σabg ~ωab
R =2

¼
�
−
1

2
SmnRmn

μνe
μ
a _xν

�
e�aþ

�
DSab
Dτ

�
1

2
~ωab
R : ð71Þ

The contraction iXdΩ is therefore a position-dependent
combination of e�a and ~ωab

R . For it to be zero, we need the
coefficients of these forms be separately zero. Requiring
the vanishing of the coefficient of e�a yields

D
Dτ

kc þ
1

2
SabRab

μν _xνe
μ
c ¼ 0: ð72Þ

Similarly, the vanishing of the coefficient of ~ωab
R gives

D
Dτ

Sab þ _xakb − ka _xb ¼ 0: ð73Þ

These are the Mathisson-Papapetrou-Dixon [20–22] equa-
tions. The momentum equation (72) exhibits a gravitational
analogue of the Lorentz force, while (73) expresses the
conservation of total (spin and orbital) angular momentum.
It is well known that to obtain a closed system these two
equations have to be supplemented by a condition on the
spin such as our Tulczyjew-Dixon condition kaSab ¼ 0.
It is explained in Appendix D that this condition means
that xμðτÞ is the worldline of the particle’s center of mass.
Before we proceed there is a necessary consistency

check. Our entire action principle is built on the assumption
that k2 ¼ m2 is fixed—but the RHS of (72) does not
immediately seem to ensure that kaka is a constant of the
motion. To verify that it is, we can write ka ¼ mua where
uaua ¼ 1. We then contract the both sides of the momen-
tum equation with vc ¼ _xc and use the antisymmetry of the
curvature tensor to see that

m_xa _ua þ _m_xaua ¼ 0: ð74Þ

Now from

uaSab ¼ 0 ð75Þ

we get

ua _ub _S
ab ¼ − _ua _ubSab ¼ 0; ð76Þ

and hence from the angular momentum equation we find
that

0 ¼ ua _ubðka _xb − _xakbÞ ¼ mð _ub _xb − _ububua _xaÞ ¼ m _ub _xb:

ð77Þ

Thus 0 ¼ _mð_xauaÞ and the mass is indeed a constant of
the motion. This constancy continues when we include a
Lorentz force. It would not survive were we to include an
explicit magnetic moment. In that case the action would
need to be extended to accommodate a modified mass-shell
condition [44].

B. The anomalous velocity due to spin

It is the Mathisson-Papapetrou-Dixon angular-
momentum equation (73), with its implication that _xa is
no longer parallel to ka, that gives us the anomalous
velocity. From Eq. (73) and the Tulczyjew-Dixon little-
group condition kaSab ¼ 0 we deduce that

−
Dka

Dτ
Sab ¼ k2 _xb − kbð_x · kÞ: ð78Þ

or

_xa ¼
1

m2

�
kað_x · kÞ þ Sac

Dkc

Dτ

�
: ð79Þ

There are several things that we can do with this result.
Firstly, substituting (79) into the angular momentum

conservation law (73) we find

DSab
Dτ

þ 1

m2

�
Sackb

Dkc

Dτ
þ Scbka

Dkc

Dτ

�
¼ 0: ð80Þ

This is Fermi-Walker transport of the spin angular-
momentum tensor along the trajectory whose tangent
vector is kμ=m rather than _xμ. Dixon [22] calls this
M-transport.
Secondly we can find the “anomalous” correction to the

relation between velocity and momentum. Up to now the
parameter τ was arbitrary. The action is reparametrization
invariant so τ does not have to be the proper time. If we
change the parametrization τ → t in such a manner that the
vielbein component _x0 becomes unity, then the remaining
_xi, i ¼ 1;…; d − 1, are the components of the velocity
“3”-vector in the local Lorentz frame ea. The first compo-
nent of (79) now becomes

1 ¼ 1

m2

�
ð_x · kÞEþ S0c

Dkc

Dt

�
; ð81Þ

or, rearranging,
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ð_x · kÞ ¼ m2 þ _kaSa0
E

; ð82Þ

where

_ka ¼def Dka

Dt
¼ dka

dt
þ ωab

ckb _xc: ð83Þ

Again use i and j for space indices, observe that k0 ¼ E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þP

3
i¼1 k

iki
q

gives

_k0 ¼ ∂k0
∂kj _k

j ¼ kj

E
_kj ¼ −

kj
E
_kj; ð84Þ

and make use of the skew symmetry in a; b of the spin
connection ωab

μ. We find that

_xi ¼
ki
E
þ 1

m2

�
Sij − Si0

kj
E
−
ki
E
S0j

�
Dkj

Dt
ð85Þ

Equation (85) has a familiar structure! It looks just like
the anomalous velocity equation (2) with

Ωij →
1

m2

�
Sij − Si0

kj
E
−
ki
E
S0j

�
: ð86Þ

Furthermore, the associated two-form

1

2
Ωijdki ∧ dkj ¼ 1

2m2

�
Sij − Si0

kj
E
−
ki
E
S0j

�
dki ∧ dkj

ð87Þ

looks very much like our matrix-valued covariant Berry-
connection curvature tensor

Fαβ ¼
1

2m2

�
Sij − Si0

kj
E
−
ki
E
S0j

�
αβ

dki ∧ dkj; ð88Þ

which in three dimensions is

Fαβ ¼
1

2m2

1

γ

�
1

2

�
σ þ ðk · σÞk

m2ð1þ γÞ
�

αβ

�
· ðdk × dkÞ: ð89Þ

The quantity in braces is the lab-frame spin of a particle
with polarization s ¼ σ=2. It is therefore natural to identify
the classical spin angular momentum Sab with expectation
value

ψ̄
i
4
½γa; γb�ψ ¼ C�αðSabÞαβCβ ð90Þ

of the matrix-valued connection evaluated in theWKB state
ψ ¼ uαCα. Were we to quantize by integrating over λ in a
path integral, we would expect Sab to correspond to the

operator ðSabÞαβ that acts in the spin-polarization Hilbert
space.

C. Return to the Berry connection

Our classical action (60) leads to dynamical evolution of
the elements λ of the noncompact Lorentz group
SOð1; d − 1Þ. In the previous work [7,13,14] the phase-
space was parametrized by x, k, and elements of a compact
rotation group. We can connect the apparently distinct
formalisms by a simple reparametrization of our degrees of
freedom. We factorize each element λ as

λ ¼ λkσ; ð91Þ

where λk is a chosen k-dependent Lorentz transformation
that takes us from the reference e0 to momentum k, and σ
lies in the little group of e0. For massive particles this little
group is SOðd − 1Þ. The two one-forms composing the
action (60) now become

Ω1 ¼ kμdxμ ð92Þ

and

Ω2 ¼ tr

�
Σλ−1

�
d −

1

2
σabω

ab

�
λ

�

¼ tr

�
Σσ−1

�
dþ ðλ−1k dλkÞ −

1

2
ðλ−1k σabλkÞωab

�
σ

�
:

ð93Þ

and the action S½x; λ� becomes S½x; k; σ�. As Σ lies in the Lie
algebra of little group, the trace operation projects the
Lorentz Lie-algebra element λ−1k dλk into the Lie algebra
of the little-group. The projected element Pλ−1k dλkP≡
−iaidki is essentially the non-Abelian Berry connection
that produces parallel transport on the little group in the
formalism of [7,13,14]. A gauge transformation on this
Berry connection is a change of choice λk → λkσk for some
k-dependent element σk of the little group. It is “essen-
tially” the same connection rather than “precisely” the same
because we have λ−1k dλk rather than λ†kdλk. The present
parallel transport is therefore the nonunitary covariant
connection that gives rise to Thomas precession. In
[7,13,14] we are considering massless particles, and the
Berry connection provides unitary parallel transport on
the group SOðd − 2Þ. Connecting this massless case to our
present formalism requires a more detailed consideration
that we supply in the next section.

IV. MASSLESS PARTICLES

When our particles are massless the situation becomes
rather more complicated. Even in the free case—no gravity,
no electromagnetic field, and hence _ka ¼ 0—the Mathisson-
Papapetrou-Dixon angular momentum equation
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dSab
dτ

þ _xakb − ka _xb ¼ 0 ð94Þ

supplemented by the Tulczyjew-Dixon condition Sabkb ¼ 0
fails to have a unique solution. Suppose that k2 ¼ 0 and Sab
satisfies Sabkb ¼ 0, then

~Sab ¼ Sab þ ðkaSpb − kbSpaÞΘp ð95Þ

still satisfies ~Sabkb ¼ 0. Further, if Sab and xa satisfy (94)
and we set

~xa ¼ xa þ SpaΘp; ð96Þ
then ~Sab, ~xa are also a solution of (94) for any time-
dependent ΘpðτÞ. This multiplicity of solutions is related to
the absence of a well-defined center of mass, and to the
corresponding difficulty of defining a covariant spin angular-
momentum tensor for massless particles.
That there is going to be problem in the massless case is

signalled by the factors of 1=m2 in our Berry curvature
tensors. Indeed we expect a problem defining the spin
angular-momentum tensor itself: when ψ is a Dirac spinor
of definite chirality, the tensor Sab ¼ iψ̄ ½γa; γb�ψ=4 is
identically zero. To understand the spin of massless
particles, we need to appreciate Wigner’s observation
[45] that the little group for massless particles is the
Euclidean group SEðd − 2Þ, and not the naïvely expected
SOðd − 2Þ.
For massless particles in d-dimensional Minkowski

space we can take the reference-momentum einbein to
be the null-vector

Na ¼ ð1; 0;…; 0; 1Þ|{z}
d

: ð97Þ

The Lie algebra of the little group of Na consists of the σab
with 0 < a; b;< d − 1 that generate SOðd − 2Þ, together
with

πa ¼def Nbσba ¼ σ0a þ σðd−1Þa; 0 < a < d − 1: ð98Þ

Indeed, we can check that

½πa; Nbγb� ¼ 0; 0 < a < d: ð99Þ
From

½σij; σmn� ¼ ηjmσin − ηimσjn − ηjnσim þ ηinσjm ð100Þ

we find that

½πa; πb� ¼ 0; ½σab; πc� ¼ ηbcπa − ηacπb: ð101Þ

The πa therefore behave like translations, and together with
the rotations generate the Euclidean group SEðd − 2Þ.

Wigner argues in [45] that the quantum states of all known
particles must be unaffected by these “translations.”
For example, consider the 3þ 1 massless Dirac equation.

For Na ¼ ð1; 0; 0; 1Þ we have

π1 ¼ −
1

2

�
iσ2 σ1

σ1 iσ2

�
; π2 ¼

1

2

�
iσ1 −σ2
−σ2 iσ1

�
; ð102Þ

and both these “translation” operators act as zero on the
relevant positive energy, positive and negaive chirality, states

uþðNÞ ¼

2
6664
1

0

1

0

3
7775; u−ðNÞ ¼

2
6664

0

1

0

−1

3
7775: ð103Þ

We can obtain a general null-momentum ka ¼ ðjkj;kÞ ¼
esð1;nÞ by applying to Na a rapidity-s boost parallel to the
e3 direction, and then a rotation that takes e3 to the unit
vector n. In the Dirac representation, this procedure is
implemented by

λk ¼ expf−iϕΣ3g expf−iθΣ2g expfsK3g; ð104Þ

where θ and ϕ are the polar angles of the direction of the
3-momentum k, and

Σi ¼
1

2

�
σi 0

0 σi

�
; Ki ¼

1

2

�
σi 0

0 −σi
�
; ð105Þ

are respectively the rotation and boost generators. The
resulting covariantly-normalized spinor positive chirality
spinor is uþðkÞ ¼ λkuþðNÞ is

uþðkÞ ¼ es=2
�
χ

χ

�
; ð106Þ

where

χðkÞ ¼
�

cosðθ=2Þ
eiϕ sinðθ=2Þ

�
: ð107Þ

The Dirac-equation eigenstates are therefore safely indif-
ferent to any Wigner translations in λk → λkσ.
The same is not true of the classical angular momentum

tensor Sab ¼ trfΣλ−1σabλg. If we replace

λ → λ exp

�Xd−2
i¼1

θiπi

�
ð108Þ

then we have a transformation

δΘ∶ Sab → Sab þ ðkaSpb − kbSpaÞΘp ð109Þ

MICHAEL STONE, VATSAL DWIVEDI, AND TIANCI ZHOU PHYSICAL REVIEW D 91, 025004 (2015)

025004-10



where Θp ¼ Λp
iθ

i and ka ¼ Λa
bNb. Thus Sab is affected

by the unphysical Wigner translations in the same manner
as in (95). The Wigner-translation operation differs from
that in (95), however, in that the parameter Θp in (95) is
arbitrary but the parameter in (109) must satisfy Θpkp ¼ 0.
This constraint follows from the relation Θp ¼ Λp

i θ
i, and is

necessary for two successive translations with parameters
Θp

1 and Θp
2 to be equivalent to one with parameters

Θp
1 þ Θp

2 . In particular, a transformation that is allowed
by (95) but not by (109) is given by Θp

0 ≡ ð−E−1; 0;…0Þ.
It takes

δΘ0
∶ Sab →

�
Sab −

ka
E
S0b − Sa0

kb
E

�
:

In other words it takes the spin tensor and projects it to
Pauli-Lubansky tensor. Any subsequent Wigner translation
leaves the Pauli-Lubansky tensor invariant. This tensor
therefore captures the physically significant part of the spin
angular momentum.
A Wigner translation, when combined with the trans-

lation xa → xa þ SpaΘp, leaves the free action invariant
even for time-dependent ΘpðτÞ. The Wigner translation
group must therefore be regarded as a gauge invariance
[46]. The gauge group is slightly larger than just theWigner
translations because the action on xa is not Abelian. Again
requiring Θpkp ¼ 0, we find that

½δΘ2
; δΘ1

�xa ¼ 2Θp
1Θ

q
2Spqka ð110Þ

This means that translations xa → xa þ εka must also be
included in the gauge group of the free action [46].
Being gauge variant, the position of xa of the particle is

not an observable. This seems like a disaster for any
mathematical model that claims to describe the motion
of a particle. All is not lost, however. What has happened is
that a massless particle has no rest frame and therefore no
observer-independent center of mass. As explained in
Appendix D, it still has well-defined mass centroids, but
the location of these centroids depends on the reference
frame of the observer.
In our massless action, we are still free to fix a gauge, and

so pin down a position for the particle. A natural gauge
choice is to factorize λ ¼ λkσ where σ is chosen to be an
element of SOðd − 2Þ. In other words, we deliberately
excluding the problematic Wigner translations from our
action. Once we do this the free action becomes

Z
ðkμdxμ − trfΣσ−1ðdþ λ−1k dλkÞσgÞ; ð111Þ

and this is of the same form as the action in [7,13,14] where
the internal spin degree of freedom lives only in the rotation
part of the little group. For example, in 3þ 1 dimensions
we write

σ ¼ expfiΣ3φg ð112Þ

and

λ ¼ λkσ ¼ expf−iϕΣ3gexpf−iθΣ2g expfsK3g expfiφΣ3g:
ð113Þ

If we take take Σ ¼ JΣ3=4 then

Ω2 ¼
1

4
JtrfΣ3λ

−1dλg

¼ 1

4
JtrfΣ3σ

−1ðdþ λ−1k dλkÞσg
¼ iJtrðdφ − cos θdϕÞ

The dφ is total derivative and does not affect the equation of
motion. The iJ cos θdϕ term is precisely the Berry phase
for a spin J particle. Our action therefore reduces to that
in [7].
In general dimensions the gauge fixed action gives the

anomalous velocity of the lab-frame centroid in terms of
Wigner-translation invariant Pauli-Lubanski tensor.

_xi ¼
ki
E
þ 1

E2

�
Sij − Si0

kj
E
−
ki
E
S0j

�
_kj: ð114Þ

In the massless case the Pauli-Lubanski tensor not only has
vanishing time components (as does the massive case) but
is also perpendicular to the space components of the
momentum. This condition is the higher-dimensional
analogue of the spin being slaved to the momentum.
The gauge-fixing is frame-dependent, and consequently

the action is no longer manifestly Lorentz covariant. For
complete covariance we need to allow λ to be any Lorentz
transformation matrix—not only one that omits the Wigner
translations. When we make a Lorentz transformation, we
must therefore make a corresponding gauge transformation
so as to restore the noncovariant gauge choice in the new
frame. The gauge transformation involves the spacetime-
translation in (96), and this translation corresponds to the
relocation of the lab-frame mass centroid defined in (D12).
We can understand the shift by simple kinematics: consider
a massless particle with lab-frame 4-momentum and spin
vector

k ¼ ðjkj;kÞ≡ ðjkj; 0; 0; jkjÞ;
S ¼ jSjð0; 0; 1Þ: ð115Þ

From a frame moving with rapidity s along the x1 axis we
see these vectors as

k0 ¼ ðjkj cosh s;−jkj sinh s; 0; jkjÞ
S0 ¼ jSjð− tanh s; 0; sechsÞ; ð116Þ
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and so observe nonzero x1 component of spin S01 ¼
−jSj tanh s. Since the x1 component of the total angular
momentum J ¼ Lþ S is unchanged by the boost, there
must be a compensating orbital angular momentum com-
ponent L1 ¼ jSj tanh s. This can only arise from a sideways
shift δx2 of the particle’s trajectory such that L1 ¼ k3δx2.
Thus we expect a transverse shift

δx2 ¼ jSj
jkj tanh s: ð117Þ

It is straightforward, if a little tedious, to verify analytically
that the energy centroid of a circularly-polarized gaussian
light beam experiences a sideways displacement of exactly
this amount when observed from a moving frame [47].
This shift is precisely the unusual Lorentz transformation
uncovered in [16]. It is not just a mathematical artifact: the
energy-centroid is where a photon detector at rest in this
reference frame would locate the beam. For more discus-
sions of the effect of rotations and boosts on light beams
see [48,49].
If the change of beam direction under a small s boost is

compensated for by a small rotation, the net effect is a
small Wigner translation of the beam. A sequence of such
combined boosts and rotations can translate the beam
through an arbitrary amount. Consequently, being a physi-
cal shift, the Wigner translation gauge invariance is
necessarily violated by beam stops and interactions. For
example, if _ka is nonzero we find that the angular
momentum conservation equation changes into

d ~Sab
dτ

þ _~xakb−ka _~xb¼ð_kaSpb− _kbSpaÞΘp

¼ððxa− ~xaÞ_kb− _kaðxb− ~xbÞÞ: ð118Þ

What has happened is that, with a nonzero net force, the
external torque depends on the point about which moments
are taken. The nonzero right-hand side of (118) is the
torque about the new particle location ~xa due to the force
acting at the old particle position xa.
Once we are no longer allowed to make gauge trans-

formations, the gauge-fixed theory and manifestly covariant
theory are no longer exactly equivalent. As a consequence
exact Lorentz invariance has been lost in the gauge-fixed
theory. This may seem unsatisfactory, but it is to be
expected. There are two related reasons. Firstly the proof
cited in Appendix D, that the angular momentum of an
extended body defined by (D2) is actually a Lorentz tensor
depends crucially on there being no external force on the
body. When we make a Lorentz transformation, the time-
slice integral samples different epochs in the body’s history,
and the history-dependent momentum acquisition spoils the
tensor property. This fact necessarily causes a problem for
any point-particle approximation to the extended body
unless the body is very compact and the external force

small. The force being small is also a necessary condition
for the validity of the adiabatic approximation which is a
prerequisite for Berry transport. The adiabatic approxima-
tion also depends on the difference in energy between the
�jEj states being large compared to the inverse timescale of
the change of the states. The point-particle actions used in
[7,13,14] are therfore only applicable to particles with a
large E ¼ jkj—but a Lorentz transformation can take a
large E ¼ jkj particle to one with arbitrarily small E.
Therefore only we expect Lorentz invariance only under
suitably “small” transformations.

V. DISCUSSION

We have seen that for massive particles Berry-phase-
containing equations of motion such as (1) and (2) can be
the three-dimensional reduction of a manifestly covariant
equation of motion for the particle’s center of mass. The
same is not true for massless particles. In the absence of a
rest frame in which to define the center of mass, the best we
can do is derive an equation of motion for the lab-frame
energy centroid of the particle, and when the massless
particle is spinning the position of this energy centroid is
observer dependent.
We can understand physically why the spin angular-

momentum plays a central role in the anomalous velocity.
A spinning object of mass m and acted on by a force F
possesses a hidden momentum [50,51] of

Pspin
hidden ≈ −

S × F
mc2

: ð119Þ

(We have restored the factors of c to emphasize that this is a
relativistic effect.) Therefore the total momentum of the
body is given by

Ptot ≈m _x −
S × F
mc2

: ð120Þ

Identifying Ptot with k, and F with _k, gives us

_x ≈
k
m
þ S × _k

m2c2
: ð121Þ

Now, at low speed, and taking into account that _xa ¼ −_xa

and ka ¼ −ka, our anomalous velocity equation (85)
reduces to

_x ¼ k
m
þ S × _k

m2c2
; ð122Þ

so anomalous velocity is precisely accounted for by the
hidden momentum.
We have as yet explored only the effects of gravity, and

have not included electromagnetic forces. In particular we
have ignored the consequences of any intrinsic magnetic
moment possessed by the particle. We imposed this
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restriction because a nonzero gyromagnetic ratio g requires
us to modify the mass-shell condition to

jkj2 ¼ m2 þ 1

2
egSμνFμν ð123Þ

[38,44], and accepting this modification would obscure
some of the geometric effects that we wished to display.
However, in order to comparewith other approaches to Dirac
particle dynamics, we must now allow for a nonzero
moment.
The first effect of a magnetic moment is to alter the

relation between energy and momentum. For a massive
particle at rest in three space dimensions, the modified
mass-shell condition leads to

E ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

eg
m2

S · B

r
¼ m −

eg
2m

S · BþOðjBj2Þ: ð124Þ

This is the usual energy shift due to a magnetic moment
μ ¼ egS=2m. In general dimensions, there is a similar shift
but the vector μ must be replaced by a skew symmetric
tensor

Mab ¼
ge
2m

Sab: ð125Þ

For a massless particle, we first need to replace the gauge
dependent Sμν by the Gauge invariant Pauli-Lubanski
tensor whose μ; ν ¼ 0 components vanish. Then we find

EðkÞ ∼ jkj − eg
2jkjS · BþOð1=jkj2Þ

¼ jkj − e
2jkj k̂ ·BþOð1=jkj2Þ; ð126Þ

where the second inequality applies to the g ¼ 2, S ¼ 1
2

Dirac particle. This is the modified energy-momentum
relation found in [16,52].
In the presence of a field induced torque, the angular-

momentum conservation equation becomes [53]

D
Dτ

Sab þ _xakb − ka _xb ¼ Fa
cMcb −MacFc

b; ð127Þ

and if we approximate (by ignoring terms higher in jSj)
_kb ¼ eFbc _xc ∼ eFbckc=m; ð128Þ

then we find that our anomalous-velocity equation is
replaced by

_xi ¼
ki
E
þ
�
1 −

g
2

�
1

m2

�
Sij − Si0

kj
E
−
ki
E
S0j

�
_kj: ð129Þ

Again we can understand this via a hidden momentum.
An accelerating magnetic dipole possesses a hidden
momentum of

PEM
hidden ¼

μ ×E
c2

ð130Þ

[54,55], so

Ptot ¼ m _xþ μ ×E
c2

−
S × F
mc2

: ð131Þ

Once we set μ ¼ ge=2m and eE ¼ _k, we find that

k ¼ m _xþ
�
g
2
− 1

�
1

mc2
S × _k; ð132Þ

or

_x ¼ k
m
þ
�
1 −

g
2

�
1

m2c2
S × _k; ð133Þ

which is again consistent with the Mathisson-Papapetrou-
Dixon equation modified to include the effect of the
magnetic moment. That there is no anomalous-velocity
correction when g ¼ 2 is also a conclusion in [56].
The result in (133) does not coincide with the wave

packet calculation in [19]. In [19] the anomalous velocity is
entirely accounted for by the electromagnetic hidden
momentum. There is no sign of the spin hidden momentum
that is intimately connected with our Thomas precession
curvature. This discrepancy is presumably due to the
position “x” in the massive Mathisson-Papapetrou-Dixon
equations being the center of mass extracted from moments
of the energy momentum tensor. The position “x” in [19] is
the center of charge or probability density of the wave
packet. Since a Lorentz-boosted magnetic moment acquires
an electric-dipole moment, the charge center will move
away from the mass-centroid in a velocity-dependent
manner and this momentum-dependent shift will also
contribute to _x. Whether this shift completely explains
the discrepancy requires further study.
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APPENDIX A: SPINORS, POLARIZATION
AND SPIN

In three dimensions we may take the Dirac gamma
matrices to be

γ0 ¼
�
1 0

0 −1
�
; γa ¼

�
0 σa

−σa 0

�
;

αi ¼ −γ0γi ¼ γ0γi ¼
�
0 σi

σi 0

�
: ðA1Þ

The eigenspinors with Lorentz-covariant normalization
ūαuβ ¼ −v̄αvβ ¼ δαβ, ūαvβ ¼ v̄αuβ ¼ 0 can be taken to be

uαðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðEþmÞp
� ðEþmÞχα

ðσ · kÞχα

�
;

vαðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðjEj þmÞp
� ðσ · kÞχα
ðjEj þmÞχα

�
; ðA2Þ

where χα are the unit two-spinors χ1 ¼ ð1; 0ÞT and
χ2 ¼ ð0; 1ÞT . The label α on uα is therefore that of the
spin in the rest frame of the particle, where

uα →

�
χα

0

�
: ðA3Þ

The spin in the particles’s rest frame is usually called the
“polarization,” and is a more transparent quantity to work
with than the lab-frame spin [30].
Define the spin generators

Σμν ¼
i
4
½γμ; γν� ðA4Þ

and assemble the spatial parts into a spin three-vector Σ ¼
ðΣ23;Σ31;Σ12Þ where

Σ ¼ 1

2

�
σ 0

0 σ

�
: ðA5Þ

We can now evalaute

u†αΣuβ ¼
1

2
χ†α

�
σ þ 1

m2

kðk · σÞ
ð1þ γÞ

�
χβ

¼ 1

2

�
σ þ 1

m2

kðk · σÞ
ð1þ γÞ

�
αβ

¼ 1

2

�
σ þ γ2βðβ · σÞ

ð1þ γÞ
�

αβ

; ðA6Þ

where β¼ v¼k=E is the 3-velocity, and γ¼ð1− jβj2Þ−1=2.
The physical meaning of the combination of σ ’s in

parentheses in (A6) can be understood by defining a spin
four-vector ðS0;SÞ that takes the value ð0; sÞ particle’s rest

frame. Then, by performing a Lorentz transformation, we
find that the corresponding lab-frame components are
given by

S ¼ sþ γ2βðβ · sÞ
ð1þ γÞ

S0 ¼ γβ · s ¼ β · S: ðA7Þ

We see that u†αΣuβ coincides with the Lorentz transform of
the matrix elements of the operator that measures the
polarization s.
Alternatively, we can define the Pauli-Lubansky spin

four-vector operator

Sκ ¼ 1

2
ϵκμνλΣμν

�
kλ
m

�
; ϵ1230 ¼ 1; ðA8Þ

that reduces to ð0;ΣÞ in the particle’s rest frame where
kμ ¼ ðm; 0Þ. Its three-space components are

Si ¼ 1

2
γϵijk

�
Σjk −

ki
E
Σ0k − Σj0

kk
E

�
; ðA9Þ

and the time component is

S0 ¼ γðβ · ΣÞ ¼ β ·S: ðA10Þ

Because the matrix elements ūαΣμνuβ transform as a tensor,
and the matrix elements of the space components Σi andSi
coincide in the particle’s rest frame, we must have that

1

γ
u†αΣiuβ ¼ ūα

�
1

2
ϵijk

�
Σjk −

ki
E
Σ0k − Σj0

kk
E

��
uβ; ðA11Þ

as can be confirmed by direct calculation. The left-hand
side of (A11) comprises the matrix elements of the 3-spin
operator in a plane-wave beam normalized to one particle
per unit volume in the lab frame. A physical interpretation
of the right-hand side is provided in Appendix D.
Although the Pauli-Lubansky four-vector can only be

defined in 3þ 1 dimensions, the identity

1

γ
u†αΣijuβ ¼ ūα

�
Σij −

ki
E
Σ0j − Σi0

kj
E

�
uβ; ðA12Þ

is true in all dimensions. Equation (A12) follows from
setting λ ¼ 0, μ ¼ i, ν ¼ j in the covariant identity

1

2
ūαfγλ;Σμνguβ ¼

1

m
ūαðkλΣμν − kμΣλν − ΣμλkνÞuβ: ðA13Þ

In turn, Eq. (A13) holds because the right- and left-hand
sides are both totally antisymmetric tensors, whose com-
ponents coincide in the rest frame of the particle. With the λ
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index raised, the left-hand side of (A13) comprises the
matrix elements of the spin-current tensor Sλμν.

APPENDIX B: GENERAL PROPERTIES OF
DIRAC SPINORS AND MATRIX ELEMENTS

We collect some properties of the solutions uαðkÞ, vαðkÞ
to the plane-wave Dirac equation in any space-time
dimension. The positive energy eigenvectors uα, ūα ≡
u†αγ0 satisfy

ðγμkμ −mÞuα ¼ 0;

ūαðγμkμ −mÞ ¼ 0: ðB1Þ
The corresponding negative energy eigenvectors vαðkÞ,
v̄α ≡ v†αγ0, obey

ðγμkμ þmÞvα ¼ 0;

v̄αðγμkμ þmÞ ¼ 0: ðB2Þ
In both cases the momenta lie on the positive energy mass
shell. k2 ¼ m2, k0 > 0. We impose the Lorentz covariant
normalization ūαuβ ¼ −v̄αvβ ¼ δαβ, ūαvβ ¼ v̄αuβ ¼ 0.
The completeness relation is therefore

I ¼ uαūα − vαv̄α

¼ Λþ þ Λ−; ðB3Þ

where the projection operators are

Λþ ¼ 1

2m
ðmþ γμkμÞ ¼ uαūα

Λ− ¼ 1

2m
ðm − γμkμÞ ¼ −vαv̄α: ðB4Þ

By varying the equation ūαðγμkμ −mÞuβ ¼ 0 and making
use of the normalization conditions, we find the 4-current
matrix elements

ūαγμuβ ¼ v̄αγμvβ ¼ δαβkμ=m≡ δαβVμ: ðB5Þ

Here Vμ ¼ γð1; βÞ is the 4-velocity derived from the group
velocity β ¼ ∂k0=∂k.
Similarly, by varying (B1), (B2), we find that

v̄αδuβ ¼
1

2m
δkμðv̄αγμuβÞ;

δūαvβ ¼
1

2m
δkμðūαγμvβÞ: ðB6Þ

We must keep kμ on the mass-shell; consequently the δkμ

are not independent.
Now consider the covariant Berry connection aαβ ¼

iūαduβ. From ūαduβ þ dūαuβ ¼ 0, (B6), and the complete-
ness relation, we find that the corresponding curvature is
given by

Fαβ ¼def ðda − ia2Þαβ
¼ ðidūαduβ − dūαuγūγduβÞ
¼ iðdūαuγūγduβ − dūαvγv̄γduβ − dūαuγūγduβÞ
¼ −iðdūαvγÞðv̄γduβÞ
¼ −iðūαγμvγÞðv̄γγνuβÞdkμ ∧ dkν=4m2

¼ iðūαγμγνuβÞdkμ ∧ dkν=4m2

¼ iðūα½γμ; γν�uβÞdkμ ∧ dkν=8m2

¼ 1

2m2
ðSμνÞαβdkμ ∧ dkν: ðB7Þ

Another set of covariant matrix elements are the

ðSμνÞαβ ¼ ūαΣμ;νuβ: ðB8Þ

that occur in (A11), (A12) and (A13). They play the role of
the components of a covariant angular momentum tensor.
We find directly from the Dirac equation, that they obey

kμðSμνÞαβ ¼ 0: ðB9Þ

APPENDIX C: COVARIANT BERRY TRANSPORT
IS FERMI-WALKER TRANSPORT

Here we show that if we expand ψ ¼ uβCβ and ψ̄ ¼
C�αūα then the covariant parallel transport of the coef-
ficients Cα leads to the angular momentum tensor

Sμν ≡ i
4
ψ̄Σμνψ ðC1Þ

being Fermi-Walker transported along the trajectory.
Berry transport of the Cα means that

δCα ¼ −ðūαδuβÞCβ: ðC2Þ

The states uαðkÞ themselves change with kμ so that

δuβ ¼ uαūαδuβ − vαv̄αδuβ: ðC3Þ

Putting these two results together we have

δðuβCβÞ ¼ −vαðv̄αδuβÞCβ; ðC4Þ

and

δðC�αūαÞ ¼ −C�αðδūαvβÞv̄β: ðC5Þ

We now use the formulas (B6) for ðδūαvβÞ and ðv̄αδuβÞ
to find
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4iδSμν ¼ C�αδūαvρv̄ρ½γμ; γν�ψ − ψ̄ ½γμ; γν�vσv̄σδuβCβ;

¼ δkλ

2m
ðψ̄γλvρv̄ρ½γμ; γν�ψ − ψ̄ ½γμ; γν�vσ v̄σγλψÞ;

¼ þ δkλ

2m
ðψ̄γλvρv̄ργμuσūσγνψ − ðμ↔νÞÞ

−
δkλ

2m
ðψ̄γλvρv̄ργμvσ v̄σγνψ − ðμ↔νÞÞ

þ δkλ

2m
ðψ̄γμuρūργνvσ v̄σγλψ − ðμ↔νÞÞ

−
δkλ

2m
ðψ̄γμvρv̄ργνvσ v̄σγλψ − ðμ↔νÞÞ: ðC6Þ

We can simplify by using the current matrix elements to get

δSμν ¼ i
4m2

ðkνδkλψ̄ ½γμ; γλ�ψ þ kμδkλψ̄ ½γλ; γν�ψÞ

¼ 1

m2
ðkνδkλSμλ þ kμδkλSλμÞ ðC7Þ

Thus we have found that

∂Sμν
∂τ þ 1

m2

�
kν

∂kλ
∂τ Sμλ þ kμ

∂kλ
∂τ Sλν

�
¼ 0: ðC8Þ

At the level of WKB, where we see no anomalous velocity,
we have Vμ ¼ kμ=m. Consequently (C8) is

∂Sμν
∂τ þ Vν ∂Vλ

∂τ Sμλ þ Vμ ∂Vλ

∂τ Sλν ¼ 0: ðC9Þ

Given that VμSμν ¼ ðkμ=mÞSμν ¼ 0, Eq. (C9) is the state-
ment that Sμν is being Fermi-Walker transported.

APPENDIX D: CENTROIDS AND THE
CENTER OF MASS

We review some standard material on centroids and
centers of mass of extended bodies that should apply to
wave-packets of Dirac particles. We work in flat space and
suppose there are no external forces. Our extended body
therefore possesses a conserved and compactly supported
symmetric energy-momentum tensor

∂μTμν ¼ 0; Tμν ¼ Tνμ: ðD1Þ

Let xμA be a space-time event, Σ a spacelike surface, and
define the angular momentum of the body about xA by

Mμν
A ¼

Z
Σ
fðxμ − xμAÞTνγ − ðxν − xνAÞTμγgdΣγ ðD2Þ

then ([58] page 161)Mμν
A is a tensor, and independent of the

choice of Σ.

We now choose a lab frame and, with i; j running
over space indices only, we define the energy and three-
momentum of the body to be

E ¼
Z
x0¼t

T00d3x; pi ¼
Z
x0¼t

Ti0d3x; ðD3Þ

respectively. We also define themass-centroid Xi
L in the lab

frame by

�Z
x0¼t

T00d3x

�
Xi
L ¼

Z
x0¼t

xiT00d3x: ðD4Þ

Now

∂t

Z
x0¼t

T00d3x ¼
Z
x0¼t

∂0T00d3x ¼ −
Z
x0¼t

∂jTj0d3x ¼ 0;

ðD5Þ

and

∂t

Z
x0¼t

xiT00d3x ¼
Z
x0¼t

xi∂0T00d3x ¼ −
Z
x0¼t

xi∂jTj0d3x

¼
Z
x0¼t

δijT
j0d3x ¼ pi: ðD6Þ

So, differentiating its definition with respect to t, we read
off that the ordinary 3-velocity of the centroid is

_XL ¼ p=E: ðD7Þ
Now take xμA to be point in the x0 ¼ t surface. Then

Mi0
A ¼

Z
x0¼t

fðxi − xiAÞT00 − ðx0 − x0AÞTi0gd3x

¼ ðXi
L − xiAÞE:

(The second term on the right in the first line is zero
because x0 − x0A is zero everywhere in the integral.)
Thus Mi0

A is zero when A is the centroid in the lab frame.
If we replace the lab frame with an inertial frame having
4-velocity Vμ we have that Mμν

A Vν ¼ 0 if and only if A is
the mass centroid in that frame.
Define the center of mass Xi

CM to be the mass-centroid in
the frame where pi ¼ 0, and the intrinsic angular momen-
tum Sμν to be the angular momentum about the center of
mass. Thus Sμνpν ¼ 0 and we automatically have the
Tulczyjew-Dixon condition.
Now, looking back at the definition of angular momen-

tum, we see that if we change reference points we have

Mμν
A þ xμAp

ν − xνAp
μ ¼ Mμν

B þ xμBp
ν − xνBp

μ: ðD8Þ

Let us take xA ¼ XCM and xB ¼ XL to be the centroid in
the lab frame. Then
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SμνA þ Xμ
CMp

ν − Xν
CMp

μ ¼ Mμν
L þ Xμ

Lp
ν − Xν

Lp
μ; ðD9Þ

and

Sμν þ ðXμ
CM − Xμ

LÞpν − ðxνCM − Xν
LÞpμ ¼ Mμν

L : ðD10Þ

The lab-frame centroid condition gives usMi0
L ¼ 0, and we

have ðX0
CM − X0

LÞ ¼ 0, so

S0ν − ðXν
CM − Xν

LÞE ¼ 0: ðD11Þ

We write this as

ðXν
CM − Xν

LÞ ¼
S0ν

E
;

�
¼ 1

E2
Sνipi

�
ðD12Þ

and find

Mμν
L ¼

�
Sμν − Sμ0

pν

E
−
pμ

E
S0ν

�
: ðD13Þ

Thus we have a physical interpretation of the Pauli-
Lubansky spin-tensor components that appears many times
in this paper. It is the intrinsic angular momentum about the
lab-frame centroid.
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