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Berry phase, Lorentz covariance, and anomalous velocity for Dirac
and Weyl particles
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We consider the relation between spin and the Berry-phase contribution to the anomalous velocity of
massive and massless Dirac particles. We extend the Berry connection that depends only on the spatial
components of the particle momentum to one that depends on the space and time components in a covariant
manner. We show that this covariant Berry connection captures the Thomas-precession part of the
Bargmann-Michel-Telegdi spin evolution, and contrast it with the traditional (unitary, but not naturally
covariant) Berry connection that describes spin-orbit coupling. We then consider how the covariant
connection enters the classical relativistic dynamics of spinning particles due to Mathisson, Papapetrou and
Dixon. We discuss the problems that arise with Lorentz covariance in the massless case, and trace them
mathematically to a failure of the Wigner-translation part of the massless-particle little group to be an exact
gauge symmetry in the presence of interactions, and physically to the fact that the measured position of a

massless spinning particle is necessarily observer dependent.
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I. INTRODUCTION

There has been much recent interest in the fluid
dynamics of systems possessing anomalous conservation
laws [1-6]. An unexpected consequence of this work has
been the discovery that anomalies, which are usually
thought of as being purely quantum mechanical effects,
can be extracted from the classical kinetic theory of a
degenerate gas of Weyl fermions [7]. The incompressibility
of phase space allows the anomalous inflow of particles
from the negative-energy Dirac sea into the positive-energy
Fermi sea [8—10] to be reliably counted by keeping track of
the density flux near the Fermi surface where a classical
Boltzmann equation becomes sufficiently accurate for this
purpose. The only required quantum input is knowledge of
how to normalize the phase space-measure and the inclu-
sion of a Berry-phase effect. The Berry phase causes the
velocity of the particle to no longer be parallel to its
momentum. Instead an additional “anomalous velocity”
appears as a momentum-space analogue of the Lorentz
force in which the electromagnetic field tensor is replaced

by the Berry curvature, and the particle velocity by k.
The Berry phase also alters the classical canonical structure
so that x and k are no longer conjugate variables, and d*kd>x
is no longer the element of phase space volume [11,12].
It is possible to extend these derivations to the non-
Abelian anomaly [13] and to higher dimensions [14],
but the kinetic theory used in all these papers is based
on Hamiltonian dynamics where time and space are treated
very differently. It is therefore a challenge to make the
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formalism manifestly covariant so that a coupling to gravity
might be included. Indeed it is not easy to see how even
flat-space Lorentz invariance is realized in the Hamiltonian
kinetic theory. This issue was raised in [15] and the curious
manner in which the dynamical variables must transform
was made clear in [16].

The most obvious problem with extending the three-
dimensional Hamiltonian formulation to a covariant 3 + 1
version is that the Berry curvature is a differential form in
only the three spatial components of the momentum. In a
formalism that treats space and time on an equivalent
footing we would expect the connection to involve differ-
entials of all four components of the energy-momentum
vector. In this paper we show how to make such an
extension, and in doing so we make a connection between
the Hamiltonian formalism with its Berry phase modifica-
tion and the relativistic classical mechanics of spinning
particles.

In Sec. I we use a WKB solution to the massive-Dirac
equation to motivate an unconventional, but covariant,
Berry connection that captures the geometric Thomas
precession of the spin. We contrast the properties of
this Berry connection with the traditional, noncovariant
Berry connection whose importance in the dynamics of
charged Dirac particles was revealed in [17-19]. In
Sec. III we introduce a classical mechanical action for
a spinning particle interacting with a gravitational field.
This manifestly covariant action gives rise to the well-
known Mathisson-Papapetrou-Dixon equations [20-22],
and we show how these equations can be recast to make
explicit the role of the covariant Berry connection. In
Sec. IV we discuss the problems that arise when the
particle mass becomes zero, and show how these arise
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from a hidden gauge invariance of the free action. After
selecting a natural gauge fixing condition, the covariant
action reduces to the Berry-connection actions used in
[7,13,14]. Mathematically, it is the necessity of gauge fixing
that is responsible for the curious Lorentz transformation
laws that appear in [16], physically it is because the
“position” of a massless spinning particle is an observer-
dependent concept. The gauge invariance of the massless
action is only approximate in the presence of introduction of
interactions and this leads to the gauge-fixed action not being
exactly equivalent to the manifestly covariant action. We
argue that this is perhaps not surprising as in a massless
system the adiabatic approximation that is tacit in any system
involving a Berry connection can be violated by a suffi-
ciently large Lorentz transformation.

A discussion section addresses the physical origin of the
anomalous velocity. Finally, several derivations that would
be intrusive in the main text appear in Appendices A-D.

II. A COVARIANT BERRY CONNECTION

That a Berry phase gives rise to an anomalous velocity
correction was first observed in the band theory of solids.
We begin with a brief account of how the effect appears
there, and why a similar correction is expected in the
motion of Dirac particles.

A. Lorentz covariance versus the Berry phase

A semiclassical wave-packet analysis [23,24] shows that
the motion of a charge-e¢ Bloch electron in an energy band
in a crystalline solid is governed by the equations

k:—a—H+e(XxB),

o (1)
. OH .

The effective Hamiltonian H = &(k) + e¢(x) includes the
band-energy £(k) as a function of the crystal momentum k,
together with the interaction with the scalar potential ¢.
The vector Q with components Q; = %e,»ijjk is a Berry
curvature that accounts for the effects of all other energy
bands. The magnetic field B is a function of x only, and Q
is a function of k only. The —k x Q term in (2) is the
anomalous velocity correction to the naive group velocity
Oe/0k. This correction arises because different momentum
components of a localized wave-packet accumulate differ-
ent geometric phases when k is changing and the Berry
curvature is nonzero [25]. These k-dependent geometric
phases are just as significant in determining the wave-
packet position as the k-dependent dynamical phases
arising from the dispersion equation @ = (k). A nice
illustration of the effect of the anomalous velocity on a
particle trajectory is to be found in [26].
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Now a Dirac Hamiltonian can be thought of as a Bloch
system with two energy bands e(k) = E(k) = + vk + m?,
and each band possesses a nonzero Berry curvature
[17-19]. Consequently (1) and (2) should also describe
the semiclassical motion of a relativistic spin-} particle.
This raises an interesting issue. We expect that the equation
of motion of a Dirac particle can be written in a manifestly
Lorentz invariant form, but it is not immediately obvious
how to massage the Dirac version of (1) and (2) into
covariant expressions. When —9H/Jx is the force due to
an electric field [27], the first line (1) can be written as
ic,,:eF wX’, but for (2) how does one define a 3+1-
dimensional analogue of the Maxwell tensor F* for the
intrinsically three-dimensional Berry curvature €2;;?

B. Covariant WKB approximation for
the Dirac equation

In order to obtain a manifestly Lorentz invariant semi-
classical equation of motion for a Dirac particle, we need to
extend the noncovariant Berry connection to one in which
space and time components are treated equally. Now the
simplest semiclassical approximation to any wave equation
is that of WKB. We therefore construct a WKB approxi-
mation to the Dirac equation coupled to an externally
imposed Maxwell field. We maintain covariance at each
step, anticipating that a covariant version of Berry curvature
will play some role. WKB approximations to the Dirac
equation have a long history, going back to W. Pauli in
1932 [28]. More recent references are [29-31]. None of
these works make use of the particular covariant approach
that we introduce here.

We take the particle to have charge e (a positive number
when the charge is positive) and to have positive mass m.
Let x* = (t,x), and seek a positive-energy WKB solution

q/(x) = a(x)e_iq’(x)/h,

a=ay+ha, +hay+ - (3)
to the Dirac equation
(iny# (0, + ieA,/h) — m)y = 0. (4)
Here {y*,y*} =2np* with Minkowski metric #** =
diag(+,—,—, =), and A, = (¢, —A).
Setting p, & @ = (E,—p), we have at order 2°
(r*(py — eA,) —m)ag = 0. (5)

We satisfy (5) by setting ag(x) = u,(k(x))C*(x) with k, =
pu — eA, being the gauge-invariant kinetic momentum, and
u, (k) being a complete set of eigenspinor solutions to

(r*k, —m)u, = 0.

(6)
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In this equation the kinetic four-momentum k, = (E, —k)

lies on the positive-energy mass shell: E? = k2 + m?,

E > 0. We take the eigenspinors to have the covariant

normalization #,uy = 5,4. (See Appendix A for details)
At order A we have

(r'k, = m)ay + (iy"9,,)ao = 0. (7)
Now if
(rky —m)uq =0, (8)
then
it 1"k — m) = 0. ©)

We can therefore eliminate the influence of the unknown
coefficient a; and deduce that

gy 0,ag = iigy*d,(u,C*) = 0. (10)
Equation (10) tells us how both the amplitude and spin
components evolve along the classical trajectory. We rewrite
(10) as
gy ug(0,C*) + (itgr* 0,u,)C* = 0, (11)
and then use (B5) from Appendix B to write

_ k*
u/}yﬂ Uy = 5(1/5 E = 5(1[)"/”7 (] 2)

and so express the transport equation (10) as

v

ot Ma,j] c’ =0. (13)

Here

_ 0
Ma/} = uayﬂ @ u[)” (]4)

and V¥ = y(1,v) = k*/m is the 4-velocity corresponding to
the ray-tracing group velocity

OE
=—. 15
V= (15)
Thus the combination
0 d
VH—— = — 16
ox*  dr (16)

is a convective derivative with respect to proper time along
the particle’s trajectory. The (x, k) trajectory itself is given
by Hamilton’s ray-tracing equations and coincides with that
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of a spinless charged particle in the background field. There
is no sign of the anomalous velocity. As pointed out in [29],
this absence is to be expected because both the intrinsic spin
and magnetic moment of a Dirac particle are proportional to
f, and vanish in the classical limit. Thus leading-order WKB
is not able to account for the effect of the spin on the
particle’s motion. Nonetheless the ratio of the magnetic
moment to the spin angular momentum is independent of #.
As a consequence leading-order WKB is adequate for
obtaining the Bargmann-Michel-Telegdi (BMT) equation
[32] that describes the effect of the magnetic field on the
spin evolution. A Berry connection is a key ingredient in this
equation.
To isolate the Berry connection, we decompose

* 1 *
Ma/)’ = E(Maﬂ +M a) +§(Ma/)’ _Mﬂa)’ (17)

and, from equation (B5), recognize that

1 1_ ovH

E(M(l/}—"_M*a) 256(1/3W' (18)

We now insert the completeness relation | = u,ii; — v, as
intermediate states in the definition of M,z From the
positive-energy u;ii; terms we get

N (RN (D
(Tgy*uy) Wy wls) = V@ o o Up

dk¥
=—i —. 19
laaﬁ,v dr ( )
The quantity
R 0
g, iﬁaa—Zf (20)

is an unconventional Berry-phase-like connection. It is
unitary only with respect the non-positive-definite inner
product (y|y) = y'y%, but makes use of all four compo-
nents of dk” and is constructed out of Lorentz-covariant
objects. We will therefore refer to it as the covariant Berry
connection.

The contribution of the negative energy intermediate
states —v,, is an example of Littlejohn’s “no-name” phase
[33]. After some labor, we find that their contribution is

1/ 0 . ie .,
—E <I/la]/’l’lili}/1wuﬂ - (CK—)ﬁ) ) = %SzﬂFﬂuCﬂ’ (21)

where k& = dk/dr,
i

(Sudes = a3 17l ) s 22)

and we have used k, = 0, — €A, to write
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ok, — 0k, = —el,. (23)

The combined contribution of both sets of intermediate
states therefore leads to

1 oVH i

9 TV e v 8
|:6(l/3 (Vﬂ @ + EW> — ik (av)aﬂ + _SZ/XFMV ¢’ =o.

2m
(24)

The divergence of the 4-velocity in (24) accounts for the
change in amplitude due to geometric focussing. The
remaining terms describe how the spin evolves through
its interaction with the external field, and as a result of its
parallel transport under the Berry connection.

The combination $#F, is Lorentz invariant, so we can
evaluate it in the particle’s rest frame where

Eomn-e 5, o

Since the unitary operator for a rotation at angular velocity
 is U(1) = exp{—iw - (6/2)t} we see that (25) accounts
for the Larmor precession @y yomor = —|#|B of the spin due
to its g = (e/m)S Dirac-value magnetic moment. The two-
by-two matrix (e/2m)B - ¢ acts on the polarization spinor
o that is defined in (A2). Polarization is the spin measured
in the rest frame of the particle [30].

To understand the origin of the Berry connection term we
use the explicit formulas for u, (k) given in (A1) to evaluate

R (3),
1::’(/3)([})‘ <g)aﬁ

= —@WThomas * | 7 .
2 )
p

Here f = k/E, and

aaﬂwuk

(26)

2
onoms ==({5)0<h) @)
is a standard expression for the Thomas-precession angular
velocity. Our covariant Berry transport is therefore nothing
other than Thomas precession—i.e. parallel transport on the
tangent bundle of the positive-mass hyperboloid embedded
in Minkowski-signature momentum space [34]. The minus
sign occurs because the mass-shell hyperboloid is a negative-
curvature Lobachevskii space.

The matrix-valued connection one-form is defined by

o1
o 7@) - (k x dK),

m?*(1+7y) (28)
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and the associated matrix-valued curvature § = da — ia” is

1 (1
%_2m2y{5<6+

The connection-form and the curvature do not look covar-
iant as they involve only the spatial components of dk*.
This is a consequence of the way we wrote u, (k) in (A1).
In Appendix B we avoid explicit formulas for u, and use
only general properties of the Dirac equation to obtain
an expression for the curvature in arbitrary dimensions.
We find that

%)} - (dk x dk). (29)

. 1
%(lﬂ = (da - laz)aﬂ = F (Syb)aﬁdk” AN dky, (30)

m

where (S, ), Was defined in equation (22). This form of the
curvature is manifestly covariant and contains both space
and time components of dk*. The dk* are not independent
however, but are constrained by the mass-shell condition
k*> = m?. If we desire, therefore, we may eliminate dk° as

Ak = dvVIZ + m? = Kidk' JE = —k;dki/E and find
I K, K\
Bap = 5,2 (Sij — 50 = Sio f]> a/;dk Adk, (31)

where i, j run over space indices only. Evaluation of the
required §,, matrix elements confirms that this reduced
expression coincides with (29). The combination of spin
components in parentheses on the right-hand side is a
general-dimension analogue of the space part of the
(3 + 1)-dimensional Pauli-Lubansky vector. We will
therefore refer to it as the Pauli-Lubanksy tensor (It is
tensor only under space rotations. It is not a Lorentz
tensor). It will appear frequently in the rest of the paper
and its geometric and physical significance is further
discussed in Appendixes A and D.

To verify that parallel transport via the covariant Berry
connection is nothing other than Thomas precession, we
show in Appendix C that under such transport (i.e. no
external torque or Larmor precession) the WKB approxi-
mation to the Dirac-field angular momentum tensor S, =

@ (ily, v,]/4)w obeys

oSH ov* ov?
— VS,V — SV =
or + or =4 + or

(32)
Since (BY) tells us that V#S,, = 0, and so (32) states that
S, 1s Fermi-Walker transported along the particle trajec-
tory. Thomas precession is simply the evolution under
Fermi-Walker transport of vectors (such as the spin four-
vector S) that are perpendicular to the 4-velocity vector.
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C. Comparison with the noncovariant
WKB approximation

The traditional form of the WKB transport equation is
obtained by expanding w = u,(k)K%(x) where the u, are
given the noncovariant normalization UgUy = 50,/3, and
paired with negative-energy solutions that, in terms of
the covariant v,,, are given y~'v,(—k). These noncovariant
spinors have completeness relation [ = uaufl + vavl.
On using them as intermediate states we obtain the
alternative form of transport equation found in [30,31]:

d 1
Rt KP — 0.
{60,/3( t+2dlvv> +Na/;} 0 (33)

Here ¢ is the lab-frame time, v = f is the 3-velocity, and

.. 1 (k-o)k 1
er[)’ = —iaaﬁ,-k’ -1 i B- 6+72( O-) )
' m m= y+1 )52y

) . (e 1
= _laaﬂ,ikl - l<_) FB ' (Slab>aﬂ‘ (34)

m

The term with the magnetic field B is again a “no-name”
phase that arises from the negative-energy intermediate
states [33]. The Berry connection a,z; is here of conven-
tional form

def . + UUp
a5 :dk' = iuy - dk'
b : ok'

_ _l—iy(ﬂ x dp) - <g> S ®

Compared to the covariant connection, (35) lacks one

power of y. More importantly, it has the opposite sign.
The associated matrix-valued curvature is [19]

F =da - id*

1 1 (k-o)k
= — — - (dk x dk). 36
4m?y3 <a+m2 y+1 ) (dk x k). (36)

Again compared to the covariant expression g, the non-
covariant Berry curvature F lacks two powers of y, and
again has the opposite sign.

Both the covariant and the noncovariant transport equa-
tion lead to the same BMT equation, but there is a different
distribution between terms of the dynamical Larmor
precession and the geometric parallel transport. In the
covariant formulation we have precession of the rest-frame
polarization s due to the magnetic field as seen by the
particle in its rest frame, and augmented by the geometric
Thomas precession factor. This is how the BMT equation is
broken up in Jackson [35], in his Eq. (11.166). In the
noncovariant formulation we have precession of the same
rest-frame polarization s, but now due to the magnetic
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field as seen by the spin in the lab frame and augmented
by the conventional Berry transport term. This is how
the BMT equation is decomposed in [19], where the
connection (35) and curvature (36) are obtained from a
wave-packet approach.

The difference in sign between the two connections is
accounted for by the different physical effects that they
capture. The covariant connection provides the purely
geometric Thomas precession effect. The noncovariant
Berry connection implements the spin-orbit coupling due
to the particle’s motion viewed from the lab frame [36].
As was famously explained by Llewellyn Thomas [37], this
spin-orbit coupling comes from two competing effects:
firstly the Lorentz transform of the external field that leads
to the motion through an E field being perceived as a B
field, and secondly the Thomas precession that half-undoes
the Lorentz transformation contribution. The net precession
rate therefore has opposite sign to its Thomas-precession
component.

III. CLASSICAL MOTION OF PARTICLES
WITH SPIN

Rather than attempt to extend the WKB approximation
to higher order, we will use symmetry consideration to
construct a Hamiltonian action-principle version of the
dynamics that is manifestly covariant, gives the same spin
transport as the WKB approximation, but also gives us an
anomalous-velocity correction. As our ultimate goal is to
understand the effect of gravity on the particle, we will from
the outset take our space-time to be curved.

A. Mathisson-Papapetrou-Dixon equations

There is an extensive literature on the relativistic
classical dynamics of particles with spin, but a desire to
make contact with the Berry phase methods of [7,13,14]
suggests that we follow the particular approach of [38—40]
and take as our dynamical degrees of freedom the position
x €M (where M is the d-dimensional space-time mani-
fold) and a vielbein frame €, with &;¢}g,, = n,, where
Nap = diag(+,—,—, ...,—). Our phase space is then the
total space P of a Lorentz-frame bundle z:P — M
equipped with local coordinates (x#,¢4) and structure
group SO(1,d —1).

It is convenient to introduce a reference vielbein e,,
again with efe?, 9 = Nap- This reference frame allows us to
write

e, =e,A’,, AeSO(1,d-1), (37)
and so equivalently regard the dynamical degrees of free-
dom to be x € M and the Lorentz transformation A.

We assume that the space-time M is equipped with a
Riemann connection—and hence with covariant derivatives
V.. The reference vielbein then defines the components of
the spin connection »“y, by
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Ve, =e,0’,,. (38)
We use these components to assemble the spin-connection
one-form
o) = oy, dx", (39)
which lives on the base-space M. The associated Riemann
curvature is the base-space two-form
Rab = da)“b + Cl)ac A C()Cb. (40)
As with any frame bundle, the connection on the base space
automatically provides a decomposition of the tangent
space at each point p in the total space P of the bundle
into horizontal and vertical subspaces: T(P) = H®V.
We begin with particles with a nonzero mass m and
orient the frame so that k = mé,, is the 4-momentum. Thus
kP = mAP, are the vielbein components of the momentum
and k* = mel; A%, are its coordinate components. We also
introduce a co-frame of one-forms

e = e dxt (41)
where e*(e,) = e;%¢} = 5 and e;* = g,,n*"e}. We then
set € = (A=), e*’. With our 5, = diag(+, —, —, ..., —)
signature we have mé*® = k,dx* = k,e*.

In [13,14], the action integral was written in terms of
traces over some faithful representation of the spin or gauge
groups. In the present case we could use any faithful
representation of the Lorentz group, but it seems natural to
make use of Dirac matrices y, and the Dirac representation
A—D(A) that acts on them as

D(A)y,D(A™Y) = ypA°,. (42)
We will simplify the notation by setting A = D(A). In this
section we use the matrices

1
Oup = Z [}/a’ 71)] (43)
as the Lorentz generators. These matrices obey
[Gij# Umn] = NjmOCin = NimOjn — NjnCim + Min0 jm> (44)
and
[Gab» }/c] = Yallbe = YbNac- (45)
We also have
1
{6,004} = = Ztr(ﬂ)(ﬂac’?bd — NadMlpe)- (46)
The covariant derivative acting on a spin field is
o 1 b
V= (g tgome e @
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and, as usual, we regard the spin connection in the Dirac
representation

W= (48)

ab
O up@® dx

N[ =

as a matrix-valued one-form.
We can use the Lorentz transformation matrix 4 to write
k, = tw{xA7y A}, (49)
where x = my°/tr(l). Similarly, we define a classical spin
angular-momentum tensor
Sab = tr{Eﬂ_laabﬂ}, (50)
where X = %Z“baab.

The quantities k, and S,, are the true dynamical
variables of the system. They are coordinates on the orbit
of k and X under the co-adjoint action of the Lorentz group,
and the reduced phase space is the cartesian product of M
with this co-adjoint orbit [41]. After quantization of the co-
adjoint orbit, the quantities x and X will define the highest
weights in the resulting representation of the Poincare
group [39]. Different choices of the matrix X% lead to
different values for the intrinsic spin of the particle.
Similarly different choices for the matrix x = xy, allow
us to consider both massive and massless particles within
one formalism.

If we compute

[2’ K] = yazabklw (51)
we see that [, «] = 0 is equivalent to %k, = 0, and by
Lorentz covariance this is in turn equivalent to S,,k” = 0.
But [X, k] = 0 means that X lies in the Lie algebra of the
little-group of k. As S,,k” = 0 is a property possessed by
the Dirac angular momentum S, = o,y [see Eq. (B9)]
we will accept this little-group property as a natural
constraint on the spin tensor. In the relativity literature it
is known as the Tulczyjew-Dixon condition [22,42]. It is to
be contrasted with the rival Mathisson-Pirani [20,43]
condition S,,x” = 0, where

dxt
vh _ b
X’ =e;,—. 52
" dr (52)
Here 7 can be any coordinate that parametrizes the space-
time trajectory x* (7). It does not have to be the proper time.
When 4 depends on 7 we have

d )
— S = —tr{[Z, 27117 6 A}
dr

= {2z, 1A oy ). (53)
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The covariant derivative of S, along the trajectory x*(z) is
therefore given by

D def d . . .
Esab = %Sab - (ScbwLa/,t + Sachhﬂ)xﬂ
= —tr{[Z, (A2 + 27 (@, ) D)2 6,4}
= — {2207 + 0,50, ) (54)

Similarly, from k, = mtr{xA~'y,1}, we get

dk .
—4 = {27 ) (55)
T

and hence

D d
—k, =—k, — k., ,x"
Dt dr“ @ au¥

= — {2 27 + @, 7y, ) (56)

Now we introduce some one-forms that we will use to
build the classical action functional for our particle.

Let e¢* =e™y, so we can write €= [A"!]%e" as
¢* = A"'e*A. We use this to write

k dx* = —1 s g def

Ldxt = tr{kA~le* 1} = Q. (57)

which is to be considered as a one-form on the total space
P, rather than on the base space M.
Next define

1 e 1
@ =5 0" &) <d + Eaabwa’”>ﬂ =1"d+ o)

(58)
This is again 1-form on the total space of the bundle z:
P — M. The @ are zero on the horizontal subspace of
H C T(P) each point on the fibre, while the e*“ are zero on
the vertical subspace of V C T(P). We use these forms to
define

Q, = {227 (d + w)1}. (59)

We take as the action functional
S[x, 4] = / Q, (60)
where

Q= Q] - QZ’ (61)

and the integral is taken along the curve parametrized by 7.
As shown in [14], the equations of motion are
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ixdQ = 0. (62)
where X is a vector field tangential to the trajectory in P.
To compute dQ; we will assume that the spin connection
is torsion free, so that
de* + w, A e’ = 0. (63)
We can then use
[O-u}n },L] = (yur]hc - yh”ac) (64)
to see that

dQ, = dw{xi'e* 2}

1
= —tr{ [ﬂk/l‘],dM'] + Eaaba)“b} e*}. (65)

For dQ, we need the matrix-valued Riemann curvature
tensor

1
da)+a)/\a):—<

2

1
—ou,,R”b> dx'dx* =R, (66)
2 w

and observe that if & = 27" (d + 1 6,,0)1 we have
-] b)g— 51
di+o Ao =77 (JouR? )2 =27 R (67)

Consequently

1
dQ, = a’tr{Z&‘1 <d + Eaaba)"b>/1}

1 2
= tr{AZA"'R)} — tr{,m—l (dM—l + Eaaba}“”> }
(68)

We will write dAA™! + w = @ = 0,,@§. (The subscript
“R” is because @&’ includes the right-invariant Maurer-
Cartan form d117'.) We note that ¢** and @¢” are linearly
independent and between them span T*(P).

We can evaluate the contractions iydQ = dQ(X) by
using

e’(X) = X%, = Xe;y,.

AN (X) = A,
1 1
R(X) = —Eo-abR“b’wdxﬂjCV = _EdabRabm,jCyelzze*a,
1
o(X) = Eaaba)“hﬂfc". (69)

Here ¥* denotes dx*/dr. We find that

025004-7



MICHAEL STONE, VATSAL DWIVEDI, AND TIANCI ZHOU
ixdQ, = —te{[ax2~ 207" + 0, iy, te*
+ tr{ Ak o 4, 7| JiC D /2
= —t{[axA"", 7" + @, iy, fe

oo 1
+ tr{/lk/l_l (ya”bc - yhnac)xL) Y w??b

2
= (Be)e s Gt -igag (0)
and
ixdQy =—tr{AZA"'R, " e} e
—tr{ A2 0+ w, o Y /2
= (—%S,,mR’""We’,ﬁic”> e+ (%) %&)7{’. (71)

The contraction ixydQ is therefore a position-dependent
combination of ¢** and cb;g”. For it to be zero, we need the
coefficients of these forms be separately zero. Requiring
the vanishing of the coefficient of ¢*¢ yields

D 1 .
Ekc + = SR, 50l = 0.

5 (72)

Similarly, the vanishing of the coefficient of @%’ gives

D
—Sab + ).Cakb — ka)‘cb = 0

Do (73)

These are the Mathisson-Papapetrou-Dixon [20-22] equa-
tions. The momentum equation (72) exhibits a gravitational
analogue of the Lorentz force, while (73) expresses the
conservation of total (spin and orbital) angular momentum.
It is well known that to obtain a closed system these two
equations have to be supplemented by a condition on the
spin such as our Tulczyjew-Dixon condition k%S, = 0.
It is explained in Appendix D that this condition means
that x*(7) is the worldline of the particle’s center of mass.

Before we proceed there is a necessary consistency
check. Our entire action principle is built on the assumption
that k> = m? is fixed—but the RHS of (72) does not
immediately seem to ensure that k“k, is a constant of the
motion. To verify that it is, we can write k, = mu, where
u,u® = 1. We then contract the both sides of the momen-
tum equation with v¢ = x¢ and use the antisymmetry of the
curvature tensor to see that

mx®i, + mx“u, = 0. (74)

Now from
u, 8% =0 (75)

we get
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(76)

Uity S = —it,it, S = 0,

and hence from the angular momentum equation we find
that

b b

iy,

(77)

0 = ugit, (k%> — xkb) = m(i,x" — i, u’u x) = mit

Thus 0 = m(x“u,) and the mass is indeed a constant of
the motion. This constancy continues when we include a
Lorentz force. It would not survive were we to include an
explicit magnetic moment. In that case the action would
need to be extended to accommodate a modified mass-shell
condition [44].

B. The anomalous velocity due to spin
It is the Mathisson-Papapetrou-Dixon angular-
momentum equation (73), with its implication that x“ is
no longer parallel to k%, that gives us the anomalous
velocity. From Eq. (73) and the Tulczyjew-Dixon little-
group condition k¢S ,, = 0 we deduce that

Dk
Dt

Sab — kz).Cb - kb(x . k) (78)

or

1 Dk¢
b, = —5 | ka(i — ). 7
iy = (ka<x K) + S DT) (79)

There are several things that we can do with this result.
Firstly, substituting (79) into the angular momentum
conservation law (73) we find
DS 1 Dk¢ Dk«
ab (Suck,, — 4 Sk, D—> =0. (80)
T

Dt + m? Dzt

This is Fermi-Walker transport of the spin angular-
momentum tensor along the trajectory whose tangent
vector is k*/m rather than X*. Dixon [22] calls this
M-transport.

Secondly we can find the “anomalous” correction to the
relation between velocity and momentum. Up to now the
parameter 7 was arbitrary. The action is reparametrization
invariant so 7 does not have to be the proper time. If we
change the parametrization 7 — ¢ in such a manner that the
vielbein component X, becomes unity, then the remaining
X;, i=1,...,d—1, are the components of the velocity
“3”-vector in the local Lorentz frame e,. The first compo-
nent of (79) now becomes

1 . Dk¢
1 :W{(X k)E+SOC—}7

Dr (81)

or, rearranging,
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24 kS
(k- k) = % (82)
where
. et DK*  dk?
2 = T o ke (83)

Dt dt

Again use i and j for space indices, observe that kX = E =

\/mE+ 573 KK gives

. okO k. k...
=2k ==k = -2k 4
o/ E E’ (84)

and make use of the skew symmetry in a, b of the spin
connection *?,. We find that

. k1 ki k; DK/
xi—E+W(Sij—S,0bf ESOJ> oY (85)

Equation (85) has a familiar structure! It looks just like
the anomalous velocity equation (2) with

k _Kig, ) (86)

1

Furthermore, the associated two-form

Ly oo ki ks Do
S Qudki A di ; )dki A dk

1
=~ (Sff‘SfOE‘—SO
(87)

looks very much like our matrix-valued covariant Berry-
connection curvature tensor

1
Saop = Cy) <Sij

which in three dimensions is

k.
— S —

k; o
- Esoj>aﬂdk Adk,  (88)

1 1(1 (k - o)k
ot = 22 7{2 <G+m2(1+r)

The quantity in braces is the lab-frame spin of a particle
with polarization s = ¢/2. It is therefore natural to identify
the classical spin angular momentum S, with expectation
value

>aﬁ} - (dk x dk). (89)

i
Z [}/a’ 7/[,]1// = C*G(Sab)a/}cﬂ (90)

W
of the matrix-valued connection evaluated in the WKB state
v = u,C* Were we to quantize by integrating over 4 in a
path integral, we would expect S, to correspond to the
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operator (S,;),s that acts in the spin-polarization Hilbert
space.

C. Return to the Berry connection

Our classical action (60) leads to dynamical evolution of
the elements A1 of the noncompact Lorentz group
SO(1,d — 1). In the previous work [7,13,14] the phase-
space was parametrized by x, k, and elements of a compact
rotation group. We can connect the apparently distinct
formalisms by a simple reparametrization of our degrees of
freedom. We factorize each element A as

A= ko, (91)

where 4, is a chosen k-dependent Lorentz transformation
that takes us from the reference e, to momentum k, and o
lies in the little group of e,. For massive particles this little
group is SO(d —1). The two one-forms composing the
action (60) now become

Q; = k,dx* (92)

Il
=4
—N—
™M
L
N
IS
+
N
=
N
T
|
~
==
Q
>
N
N
g
)
>
N—
Q
—

(93)

and the action S[x, 4] becomes S[x, k, 6]. As X lies in the Lie
algebra of little group, the trace operation projects the
Lorentz Lie-algebra element A;'dJ; into the Lie algebra
of the little-group. The projected element PA;'dA,P =
—ia;dk' is essentially the non-Abelian Berry connection
that produces parallel transport on the little group in the
formalism of [7,13,14]. A gauge transformation on this
Berry connection is a change of choice 1; — 1,0} for some
k-dependent element o}, of the little group. It is “essen-
tially” the same connection rather than “precisely” the same
because we have A;'dA, rather than Azdﬂk. The present
parallel transport is therefore the nonunitary covariant
connection that gives rise to Thomas precession. In
[7,13,14] we are considering massless particles, and the
Berry connection provides unitary parallel transport on
the group SO(d — 2). Connecting this massless case to our
present formalism requires a more detailed consideration
that we supply in the next section.

IV. MASSLESS PARTICLES

When our particles are massless the situation becomes
rather more complicated. Even in the free case—no gravity,
no electromagnetic field, and hence k* = 0—the Mathisson-
Papapetrou-Dixon angular momentum equation
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dsS

T

+ x.kp —kyx, =0 (94)
supplemented by the Tulczyjew-Dixon condition S,,k* = 0
fails to have a unique solution. Suppose that k> = 0 and S,
satisfies S,,k” = 0, then

S‘ab = Sab + (kaSpb - kapa>®p (95)
still satisfies S‘abkb = 0. Further, if S, and x, satisfy (94)
and we set

Ry = X4+ S,,07, (96)

then S‘ab, X, are also a solution of (94) for any time-
dependent ©7 (7). This multiplicity of solutions is related to
the absence of a well-defined center of mass, and to the
corresponding difficulty of defining a covariant spin angular-
momentum tensor for massless particles.

That there is going to be problem in the massless case is
signalled by the factors of 1/m? in our Berry curvature
tensors. Indeed we expect a problem defining the spin
angular-momentum tensor itself: when y is a Dirac spinor
of definite chirality, the tensor S,, = iy[y,,7p|w/4 is
identically zero. To understand the spin of massless
particles, we need to appreciate Wigner’s observation
[45] that the little group for massless particles is the
Euclidean group SE(d — 2), and not the naively expected
SO(d - 2).

For massless particles in d-dimensional Minkowski
space we can take the reference-momentum einbein to
be the null-vector

N =(1,0,...,0,1).

—
d

(97)

The Lie algebra of the little group of N consists of the o,
with 0 < a,b,< d -1 that generate SO(d — 2), together
with

def

Ty = N6py = 604 + O(4-1)ar O<a<d-1. (98)
Indeed, we can check that
(74, NPy,] =0, 0<a<d. (99)
From
[Gijs Cmn) = NjmGin = NimGjn = NjnGim + NinGjm  (100)

we find that

(101)

[”av ﬂh] = 07 [Gabv ﬂc] = Npcq = NacTp-

The 7z, therefore behave like translations, and together with
the rotations generate the Euclidean group SE(d —2).
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Wigner argues in [45] that the quantum states of all known
particles must be unaffected by these “translations.”

For example, consider the 3 4 1 massless Dirac equation.
For N = (1,0,0, 1) we have

1 |:l.02 (o] :| 1 |:i0'1
Ty — ——= s Ty = =
! 2 (o] i0'2 : 2 —0)

—0,

}, (102)

iGl

and both these “translation” operators act as zero on the
relevant positive energy, positive and negaive chirality, states

0

W N = . wn) =

1
0

103
) (103)
0

—1

We can obtain a general null-momentum k¢ = (|k|, k) =
e*(1,n) by applying to N“ a rapidity-s boost parallel to the
e direction, and then a rotation that takes e; to the unit
vector n. In the Dirac representation, this procedure is
implemented by

Ay = exp{—i¢Z; } exp{—i0%, } exp{sK;}, (104)
where 0 and ¢ are the polar angles of the direction of the
3-momentum Kk, and

1[o; O 1[{e; O }
Zi —_ = N K i = = N 105
o ol ey )
are respectively the rotation and boost generators. The
resulting covariantly-normalized spinor positive chirality
spinor is u (k) = A,u, (N) is

u, (k) = 52 (i) (106)
where
[ cos(6/2)
x() = (ei‘/’ sin(6/2) ) (107)

The Dirac-equation eigenstates are therefore safely indif-
ferent to any Wigner translations in 4, — ;0.

The same is not true of the classical angular momentum
tensor S,, = tr{=A o, 1}. If we replace

d-2
A — dexp < 9’?:,-) (108)
i=1
then we have a transformation
S0 Sap = Sap + (kySpp — kpS ) OF (109)
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where ®” = A?.6" and k% = A“,N”. Thus S, is affected
by the unphysical Wigner translations in the same manner
as in (95). The Wigner-translation operation differs from
that in (95), however, in that the parameter ®” in (95) is
arbitrary but the parameter in (109) must satisfy ©”k,, = 0.
This constraint follows from the relation ®” = Af ¢!, and is
necessary for two successive translations with parameters
O] and ©) to be equivalent to one with parameters
O} + ©4. In particular, a transformation that is allowed
by (95) but not by (109) is given by ©f = (-E~',0,...0).
It takes

k, k
00, " Sab = (Sab - ESOb = S0 f)

In other words it takes the spin tensor and projects it to
Pauli-Lubansky tensor. Any subsequent Wigner translation
leaves the Pauli-Lubansky tensor invariant. This tensor
therefore captures the physically significant part of the spin
angular momentum.

A Wigner translation, when combined with the trans-
lation x, — x, + §,,07, leaves the free action invariant
even for time-dependent ®”(z). The Wigner translation
group must therefore be regarded as a gauge invariance
[46]. The gauge group is slightly larger than just the Wigner
translations because the action on x, is not Abelian. Again
requiring ©”k, = 0, we find that

[66,.00,|x, = 2070OIS ,,k, (110)
This means that translations x, — x, + €k, must also be
included in the gauge group of the free action [46].

Being gauge variant, the position of x, of the particle is
not an observable. This seems like a disaster for any
mathematical model that claims to describe the motion
of a particle. All is not lost, however. What has happened is
that a massless particle has no rest frame and therefore no
observer-independent center of mass. As explained in
Appendix D, it still has well-defined mass centroids, but
the location of these centroids depends on the reference
frame of the observer.

In our massless action, we are still free to fix a gauge, and
so pin down a position for the particle. A natural gauge
choice is to factorize A = 1,0 where ¢ is chosen to be an
element of SO(d —2). In other words, we deliberately
excluding the problematic Wigner translations from our
action. Once we do this the free action becomes

/ (k,dx* — tw{Zo~" (d + A dAy)o}),  (111)

and this is of the same form as the action in [7,13,14] where
the internal spin degree of freedom lives only in the rotation
part of the little group. For example, in 3 + 1 dimensions
we write
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o = exp{iZ;p} (112)

and

A = o = exp{—ipZ; fexp{—i0%, } exp{sK;} exp{ipZ;}.
(113)

If we take take X = JX5/4 then
1 -1
Qz = ZJU'{Z:;), dﬂ}

1
= thr{230'_1 (d + /’{Eldﬂk)d}
= iJtr(dgp — cos 0dep)

The dg is total derivative and does not affect the equation of
motion. The iJ cos @d¢ term is precisely the Berry phase
for a spin J particle. Our action therefore reduces to that
in [7].

In general dimensions the gauge fixed action gives the
anomalous velocity of the lab-frame centroid in terms of
Wigner-translation invariant Pauli-Lubanski tensor.

k.1 k: k. ..
xi—fl_'—ﬁ(Sij_SiOE/_ElSOj)kj' (114)
In the massless case the Pauli-Lubanski tensor not only has
vanishing time components (as does the massive case) but
is also perpendicular to the space components of the
momentum. This condition is the higher-dimensional
analogue of the spin being slaved to the momentum.

The gauge-fixing is frame-dependent, and consequently
the action is no longer manifestly Lorentz covariant. For
complete covariance we need to allow 4 to be any Lorentz
transformation matrix—not only one that omits the Wigner
translations. When we make a Lorentz transformation, we
must therefore make a corresponding gauge transformation
so as to restore the noncovariant gauge choice in the new
frame. The gauge transformation involves the spacetime-
translation in (96), and this translation corresponds to the
relocation of the lab-frame mass centroid defined in (D12).
We can understand the shift by simple kinematics: consider
a massless particle with lab-frame 4-momentum and spin
vector

k= (|k|. k) = ([K[, 0,0, [k]),

S =5/(0,0,1). (115)

From a frame moving with rapidity s along the x' axis we
see these vectors as

k' = (|k| cosh s, —|k| sinh s, 0,
S’ = |S|(—tanhs, 0, sechs),

k)
(116)
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and so observe nonzero x' component of spin §'! =

—|S|tanh s. Since the x! component of the total angular
momentum J = L. + S is unchanged by the boost, there
must be a compensating orbital angular momentum com-
ponent L' = |S| tanh 5. This can only arise from a sideways
shift 6x> of the particle’s trajectory such that L' = k36x2.
Thus we expect a transverse shift

S|
5x* = —tanhs.
|k

(117)
It is straightforward, if a little tedious, to verify analytically
that the energy centroid of a circularly-polarized gaussian
light beam experiences a sideways displacement of exactly
this amount when observed from a moving frame [47].
This shift is precisely the unusual Lorentz transformation
uncovered in [16]. It is not just a mathematical artifact: the
energy-centroid is where a photon detector at rest in this
reference frame would locate the beam. For more discus-
sions of the effect of rotations and boosts on light beams
see [48,49].

If the change of beam direction under a small s boost is
compensated for by a small rotation, the net effect is a
small Wigner translation of the beam. A sequence of such
combined boosts and rotations can translate the beam
through an arbitrary amount. Consequently, being a physi-
cal shift, the Wigner translation gauge invariance is
necessarily violated by beam stops and interactions. For
example, if k, is nonzero we find that the angular
momentum conservation equation changes into

ds.,,
dr

+§Cakb - ka;b = (i{aSpb - ichpa)@p

:((xa_;ca)kb_ka<xb_)~cb))' (118)
What has happened is that, with a nonzero net force, the
external torque depends on the point about which moments
are taken. The nonzero right-hand side of (118) is the
torque about the new particle location X, due to the force
acting at the old particle position x,,.

Once we are no longer allowed to make gauge trans-
formations, the gauge-fixed theory and manifestly covariant
theory are no longer exactly equivalent. As a consequence
exact Lorentz invariance has been lost in the gauge-fixed
theory. This may seem unsatisfactory, but it is to be
expected. There are two related reasons. Firstly the proof
cited in Appendix D, that the angular momentum of an
extended body defined by (D2) is actually a Lorentz tensor
depends crucially on there being no external force on the
body. When we make a Lorentz transformation, the time-
slice integral samples different epochs in the body’s history,
and the history-dependent momentum acquisition spoils the
tensor property. This fact necessarily causes a problem for
any point-particle approximation to the extended body
unless the body is very compact and the external force
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small. The force being small is also a necessary condition
for the validity of the adiabatic approximation which is a
prerequisite for Berry transport. The adiabatic approxima-
tion also depends on the difference in energy between the
+|E| states being large compared to the inverse timescale of
the change of the states. The point-particle actions used in
[7,13,14] are therfore only applicable to particles with a
large E = |k|—but a Lorentz transformation can take a
large E = |k| particle to one with arbitrarily small E.
Therefore only we expect Lorentz invariance only under
suitably “small” transformations.

V. DISCUSSION

We have seen that for massive particles Berry-phase-
containing equations of motion such as (1) and (2) can be
the three-dimensional reduction of a manifestly covariant
equation of motion for the particle’s center of mass. The
same is not true for massless particles. In the absence of a
rest frame in which to define the center of mass, the best we
can do is derive an equation of motion for the lab-frame
energy centroid of the particle, and when the massless
particle is spinning the position of this energy centroid is
observer dependent.

We can understand physically why the spin angular-
momentum plays a central role in the anomalous velocity.
A spinning object of mass m and acted on by a force F
possesses a hidden momentum [50,51] of

PSpin ~ SxF
hidden m 6‘2

(119)

(We have restored the factors of ¢ to emphasize that this is a
relativistic effect.) Therefore the total momentum of the
body is given by

. SxF
P~ mx — 5 (120)
mc
Identifying P, with k, and F with k, gives us
kK SxKk
X~ — . 121
m  m2c? (121)
Now, at low speed, and taking into account that x, = —x“
and k, = —k“, our anomalous velocity equation (85)
reduces to
. k Sxk
=t (122)

so anomalous velocity is precisely accounted for by the
hidden momentum.

We have as yet explored only the effects of gravity, and
have not included electromagnetic forces. In particular we
have ignored the consequences of any intrinsic magnetic
moment possessed by the particlee. We imposed this
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restriction because a nonzero gyromagnetic ratio g requires
us to modify the mass-shell condition to

k|? = m? —i—%egS/wF’“’ (123)
[38,44], and accepting this modification would obscure
some of the geometric effects that we wished to display.
However, in order to compare with other approaches to Dirac
particle dynamics, we must now allow for a nonzero
moment.

The first effect of a magnetic moment is to alter the
relation between energy and momentum. For a massive
particle at rest in three space dimensions, the modified
mass-shell condition leads to

€g €g
Ezm,/l—WS-B:m—%S-B—l—OﬂBP). (124)

This is the usual energy shift due to a magnetic moment
1 = egS/2m. In general dimensions, there is a similar shift
but the vector g must be replaced by a skew symmetric
tensor

ge

Mabzﬁ

Sab- (125)

For a massless particle, we first need to replace the gauge
dependent §,, by the Gauge invariant Pauli-Lubanski
tensor whose y, v = 0 components vanish. Then we find

eg
E() ~ K| = 5358 B+ O(1/IkP)
— __° k. 2
= k| 2|k|k B+ O(1/|k|?), (126)

where the second inequality applies to the g =2, § :%
Dirac particle. This is the modified energy-momentum
relation found in [16,52].

In the presence of a field induced torque, the angular-
momentum conservation equation becomes [53]

D . .
_Sab +xakb - kaxb = FacMcb - Machln

- (127)

and if we approximate (by ignoring terms higher in |S|)
i‘b = erCjCC ~ erCkC/m,

(128)

then we find that our anomalous-velocity equation is
replaced by

. ki g\ 1 ki ki v
Y=g+ (1 —2> e (Sij_SiOE{_ESOj>kj‘ (129)

Again we can understand this via a hidden momentum.
An accelerating magnetic dipole possesses a hidden
momentum of
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pEM pxE

M o T 130
hidden 6'2 ( )
[54,55], so
. xE SxF
Py =mx+E =272 (131)
& mc
Once we set u = ge/2m and ¢E = k, we find that
k—mi+(2-1)—sxk (132)
= mXx = - N
" 2 mc? '
or
.k g\ 1 .
X_%+<1_§> mZCZSXk, (133)

which is again consistent with the Mathisson-Papapetrou-
Dixon equation modified to include the effect of the
magnetic moment. That there is no anomalous-velocity
correction when g = 2 is also a conclusion in [56].

The result in (133) does not coincide with the wave
packet calculation in [19]. In [19] the anomalous velocity is
entirely accounted for by the electromagnetic hidden
momentum. There is no sign of the spin hidden momentum
that is intimately connected with our Thomas precession
curvature. This discrepancy is presumably due to the
position “x” in the massive Mathisson-Papapetrou-Dixon
equations being the center of mass extracted from moments
of the energy momentum tensor. The position “x” in [19] is
the center of charge or probability density of the wave
packet. Since a Lorentz-boosted magnetic moment acquires
an electric-dipole moment, the charge center will move
away from the mass-centroid in a velocity-dependent
manner and this momentum-dependent shift will also
contribute to Xx. Whether this shift completely explains
the discrepancy requires further study.
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APPENDIX A: SPINORS, POLARIZATION
AND SPIN

In three dimensions we may take the Dirac gamma

matrices to be
1 0 o 0 o,
o -1 " T, of

i 0,i [0 @i
o ==YoYi=V7V = ol
Oj

P’ =
(A1)

The eigenspinors with Lorentz-covariant normalization

Uty = —DyUg = Oyp, UaVp = Daity = 0 can be taken to be
1 E+m)y,
T e
2m(E+m) | (6-K)y,
1 ‘K)y,
i) =] I ]
2m(|E| +m) LUE[+m)x,

where y, are the unit two-spinors y; = (1,0)” and
x> = (0,1)7. The label @ on u, is therefore that of the
spin in the rest frame of the particle, where

Xa
u, - ol
The spin in the particles’s rest frame is usually called the
“polarization,” and is a more transparent quantity to work

with than the lab-frame spin [30].
Define the spin generators

(A3)

i
2;41/ = Z [}/ﬂ’ yl/] (A4)

and assemble the spatial parts into a spin three-vector £ =
(X33, Z31, X12) where

1 0
z——r } (AS)
210 o
We can now evalaute
1 1 k(k-o)
WZug =~ yh —
Halt 2"( T <1+y>> ’
1 < 1 k(k~o-))
=—\|0 R
2 m2 (1+7/> af
1 yzﬂ(ﬂ’d))
=—|(oe+—m=) , A6
2( (1+}/) af ( )

where = v =k /E is the 3-velocity, and y = (1 —|8|>)~"/2.

The physical meaning of the combination of ¢’s in
parentheses in (A6) can be understood by defining a spin
four-vector (S°, S) that takes the value (0,s) particle’s rest
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frame. Then, by performing a Lorentz transformation, we
find that the corresponding lab-frame components are
given by

L TBBs)
S_S+7(l+y)
SO =yB-s=8-8. (A7)

We see that uZZu/} coincides with the Lorentz transform of
the matrix elements of the operator that measures the
polarization s.

Alternatively, we can define the Pauli-Lubansky spin
four-vector operator

— %exyblz}w (ﬁ) , (:'1230 — 1’
m

& (A8)

that reduces to (0,X) in the particle’s rest frame where
k* = (m,0). Its three-space components are

A k; k
©' = §7€Uk <2jk - EZOk —Zjo Ek>, (A9)
and the time component is
S=yp-3)=p-©. (A10)

Because the matrix elements 4,2, u; transform as a tensor,
and the matrix elements of the space components X; and &;
coincide in the particle’s rest frame, we must have that

1 + _ 1 Py kl kk
;uaZiuﬂ = Ma{zgljk <ij - EZOk - Zj() E) }Mﬂ, (All)

as can be confirmed by direct calculation. The left-hand
side of (A11) comprises the matrix elements of the 3-spin
operator in a plane-wave beam normalized to one particle
per unit volume in the lab frame. A physical interpretation
of the right-hand side is provided in Appendix D.

Although the Pauli-Lubansky four-vector can only be
defined in 3 + 1 dimensions, the identity

k;

| ] k,
;uzﬁ,juﬁ = U, (Z,j - Ezoj - Z,-OE]> uﬂ, (A12)

is true in all dimensions. Equation (A12) follows from
setting A = 0, y = i, v = j in the covariant identity

1._ 1_
E Ma{)/l, Zﬂu}uﬂ = Eua<k/12”y - k,uzﬂb - Zﬂiky)l/lﬂ. (A13)

In turn, Eq. (A13) holds because the right- and left-hand
sides are both totally antisymmetric tensors, whose com-
ponents coincide in the rest frame of the particle. With the 1
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index raised, the left-hand side of (A13) comprises the
matrix elements of the spin-current tensor Sﬁm,.

APPENDIX B: GENERAL PROPERTIES OF
DIRAC SPINORS AND MATRIX ELEMENTS

We collect some properties of the solutions u,(k), v,(k)
to the plane-wave Dirac equation in any space-time
dimension. The positive energy eigenvectors u,, i, =
uhyo satisfy

(k" —m)u, =0,

iy (¥, k* —m) = 0. (B1)

The corresponding negative energy eigenvectors v,(k),
Vo = vlyo, obey
(7K +m)v, =0,
Dy (¥, k* 4+ m) = 0. (B2)

In both cases the momenta lie on the positive energy mass
shell. k> = m?, k° > 0. We impose the Lorentz covariant
normalization i,y = —VyVp = Oyp, UgVp = Vatty = 0.
The completeness relation is therefore

I = u,it, — v,0,

=A, +A_, (B3)
where the projection operators are
Ay = (m+ 7, k) = ugi
= —\m = Uu,u
+ om },;4 a%a
1 _
A= - (m =y, k") = =040, (B4)

By varying the equation i,(y,k* — m)u; = 0 and making
use of the normalization conditions, we find the 4-current
matrix elements

Uoy'ug = Dy vg = Skt /m = S,5VF. (B5)
Here V¥ = y(1, p) is the 4-velocity derived from the group
velocity f = 0k°/Ok.

Similarly, by varying (B1), (B2), we find that

_ 1 _
D,0up = ﬁék”(vayﬂuﬂ),

1
5ljla’U/,’ = %516”(120,}/”12/3). <B6)
We must keep k* on the mass-shell; consequently the dk*
are not independent.

Now consider the covariant Berry connection a,; =
itgdug. From it,duy + ditaug = 0, (B6), and the complete-
ness relation, we find that the corresponding curvature is
given by
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def

Bap = (da —ia%),,
= (idi,duy — dii,u,it,dug)
= i(ditgu,i,dug — di,v,v,duy — dit,u,it,dug)
= —i(di,v,)(v,dug)
= —i(itay,v,) D,y ug)dk* A dk* [4m?
= i(@gy,y,up)dk* A dk* [4m?
= i(fgly,. v, ug)dk* A dk*/8m?
1

= 5 (Su) gpdk A dk*.

. (B7)

Another set of covariant matrix elements are the

(Suv)ap = oy Up- (B3)
that occur in (A11), (A12) and (A13). They play the role of
the components of a covariant angular momentum tensor.
We find directly from the Dirac equation, that they obey

K(Su)p = 0. (B9)

APPENDIX C: COVARIANT BERRY TRANSPORT
IS FERMI-WALKER TRANSPORT

Here we show that if we expand y = uﬂCﬁ and y =
C**u, then the covariant parallel transport of the coef-
ficients C* leads to the angular momentum tensor

S = ill—,zuyw

: (1)

being Fermi-Walker transported along the trajectory.
Berry transport of the C* means that

8C* = — (i, 0uy)CP. C2
4

The states u,(k) themselves change with & so that

Sy = Ugil, Oy — 0, DOty (C3)
Putting these two results together we have

8(usCP) = —v,(0,6u5)CP, (C4)
and

8(C*1,) = —C**(Siqv4) vp. (C5)

We now use the formulas (B6) for (6it,v,) and (7,0ug)
to find
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4i6S™ = C*61,0,7, /" 1Ty — [y 110, 0,615 CP,

g
= 5, @10, 0y = Wl v 1ost7w).
s
= +%(W}//{0p0pyﬂuau0y V= (ﬂ(—)lj))
o
- % (Wyivpvpyﬂ VoUs? W — (/’K_)U))

sk )
o Wy u,iiy v, 057,y — (<))

K _ _
=3, WP 00, v Oeriy = (peov)). (Co)
We can simplify by using the current matrix elements to get
i _ _
o8 = o5 (KK, yily + Kok wly .1 y)
1
=3 (K*Sk*SH; + kHSKAS;#) (C7)
Thus we have found that
oS 1 ok ok*
— k¥ —8", +k*——S* ] =0. (C8
or +m2< 81514— 8151> (C8)

At the level of WKB, where we see no anomalous velocity,
we have V¥ = k* /m. Consequently (C8) is

oS* ov* ov*
—+V—8 +VF—5,Y=0.

ot + or =4 + or
Given that V,S* = (k,/m)S* = 0, Eq. (C9) is the state-
ment that $* is being Fermi-Walker transported.

(©9)

APPENDIX D: CENTROIDS AND THE
CENTER OF MASS

We review some standard material on centroids and
centers of mass of extended bodies that should apply to
wave-packets of Dirac particles. We work in flat space and
suppose there are no external forces. Our extended body
therefore possesses a conserved and compactly supported
symmetric energy-momentum tensor

0,T" =0, ™ =T, (D1)
Let x/, be a space-time event, X a spacelike surface, and
define the angular momentum of the body about x, by

M = [l =1 - (2 - )1y, (02)

then ([58] page 161) M is a tensor, and independent of the
choice of X.
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We now choose a lab frame and, with i,j running
over space indices only, we define the energy and three-
momentum of the body to be

E = / TPy,
N=¢

respectively. We also define the mass-centroid X} in the lab

frame by
{/ T00d3x}X£ :/ XT3,
x0=¢ xO=t

pi:/ Tdx, (D3)
=t

(D4)
Now

0, / TV = / A T™dx = — / 0, Tdx =0,
WO=¢ KO=r W=t

(D5)

and
6,/ xiT00d3x:/ x0T x = —/ xiajT~f0d3x
=t =t =t

:/ SiTdx = p'.
x0=¢

So, differentiating its definition with respect to 7, we read
off that the ordinary 3-velocity of the centroid is

(D6)

XL =p/E. (D7)

Now take X/, to be point in the x° = 7 surface. Then

i0 _
My =

X0

= (Xi —x\)E.

{(xf = )T — (20 — )T}
=t

(The second term on the right in the first line is zero
because x” —xQ is zero everywhere in the integral.)
Thus M¥ is zero when A is the centroid in the lab frame.
If we replace the lab frame with an inertial frame having
4-velocity V# we have that M'\’V,, = 0 if and only if A is
the mass centroid in that frame.

Define the center of mass Xi-y, to be the mass-centroid in
the frame where p' = 0, and the intrinsic angular momen-
tum S* to be the angular momentum about the center of
mass. Thus $*p, =0 and we automatically have the
Tulczyjew-Dixon condition.

Now, looking back at the definition of angular momen-
tum, we see that if we change reference points we have

MY + X\ p¥ = xjp' = MG +xpp* —xgpt.  (D8)
Let us take x, = Xy and xg = X, to be the centroid in
the lab frame. Then
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S+ Xeup® = Xeyp" = MY + X[ p* = Xt p*, (DY)
and
S+ (Xem — XL)p" — (xem — Xp)p" = M7 (D10)

The lab-frame centroid condition gives us Mi® = 0, and we
have (X2y; — X?) =0, so
S% — (X4 — XY )E = 0. (D11)

We write this as
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Ov 1 )
S Gt G

Xty —XY) =",
( CM L) E E2

and find

v i
MY = (wa —go I S°”> . (D13)

E FE

Thus we have a physical interpretation of the Pauli-
Lubansky spin-tensor components that appears many times
in this paper. It is the intrinsic angular momentum about the
lab-frame centroid.
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