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Using a solution-generating method, we derive an exact solution of the Einstein’s field equations in
five dimensions describing multiblack hole configurations. More specifically, this solution describes
systems of nonextremal static black holes with Kaluza-Klein asymptotics. As expected, we find that, in
general, there are conical singularities in between the Kaluza-Klein black holes that cannot be
completely eliminated. Notwithstanding the presence of these conical singularities, such solutions still
exhibit interesting thermodynamical properties. By choosing an appropriate set of thermodynamic
variables we show that the entropy of these objects still obeys the Bekenstein-Hawking law for spaces
with Kaluza-Klein asymptotics. This extends the previously known thermodynamic description of
asymptotically flat spaces with conical singularities to general spaces with Kaluza-Klein asymptotics
with conical singularities. Finally, we obtain a charged generalization of this multiblack hole solution in
the general Einstein-Maxwell-Dilaton theory and show how to recover the extremal multiblack hole
solution as a particular case.
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I. INTRODUCTION

Black holes in higher dimensions have been actively
studied in recent years. Notably, with Emparan and
Reall’s discovery of the five-dimensional black ring
solution [1], it was realized that higher dimensional
black holes exhibit a much richer structure than their
four-dimensional counterparts (for nice reviews of the
black ring see [2] and of higher dimensional black holes
see [3,4]). In four-dimensional asymptotically flat space-
times, as shown geometrically by Hawking [5], a black
hole can have only spherical horizon topology; this result
also follows under more general conditions as a conse-
quence of topological censorship [6,7]. However, in five
dimensions, the spherical topology of infinity does not
constrain that of the black hole horizon [8,9]. Geometric
considerations, however, restrict the horizon topology to
those, such as S3 and S2 × S1, that admit positive scalar
curvature [10]. In this regard, the black ring provides us
with an explicit example of an asymptotically flat black
hole having an S1 × S2 horizon topology. Furthermore, it
can carry (in certain conditions) the same amount of mass
and angular momenta as the spherical Myers-Perry black
hole [11]. Consequently, five-dimensional black holes are
not uniquely characterized by their mass and angular
momenta; the uniqueness theorems for black holes in four
dimensions cannot be extended to the five-dimensional case
without further assumptions of additional symmetry and
specification of the rod structure [12].

In five dimensions, there also exist the so-called
squashed Kaluza-Klein (KK) black holes, whose horizon
geometry is a squashed three-sphere [13–16]. Their
geometry is asymptotic to a nontrivial S1 bundle over
a four-dimensional asymptotically flat spacetime, which
is also the asymptotic geometry of the Kaluza-Klein
magnetic monopole [17,18]. Such black holes look five
dimensional in the near-horizon region, while at infinity
(asymptotically) they look like four-dimensional objects
with a compactified fifth dimension. Again, uniqueness
theorems for KK black holes are proven assuming
additional symmetry and specification of other invariants
[19]. Thus explicit examples of such solutions are
valuable. KK black hole solutions in the presence of
matter fields are generally found by solving the Einstein
equations by brute force. For instance, a solution describ-
ing a static KK black hole with electric charge has been
found in [20], and the corresponding Einstein-Yang-Mills
solution has been described in [21]. Remarkably, with
hindsight, many such KK solutions can be generated
from known solutions by applying a “squashing” trans-
formation on suitable geometries [22–27]. However, not
all of the KK black hole solutions can be generated by a
squashing transformation; more general KK black holes
have been derived in the context of the minimal five-
dimensional supergravity [28–30].
In our work, we focus on multiblack hole solutions in

spaces with Kaluza-Klein asymptotics. In general, in higher
dimensions, solutions describing general systems of
charged multiblack holes are rare. Unlike the single black*cristian.stelea@uaic.ro
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hole case, all known solution-generating techniques lead to
solutions describing configurations formed either from
extremal black holes [31–35] or from nonextremal black
holes with charges proportional to the masses. In five
dimensions, a solution describing a general double-black
hole configuration has been recently constructed in [36,37],
generalizing the asymptotically flat solutions given in [38].
The solution-generating technique from [36] has been
further modified in [39] to obtain multiblack hole solutions
in spaces with KK asymptotics. More precisely, a solution
describing a system of two general KK black holes in the
double-Taub–Newman-Unti-Tamburino (NUT) back-
ground has been explicitly constructed and studied in
[39]. One purpose of the present work is to construct
explicitly a general exact solution describing a super-
position of N static Kaluza-Klein black holes with
squashed horizons in five dimensions. As far as we know,
this solution is unknown in the literature. For simplicity
purposes, we first consider the particular case of N
uncharged black holes. This solution is the five-
dimensional Kaluza-Klein analog of the Israel-Khan sol-
ution, which describes a four-dimensional system of N
collinear black holes. A similar multiblack hole solution in
five-dimensional asymptotically flat spaces has been pre-
viously studied in [38]. As generally expected on physical
grounds, since these multiblack hole configurations are
static, the presence of the conical singularities in between
the black holes is unavoidable since they are needed to
provide the necessary forces to balance the gravitational
attraction among the black holes and keep the black hole
system in equilibrium. For asymptotically flat spaces it
turns out that even in the presence of conical singularities
such singular geometries still admit a reasonable thermo-
dynamic description as recently shown in [40–42]. In this
work we generalize that thermodynamic description to
spaces with KK asymptotics in the presence of conical
singularities. Finally, by using a standard charging tech-
nique, we obtain the generalization to a solution describing
a configuration of static electrically charged squashed black
holes, with fixed mass-to-charge ratios. We show how to
obtain the extremal version, obtaining this way a general
extremal multiblack hole solution of the full Einstein-
Maxwell-Dilaton (EMD) theory in five dimensions, gen-
eralizing the previously known solutions. We also comment

on how to obtain the most general nonextremal solution of
this kind in five dimensions.

II. THE SOLUTION GENERATING TECHNIQUE

Let us recall here the main results of the solution-
generating technique used in [39]. The main idea of this
method is to map a general static electrically charged
axisymmetric solution of Einstein-Maxwell theory in four
dimensions to a five-dimensional static electrically charged
axisymmetric solution of the EMD theory with arbitrary
coupling of the dilaton to the electromagnetic field. To this
end one performs first a dimensional reduction of both
theories down to three dimensions and, after a careful
comparison of the dimensionally reduced Lagrangians and
mapping of the scalar fields and electromagnetic potentials,
one is able to bypass the actual solving of the field
equations by algebraically mapping solutions of one theory
to the other. More precisely, suppose that we are given a
static electrically charged solution of the four-dimensional
Einstein-Maxwell system with Lagrangian

L4 ¼
ffiffiffiffiffiffi
−g

p �
R −

1

4
~F2
ð2Þ

�
; ð1Þ

where ~Fð2Þ ¼ d ~Að1Þ and the only nonzero component of
~Að1Þ is ~At ¼ Ψ. The solution to the equations of motion
derived from (1) is assumed to have the following static and
axisymmetric form:

ds24 ¼ − ~fdt2 þ ~f−1½e2~μðdρ2 þ dz2Þ þ ρ2dφ2�;
~Að1Þ ¼ Ψdt: ð2Þ

Here and in what follows we assume that all the functions
~f, ~μ, and Ψ depend only on coordinates ρ and z.
Then the corresponding solution of the Einstein-

Maxwell-Dilaton system in five dimensions with
Lagrangian

L5 ¼
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − 1

4
eαϕF2

ð2Þ

�
ð3Þ

where Fð2Þ ¼ dAð1Þ can be written as

ds25 ¼ − ~f
4

3α2þ4dt2 þ ~f−
2

3α2þ4

�
e2h

a2 − c2e4h
ðdχþ 4acHdφÞ2 þ ða2 − c2e4hÞe

6~μ

3α2þ4
þ2γ−2hðdρ2 þ dz2Þ þ ρ2ða2 − c2e4hÞe−2hdφ2

�
;

Að1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

3α2 þ 4

r
Ψdt; e−ϕ ¼ ~f

3α
3α2þ4: ð4Þ

Here a and c are constants, while h is an arbitrary harmonic function.1 Once the form of h has been specified for a particular
solution, the remaining function γ can be obtained by simple quadratures using the equations

1That is, it satisfies the equation ∇2h ¼ ∂2h
∂ρ2 þ 1

ρ
∂h
∂ρ þ ∂2h

∂z2 ¼ 0.
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∂ργ ¼ ρ½ð∂ρhÞ2 − ð∂zhÞ2�; ∂zγ ¼ 2ρð∂ρhÞð∂zhÞ: ð5Þ

Also, the function H is the so-called dual of h and it is a
solution of the following equation:

dH ¼ ρð∂ρhdz − ∂zhdρÞ: ð6Þ

Solutions of the pure Einstein-Maxwell theory in five
dimensions are simply obtained from the above formulas
by taking α ¼ 0.

III. THE VACUUM KK MULTIBLACK
HOLE SOLUTION

It has been shown in [39] that if one starts from the four-
dimensional Reissner-Nordström black hole and uses the
above solution-generating technique one is able to recover
the five-dimensional charged KK black hole after setting
a2 ¼ 1þ c2. In this case the harmonic function h is a
“correction” function that depends on the presence of a
black hole horizon in the initial seed solution. Then one
expects that, in order to construct the five-dimensional
generalization of the KK multiblack hole solution, one
should make use of the solution previously constructed by
Israel and Khan [43], which describes multiple collinear
Schwarzschild black holes connected by rods. It turns out
that this is indeed the case. In our solution-generating
technique, the form of the harmonic function h will now
correspond to correction factors applied for each black hole
horizon in the four-dimensional Israel-Khan solution. In
terms of the ansatz given in (2), the Israel-Khan solution
that describes N collinear Schwarzschild black holes is
given by

~f¼
YN
i¼1

r2i−1þζ2i−1
r2iþζ2i

;

e2~μ¼ 1

K0

�
4N

r1…r2N

Q
N
i;j¼1Y2i−1;2jQ

N
i¼1

Q
k>iY2i;2k

Q
N
i¼1

Q
k>iY2i−1;2k−1

�
:

ð7Þ

Here we generally denote ζi ¼ z − ai, ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ζ2i

p
while Yij ¼ rirj þ ζiζj þ ρ2 and K0 is an arbitrary con-
stant, fixed in four dimensions by requiring that the
asymptotic geometry be flat.2 This solution describes then
a system of N collinear black holes, having the rods
corresponding to the black hole horizons depicted in Fig. 1.
In five dimensions, to describe a configuration of N KK

black holes one has to pick the following harmonic
function:

e2h ¼
YN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i−1 þ ζ2i−1
r2i þ ζ2i

s
: ð8Þ

Noting that e2h ¼ ~f
1
2, one can actually bypass the integra-

tion of (5) by using the scaling symmetry from [44] to
obtain the particularly simple result ~μ ¼ 4γ.
Finally, the dual of h turns out to have the particularly

simple form3

H ¼ 1

4

XN
i¼1

ðr2i − r2i−1Þ: ð9Þ

To summarize, denoting by Σ ¼ 1þ c2ð1 − ~fÞ, the final
five-dimensional solution describing a system of N
uncharged KK black holes is given by

ds2 ¼ − ~fdt2 þ 1

Σ

�
dχ þ ac

XN
i¼1

ðr2i − r2i−1Þdφ
�2

þ Σ
~f
½e2~μðdρ2 þ dz2Þ þ ρ2dφ2�: ð10Þ

One can easily check that for N ¼ 2 this solution
corresponds to the uncharged version of the double KK
black hole solution previously constructed in [39].
Let us consider now the rod structure of this general

solution. For simplicity, let us denote the rod length of
each black hole horizon by 2σi ¼ a2i−1 − a2i. Following
the procedure given in [45,46] one deduces that the
rod structure of the general solution is described by 2N
turning points that divide the z axis into 2N þ 1 rods
as follows.4 For z < a2N such that all ζi < 0 one has a
semi-infinite rod with direction l1 ¼ ð0; 2acPN

i¼1 σi; 1Þ.
For a2N < z < a2N−1 one has a finite timelike rod with
direction l2 ¼ ð1; 0; 0Þ, corresponding to the horizon of the
Nth black hole. For a2N−1 < z < a2N−2 one has a space-
like rod with direction l3 ¼ ð0; 2acðσN −

P
N−1
i¼1 σiÞ; 1Þ.

More generally, for each black hole horizon a2i < z <
a2i−1 one has a timelike rod (1,0,0), while in between
the black holes [for instance for a2j−1 < z < a2j−2, which
is the rod in between the ðj − 1Þth black hole and the
jth black hole] one has a finite spacelike rod
l2ðN−jÞþ3 ¼ ð0; 2acð−Pj−1

i¼1 σi þ
P

N
i¼j σiÞ; 1Þ. Finally, for

FIG. 1. Rod structure of the multiblack hole system.

2In what follows we shall keep it unconstrained in the seed
solution.

3Up to a constant. In general, the dual of 1
2
lnðri þ ζiÞ is given

by − 1
2
ðri − ζiÞ.

4We are writing the vectors in the basis f∂=∂t; ∂=∂χ; ∂=∂φg.
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z > a1 one has a semi-infinite spacelike rod with direc-
tion l2Nþ1 ¼ ð0;−2acPN

i¼1 σi; 1Þ.
Note now that the rod directions of the spacelike rods

surrounding the horizons are precisely the rod directions of
the multi-Taub-NUT background [47]. This confirms that
the general solution that we derived describes a configu-
ration of black holes sitting at the nuts of the multi–
collinearly centered Taub-NUT background. One can also
recover directly the multi-Taub-NUT background by taking
the limit in which the black hole horizons disappear. For
this, recall that a2 ¼ 1þ c2 and let us take the limit c → ∞
and σi → 0 such that Ni ¼ c2σi is kept constant for each i.
Then, if one denotes a2i−1 ¼ bi þ σi and a2i ¼ bi − σi
(such that the ith black hole horizon is centered at bi) by
expanding to first order in σi one obtains

Σ ¼ 1þ
XN
i¼1

Niffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − biÞ2

p þOðσ2i Þ; ð11Þ

while

acH ¼
XN
i¼1

Niðz − biÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − biÞ2

p þOðσ2i Þ: ð12Þ

Since in absence of the black holes ~f ¼ 1, it is now clear
that one recovers as background the multi–collinearly
centered Taub-NUT space with a trivial time direction,
as advertised.
We now turn to the discussion of the conical singular-

ities. To avoid a conical singularity at the location of a rod
with direction li, the period Δi of the spacelike coordinate
ηi (such that li ¼ ∂=∂ηi) must be fixed as

Δi ¼ 2πlim
ρ→0

ffiffiffiffiffiffiffiffiffiffiffi
ρ2gρρ
jlij2

s
; ð13Þ

where gρρ is the ρρ-component of the metric, while jlij2 is
the norm of li. More specifically, for the outer axis one has

Δ1 ¼ Δ2Nþ1 ¼ 2π

ffiffiffiffiffiffiffi
23N

K0

s
; ð14Þ

and the conical singularity can be eliminated there by
picking K0 ¼ 23N . However, in between the black holes,
the expressions for Δi ¼ 2πe ~μjρ→0 are much more com-
plicated and not informative to list here. It turns out that the
conical singularities in between the black holes cannot be
eliminated for any physically reasonable values of the
parameters describing the solution. This is, in fact, expected
since the multiblack hole solution is static and there are
no other forces that could counteract the gravitational
attraction between the black holes.

A. Thermodynamic description of KK multiblack holes
in presence of conical singularities

The geometry describing static configurations of N
Schwarzschild black holes has been known for a while
[43]. Its thermodynamic properties have been investigated in
[40] and more recently in [41,42]. As it turns out, even
though the geometry has conical singularities in between the
black holes, the multiblack hole system still has a well-
defined gravitational action [48]. This means that such black
hole solutions with conical singularities might still admit a
reasonable well-defined thermodynamic description and it
turns out that this is indeed the case. In the usual path-
integral description of quantum gravity, the conical singu-
larity manifests itself at the level of the Euclidean action of
the system. When a conical singularity is present, the
gravitational action gets an extra contribution which is
proportional to the conical deficit/excess multiplying the
space-time area of the conical singularity’s world volume
[42].More specifically, suppose there is a conical singularity
at ρ ¼ 0 on a finite z-interval. To define the conical
singularity on a fixed point set of a Uð1Þ isometry with
the orbits parametrized by η, one computes the proper
circumference C of these orbits and their proper radius R
and one defines

α ¼ dC
dR

����
R¼0

¼ lim
ρ→0

∂ρ
ffiffiffiffiffiffigηη

p Δηffiffiffiffiffiffigρρ
p ¼ 2πkB; ð15Þ

where in general

kB ¼ lim
ρ→0

ffiffiffiffiffiffiffiffiffiffiffi
jlij2
ρ2gρρ

s
ð16Þ

is the Euclidean surface gravity corresponding to a finite rod
with direction li. The presence of a conical singularity along
a spacelike rod is then expressed by means of the quantity

δ ¼ 2π − α ¼ 2πð1 − kBÞ; ð17Þ
with δ > 0, (δ < 0) corresponding to a conical deficit,
respective to excess. Then, if Area ¼ Aβ is the space-time
area of the conical singularity’s world volume, where β ¼
1=TH is the inverse of the Hawking temperature, the
gravitational action receives a contribution proportional to
δ of the form [42]

I ¼ I0 −
δ

8πG
Aβ: ð18Þ

Here I0 is the action when neglecting the conical singularity.
In our case, for vacuum space-times with Kaluza-Klein
asymptotics, the conical singularity manifests itself as a
contribution to the bulk action. Using the Mann-Marolf
counterterm to regularize the gravitational action, I0 will
correspond to the action computed on the boundary when
taking this counterterm into account. In general dimensions,
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for spaces with Kaluza-Klein asymptotics we follow the
general results from [49]. Assuming one extra direction
(along χ with the length at infinity L) one finds the total
mass, gravitational tension, respective to the total action (in
absence of conical singularities) to be

M ¼ LΩD−3

16πG
½ðD − 3Þct − cχ �;

T ¼ ΩD−3

16πG
½ct − ðD − 3Þcχ �;

I0 ¼
βLΩD−3

16πG
½ct − cχ �; ð19Þ

whereΩD−3 is thevolumeof the ðD − 3Þ-sphere.Here ct and
cχ are real constants, which appear in the asymptotic
expansions of the metric components gtt ≃ −1þ ct

rD−4 and
gχχ ≃ 1þ cχ

rD−4. One can easily check that one has the relation

I0 ¼
βðM þ TLÞ

D − 2
: ð20Þ

For asymptotically flat spaces (in absence of the gravita-
tional tension) this relation reduces to the one found in [42]
in Eq. (2.17). One can see that for spaces with Kaluza-Klein
asymptotics one has to take into account the effect of the
gravitational tension along the extra KK directions. In the
present case, following the discussion presented in [42] we
shall use T c ¼ − δ

8πG andA as the thermodynamic variables
associated to the conical singularities. In the canonical
ensemble in which one keeps the Hawking temperature
TH, the areaA and the length L of the KK χ direction fixed,
the free energy becomes

F½TH;A; L� ¼ I
β
¼ M − THS: ð21Þ

Then the entropy S, the massM, the conical defect tension
T c, and the gravitational tension T of the system will be
given by

S ¼ −
∂F
∂TH

����
A;L

; M ¼ F þ THS;

T c ¼
∂F
∂A

����
TH;L

; T ¼ ∂F
∂L

����
TH;A

: ð22Þ

Finally, since the conical singularity manifests itself in the
total Euclidean action, it will also lead to amodified first law
of black hole thermodynamics:

dM ¼ THdSþ TdLþ T cdA: ð23Þ
It turns out that themassM that enters the first law is related
to the conservedmassM by a relation similar to that satisfied
in asymptotically flat spaces [42]:

M ¼ M þ T cA ¼ M −
δ

8πG
A: ð24Þ

This means that the mass M is the conserved Arnowitt-
Deser-Misner (ADM) massM minus the energy of the strut
as seen by a static observer at infinity:

Eint ¼ −T cA ¼ δ

8πG
A: ð25Þ

Let us remark that (24) is also consistentwith the generalized
Smarr law (verified for instance in [39]). Indeed, replacing
the action I0 in (18) then the free energy expression (21)
leads directly to the following Smarr law:

ðD − 3ÞM ¼ ðD − 2ÞTHSþ TL; ð26Þ

in which the entropy for each black hole obeys the usual
Bekenstein-Hawking area law. It is remarkable that this law
holds even in presence of conical singularities. Finally, let us
note that the generalization of these considerations in
presence of matter fields can be easily considered.
Further note that the first law can also be written in an

equivalent form:

dM ¼ THdSþ TdL −AdT c; ð27Þ

when using the conserved mass as computed in the
asymptotic region.

B. The Kaluza-Klein double-black hole solution

As an example of the above discussion we shall consider
now the thermodynamic properties of the Kaluza-Klein
double-black hole solution. In this case one has

~f ¼ r1 þ ζ1
r2 þ ζ2

r3 þ ζ3
r4 þ ζ4

; e2μ ¼ 16

K0

Y12Y14Y23Y34

r1r2r3r4Y13Y24

; ð28Þ

and the metric is given in (10). If one takes K0 ¼ 64, then
according to the general discussion in Sec. II the rod
structure of this solution is as follows: one has four turning
points that divide the z axis into five rods. For simplicity,
we shall parametrize the turning points as

a1 ¼
R
2
þ σ2; a2 ¼

R
2
− σ2;

a3 ¼ −
R
2
þ σ1; a4 ¼ −

R
2
− σ1; ð29Þ

such that the distance between the centers of the two black
hole horizons is R. Then the rod structure of this solution is
given by the following:

(i) For z < a4 one has a semi-infinite spacelike rod,
with direction

l1 ¼ ð0; 2acðσ1 þ σ2Þ; 1Þ: ð30Þ
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(ii) For a4 < z < a3 one has a finite timelike rod,
corresponding to the first black hole horizon, having
the direction l2 ¼ ð1; 0; 0Þ. One can compute the
surface gravity of this black hole to be

k1 ¼
1

4a
Rþ σ1 − σ2

σ1ðRþ σ1 þ σ2Þ
: ð31Þ

(iii) For a3 < z < a2 one has a finite spacelike rod. Its
rod direction is given by l3 ¼ ð0; 2acðσ1 − σ2Þ; 1Þ.
The Euclidean surface gravity corresponding to this
rod is given by

kB ¼ R2 − ðσ1 − σ2Þ2
R2 − ðσ1 þ σ2Þ2

: ð32Þ

(iv) For a2 < z < a1 one has a finite timelike rod,
corresponding to the second black hole horizon,
having the direction l4 ¼ ð1; 0; 0Þ. The surface
gravity of the second black hole is

k2 ¼
1

4a
Rþ σ2 − σ1

σ2ðRþ σ1 þ σ2Þ
: ð33Þ

(v) For z > a1 one has a semi-infinite spacelike rod with
direction

l5 ¼ ð0;−2acðσ1 þ σ2Þ; 1Þ: ð34Þ

To have the system of two KK black holes in thermo-
dynamic equilibrium, they should have the same temper-
ature. One can satisfy this requirement if one takes the two
black holes to have the same mass, that is σ1 ¼ σ2 ¼ σ.
Then the Hawking temperature TH ¼ β−1 and the area of
each black hole horizon are given by

TH¼ R
8πaσðRþ2σÞ ; AH¼16πσ2LaðRþ2σÞ

R
: ð35Þ

Here L ¼ 16πacσ is the length at infinity of the χ
coordinate, where a2 ¼ c2 þ 1. The total mass and the
gravitational tension for the double-black hole solution are
computed in the asymptotic region. The more general

formulas will be given in the next section, here we shall
quote the final results for the two black hole system:

M ¼ Lσð2þ c2Þ
G

; T ¼ σð1þ 2c2Þ
G

: ð36Þ

Recall now that the Euclidian surface gravity for the third
spacelike rod is kB ¼ R2

R2−4σ2 such that δ ¼ − 8πσ2

R2−4σ2. The
area Area ¼ Aβ of the world volume of the conical
singularity is easy to compute with the result

A ¼ LðR − 2σÞ
kB

: ð37Þ

Then the interaction energy between the two KK black
holes is

Eint ¼
δ

8πG
A ¼ −

Lσ2ðR − 2σÞ
R2G

: ð38Þ

It is now easy to check that the first law (27) is satisfied
under independent variations of the parameters σ, R, and c
if the entropy of each black hole satisfies the Bekenstein-
Hawking relation. Note that the parameters σ, R, and c
roughly characterize the mass of each black hole, the
distance between them and the asymptotic length of the KK
circle. Finally, the Smarr relation (26) is trivially satisfied.

IV. MULTIPLE CHARGED KK BLACK HOLES

The solution-generating technique described in Sec. II
allows us to construct directly the solution describing the
superposition ofN chargedKKblack holes; one starts instead
with the superposition of N charged Reissner-Nordström
black holes in four dimensions [50]. In this case, the harmonic
function hwill be again given by (8) while the expression for
γ ¼ ~μ=4 can be easily read from (7). However, given the very
complicated form of the general solution describing N
charged black holes we have chosen to consider here the
particular case in which the mass-to-charge ratio is fixed for
each black hole. Such a solution can be easily obtained from
the uncharged version presented in the previous section by
applying a charging technique. One particularly simple
charging technique has been described in [49,51].
Starting from the vacuum solution describing a configu-

ration of N KK black holes one can obtain its dilatonic
charged version in the following form:

ds2 ¼ −Ω− 2

3α2þ1 ~fdt2 þΩ
1

3α2þ1

�
1

Σ

�
dχ þ ac

XN
i¼1

ðr2i − r2i−1Þdφ
�2

þ Σ
~f
½e2~μðdρ2 þ dz2Þ þ ρ2dφ2�

�
;

At ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

3α2 þ 1

r
~fU
Ω

; eϕ ¼ Ω− 3α
3α2þ1; where Ω ¼ 1 − U2 ~f

1 − U2
; ð39Þ
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while U is the parameter of the Harrison transformation,
with 0 ≤ U < 1. For U ¼ 0 one recovers the vacuum
configuration, while U → 1 corresponds to taking the
extremal limit of this charged solution.
Following the analysis performed for the double-black

hole case, one is able to compute some of the conserved
charges for this multiblack hole configuration. The total
mass and the total electric charge are computed in the
asymptotic region, which is reached by first performing the
following coordinate transformations:

ρ ¼ r sin θ; z ¼ r cos θ; ð40Þ
and taking the r → ∞ limit. Defining now r∞ ¼
c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

p P
N
i¼1ð2σiÞ the asymptotic length of the χ circle

becomesL ¼ 4πr∞. Using the counterterm approach [49,52]
one is now ready to compute the total mass, the gravitational
tension, and the total electric charge for this configuration:

M ¼ L
4G

�
2þ U2

1 −U2
þ c2 þ 3α2ðc2 þ 2Þ

�XN
i¼1

2σi;

T ¼ 1þ 2c2

4G

XN
i¼1

2σi;

Q ¼
ffiffiffi
3

p

3α2 þ 1

LU
4Gð1 − U2Þ

XN
i¼1

2σi:

The dilaton charge can be computed using the asymptotic
form of the dilaton field with the result

Qd ¼
L
4G

3α2U2

ð3α2 þ 1Þð1 −U2Þ
XN
i¼1

2σi: ð41Þ

One can also compute the so-called Komar mass, check that
2MK ¼ 2M − TL and verify that the Smarr relation is
satisfied:

2MK ¼ 3
XN
i¼1

Ai
ð5Þk

i
ð5Þ

8πG
þ 2ΦQ; ð42Þ

where Φ ¼ Φi ¼
ffiffiffiffiffiffiffiffiffiffi

3
3α2þ1

q
U is the electric potential of each

black hole horizon, while for each black hole one also has

Ai
ð5Þk

i
ð5Þ

8πG
¼ 2σiL

4G
: ð43Þ

HereAi
ð5Þ is the horizon area of the ith black hole, while k

i
ð5Þ is

its surfacegravity.Asdiscussed in theprevious section, even if
conical singularities are present in this system they do not
make theirappearance into theaboveSmarr relation.Themass
M that satisfies the first lawof thermodynamics canbe related
to the conserved massM by computing the conical singular-
ities in between the black holes, δi ¼ 2πð1 − kBiÞ, and
multiplying them to the corresponding space-time areas of
theconical singularities’worldvolumes,Ai ¼ Areai=β, as in

(24). In general, we define kBi ¼ limρ→0

ffiffiffiffiffiffiffiffi
jlij2
ρ2gρρ

q
to be the

Euclidean surface gravity corresponding to a finite spacelike
rod with direction li.

A. The extremal case

As we have previously mentioned, the extremal limit of
the charged solution is obtained in the limitU → 1 (such that
the value of the electric charge is kept finite), which amounts
to keepingMi ¼ 2σi

1−U2 fixed. On the other hand, once σi → 0

one also has to take the limit c → ∞ such that Ni ¼ c2σi is
kept fixed in order to preserve the black holes on the multi–
collinearly centered Taub-NUT background. Gathering up
all these results, the extremal solution reduces to

ds2 ¼ −Ω
− 2

3α2þ1
e dt2 þΩ

1

3α2þ1
e

�
Σ−1
e ðdχ þ ωdφÞ2 þ Σeðdρ2 þ dz2 þ ρ2dφ2Þ

�
;

At ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

3α2 þ 1

r
Ω−1

e ; eϕ ¼ Ω
− 3α
3α2þ1

e ; ð44Þ

where

Ωe ¼ 1þ
XN
i¼1

Miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − biÞ2

p ;

Σe ¼ 1þ
XN
i¼1

Niffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − biÞ2

p ;

ω ¼
XN
i¼1

Niðz − biÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − biÞ2

p :

This is the general extremal KK multiblack hole solution in
the full EMD theory. As expected, for α ¼ 0 the dilaton
vanishes and one recovers the extremal KK multiblack hole
solution derived previously in [33].

V. CONCLUSIONS

One purpose of this work was to explicitly derive an exact
solution describing a superposition of N charged KK black
holes in five dimensions. One should note that the solution-
generating technique thatweusedallowsus toeasily construct
themost general solution describing a collinear superposition
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of N charged KK black holes in five dimensions. For this
purpose one should use as the four-dimensional seed solution
the general metric constructed previously in [50]. In this case
the harmonic function h is the same as the one used in the
vacuumsolution inSec. III.However, due to thecomplexityof
the four-dimensional seed solution and mostly for simplicity
reasons, we have chosen to discuss here two particular cases.
In the third section of this article we focused on the

particular case ofN neutral KK black holes and studied some
of its properties. In particular, we showed that the rod
directions of the spacelike rods surrounding the black hole
horizonscorrespondprecisely to thoseof themulti–collinearly
centered Taub-NUT background. We also showed explicitly
that in the absenceofblackholes,one recovers themulti-Taub-
NUT background. Even if these exact solutions do exhibit
conical singularities in between the black holes, their gravi-
tational action is still well defined. We have shown how to
properly take intoaccount theeffect of the conical singularities
and how to relate the physicalmassM to the conservedADM
massM. It is the physical massM the physical quantity that
enters the first law of black hole thermodynamics. We also
showed that a Smarr relation is still satisfied, in which the
effectsof the conical singularitiesdonot showupifoneusesM
instead of M. Such a Smarr relation has been previously
verified in particular cases in the literature. As an example of
the general formalism we developed in Sec. III, we also
showed for the particular case of the double KK solution that
the first lawof thermodynamics aswell as theSmarr relation is
satisfiedwhen oneproperly takes into account the effect of the
conical singularities. Finally, in Sec. IV we discussed the
particular case of N charged KK black holes having fixed

mass-to-charge ratio. To generate such a solution from the
uncharged version we made use of a charging technique
previously discussed in [49,51].
By using a counterterm approach we computed the total

mass, electric charge, and gravitational tension and we
showed that the Smarr relation for a configuration of N
chargedKKblack holes in the full EMDtheory is satisfied, as
expected. Finally, we showed how to obtain the extremal
multiblack hole solution of the full EMD theory and recover
as a particular case the multi-KK black hole solution of the
Einstein-Maxwell theory that was previously derived in [33].
As avenues for further research, it would be interesting

to investigate the existence of such solutions for more
complicated matter fields; for example, for charged Klein-
Gordon fields there exist the so-called boson star configu-
rations (see for instance [53–58] or the more recent review
in [59]). The collapse of such charged configurations could
lead in principle to the formation of charged configurations
of multiblack holes in five and higher dimensions. Another
interesting conjecture has been formulated in [60] (see also
[61,62]) where rotating black holes with nontrivial scalar
hair have been found. The rotation of the boson star is
necessary in order to be able to add a black hole at its
center. One might then inquire if such rotating objects exist
in higher dimensional Kaluza-Klein theories as well. This
will be the subject of further work.
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