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We evaluate general-relativistic effects in the motion of stationary self-gravitating accretion disks around
a Schwarzschild black hole, assuming the first post-Newtonian (1PN) approximation. There arises an
integrability condition that leads to the emergence of two types of general-relativistic corrections to a
Newtonian rotation curve. The well-known geometric dragging of frames accelerates rotation, but the
hitherto unknown dynamic term, that reflects the disk structure, decelerates rotation. The net result can
diminish the Newtonian angular velocity of rotation in a central disk zone, but the geometric dragging of
frames dominates in the disk boundary zone. Both effects are nonlinear in nature, and they disappear in the
limit of test fluids. Dust disks can only be geometrically dragged, while uniformly rotating gaseous disks
are untouched at the 1PN order. General-relativistic contributions can strongly affect rotation periods in
Keplerian motion for compact systems.
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I. INTRODUCTION

Rotation curves are important characteristics of sta-
tionary accretion disks. Angular velocities can be deter-
mined from observations of astrophysical systems, and they
allow for the direct determination of the central mass when
disks are light and their self-gravity can be neglected [1,2].
For heavy disks the self-gravity must be included, and
even in the Newtonian case one can give only a rough
estimate of the central mass [3]. Additional information on
the disk geometry and modeling would be required to learn
more about masses of observed objects. This approach
has been applied to NGC 4258, the unique AGN with a
well-measured Keplerian rotation curve of the central disk
[4]. Awell-known feature of axially symmetric Newtonian
accretion disks is that rotation curves of fluids depend
only on the distance to the rotation axis and do not depend
on the distance to the plane of symmetry.
The principal aim of this paper is to investigate general-

relativistic corrections to Newtonian rotation curves in
systemswith stationary accretion disks.We take into account
the self-gravity of the accretion disk and in numerical
analysis specialize to the Keplerian rotation law, at the
0PN (Newtonian) level. The 1PN approximation scheme
is employed, following Blanchet, Damour, and Schäfer [5].
The existing research on general-relativistic accretion

disks focuses mainly on test systems in a prescribed
spacetime geometry. The literature is extensive, to mention
a pioneering paper by Bardeen and Wagoner [6] and an
early review by Novikov and Thorne [2]. Recent reviews

have been written by Karas, Hure, and Semerak [7];
Abramowicz and Fragile [8]; and Stergioulas [9]. See also
numerous references therein. We should mention here
the work of Fishbone and Moncrief, who studied the
influence of the black hole’s angular momentum on the
disk structure for the stationary flow of isentropic fluid in
Kerr geometry [10].
The first general-relativistic formulation of thick self-

gravitating disks (around a black hole or a star) has been
derived by Nishida, Lanza, and Eriguchi [11,12]. They
found in particular the dragging of inertial frames due
to rotating toroids for general-relativistic extensions of
two types of Newtonian rotation curves: uniform angular
velocity and constant specific angular momentum. Ansorg
and Petroff [13] studied numerically a disk–black hole
system from a different perspective, focusing on the
geometry of the apparent horizon and its parametrization.
The order of this work is as follows: The relevant

equations in the 1PN approximation are given in Sec. II.
Section III displays final equations, under the simplifying
assumption of axial symmetry. In Sec. IV, we show that
the consistency of 1PN equations imposes an integrability
condition. That yields a dual structure of the corrections
to the Newtonian rotation curve. One of the terms can
be recognized as the well-known geometric dragging of
frames induced indirectly (via the backreaction effect)
by the disk rotation. The other depends on the specific
enthalpy, and thus it has a dynamic, material character. In
Sec. V we prove that the dynamic term decelerates rotation,
while the geometric effect increases the angular velocity.
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A scaling symmetry of Euler equations allows one to find a
simple scaling law for the 1PN angular velocity correction
and for its ratio to the Newtonian angular velocity. The
post-Newtonian corrections are analyzed for fluids and
dust, and for different rotation curves.
It is notable that rigid rotation is untouched by 1PN

corrections, while dust disks are influenced only by the
geometric drag. Section VI is dedicated to the description of
the numerical approach to the problem. The obtained results
are discussed in Sec. VII. It appears—in agreement with ana-
lytic results—that the two effects, geometric and dynamic,
work against each other and that absolute values of their
extrema are comparable. As a consequence, the net general-
relativistic 1PN effect is weakest (can vanish), paradoxically,
in a central disk zone where the two component parts taken
separately are strongest. The dynamic component vanishes
at the disk boundary; thus the dragging of frames dominates
in the disk boundary zone. The important feature seen in the
1PN approximation, that may have observational conse-
quences, is that the rotation curve depends on the height
above the plane of disk symmetry. Finally, we summarize
obtained results and point out open questions.

II. EQUATIONS

Einstein equations, with the signature ð−;þ;þ;þÞ, read

Rμν − gμν
R
2
¼ 8π

G
c4

Tμν; ð2:1Þ

where Tμν is the stress-momentum tensor. The stationary
metric is given in the form suitable for the 1PN approxi-
mation, in Cartesian coordinates x ¼ x1, y ¼ x2, z ¼ x3,
x0 ¼ ct, by

ds2 ¼
�
−1 − 2

Uðx; y; zÞ
c2

− 2
ðUðx; y; zÞÞ2

c4

�
ðdx0Þ2

− 2
Aiðx; y; zÞ

c3
dxidx0

þ
�
1 − 2

Uðx; y; zÞ
c2

�
ðdx2 þ dy2 þ dz2Þ: ð2:2Þ

In the remainder of this section we use Cartesian coor-
dinates. We employ the stress-momentum tensor of the
form

Tαβ ¼ Tαβ
BH þ Tαβ

D ; ð2:3Þ
where Tαβ

BH describes the point particle (which models the
central black hole) at rest located at the origin of the
coordinate system and Tαβ

D is the stress-momentum tensor

of the disk matter. The tensor Tαβ
BH describing a single point

particle is proportional to the Dirac delta distribution,

Tαβ
BH ¼ Mcc2ffiffiffi

g
p uαBHu

β
BH

u0BH
δðx − zBHðtÞÞ; ð2:4Þ

where Mc is the mass parameter of the point particle,
g ≔ − detðgμνÞ, and uαBH ≔ dzαBH=ðcdτBHÞ is the 4-velocity
along the particle’s world line parametrized by the proper
time τBH. We assume that the point particle is located at rest
at the origin of the coordinate system, therefore zBHðtÞ≡ 0;
then Tαβ

BH simplifies to

T00
BH ¼ Mcc2ffiffiffi

g
p ðu0BHÞ2δðxÞ; T0i

BH ¼ Tij
BH ¼ 0: ð2:5Þ

The disk is made of perfect fluid with a stress-momentum
tensor

Tαβ
D ¼ ρðc2 þ hÞuαuβ þ pgαβ; ð2:6Þ

where ρ is the baryonic rest-mass density, h is the
specific enthalpy, and p is the pressure. The 4-velocity
uα ≔ dxμ=ðcdτÞ along the world line of fluid particles is
normalized (τ is their proper time), gαβuαuβ ¼ −1.
The proper specific enthalpy h is related with the proper

relativistic energy density e through the relation

h ¼ eþ p
ρ

− c2: ð2:7Þ

We assume the polytropic equation of state

eðρ; SÞ ¼ ρc2 þ KðSÞ
γ − 1

ργ; ð2:8Þ

where S is the specific entropy of fluid. Then the following
relations hold:

pðρ; SÞ ¼ ρ

�∂e
∂ρ

�
S
− e ¼ KðSÞργ; ð2:9Þ

hðρ; SÞ ¼ KðSÞ γ

γ − 1
ργ−1: ð2:10Þ

In this paper we assume that the entropy is constant.
The 1PN-accurate stationary relativistic Euler equation

can be derived directly from the conservation law,
∇αTαβ ¼ 0, and the continuity of the baryonic current,
∇αðρuαÞ ¼ 0. Alternatively, one can employ Eq. (2.18) in
Ref. [5]. The result reads

∂jðρvivjþc−2ρvjð−Aiþviðh−6Uþv2ÞÞþð1−2c−2UÞpδjiÞ¼−ðρþMcð1þc−2UÞδðxÞ
þc−2ð2pþρðh−2Uþ2v2ÞÞÞ∂iU−c−2ρvj∂iAj; ð2:11Þ

JARANOWSKI et al. PHYSICAL REVIEW D 91, 024039 (2015)

024039-2



where vi ≔ dxi=dt is the coordinate velocity of the fluid
particle and v2 ≔ δijvivj. The scalar potential U is the
solution of the following 1PN-accurate equation:

ΔU ¼ 4πGðρþMcð1þ c−2UÞδðxÞ
þ c−2ð2pþ ρðh − 2U þ 2v2ÞÞÞ; ð2:12Þ

and the vector potential Ai fulfills the equation

ΔAi ¼ −16πGρvi; ð2:13Þ
where Δ is the flat Laplacian. Asymptotically we have
jAj ∝ 4J=R, where J is the total angular momentum of
the configuration and R ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
is the coordinate

cylindrical radius. In the case of stationary configurations
the 1PN-accurate continuity equation for the perfect fluid
with the stress-momentum tensor (2.6) reads

0 ¼ ∂ið
ffiffiffi
g

p
u0ρviÞ

¼ ∂i

�
ρvi þ c−2ρvi

�
1

2
v2 − 3U

��
þOðc−4Þ: ð2:14Þ

III. AXIALLY SYMMETRIC DISKS

Let us now assume axial and equatorial symmetry.
We shall replace the Cartesian coordinates ðx; y; zÞ with
cylindrical ones ðr;ϕ; zÞ, where x ¼ r cosϕ, y ¼ r sinϕ.
Axial symmetry means that the only nonzero cylindrical
components of the 3-vector field v and the 3-covector field
A are the azimuthal components vϕ and Aϕ, respectively:
A ¼ Aϕdϕ and v ¼ vϕ∂ϕ. These two components and the
scalar quantities ρ, p, h, U all do not depend on ϕ.

We split different quantities (ρ, p, h, U, and vi) into their
Newtonian (denoted by subscript “0”) and 1PN (denoted by
subscript “1”) parts. E.g., for the baryonic rest-mass density
ρ and the fluid velocity vi, this splitting reads

ρ ¼ ρ0 þ c−2ρ1; ð3:1aÞ

vϕ ¼ vϕ0 þ c−2vϕ1 : ð3:1bÞ

Notice that, up to 1PN order,

1

ρ
∂ip ¼ ∂ih0 þ c−2∂ih1þOðc−4Þ; ð3:2Þ

where the 1PN correction h1 to the specific enthalpy can be
written as

h1 ¼ ðγ − 1Þh0
ρ1
ρ0

: ð3:3Þ

One can easily derive from Eq. (3.2) useful relations
connecting gradients of pressure and specific enthalpy at
the Newtonian and 1PN levels:

∂ip0 ¼ ρ0∂ih0; ∂ip1 ¼ ρ0∂ih1 þ ρ1∂ih0: ð3:4Þ
Making use of the splitting of quantities into Newtonian

and 1PN parts introduced above, one can extract from
Eq. (2.11) the Newtonian- and 1PN-level Euler equations.
The Newtonian equations read

∇jðρ0vi0vj0Þ þ ∂ip0 ¼ −ρ0∂iU0 þ ∂iU0McδðxÞ: ð3:5Þ

The 1PN Euler equations take the form

∇jðρ0ðvi0vj1 þ vi1v
j
0Þ þ ρ1vi0v

j
0 þ ρ0v

j
0ð−Ai þ vi0ðh0 − 6U0 þ r2ðvϕ0 Þ2ÞÞ þ ðp1 − 2p0U0ÞδjiÞ

¼ −ð∂iU1 þ U0∂iU0ÞMcδðxÞ − ðρ1 þ 2p0 þ ρ0ðh0 − 2U0 þ 2r2ðvϕ0 Þ2ÞÞ∂iU0 − ρ0∂iU1 − ρ0v
j
0∂iAj: ð3:6Þ

The splitting of the potential U into its Newtonian U0 and
1PN U1 parts reads

U ¼ U0 þ c−2U1: ð3:7Þ

The determination of U0 needs only material fluid quan-
tities of zeroth order, while U1 requires also the 1PN
density correction ρ1:

ΔU0 ¼ 4πGðMcδðxÞ þ ρ0Þ; ð3:8aÞ

ΔU1 ¼ 4πGðMcU0δðxÞ þ ρ1 þ 2p0

þ ρ0ðh0 − 2U0 þ 2r2ðvϕ0 Þ2ÞÞ: ð3:8bÞ

The disk mass at the Newtonian level is equal to
MD ¼ R

V d
3xρ0, and the total mass of the system is

Mc þMD. The 1PN mass correction M1PN can be read
off from the asymptotic expansion of the correction
potential U1. It is given by

M1PN ¼
Z
V
d3x4πGðMcU0δðxÞ þ ρ1 þ 2p0

þ ρ0ðh0 − 2U0 þ 2r2ðvϕ0 Þ2ÞÞ:

The right-hand sides of Eqs. (3.5), (3.6), and (3.8)
contain terms proportional to a Dirac delta distribution
of the form fðxÞδðxÞ, where the function f can be singular
at x ¼ 0. We replace these terms with Pf0ðfÞδðxÞ, where
Pf0 is the “Hadamard partie finie” of the function evaluated
at its singular point x ¼ 0. The operation Pfx0ðfÞ for the
function f which is singular at the point x0 is defined
as follows: Let n be a unit vector; then one defines
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fnðεÞ ≔ fðx0 þ εnÞ. One expands fn into a Laurent series
around ε ¼ 0:

fnðεÞ ¼
X∞
m¼−N

amðnÞεn:

The finite part of the function f is defined as the coefficient
of ε0 averaged over all directions:

Pfx0ðfÞ ≔
1

4π

I
dΩa0ðnÞ:

This way of regularizing singular functions was commonly
used in numerous derivations of post-Newtonian equations
of motion for point-particle systems (up to the fourth
post-Newtonian order [14]), and it is best justified by
dimensional regularization [15,16] (the limit d → 3 of the
d-dimensional version of the Pfx0 operation would give in
our computations results identical with those obtained by
means of the defined above three-dimensional version of
this operation).
The solution of Eq. (3.8) can be written symbolically in

the form

U0ðxÞ ¼ −
GMc

jxj þUD
0 ðxÞ; UD

0 ðxÞ ≔ 4πGðΔ−1ρ0ÞðxÞ:

ð3:9Þ

Because Pf0ð1=jxjÞ ¼ 0, the termU0δðxÞ on the right-hand
side of Eq. (3.8b) is replaced by UD

0 ð0ÞδðxÞ, so the
regularized form of this equation reads

ΔU1 ¼ 4πGðMcUD
0 ð0ÞδðxÞ þ ρ1 þ 2p0

þ ρ0ðh0 − 2U0 þ 2r2ðvϕ0 Þ2ÞÞ: ð3:10Þ

The right-hand side of Eq. (3.5) contains ∂iU0δðxÞ, which
is replaced by Pf0ð∂iU0ÞδðxÞ. According to (3.9), one
computes

Pf0ð∂iU0Þ ¼ Pf0ðGMcxi=jxj3 þ ∂iUD
0 ðxÞÞ

¼ 0þ ∂iUD
0 ð0Þ:

But ∂iUD
0 ð0Þ ¼ 0, because of the assumed axial and

equatorial symmetry, and the whole term vanishes.
Similarly, one can show that all terms with Dirac deltas
in Eq. (3.6) vanish.
The Newtonian Euler equations (3.5) in cylindrical

coordinates take the form

∂zh0 ¼ −∂zU0; ð3:11aÞ

∂rh0 − rðvϕ0 Þ2 ¼ −∂rU0: ð3:11bÞ

The 1PN Euler equations (3.6) written in cylindrical
coordinates read

∂zh1 ¼ −∂zU1 − vϕ0∂zAϕ − ðh0 − 2U0 − 2r2ðvϕ0 Þ2∂zU0

þ 2U0∂zh0; ð3:12aÞ

∂rh1 − 2rvϕ0v
ϕ
1 − rðvϕ0 Þ2ðh0 − 6U0 þ r2ðvϕ0 Þ2

¼ −∂rU1 − vϕ0∂rAϕ − ðh0 − 2U0 − 2r2ðvϕ0 Þ2Þ∂rU0

þ 2U0∂rh0: ð3:12bÞ

One can use Newtonian equations (3.11) in order to
simplify the 1PN equations (3.12). The result is

−∂zh1 − ∂zU1 − vϕ0∂zAϕ − ðh0 þ 2r2ðvϕ0 Þ2Þ∂zU0 ¼ 0;

ð3:13aÞ

− ∂rh1 − ∂rU1 þ 2rvϕ0v
ϕ
1 − vϕ0∂rAϕ þ r3ðvϕ0 Þ4 þ rðvϕ0 Þ2h0

− 4rðvϕ0 Þ2U0 − ðh0 þ 2r2ðvϕ0 Þ2Þ∂rU0 ¼ 0: ð3:13bÞ

It is easy to check, making use of ∂zv
ϕ
0 ¼ 0 (see the next

section), that these two equations can be written as

∂zΨ ¼ 0; ð3:14aÞ

∂rΨþ 2rvϕ0v
ϕ
1 þ Aϕ∂rv

ϕ
0 − 2r2∂rðvϕ0 Þ2h0 ¼ 0: ð3:14bÞ

Here the function Ψ is defined as

Ψ ¼ −h1 − U1 − vϕ0Aϕ þ 2r2ðvϕ0 Þ2h0 −
3

2
h20 − 4h0U0

− 2U2
0 −

Z
drr3ðvϕ0 Þ4: ð3:15Þ

The only nonzero vectorial component Aϕ satisfies the
following equation:

ΔAϕ − 2
∂rAϕ

r
¼ −16πGr2ρ0v

ϕ
0 : ð3:16Þ

IV. THE INTEGRABILITY CONDITION

Differentiation of Eqs. (3.11a) and (3.11b)—the first one
with respect to r and the second one with respect to z—and
subtraction of the obtained equations leads to ∂zv

ϕ
0 ¼ 0.

This is the consistency relation for the validity of the
zeroth-order (Newtonian) approximation. That tells us
that the Newtonian part of the rotation curve vϕ0 is an
arbitrary function of the cylindrical radius r. It is well
known that the requirement of stability imposes additional
restrictions, through a growth condition imposed onto
specific angular momentum in Newtonian and relativistic
hydrodynamics [17–19].
The consistency condition for the 1PN approximation

can be obtained from Eq. (3.14). Differentiating the first
and second equations with respect to r and z, respectively,
and subtracting the obtained equations, one arrives at
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2rvϕ0∂zv
ϕ
1 þ ð∂rv

ϕ
0 Þð∂zAϕÞ − 2r2∂rðvϕ0 Þ2∂zh0 ¼ 0: ð4:1Þ

This constraint is resolved by

vϕ1 ¼ −
Aϕ

2rvϕ0
∂rv

ϕ
0 þ

rh0
vϕ0

∂rðvϕ0 Þ2; ð4:2Þ

as can be checked by direct inspection. We can summarize
these results as follows:
Theorem. The 1PN equations (3.14) reduce to the

algebraic equation

Ψðr; zÞ ¼ const;

provided that the consistency condition

vϕ1 ¼ −
Aϕ

2rvϕ0
∂rv

ϕ
0 þ 2rh0∂rv

ϕ
0 ð4:3Þ

is satisfied.
The interpretation of (4.3) is straightforward. The first

term corresponds to the conventional frame dragging
experienced by isolated test bodies in stationary spacetimes.
The frame dragging is in this case a backreaction type
effect—rotating disks generate (through Einstein equations)
the metric function Ai, which in turn influences the rotation,
via the first part of the formula (4.3). The other term is purely
hydrodynamic, and it depends both on the rotation curve vϕ0
and on the specific enthalpy in the Newtonian approxima-
tion. It represents the direct 1PN reaction of rotating gas,
proportional to the specific enthalpy, onto its own rotation.
Notice that Aϕ and vϕ1 change sign when vϕ0 → −vϕ0 ;

therefore, we consider only the case with vϕ0 ≥ 0.

V. SCALING SYMMETRY, NEWTONIAN
ROTATION CURVES, AND 1PN APPROXIMATION

In what follows, we shall explain how the two terms in
the expression of vϕ1 given in (4.3) influence rotation.
It is easy to show that the dynamic part decelerates rotation.
The specific enthalpy h ≥ 0 is non-negative. Let us
suppose a nonincreasing function vϕ0 ðrÞ, thence the term
vϕ1dyn ≔ 2rh0∂rv

ϕ
0 is nonpositive—the instantaneous 1PN

dynamic reaction slows the motion—“anti-drags” a system.
We prove that, in contrast to the above, the geometric

dragging always increases the speed of rotation. The
crucial part of the argument is to show, in the forthcoming
lemma, that the function Aϕ is non-negative. Taking this for
granted and again assuming that ∂rv

ϕ
0 ≤ 0, we infer that

− Aϕ

2rvϕ
0

∂rv
ϕ
0 ≥ 0. Thus, a moving torus induces (via back-

reaction) a geometry, that pushes the torus in the same
direction; a rotating torus bootstraps itself.
Lemma. Assume that ρ0 ≥ 0, vϕ0 ≥ 0, both ρ0 and vϕ0

are at least of Hölder class C1;μ, and that Aϕ, the solution
of (3.16), vanishes at infinity like 1=R. Then Aϕ is
non-negative.

Proof. The potential Aϕ vanishes at spatial infinity, and
Eq. (3.16) with the conditions stated in the lemma above
would satisfy assumptions of the minimum principle as
stated in Refs. [20,21], save the term proportional to 1=r,
which is singular along the z-axis. Ignoring the latter, one
would claim that from the minimum principle Aϕ ≥ 0.
Due to the above difficulty, we shall adopt another

approach to show that the solution is non-negative every-
where within the disk. We shall apply the method of
contradiction. Let the solution of Eq. (3.16) exist on all
of R3. Let there exist a region Ω that intersects the disk
with Aϕ ≤ 0 and that vanishes at an outer 2-surface S∞
(S∞ can be located at spatial infinity.) The potential Aϕ is at
least of class C3;μ, from the embedding theorems [20],
and vanishes like 1=R at infinity. The complementary
region (possibly empty) will be called Ω0, and Aϕ > 0
on Ω0. The region Ω borders Ω0 along a boundary ∂Ω
with Aϕ ¼ 0. The surface integrals

R
∂Ω dSiAϕ∇iAϕ andR

S∞
dSiAϕ∇iAϕ vanish, due to the boundary conditions.

Multiply Eq. (3.16) by Aϕ over Ω and integrate by parts,
This yields

−
Z
Ω
dVð∇AϕÞ2 ¼ −16πG

Z
Ω
dVr2ρ0v

ϕ
0Aϕ: ð5:1Þ

The two boundary terms, that arise during integration by
parts, vanish irrespective of whether Ω is bounded or
unbounded. Since Aϕ is differentiable and does not vanish
identically, the left-hand side of (5.1) must be strictly
negative. But if Aϕ < 0 in Ω, then the right-hand side is
weakly positive. Thus, we get a contradiction: the solution
Aϕ cannot be negative within the disk volume.
Notice that the angular velocity of the fluid in the

coordinate frame, vϕ ¼ uϕ=u0, is equal to the angular
velocity of the fluid as seen by an observer at rest at
infinity. The inverse of vϕ is proportional to the disk
rotation period. Thus, the term vϕ1 is responsible for the
1PN correction to this period. Since the dynamic part vϕ1dyn
is decelerating rotation, it increases the rotation period.
The drag term with Aϕ in turn is positive, which means that
it tends to shorten the rotation period.
One can find out that Newtonian and 1PN equa-

tions (3.8), (3.11), (3.12), and (3.16) are invariant under
the following scalings:

x0 ¼ λx; M0
c¼Mc; ρ0

0 ¼ρ0
λ3
; h00 ¼

h0
λ
; v0ϕ0 ¼

vϕ0
λ3=2

;

U0
0 ¼U0

λ
; A0

ϕ¼
Aϕffiffiffi
λ

p ; ρ1
0 ¼ρ1

λ4
; h10 ¼

h1
λ2
;

v0ϕ1 ¼
vϕ1
λ5=2

; U1
0 ¼U1

λ2
: ð5:2Þ

These scalings imply that under this scaling operation,
(1) the Newtonian disk mass as well as the total

Newtonian mass are invariant.
(2) the Newtonian pressure scales as p0

0 ¼ p0=λ4.
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(3) the 1PN mass correction scales according to
M0

1PN ¼ M1PN=λ.
The scaling of specific enthalpy entails the change of the
equation of state. The coefficient K in the polytropic
equation of state p ¼ Kργ has to scale according to
K0 ¼ Kλ3γ−4. If we assume the Keplerian rotation law
(see Sec. VII), then the parameter ω0

0 ¼ ω0. The physical
sense of this scaling is that the change of distances while
keeping masses, associated with the appropriate adaptation
of the equation of state and the rotation law, yields a new
solution of the equations.
In our context, since the Newtonian Euler equations

represent the zeroth-order approximation to the general-
relativistic theory, we have to demand that the inner
boundary of the disk be located outside of the
Schwarzschild horizon, i.e., ð1 −U=c2Þrin > 2GMc=c2

[or even ð1 −U=c2Þrin > 6GMc=c2], while the speed of
sound and the linear velocity rvϕ0 do not exceed the speed
of light. These conditions limit our freedom in specifying
the scaling parameter λ.
Equation (4.3) serves as the consistency condition; one

easily finds that its right-hand side scales like 1=λ5=2, in
agreement with the scaling of vϕ1 in (5.2). Collecting all
these facts together, one immediately proves the following:
Conclusion. Let a solution of (3.11), 1PN equa-

tions (3.12), and Eq. (3.16) be obtained through rescalings
specified in (5.2). Then its first post-Newtonian correction
to the angular velocity scales as follows:

v0ϕ1
c2v0ϕ0

¼ 1

λ

vϕ1
c2vϕ0

:

Dust disks and uniformly rotating gas toroids are
distinguished in a sense that becomes evident from the
following description:

(i) Uniform rotation.—The correction term vϕ1 is pro-
portional to the derivative of the angular velocity.
Since for uniformly rotating systems vϕ0 ¼ const, vϕ1
strictly vanishes. We conclude that in particular the
rotation periods of rigidly rotating disks do not
change in the 1PN perturbation order. That adds
to the exceptional status of uniformly rotating disks,
which are already known to minimize the total mass-
energy for a given baryon number and total angular
momentum [9,22].

(ii) Dust.—The pressure and specific enthalpy h0 do
vanish in the case of dust, which means that dust
disks are exposed only to the frame dragging. The
behavior of dust and gas disks are clearly different.

The rotation curve vϕ0 in the Newtonian approximation
depends only on the distance from the rotation axis.

That means that even thick and self-gravitating
Newtonian disks rotate uniformly along circles z ¼ const
on cylinders of constant r. In contrast to that, the first post-
Newtonian correction vϕ1 to the rotation curve is strictly
determined by other quantities and depends on both r and z.
The effective angular velocity is generically not constant
along circles of constant height on cylinders with fixed
values of the coordinate radius r and of the circumferential
radius ð1 −U=c2Þr.

VI. ON NUMERICAL METHOD

In the following, we will work in cylindrical ðr;ϕ; zÞ or
spherical ðR; θ;ϕÞ coordinates. For convenience, we will
denote μ ¼ cos θ. We will also abuse the notation by
reserving the same symbol for the given quantity in both
coordinate systems.
We employ an iterative, self-consistent field (SCF)-type

method based on solving two elliptic equations in axial
symmetry: the standard scalar Poisson equation

ΔΦ ¼ fðr; zÞ ð6:1Þ
and the vector equation of the form

ΔA ¼ fðr; zÞv; ð6:2Þ
where in cylindrical (or spherical) coordinates the only
nonvanishing components of fields A and v are Aϕdϕ and
vϕdϕ, respectively. It is also assumed that ∂ϕAϕ ¼ ∂ϕvϕ¼ 0.
It is an easy exercise to check that Aϕ satisfies

Δ
�
cosϕAϕ

r

�
¼ fðr; zÞ cosϕvϕ

r
or

Δ
�
sinϕAϕ

r

�
¼ fðr; zÞ sinϕvϕ

r
: ð6:3Þ

This leads to the equation of the form

ΔAϕ −
2∂rAϕ

r
¼ fðr; zÞvϕ:

These equations are solved by expanding the appropriate
Green functions in Legendre functions. Although many
drawbacks of such an approach are known, we prefer to
follow it because of its conceptual simplicity. The follow-
ing equations are known in the literature (in this or a similar
form); we prefer to discuss them here for completeness.
The Green function of the flat three-dimensional

Laplacian corresponding to a solution that vanishes asymp-
totically has the standard expansion

−
1

4πjx − x0j ¼ −
1

4π

X∞
j¼0

Rj
<

Rjþ1
>

�
PjðμÞPjðμ0Þ þ 2

Xj

m¼1

ðj −mÞ!
ðjþmÞ!P

m
j ðμÞPm

j ðμ0Þ cos½mðϕ − ϕ0Þ�
�
; ð6:4Þ
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where R>ð<Þ denotes the larger (smaller) of the two radii R and R0. Using Eq. (6.4), one can write the solution
of Eq. (6.1) as

ΦðR; μÞ ¼ −
1

2

X∞
j¼0

PjðμÞ
�

1

Rjþ1
EjðRÞ þ RjFjðRÞ

�
; ð6:5Þ

where

EjðRÞ ¼
Z

R

0

dR0R0jþ2

Z
1

−1
dμ0Pjðμ0ÞfðR0; μ0Þ ð6:6Þ

and

FjðRÞ ¼
Z

∞

R
dR0 1

R0j−1

Z
1

−1
dμ0Pjðμ0ÞfðR0; μ0Þ: ð6:7Þ

Note that if fðR; μÞ is equatorially symmetric (i.e., it is an even function of μ), integrals with P2jþ1ðμÞ vanish. In this case it
is also enough to integrate with respect to μ over 0 ≤ μ ≤ 1. The numerical implementation of the above formulas is
straightforward; it is discussed, for instance, in Ref. [23].
Equation (6.2) can be solved in a similar fashion, which is equivalent to finding of a suitable expansion of the Green

function for the operator Δ − ð2=rÞ∂r. One can start with Eq. (6.3). Using Eq. (6.4), the solution for cosϕAϕ=ðR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
Þ

can be written as

cosϕAϕðR; μÞ
R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p ¼ −
1

4π

Z
∞

0

dR0R0
Z

1

−1

dμ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

p
Z

2π

0

dϕ0 cosϕ0fðR0; μ0ÞvϕðR0; μ0Þ

×
X∞
j¼0

Rj
<

Rjþ1
>

�
PjðμÞPjðμ0Þ þ 2

Xj

m¼1

ðj −mÞ!
ðjþmÞ!P

m
j ðμÞPm

j ðμ0Þ cos½mðϕ − ϕ0Þ�
�
:

The integral

I ¼
Z

2π

0

dϕ0 cosϕ0 cos½mðϕ − ϕ0Þ�

can be easily evaluated. For m ¼ 1, one has I ¼ π cosϕ. For m ≠ 1, one has

I ¼ 2m sinðmπÞ cos½mðπ − ϕÞ�
ðm − 1Þðmþ 1Þ :

This yields

cosϕAϕðR; μÞ
R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p ¼ −
1

2
cosϕ

Z
∞

0

dR0R0
Z

1

−1

dμ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

p fðR0; μ0ÞvϕðR0; μ0Þ
X∞
j¼1

Rj
<

Rjþ1
>

1

jðjþ 1ÞP
1
jðμÞP1

jðμ0Þ:

And finally,

AϕðR; μÞ ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q X∞
j¼1

1

jðjþ 1ÞP
1
jðμÞ

�
1

Rj CjðRÞ þ Rjþ1DjðRÞ
�
; ð6:8Þ

where

CjðRÞ ¼
Z

R

0

dR0R0jþ1

Z
1

−1

dμ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

p P1
jðμ0ÞfðR0; μ0ÞvϕðR0; μ0Þ ð6:9Þ

and

DjðRÞ ¼
Z

∞

R
dR0 1

R0j

Z
1

−1

dμ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

p P1
jðμ0ÞfðR0; μ0ÞvϕðR0; μ0Þ: ð6:10Þ
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Of course, dμ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
¼ −dθ. Note that

P1
2jðμÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
d
dμ

P2jðμÞ

(where we use the convention without Condon-Shortley’s
phase). The derivatives dP2jðμÞ=dμ are odd functions
of μ, and fðR; μÞvϕðR; μÞ are symmetric under reflection
z → −z. Therefore, all integrals with P1

2j vanish.
Note also that Eq. (6.3) is equivalent to the equation

Δf þ 2

R
∂Rf −

2

R2
μ∂μf ¼ SðR; μÞ

that appears in Refs. [11,12,24,25]. In cylindrical coordi-
nates, the above equation can be rewritten as

∂2
rf þ ∂2

zf þ 3

r
∂rf ¼ Sðr; zÞ:

Setting ψ ¼ r cosϕf, it is easy to show that ψ satisfies

Δðr;z;ϕÞψ ¼ r cosϕ

�
∂2
rf þ ∂2

zf þ 3

r
∂rf

�

¼ r cosϕSðr; zÞ:

In the description of the numerical method given below,
we specialize to the Keplerian rotation law vϕ0 ¼ ω0=r3=2

and polytropic equations of state p0 ¼ Kρ5=30 .
The method of obtaining the solutions of the zeroth-

order approximation (Newtonian solutions) was described
in detail in Ref. [3]. Equations to be solved are

ΔUD
0 ¼ 4πGρ0 ð6:11Þ

and

h0 þ Φc −
GMc

R
þUD

0 ¼ C; ð6:12Þ

where the centrifugal potential is given by

Φc ¼ −
Z

r
dr0r0ðvϕ0 ðr0ÞÞ2 ¼

ω2
0

r
; ð6:13Þ

and the specific enthalpy reads h0 ¼ 5Kρ2=30 =2. These
equations are solved iteratively: in each iteration step
one obtains a solution for UD

0 based on the previous
density distribution. A new distribution of the enthalpy
h0 (or, equivalently, ρ0) is then computed from Eq. (6.13).
Also, in each iteration step we renormalize the constants C
and K, so that the resulting disk has the prescribed values
of the inner and outer radii and the maximum density. We
use a spherical numerical grid. The solution of Eq. (6.11)
is computed by truncating expansion (6.5) at a sufficiently

large number of Legendre polynomials. Integrals (6.6) and
(6.7) are computed using standard quadrature formulas.
The 1PN corrections are obtained by solving equations

ΔAϕ −
2∂rAϕ

r
¼ −16πGω0

ffiffiffi
r

p
ρ0; ð6:14Þ

ΔU1 ¼ 4πGðMcUD
0 ð0ÞδðxÞ þ ρ1 þ 2Kρ5=30

þ ρ0ðh0 − 2U0 þ 2ω2
0r

−1ÞÞ; ð6:15Þ

h1 ¼ −U1 − Aϕω0r−3=2 þ 2h0ω2
0r

−1 þ 1

2
ω4
0r

−2

−
3

2
h0 − 4h0U0 − 2U2

0 − C1 ð6:16Þ

for Aϕ, U1, h1 and ρ1. Here the Newtonian gravitational
potential is given by U0 ¼ −GMc=Rþ UD

0 . The 1PN
corrections to the density ρ1 and the enthalpy h1 are related
by h1 ¼ 5Kγρ2=30 ρ1=3.
Once the zeroth-order approximation is known, the

potential Aϕ can be obtained from Eq. (6.14) using the
expansion given by Eq. (6.8). In the next step we iterate
Eqs. (6.15) and (6.16) in a similar way to that used to obtain
the zeroth-order solution.
The term 4πGMcU0ð0ÞδðxÞ on the right-hand side of

Eq. (6.16) yields the term −GMcUD
0 ð0Þ=R in the solution

for U1. Note that, although it is convenient to exclude the
origin x ¼ 0 from the numerical grid, the value UD

0 ð0Þ can
still be easily computed as

UD
0 ð0Þ ¼ −G

Z
d3x

ρ0
R
:

In each of the iterations of the Newtonian scheme, the
value of the enthalpy is obtained from Eq. (6.12). We set
ρ0 ¼ h0 ¼ 0 whenever this equation yields a negative
value of h0. This is the key element of our implementation
of the free-boundary SCF-type scheme, that allows us to
compute the true boundary of the disk. Similarly, in the
post-Newtonian scheme, we obtain the value of h1 from
Eq. (6.16). We set h1 ¼ ρ1 ¼ 0, whenever h0 þ h1=c2 ≤ 0
or ρ0 þ ρ1=c2 ≤ 0.
The constant C1 appearing in Eq. (6.16) is renormalized

so that in each iteration the correction h1 to the enthalpy
vanishes at the outer end of the Newtonian disk, in the
plane z ¼ 0. In this way a full post-Newtonian solution is
obtained for a specified value of the outer radius.

VII. DISCUSSION OF NUMERICAL RESULTS

We report in this section numerical results on modeling
black hole–disk systems. Disks’ masses are taken in the
range 1–2 ×Mc, where Mc is the mass of the central black
hole. The Keplerian rotation law and the polytropic
equation of state are assumed, as in the preceding section.
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We carefully choose parameters in all forthcoming
examples so that the 1PN approximation can be valid.
The largest linear velocities ð1 −UÞrvϕ at the inner part of
the disks are of the order of one tenth the speed of light. The
graphs of the normalized Newtonian and 1PN potentials,
U0=c2 andU1=c4, respectively, are displayed in Figs. 1 and
2. It is clear from Fig. 1 that 1 ≫ jU0j=c2. The comparison
of Figs. 1 and 2 implies that the 1PN correction jU1j=c4
constitutes about one hundredth of the main Newtonian
contribution.
The black and white shaded palettes in Figs. 3–5

describe the ratio vϕ1=ðc2vϕ0 Þ within the disk volume. In

all examples, RS ≔ 2GMc=c2 is the Schwarzschild radius
of the central black hole.
Keplerian disks are influenced by both the geometric

dragging and the anti-dragging dynamic effects. In Fig. 3,
one sees an inner zone shifted to the center with the
prevailing braking component (the Newtonian angular
velocity vϕ0 is diminished by the 1PN correction up to
0.3%), and the outer part where the drag component
dominates (the Newtonian angular velocity vϕ0 is enhanced
by up to 0.4%). The innermost part of the disk is at the
coordinate distance rin ¼ 25RS from the central black hole,
while the outermost disk boundary is at rout ¼ 250RS.
Notice that the circumferential radius ð1−U=c2ÞrþOðc−4Þ
is well approximated by the coordinate r due to the
smallness of potentials.
Our numerical investigation suggests that one can find an

infinite number of similar configurations simply by moving
out the inner disk positions up to 18% of the coordinate
size. Somewhere between the rescaled inner boundary
position 0.18 and 0.19 the character of the picture
changes—the anti-dragging nowhere dominates, and all
parts of disks are dragged forward. This limiting-type
configuration is shown in Fig. 4. It remains to be explained
in what circumstances the dynamic effect can overcome the
geometric dragging. Our empirical observation is that if
the relative width w ≔ ðrout − rinÞ=rout > 0.2, then the
latter effect is stronger, and the smaller the w, the smaller
the dynamic braking.
We found in a number of examples that the maximal

value of the ratio of the 1PN corrections to the Newtonian
angular velocities vϕ1=ðc2vϕ0 Þ can achieve a few percent.
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FIG. 1 (color online). The ordinate shows the value of U0=c2

along the ray ϕ ¼ const on the central plane z ¼ 0 and the
abscissa the normalized coordinate distance r=rout from the
center. The dotted line corresponds to the solution described
in Fig. 5, while the broken and solid lines refer to solutions
described in Figs. 4 and 3, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

z/
r o

ut

r/rout

 0

 0.2

 0.4

 0.6

 0.8

1

 0  0.2  0.4  0.6  0.8 1

z/
r o

ut

r/rout

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

FIG. 3 (color online). The ratio vϕ1=ðc2vϕ0 Þ within the disk
volume. The ordinate shows the height of the disk and the
abscissa the coordinate distance from the center, in the rescaled
unit system r=rout where rout ≡ 250RS. The inner disk boundary
is located at rin ¼ 25RS, and the outer boundary at rout ¼ 250RS.
The Newtonian disk mass MD ¼ 1.47 ×Mc. The white region
is dominated by dynamic braking; its boundary is denoted by
the short broken line, where the 1PN velocity correction vϕ1
vanishes. The drag is strongest at the disk boundary. Here
ω0 ¼ 0.85

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMc

p
.
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FIG. 2 (color online). The ordinate shows the value of U1=c2

along the ray ϕ ¼ const on the central plane z ¼ 0 and the
abscissa the normalized coordinate distance r=rout from the
center. The dotted line corresponds to the solution described
in Fig. 5, while the broken and solid lines refer to solutions
described in Figs. 4 and 3, respectively.
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Figure 5 describes a strongly relativistic compact system,
with the disk width smaller than 19.5RS and relatively large
1PN effects. The dynamic anti-dragging effect manifests
here only by a slight diminishing of the ratio vϕ1=ðc2vϕ0 Þ
within the inner part of the central zone.
We already pointed out in Sec. V that one can rescale a

given solution within the 1PN approximation according to
the recipe defined in (5.2). Physical distances do change

under rescalings, but the central mass and the disk mass are
invariant. At the same time, the relative velocity correction
scales as v0ϕ1=v

0ϕ
0 ∝ 1=λ; thus, in principle one can generate

from a given solution a sequence of configurations with
identical masses, different geometrical distances, and with a
different ratio vϕ1=ðc2vϕ0 Þ. One can do that with any of the
three already depicted disk configurations. That suggests,
in particular, that one can generate disk systems with a very
large 1PN correction to the angular velocity. There is,
however, a question whether these rescaled solutions
can be regarded as being tangent to the solution of the
exact general-relativistic hydrodynamics. The answer to
that cannot be found in the 1PN analysis, but must be
sought with the exact general-relativistic treatment. We
leave this problem for future investigation.

VIII. SUMMARY

We investigated stationary gaseous disks around a
spinless black hole in the 1PN approximation scheme.
The 1PN calculation is obviously simpler technically than
the full general-relativistic picture, but it does include
essential features—the nonlinearity and backreaction—that
are typical for Einstein equations. The concepts of the
quasilocal masses and angular momentum can be mean-
ingfully defined in stationary axially symmetric systems,
but it is useful that the 1PN approximation is based on
Newtonian concepts and Newtonian intuition. The 1PN
approximation allows for flexibility in imposing rotation
laws that correspond to well-known classes of Newtonian
rotation curves, including the Keplerian rotation. We took
care to deal with relatively small characteristic velocities
and potentials, v=c ≪ 1 and jUj=c2 ≪ 1, in all calculations
reported here; that should guarantee that 1PN results are
correct. The main results are as follows:
An integrability condition leads to the emergence of two

distinctly different types of general-relativistic corrections
to the angular velocity.
One of them is due to the familiar geometric dragging of

frames; this depends only indirectly on the disk structure
and rotation, because the metric in the 1PN expansion
does include the backreaction and indirectly depends on
characteristics of matter at the Newtonian level. The other
type—the dynamic effect—that directly depends on the
material structure of a disk, has been hitherto unknown.
That one is strongest in the central disk plane.
The geometric and dynamic effects counteract; the

dragging of frames pushes a disk forward, but the dynamic
effect diminishes the angular velocity. In many numerical
solutions, the net effect had been weakest in a central zone
of the disk. Inside of that zone, the gas may be actually
slowed down (the total 1PN angular velocity correction
may or can be negative), while at its boundary the dynamic
correction vanishes. The geometric dragging of frames
always dominates in the disk boundary zone.
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FIG. 5 (color online). The ratio vϕ1=ðc2vϕ0 Þ within the disk
volume. The ordinate shows the height of the disk and the
abscissa the coordinate distance from the center, in the rescaled
unit system r=rout where rout ¼ 50RS. The inner boundary is
located at rin ¼ 30.5RS, and the outer boundary at rout ¼ 50RS.
The disk mass MD ¼ 1.8 ×Mc. The drag is strongest at the disk
boundary, up to 3.46%. Here ω0 ¼ 1.31
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FIG. 4 (color online). The ratio vϕ1=ðc2vϕ0 Þ within the disk
volume for the limiting-type system. The ordinate shows the
height of the disk and the abscissa the coordinate distance from
the center, in the rescaled unit system r=rout where rout ≡ 450RS.
The inner disk boundary is located at rin ¼ 81RS, and the outer
boundary at rout ¼ 450RS. The Newtonian disk mass
MD ¼ 1.4 ×Mc. The white region is dominated by dynamic
braking; its boundary is denoted by the short broken line, where
the 1PN velocity correction vϕ1 vanishes. The drag is strongest at
the disk boundary. Here ω0 ¼ 1.188
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The 1PN correction to the orbital period can be signifi-
cant. We found a number of numerical models that satisfy
requirements of the 1PN approximation—with a change
of the orbital period close to 4%. The Newtonian and
1PN equations posses a scaling symmetry that in principle
would generate new solutions with even larger 1PN
corrections to the angular velocity. These rescaled solutions
have to satisfy the assumptions of the 1PN approximations.
The ultimate answer concerning whether or not they
approximate exact solutions would require the investigation
of an exact general-relativistic model.
We found that there is one type of matter—dust—for

which the dynamic effect vanishes. Disks made of dust expe-
rience 1PN corrections only through the dragging of frames.
It is interesting that uniformly rotating disks do not show any
1PN effect—both contributory effects, the geometric drag-
ging of frames and the dynamic one, do vanish in this case.
In the merger of compact binaries consisting of pairs of

black holes and neutron stars, a neutron star is destroyed
[26] and a heavy leftover disk would form, that might

reveal signs of the anti-dragging. The Bardeen-Petterson
effect [27], that arises due to the geometric dragging, is
known to occur in some AGNs [28]. The dynamic braking
may lead to its observable modifications in black hole–
(heavy) disk systems.
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