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We present a class of charged black hole solutions in an (nþ 2)-dimensional massive gravity with a
negative cosmological constant, and study the thermodynamics and phase structure of the black hole
solutions in both the grand canonical and canonical ensembles. The black hole horizon can have a positive,
zero, or negative constant curvature characterized by the constant k. By using the Hamiltonian approach,
we obtain conserved charges of the solutions and find that the black hole entropy still obeys the area
formula and the gravitational field equation at the black hole horizon can be cast into a form similar to the
first law of black hole thermodynamics. In the grand canonical ensemble, we find that the thermodynamics
and phase structure depend on the combination k − μ2=4þ c2m2 in the four-dimensional case, where μ is
the chemical potential and c2m2 is the coefficient of the second term in the potential associated with the
graviton mass. When it is positive, the Hawking-Page phase transition can happen; when as it is negative,
the black hole is always thermodynamically stable with a positive capacity. In the canonical ensemble, the
combination turns out to be kþ c2m2 in the four-dimensional case. When it is positive, a first-order phase
transition can happen between small and large black holes if the charge is less than its critical value. In the
higher-dimensional [ðnþ 2Þ ≥ 5] case, even when the charge is absent, the small/large black hole phase
transition can also appear, and the coefficients for the third (c3m2) and/or fourth (c4m2) terms in the
potential associated with the graviton mass in massive gravity can play the same role as that of the charge in
the four-dimensional case.
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I. INTRODUCTION

In 1983, Hawking and Page [1] found that there is a
phase transition between a Schwarzschild anti–de Sitter
(AdS) black hole and a thermal gas in AdS space. In the
literature, this phase transition is called the Hawking-Page
(HP) phase transition. However, a similar phase transition
does not exist for black holes in asymptotically flat or de
Sitter spacetimes. The main reason for the existence of the
Hawking-Page phase transition is as follows. In AdS
space, there exists a minimal temperature below which
there is a stable thermal gas solution but no black hole
solution. However, above the minimal temperature, there
are two black hole solutions with the same temperature:
the black hole with the larger horizon radius is thermody-
namically stable with a positive heat capacity, and the
black hole with the smaller horizon radius is thermody-
namically unstable with a negative heat capacity, behaving
like a Schwarzschild black hole in an asymptotically flat

spacetime. Thus beyond the minimal temperature, the
thermal gas in AdS space will collapse to form the stable
large black hole. This is just the Hawking-Page phase
transition. Due to the AdS/CFT correspondence [2–4]
[which says that a quantum gravity in AdS space is dual
to a conformal field theory (CFT) living on the boundary of
the AdS space], the Hawking-Page phase transition
received another interpretation in the dual CFT side: the
confinement/deconfinement phase transition of the dual
gauge field theory [5].
Another remarkable difference between a black hole in

AdS space and its counterpart in flat or de Sitter space is
that the black holes in AdS space could have a Ricci
flat or hyperbolic horizon, in addition to the sphere horizon.
These black holes are usually called topological black holes
in the literature [6–12] . It is quite interesting to note that
the Hawking-Page phase transition does not happen for
the AdS black holes with a Ricci flat or hyperbolic
horizon [13].
Einstein’s general relativity is a relativistic theory of

gravity where the graviton is massless. A natural question is
whether one can build a self-consistent gravity theory if the
graviton is massive. It turns out that this is not a trivial

*cairg@itp.ac.cn
†huyp@nuaa.edu.cn
‡panqiyuan@126.com
§zhangyl@itp.ac.cn

PHYSICAL REVIEW D 91, 024032 (2015)

1550-7998=2015=91(2)=024032(12) 024032-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.024032
http://dx.doi.org/10.1103/PhysRevD.91.024032
http://dx.doi.org/10.1103/PhysRevD.91.024032
http://dx.doi.org/10.1103/PhysRevD.91.024032


matter. In Refs. [14–16], a class of nonlinear massive
gravity theories were proposed, in which the ghost field is
absent [17,18]. In this class of massive gravity, the energy-
momentum is no longer conserved due to the breakdown of
diffeomorphism invariance. Recently, Vegh [19] found a
nontrivial black hole solution with a Ricci flat horizon in
four-dimensional massive gravity with a negative cosmo-
logical constant [20]. He then found that the mass of the
graviton can play the same role as the lattice in the
holographic conductor model: the conductivity generally
exhibits a Drude peak which approaches a delta function in
the massless gravity limit. Some holographic consequences
of the effect of the graviton mass in massive gravity were
investigated in Refs. [21–25]. The propose of this paper is
to generalize Vegh’s black hole solution and to study the
corresponding thermodynamical properties and phase
structure of the black hole solutions.
The organization of this paper is as follows. In Sec. II

we present the exact charged black hole solutions with
any horizon topology in an ðnþ 2Þ-dimensional massive
gravity. In Sec. III we obtain thermodynamical quantities
associated with the solution, and show that they obey the
first law of black hole thermodynamics and the black
hole entropy satisfies the area formula as in general
relativity (GR). In particular—although the massive
gravity is not diffeomorphism invariant—the equation
of motion of the gravitational field at a black hole
horizon can be cast into a form similar to the first law
of black hole thermodynamics. In Sec. IV we study phase
structure of a four-dimensional black hole in both the
grand canonical and canonical ensembles. In Sec. V we
discuss the case of a five-dimensional neutral black hole
and show that there exists a first-order phase transition
between small/large black holes, although in this case
the electric charge is absent. We end the paper with
conclusions in Sec. VI.1

II. THE BLACK HOLE SOLUTION

Let us consider the following action for an ðnþ 2Þ-
dimensional massive gravity with a Maxwell field and a
negative cosmological constant [19]:

S ¼ 1

2κ2

Z
dnþ2x

ffiffiffiffiffiffi
−g

p �
Rþ nðnþ 1Þ

l2
−
1

4
F2

þm2
X4
i

ciU iðg; fÞ
�
; ð1Þ

where f is a fixed symmetric tensor (usually called the
reference metric), ci are constants,2 and U i are symmetric
polynomials of the eigenvalues of the ðnþ 2Þ × ðnþ 2Þ
matrix Kμ

ν ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαfαν

p
,

U1 ¼ ½K�;
U2 ¼ ½K�2 − ½K2�;
U3 ¼ ½K�3 − 3½K�½K2� þ 2½K3�;
U4 ¼ ½K�4 − 6½K2�½K�2 þ 8½K3�½K� þ 3½K2�2 − 6½K4�: ð2Þ

The square root in K means ð ffiffiffiffi
A

p Þμνð
ffiffiffiffi
A

p Þνλ ¼ Aμ
λ and

½K� ¼ Kμ
μ. The equations of motion turn out to be

Rμν −
1

2
Rgμν −

nðnþ 1Þ
2l2

gμν −
1

2

�
FμσFν

σ −
1

4
gμνF2

�
þm2χμν ¼ 0;

∇μFμν ¼ 0; ð3Þ

where

χμν ¼ −
c1
2
ðU1gμν −KμνÞ −

c2
2
ðU2gμν − 2U1Kμν þ 2K2

μνÞ

−
c3
2
ðU3gμν − 3U2Kμν þ 6U1K2

μν − 6K3
μνÞ

−
c4
2
ðU4gμν − 4U3Kμν þ 12U2K2

μν

− 24U1K3
μν þ 24K4

μνÞ: ð4Þ

We are now looking for a static black hole solution with
the metric ansatz

ds2 ¼ −N2ðrÞfðrÞdt2 þ f−1ðrÞdr2 þ r2hijdxidxj;

i; j ¼ 1; 2; 3; � � � ; n;
ð5Þ

where hijdxidxj is the line element for an Einstein space
with constant curvature nðn − 1Þk. Without loss of general-
ity, one may take k ¼ 1, 0, or −1, corresponding to a
sphere, Ricci flat, or hyperbolic horizon for the black hole,
respectively. Following and generalizing the ansatz in
Ref. [19], we take the following reference metric:

fμν ¼ diagð0; 0; c20hijÞ; ð6Þ

where c0 is a positive constant. With the reference metric
(6), we have

1While this work was being prepared, Ref. [26] appeared in
the archive; the authors investigated the Hawking-Page phase
transition in a four-dimensional neutral black hole in a special
class of massive gravity (with the c2m2 term in this paper) and
found that the Hawking-Page phase transition exists even when
the temperature goes down to zero.

2For a self-consistent massive gravity theory, all these coef-
ficients might be required to be negative if m2 > 0. However, in
this paper we do not impose this limit, since in AdS space the
fluctuations of some fields with negative squared masses could
still be stable if the squared mass obeys the corresponding
Breitenlohner-Freedman bounds.
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U1 ¼ nc0=r;

U2 ¼ nðn − 1Þc20=r2;
U3 ¼ nðn − 1Þðn − 2Þc30=r3;
U4 ¼ nðn − 1Þðn − 2Þðn − 3Þc40=r4: ð7Þ

We see that in the four-dimensional case with n ¼ 2, one
has identically U3 ¼ U4 ¼ 0, while U4 ¼ 0 in the five-
dimensional case with n ¼ 3.
For the metric (5), the Hamiltonian action for the

gravitational part turns out to be

IGrav ¼ −
nVn

2κ2

Z
dtdrNU0; ð8Þ

where a prime denotes the derivative with respect to r and

U ¼ rn−1ðk − fÞ þ rnþ1

l2
þm2

�
c0c1
n

rn þ c20c2r
n−1

þ ðn − 1Þc30c3rn−2 þ ðn − 1Þðn − 2Þc40c4rn−3
�
;

where Vn is the volume of the space spanned by the
coordinates xi. On the other hand, when considering a static
charged solution it is easy to see that the Hamiltonian action
for the Maxwell field part is of the form

IMax ¼
Vn

2κ2

Z
dtdr

�
N
2rn

p2 þ Vp0
�
; ð9Þ

where p is the conjugate momentum of Ar and V ¼ −At.
Combining Eqs. (8) and (9), we have the total Hamiltonian
action of the system,

Itotal ¼ −
nVn

2κ2

Z
dtdr

�
N

�
U0 −

1

2nrn
p2

�
−
1

n
Vp0

�
:

ð10Þ

Varying the action with respect to N, U, V, and p,
respectively, we obtain the equations of motion,

U0 −
1

2nrn
p2 ¼ 0;

N0 ¼ 0; p0 ¼ 0;

V 0 ¼ N
rn

p: ð11Þ

Integrating the above equations, we have

NðrÞ ¼ N0; p ¼ q;

V ¼ μ −
N0

ðn − 1Þrn−1 q;

UðrÞ ¼ m0 −
1

2nðn − 1Þrn−1 q
2; ð12Þ

where N0, q, μ, and m0 are all constants. Without loss of
generality, one can setN0 ¼ 1 by rescaling the coordinate t.
To require a vanishing static electric potential at a black
hole horizon rþ, the chemical potential at infinity is

μ ¼ 1

ðn − 1Þrn−1þ
q: ð13Þ

As a result, the metric function fðrÞ is

fðrÞ ¼ kþ r2

l2
−

m0

rn−1
þ q2

2nðn− 1Þr2ðn−1Þ þ
c0c1m2

n
r

þ c20c2m
2þðn− 1Þc30c3m2

r
þðn− 1Þðn− 2Þc40c4m2

r2

ð14Þ

expressed in terms of the mass parameter m0 and electric
charge q, or

fðrÞ ¼ kþ r2

l2
−

m0

rn−1
þðn− 1Þμ2r2ðn−1Þþ

2nr2ðn−1Þ
þ c0c1m2

n
r

þ c20c2m
2þðn− 1Þc30c3m2

r
þðn− 1Þðn− 2Þc40c4m2

r2

ð15Þ

expressed in terms of the mass parameter m0 and the
chemical potential. We see that in the four-dimensional
case, (taking c3 ¼ c4 ¼ 0 and k ¼ 0) one recovers the
solution found in Ref. [19].3

III. THERMODYNAMICAL QUANTITIES AND
THE FIRST LAW

In this section we calculate the conserved charges
associated with the black hole solution found in the
previous section. Note that the action density (10) can
be written as

I ¼−
nVnðt2− t1Þ

2κ2

Z
dr

�
N

�
U0 −

1

2nrn
p2

�
−
1

n
Vp0

�
þB;

ð16Þ
where B is a surface term, which should be chosen so that
the action has an extremum under a variation of the fields

3Note that here the coordinate r is different from the one in
Ref. [19]: rhere ¼ l=rthere.
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with appropriate boundary conditions. One requires that the
fields approach the classical solutions at infinity. Varying
the action, one finds the boundary term

δB ¼ ðt2 − t1ÞðN0δM − μδQÞ þ B0: ð17Þ

The boundary term B is the conserved charge associated
with the “improper gauge transformation” produced by
time evolution. The constant B0 is determined by some
physical consideration, e.g., the mass vanishes when a
black hole horizon goes to zero. Here M and N0 are a
conjugate pair, and μ and Q are another conjugate pair.
According to the Hamiltonian approach, we have the mass
M and charge Q as

M ¼ nVn

2κ2
m0;

Q ¼ Vn

2κ2
q ¼ ðn − 1Þrn−1þ Vn

2κ2
μ: ð18Þ

The black hole horizon is determined by fðrÞjr¼rþ ¼ 0.
Thus the mass M can be expressed in terms of the horizon
radius rþ,

M ¼ nVnrn−1þ
2κ2

�
kþ r2þ

l2
þ q2

2nðn− 1Þr2ðn−1Þþ
þ c0c1m2

n
rþ

þ c20c2m
2 þ ðn− 1Þc30c3m2

rþ
þ ðn− 1Þðn− 2Þc40c4m2

r2þ

�
:

ð19Þ

The Hawking temperature of the black hole can be easily
obtained as

T ¼ 1

4πrþ

�
ðn− 1Þkþ ðnþ 1Þ r

2þ
l2

−
q2

2nr2ðn−1Þþ

þ c1c0m2rþ þ ðn− 1Þc2c20m2 þ ðn− 1Þðn− 2Þc3c30m2

rþ

þ ðn− 1Þðn− 2Þðn− 3Þc4c40m2

r2þ

�
ð20Þ

by requiring the Euclidean time (τ ¼ it) to have a period
β ¼ 4π=f0ðrÞjr¼rþ , so that the potential conical singularity
at the black hole horizon is moved and the period just gives
the inverse Hawking temperature of the black hole. It is
easy to see that the black hole entropy obeys the area
formula, which gives

S ¼ 2πVn

κ2
rnþ: ð21Þ

We then obtain the following first law of black hole
thermodynamics:

dM ¼ TdSþ μdQ: ð22Þ

Now let us notice an interesting property of the gravi-
tational field equations at a black hole horizon. The first
equation in Eq. (11) can be written as

ðn − 1Þrn−2ðk − fÞ − rn−1f0 þ ðnþ 1Þ r
n

l2

þm2ðc0c1rn−1 þ ðn − 1Þc20c2rn−2
ðn − 1Þðn − 2Þc30c3rn−3 þ ðn − 1Þðn − 2Þðn − 3Þc40c4rn−4Þ

¼ 1

2nrn
q2; ð23Þ

On the black hole horizon, one has fðrÞjr¼rþ ¼ 0, and the
black hole temperature

T ¼ 1

4π
f0jr¼rþ : ð24Þ

Bymultiplying both sides of Eq. (23) by nVn=ð2κ2Þdrþ, we
see that it can be rewritten as

dM − TdS − μdQ ¼ 0; ð25Þ

where S,M, andQ are the entropy in Eq. (21), and the mass
and charge in Eq. (18), respectively. Thus we have shown
that the Hamiltonian constraint—or rather, the t − t com-
ponent of the gravitational field equations—on the horizon
can be cast into a form similar to the first law of black hole
thermodynamics (like in GR), although the massive gravity
manifestly breaks the diffeomorphism invariance (like in
Horava-Lifshitz gravity). For the latter, we have also shown
that the equation of motion of the gravitational field at the
black hole horizon can be written as a form of the first law
of black hole thermodynamics [27].

IV. PHASE STRUCTUREOF FOUR-DIMENSIONAL
BLACK HOLES

In this section we focus on the four-dimensional case.
In this case, we have U3 ¼ U4 ¼ 0 (c3 ¼ c4 ¼ 0) and the
metric function fðrÞ becomes

fðrÞ ¼ kþ r2

l2
−
m0

r
þ q2

4r2
þ c1m2

2
rþ c2m2; ð26Þ

where without loss of generality we have set c0 ¼ 1. Note
that the vacuum solution with m0 ¼ q ¼ 0 is

f0ðrÞ ¼ kþ r2

l2
þ c1m2

2
rþ c2m2; ð27Þ

which is not an AdS space unless m2 ¼ 0. Note that the
black hole mass (18) is defined with respect to the vacuum
solution.

CAI et al. PHYSICAL REVIEW D 91, 024032 (2015)

024032-4



A. Grand canonical ensemble

In a grand canonical ensemble with a fixed chemical
potential μ associated with the charge Q, the Gibbs free
energy is4

G4 ¼ M − TS − μQ;

¼ V2rþ
2κ2

�
k −

r2þ
l2

þ c2m2 −
1

4
μ2
�
: ð28Þ

The Hawking temperature can be written as

T4 ¼
1

4πrþ

�
kþ 3

r2þ
l2

−
1

4
μ2 þ c1m2rþ þ c2m2

�
; ð29Þ

and the heat capacity with a fixed chemical potential is
given by

Cμ ¼ T

�
dS
dT

�����
μ

¼ ð4πÞ2V2Tr3þ
κ2ð−kþ 3

r2þ
l2 þ μ2

4
− c2m2Þ

: ð30Þ

From these thermodynamical quantities, we see that in this
grand canonical ensemble, the term μ2 − 4c2m2 behaves as
an effective chemical potential ~μ2 ¼ μ2 − 4c2m2 for a
charged black hole in GR. We now discuss the cases of
k ¼ −1, 0, and 1, respectively.

1. The case of k ¼ −1
In this case, if c2 ≤ 0, we see that ~μ2 is always positive,

and the Gibbs free energy is always negative,5 while the
Gibbs free energy changes its sign at

rgc ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ~μ2=4 − 1

q
; ð31Þ

if c2 > 0, so that −~μ2 > 4. Namely, when rþ < rgc, one has
G4 > 0, while G4 < 0 when rþ > rgc. In other words, the
Hawking-Page phase transition does not exist if c2 < 0,
while it does if 4c2m2 − μ2 > 4. The Hawking-Page phase
transition temperature is given by

THP ¼
1

4πrgc

�
2
r2gc
l2

þ c1m2rgc

�
: ð32Þ

To have a positive THP, we see that c1m2 has to sat-
isfy c1m2 > −2rgc=l2.
The local thermodynamical stability of the black hole is

determined by the heat capacity (30). We see that Cμ is
always positive if c2 ≤ 0; however, if c2 > 0 so that
−~μ2 > 4, one has Cμ < 0 when rþ < rμc, and Cμ > 0
when rþ > rμc, which diverges at

rμc ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð− ~μ2=4 − 1Þ=3

q
¼ rgc=

ffiffiffi
3

p
: ð33Þ

The divergence point corresponds to the minimal temper-
ature (see the left plot of Fig. 1). We see that in this case, the
temperature behavior of the black hole with a hyperbolic
horizon is qualitatively the same as that of a Schwarzschild
AdS black hole in GR: there exists a minimal temperature,
and the smaller black holes with rþ < rμc are unstable with
a negative heat capacity, while the larger black holes with
rþ > rμc are stable with a positive heat capacity.
In addition, we see from the temperature (29) that there

exists a minimal horizon radius rm,

rm ¼ c1m2l2

6

2
4−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12

l2c21m
4

�
1þ 1

4
~μ2
�s 3
5; ð34Þ
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FIG. 1 (color online). The temperature T of the black hole with k ¼ −1 versus horizon radius rþ. Here we take l ¼ c1m2 ¼ 1. Left:
~μ2 ¼ −6. Right: ~μ2 ¼ 1.

4Note that the Gibbs free energy (28) is the same as the
Euclidean action difference of the black hole and the correspond-
ing vacuum solution multiplied by the black hole temperature.

5In this paper we always assume m2 > 0.
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where the Hawking temperature vanishes; it corresponds to
an extremal black hole (see the right plot of Fig. 1). Note
that as c1 ≥ 0, one requires 1þ ~μ2=4 ≥ 0 in order to have a
real root rm ≥ 0 [in this case, one takes “þ” in Eq. (34)]. On
the other hand, if c1 < 0, the condition 1þ ~μ2=4þ
l2c21m

4=12 ≥ 0 has to be satisfied [in this case, one takes
“−” in Eq. (34)]. Furthermore, if c1 ¼ 0, the minimal
horizon radius is rm ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~μ2=4þ 1Þ=3

p
.

As a summary we find that if both c1 < 0 and c2 < 0, the
situation is qualitatively the same as in GR: the black hole is
not only globally thermodynamically stable with G4 < 0,
but it is also locally thermodynamically stable with Cμ > 0,
i.e., the minimal horizon radius (34) exists. However, if
c2 > 0 so that c2m2 > μ2=4, the thermodynamical behav-
ior of the black hole is qualitatively the same as the
Schwarzschild AdS black hole: there does exist a minimal
temperature and the Hawking-Page phase transition hap-
pens, although the black hole discussed here has a
hyperbolical horizon.

2. The case of k ¼ 0

In this case, the Gibbs free energy is always negative if
c2 ≤ 0. But when c2 > 0 so that −~μ2 > 0, the Gibbs free
energy is positive for small horizon radius rþ < rgc and
negative for rþ > rgc, and it changes its sign at

rgc ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− ~μ2=4

q
: ð35Þ

Namely, if c2 > 0, the Hawking-Page phase transition can
happen at rþ ¼ rgc.
The extremal black hole exists with a horizon radius

rm ¼ c1m2l2

6

0
@−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

l2c21m
4
~μ2

s 1
A: ð36Þ

If c1 ≥ 0, we take “þ” in the above equation and require
~μ2 > 0; if c1 < 0, we take “−” and require
1þ 3~μ2=ðl2c21m4Þ > 0; and if c1 ¼ 0, the minimal horizon

radius is rm ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffi
~μ2=12

p
(see the left plot of Fig. 2).

If μ < 2m
ffiffiffiffiffi
c2

p
, there exists a minimal temperature at

rμc ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2m2 − μ2=4Þ=3

q
¼ rgc=

ffiffiffi
3

p
: ð37Þ

When rþ < rμc the black hole has a negative heat capacity,
and it is positive when rþ > rμc. The heat capacity diverges
at rþ ¼ rμc (see the right plot of Fig. 2).
As a summary, if c1 < 0 and c2 < 0, the situation is

qualitatively the same as in GR: the black hole is not only
globally stable with G4 < 0, but also locally stable with
Cμ > 0, i.e., the extremal black hole with the minimal
horizon radius (36) exists. However, if c2 > 0 so that
−~μ2 > 0, once again the situation qualitatively behaves like
the Schwarzschild AdS black hole, although now the black
hole discussed here has a Ricci flat horizon.

3. The case of k ¼ 1

In this case, we can see from Eq. (28) that the Gibbs free
energy changes its sign at

rgc ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~μ2=4

q
; ð38Þ

which means that the Hawking-Page phase transition
happens at rþ ¼ rgc [26] if 1 − ~μ2=4 > 0. The Gibbs free
energy is positive for small black holes with rþ < rgc and
negative for large black holes with rþ > rgc. Of course, if
1 − ~μ2=4 < 0, the Hawking-Page phase transition does not
appear.
From Eq. (30) we see that if 1 − ~μ2=4 > 0, there exists a

minimal temperature at
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FIG. 2 (color online). The temperature T of the black hole with k ¼ 0 versus horizon radius rþ. Here we take l ¼ c1m2 ¼ 1. Left:
~μ2 ¼ 1. Right: ~μ2 ¼ −6.
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rμc ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ~μ2=4Þ=3

q
¼ rgc=

ffiffiffi
3

p
: ð39Þ

When rþ < rμc the heat capacity is negative, and it is
positive when rþ > rμc. The heat capacity diverges at
rþ ¼ rμc (see the left plot of Fig. 3).
On the other hand, if 1 − ~μ2=4 < 0 the extremal back

hole solution with a vanishing Hawking temperature exists
and its horizon radius is given by

rm ¼ l2c1m2

6

2
4−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12

l2c21m
4

�
1 −

1

4
~μ2
�s 3
5: ð40Þ

We see that if c1 > 0, we take the “þ” sign in Eq. (40); if

c1 < 0, we take the “−” sign; and if c1 ¼ 0, we have rm ¼
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ2=4 − 1

q
(see the right plot of Fig. 3).

Thus we see that when both c1 < 0 and c2 < 0, the
situation is qualitatively the same as the case of a
Schwarzschild AdS black hole in GR: the black hole is
locally unstable for small black holes with rþ < rμc and it
is stable for large black holes with rþ > rμc, and thus
the Hawking-Page phase transition happens at rþ ¼ rgc.
The Hawking-Page phase transition does not exist if the
effective potential ~μ2=4 > 1.
To summarize the three cases, we find that the thermo-

dynamics and phase structures of the black holes crucially
depend on the combination k − μ2=4þ c2m2. When it is
positive, there is a minimal temperature: the black hole with
the smaller (larger) horizon is thermodynamically unstable
(stable), and the Hawking-Page phase transition can happen
for any topological horizon (k ¼ 1; 0;−1). This is quite
different from the case in GR, where the Hawking-Page
phase transition can only appear when k ¼ 1. When the
combination is negative, the black hole is always thermo-
dynamically stable and no phase transition can happen.

B. Canonical ensemble

In a canonical ensemble with a fixed charge Q, the
Helmholtz free energy is6

F4 ¼ M − TS ¼ V2rþ
2κ2

�
k −

r2þ
l2

þ c2m2 þ 3q2

4r2þ

�
; ð41Þ

the associated heat capacity is given by

CQ ¼ T

�
dS
dT

�����
Q
¼ ð4πÞ2V2Tr3þ

κ2ð−kþ 3
r2þ
l2 þ 3q2

4r2þ
− c2m2Þ

; ð42Þ

and the black hole temperature can be expressed in terms of
the horizon radius and charge as

T4 ¼
1

4πrþ

�
kþ 3

r2þ
l2

−
1

4

q2

r2þ
þ c1m2rþ þ c2m2

�
: ð43Þ

We see from these thermodynamical quantities that we can
combine k and c2m2 to create an effective horizon
curvature, ~k ¼ kþ c2m2.
From Eq. (41) we see that the Helmholtz free energy is

positive for small black holes with rþ < rfc, is negative for
large black holes with rþ > rfc, and changes sign at
rþ ¼ rfc, where

r2fc ¼
l2

2

0
B@~kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þ 3q2

l2

s 1
CA: ð44Þ
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FIG. 3 (color online). The temperature T of the black hole with k ¼ 1 versus horizon radius rþ. Here we take l ¼ c1m2 ¼ 1. Left:
~μ2 ¼ 1. Right: ~μ2 ¼ 6.

6If we define an extremal black hole with charge q as the
reference background [28], then the Helmholtz free energy
should be changed to ~F4 ¼ F4 −Mext, where Mext is the mass
of the extremal black hole with vanishing Hawking temperature.
The conclusions are not qualitatively different if one takes F4

instead of ~F4, and therefore we consider F4 here for simplicity.
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On the other hand, we see from the heat capacity (42) that if
~k ≤ 0, the heat capacity is always positive. However, if ~k >
0 the heat capacity is positive for small black holes with
rþ < rqc− and large black holes with rþ > rqcþ, while it is
negative for intermediate black holes with rqc−<rþ<rqcþ.
The heat capacity diverges at

r2qc� ¼ l2

6

0
B@~k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 −

9q2

l2

s 1
CA ð45Þ

if the charge is less than the critical one, q2crit ¼ l2 ~k2=9. Of
course, if the charge is larger than the critical one, the black
hole is always stable with positive heat capacity. These
properties can be seen from the behavior of the Hawking
temperature (see Figs. 4 and 5). Note that these properties
are independent of the sign of c1, as in the grand canonical
ensemble.
Note that the horizon radius for an extremal black hole

with vanishing Hawking temperature is determined by the
equation

~kþ 3
r2m
l2

−
1

4

q2

r2m
þ c1m2rm ¼ 0; ð46Þ

which has a simple root

r2m ¼ l2

6

0
B@−~kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þ 3q2

l2

s 1
CA ð47Þ

if c1 ¼ 0. Let us recall here that the minimal horizon radius
always exists for any ~k.
In Fig. 6 we plot the Helmholtz free energy of the black

holes with ~k ¼ 2 with respect to temperature in the cases of
q < qcrit and q > qcrit, respectively. In the left plot,

7 we see
that a typical first-order phase transition signature (a
swallow tail) appears when q < qcrit, and it disappears
when q > qcrit. Thus we see that as in GR, if ~k > 0, there
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FIG. 4 (color online). The temperature T of the black hole with q ¼ 1 versus horizon radius rþ. Here we take l ¼ c1m2 ¼ 1. Left:
~k ¼ 0. Right: ~k ¼ −2.
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FIG. 5 (color online). The temperature T of the black hole with ~k ¼ 2 versus horizon radius rþ. Here we take l ¼ c1m2 ¼ 1. Left:
q ¼ 0.4 (< qcrit). Right: q ¼ 1 (> qcrit).

7Note that if one plots the free energy ~F4 ¼ F4 −Mext, the free
energy ~F4 has the same shape as F4. The only difference is that
the whole free-energy curve ~F4 will move below the horizontal
axis, i.e., ~F4 is always negative.

CAI et al. PHYSICAL REVIEW D 91, 024032 (2015)

024032-8



exists a first-order phase transition between small and large
black holes if the charge is less than the critical one. The
phase transition disappears when the charge is larger than
the critical one. The critical point appears when the charge
is equal to the critical one. This phase transition behaves
very much like that in the van der Waals system in the case
of charged black holes in GR [28]. Note that such a phase
transition does not exist when ~k ≤ 0.
As a summary, we see that in the canonical ensemble the

thermodynamical behavior of the charged black holes in
massive gravity is qualitatively the same as that of
Reissner-Nordström AdS black holes with an effective
horizon curvature ~k ¼ kþ c2m2. If ~k > 0, there exists a
small/large black hole phase transition if the charge is less
than the critical one. This phase transition disappears when
the charge is larger than the critical one.

V. THE PHASE TRANSITION IN HIGHER-
DIMENSIONAL NEUTRAL BLACK HOLES

In a higher-dimensional case with n > 2, one has c3 ≠ 0
if n ≥ 3, and c3 ≠ 0 , c4 ≠ 0 if n ≥ 4, in general. Note that
the charge plays a crucial role in the existence of the small/
large black hole phase transition in the four-dimensional
case. In this section, we show that c3m2 and c4m2 terms can
play the same role as the charge in higher-dimensional
cases. Here we consider the case of five-dimensional
neutral black holes. To clearly see the effect of the term

c3m2, we set c1 ¼ c2 ¼ q ¼ 0 for simplicity in this section.
Thus the Hawking temperature is given by

T5 ¼
1

4πrþ

�
2kþ 4

r2þ
l2

þ 2c3m2

rþ

�
; ð48Þ

the mass of the black hole is

M5 ¼
3V3r2þ
2κ2

�
kþ r2þ

l2
þ 2c3m2

rþ

�
; ð49Þ

and the Helmholtz free energy is

F5 ¼
V3r2þ
2κ2

�
k −

r2þ
l2

þ 4c3m2

rþ

�
: ð50Þ

We see that when c3 > 0, nothing special happens. This
situation is qualitatively the same as the case of topological
black holes in GR [13]: when k ¼ 1, the Hawking-Page
phase transition occurs, and black holes with a small
horizon radius are thermodynamically unstable with a
negative heat capacity and those with a large horizon
radius are stable with a positive heat capacity; however,
when k ¼ 0 and −1, the Hawking-Page phase transition
does not occur and the black holes are always thermody-
namically stable with positive capacity.
When c3 < 0, however, some interesting things appear.

In Fig. 7, we show the behavior of the temperature of the
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FIG. 6 (color online). The Helmholtz free energy of a black hole with ~k ¼ 2 versus temperature T. Here we take l ¼ 1, c1m2 ¼ 0. Left:
q ¼ 0.4 (< qcrit). Right: q ¼ 1 (> qcrit).
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black holes with k ¼ 1 when c3 ¼ −0.1 and c3 ¼ −0.3,
respectively, while the corresponding free energies are
plotted in Fig. 8.
From Fig. 7 we see that the temperature behaviors are

quite similar to the cases shown in Fig. 5, which implies
that there exists a critical c3crit. When c3 < c3crit the
black holes are always thermodynamically stable with a
positive capacity, when c3crit < c < 0 there exist two
stable branches with positive capacity (a small horizon
branch and a large horizon branch), and for the
intermediate horizon the black holes are thermodynami-
cally unstable with negative capacity. The heat capacity
is given by

C5 ¼ T

�
dS
dT

�
¼ 6π2V3T5r4þ

κ2ð−kþ 2r2þ
l2 − 2c3m2

rþ
Þ
: ð51Þ

The critical c3 is given by c3crit ¼ −l=m2
ffiffiffiffiffi
54

p
for the

case when k ¼ 1. From the free-energy behavior
shown in Fig. 8, we see that the first-order phase
transition occurs when c3crit < c3 < 0 and it disappears
if c3 < c3crit.
Note that the first-order phase transition discussed above

occurs only in the case when k ¼ 1. In addition, it is easy to
see from the temperature behavior (20) that the term c4m2

in the six-dimensional case can play the same role as the
term c3m2 in the five-dimensional case.
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FIG. 7 (color online). The temperature T of a black hole with k ¼ 1 versus horizon radius rþ. Here we take l ¼ 1. Left: c3m2 ¼ −0.1.
Right: c3m2 ¼ −0.3
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FIG. 8 (color online). The Helmholtz free energy of a black hole with k ¼ 1 versus temperature T. Here we take l ¼ 1. Left:
c3m2 ¼ −0.1. Right: c3m2 ¼ −0.3.
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VI. CONCLUSIONS

In this paper we have presented a class of charged black
hole solutions in an ðnþ 2Þ-dimensional massive gravity
with a negative cosmological constant, and studied the
thermodynamics and phase structure of the black hole
solutions in both the grand canonical and canonical
ensembles. The black hole horizon can have a positive,
zero, or negative constant curvature. In the massive gravity
we have considered, there are four terms in the potential
associated with the graviton mass. In the four-dimensional
case, only two of the terms appear in the solution, while the
other two terms may occur in higher-dimensional cases. By
using the Hamiltonian approach, we have obtained con-
served charges of the solutions and they satisfy the first law
of black hole thermodynamics. It turns out that the entropy
of the black hole still obeys the area formula as in GR,
although the massive gravity is not diffemorphism invari-
ant. In addition, we have shown that the gravitational field
equations at the black hole horizon can be cast into a form
similar to the first law of black hole thermodynamics.
In the four-dimensional case, the black hole thermody-

namics and phase structure crucially depend on the horizon
curvature of the black holes and the sign of c2. In the grand
canonical ensemble, the Hawking-Page phase transition
happens for the case k − μ2=4þ c2m2 ≥ 0. Namely, it can
appear only for the case k ¼ 1 if c2 < 0, while for the k ¼
0 or −1 case, the black holes are always thermodynamically
stable with positive capacity. When c2 > 0, however,
we have found that the Hawking-Page phase transition
can always appear for any horizon curvature if
k − μ2=4þ c2m2 ≥ 0. In the canonical ensemble, when

the charge of the black hole is less than its critical one, a
small/large black hole first-order phase transition happens
if kþ c2m2 ≥ 0. This phase transition behaves like the one
in the van der Waals system [28].
For the higher-dimensional (nþ 2 ≥ 5) case, we have

found that even when the charge of the black hole is absent,
the small/large black hole phase transition can appear. The
coefficients c3m2 and/or c4m2 can play the same role as the
charge does in the four-dimensional case if c3m2 and/or
c4m2 are negative. This is a remarkable result in massive
gravity, which does not appear in GR.
Finally we mention here that the black hole solutions

presented in this paper crucially depend on the choice of the
reference metric (6). In general, if one can take the ansatz
fμν ¼ diagð0; 0; c20FðrÞhijÞ, where FðrÞ is a continuous
function of r, we can also obtain the exact solution of the
theory once FðrÞ is specified. In this sense, the choice of
the reference metric is an important issue in this class of
massive gravity.
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