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We present a fully relativistic numerical method for the study of cosmological problems using the
Baumgarte-Shapiro-Shibata-Nakamura formalism on a dynamical Friedmann-Lemaître-Robertson-
Walker background. This has many potential applications, including the study of the growth of
structures beyond the linear regime. We present one such application by reproducing the Lemaître-
Tolman-Bondi solution for the collapse of pressureless matter with arbitrary lapse function. The regular
and smooth numerical solution at the center of coordinates proceeds in a natural way by relying on the
partially implicit Runge-Kutta algorithm described in Montero and Cordero-Carrión [arXiv:1211.5930].
We generalize the usual radiative outer boundary condition to the case of a dynamical background and
show the stability and convergence properties of the method in the study of pure gauge dynamics on a de
Sitter background.
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I. INTRODUCTION

Most cosmological models describe a spatially isotropic
universe by using the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric [1]. However, we do know that
the Universe is neither perfectly homogeneous nor iso-
tropic, and cosmological inhomogeneities are unavoidable
to account for numerous observations in cosmology, from
the fluctuations in the CMB to the mechanism of structure
formation. Many useful conclusions can already be drawn
in spherical symmetry.
For what concerns structures formation, these studies

are often performed either by assuming the Newtonian
limit, in which the expansion of the Universe is consid-
ered as a small correction compared to the local gravi-
tational fields and is adequately described by means of
Newtonian dynamics, or the so called top-hat approxi-
mation, in which the local inhomogeneity has a density
profile in the shape of a step function. It is then assumed
that spacetime inside the spherical object is described by a
separated FLRW solution [2]. The first procedure lacks
the merit of providing a fully general relativistic treatment
of the problem. The second relies on debatable assump-
tions which would need sound reasons to be trusted
throughout the whole spherical collapse process yet to be
provided.
Some simple cases escape these considerations by

resorting to using the Lemaître-Tolman-Bondi (LTB)

solution [3,4]. This metric, in its original form, only
accounts for the collapse of pressureless matter (dust). It
is worth noting that recent works extended this solution to
the case of a general fluid [5,6]. In these, the Arnowitt-
Deser-Misner (ADM) [7] formulation of general relativity
is used to write equations for the LTB-like degrees of
freedom in the form of an initial value problem using a
single coordinate chart. As the authors acknowledge, the
resulting equations are difficult to solve and need a
numerical treatment.
On the other hand, progress in the field of numerical

relativity over the last two decades has allowed us to solve
many problems on asymptotically flat spacetimes with
great accuracy. In these studies, assuming spherical sym-
metry reduces the number of spatial dimensions along with
the cost of numerical computation. When dealing with
spherical coordinates, one has to take into account the 1=rp

terms close to r ¼ 0. The partially implicit Runge-Kutta
(PIRK) methods presented in Refs. [8,9] are an easy way to
solve the problem of instabilities without the need to
include any further regularization technique. These meth-
ods proved helpful in the study of black hole evolution with
the puncture gauge and spherical collapse of the Tolman-
Openheimer-Volkov solution solving Eintein’s equations in
the BSSN formalism [10–12]. Another way of regularizing
the solution described for the ADM formalism in Ref. [13]
involves the inclusion of auxiliary variables and their
corresponding evolution equations, which has been applied
later successfully to the equations in BSSN formalism in
Ref. [14]. This strategy is more complex and demands more
computer resources than the PIRK methods.
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The BSSN formalism has already been applied on an
expanding background by Shibata in Ref. [15] for the study
of primordial black hole (PBH) formation. This work
involves the inclusion of a scalar field of matter and shows
how the formation of a PBH depends on the initial energy
profile. We wish to give further applications of this
formalism by showing how it is also suitable to the study
of the nonlinear growth of spherical structures in the
Universe at later time. The present paper deals with dust
matter and recovers the well-known LTB solution when the
geodesic slicing is employed. The study of the nonlinear
cosmological collapse is most interesting in the presence of
more general forms of matter. However, the case where
matter is described by a quintessential scalar field is
ongoing at the time of the writing of this manuscript
and shall be published in an forthcoming paper. As a first
step towards this, we present the case where the evolution
of dust with a lapse function different than unity. In this
case, the solution is nonanalytic, and the evolution of
matter is solved by employing the full hydrodynamical
conservation equations. This allows us to test the method in
a simple case and can be readily generalized to other kinds
of matter.
The formalism used is developed in some details in

Sec. II. The specifications of the code are presented in
Sec. III, including description of the numerics, evolution
scheme, and boundary conditions. The numerical analysis
of the code is presented in some details in Sec. IV, where it
is applied to the study of pure gauge dynamics. In Sec. V
we show an application to the collapse of pressureless
matter, and we compare it with the LTB solution. We also
give a generalization of this solution to the case of
nonunitary lapse. Geometrical units are used in which
G ¼ c ¼ M⊙ ¼ 1. ∂i denotes a partial derivative with
respect to the corresponding variable.

II. FORMALISM

Under the assumption of spherical symmetry, the metric
line element can be defined as

ds2 ¼ −ðα − β2Þdt2 þ 2βdrdt

þ ψ4a2ðtÞðâdr2 þ b̂r2dΩ2Þ; ð1Þ
where α is the lapse function, β is the radial component of
the shift vector, â and b̂ are the nonzero components of the
conformal 3-metric, the conformal factor is written as ψ

ffiffiffi
a

p
,

and all the variables are functions of t and r. The choice of
the lapse function and the shift vector defines the foliation
of spacetime in spatial hypersurfaces. Following the strat-
egy in Ref. [15], we factor out the cosmological scale factor
aðtÞ, from the spatial 3-metric.
The Einstein equations describe the dynamics of space-

time. In all formulations, these equations are split into
two groups: the constraint equations and the evolution
equations. The BSSN scheme has proved to be very stable

and is one of the most used formulations in numerical
simulations. The dynamical variables in spherical coordi-
nates have been listed in Ref. [14]. We recall them here
using slightly different notations. They consist of the lapse
α and the shift β, the (redefined) conformal factor ψ and
the conformal metric functions â and b̂. One has to add to
this list the components of the extrinsic curvature,
Kij≔− 1

2
£nγij, which can be decomposed in trace K

and conformally scaled trace-free part Âij as

Kij ¼
1

3
γijK þ ψ4a2Âij: ð2Þ

In spherical symmetry, Âij has only two nonzero compo-
nents, Aa≔Âr

r and Ab≔Âθ
θ. Since Âij must be traceless, one

further has Aa þ 2Ab ¼ 0.
The great stability of the BSSN scheme is due to the

addition of the auxiliary 3-vector Δi. This vector has only
one component in spherical symmetry (see e.g., Ref. [14]):

Δ̂r ¼ 1

â

�∂râ
2â

−
∂rb̂

b̂
−
2

r

�
1 −

â

b̂

��
: ð3Þ

This is the last of our dynamical variables.
In what follows, we limit ourselves to the case with

zero shift, β ¼ 0. There is no formal difficulty in cho-
osing a different gauge, but for the present purpose this
choice allows more straightforward comparison with other
cosmological evolutions.
The Einstein equations are sourced by the energy content

of the spacetime described by the energy-momentum
tensor, Tμν. The energy source terms as seen by an
Eulerian observer with 4-velocity nμ≔ð−α; 0Þ are

E ¼ nμnνTμν;

ji ¼ −γiμnνTμν;

Sij ¼ γiμγjνTμν; ð4Þ
where E, ji, and Sij are the energy density, momentum
density, and stress energy tensor, respectively. Spherical
symmetry reduces the number of such independent quan-
tities to E, jr≔γriji, Sa≔Srr, and Sb≔Sθθ.
The evolution equations for the dynamical variables

are [14]

∂tâ ¼ −2αâAa; ð5Þ
∂tb̂ ¼ −2αb̂Ab; ð6Þ

∂tψ ¼ −
1

6
αψK −

1

2

_a
a
ψ ; ð7Þ

∂tK ¼ −∇2αþ α

�
A2
a þ 2A2

b þ
1

3
K2

�

þ 4παðEþ Sa þ 2SbÞ; ð8Þ
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∂tAa ¼ −
�
∇r∇rα −

1

3
∇2α

�
þ α

�
Rr
r −

1

3
R

�

þ αKAa −
16π

3
αðSa − SbÞ; ð9Þ

∂tΔ̂r¼−
2

â
ðAa∂rαþα∂rAaÞþ2α

�
AaΔ̂r−

2

rb̂
ðAa−AbÞ

�

þξα

â

�
∂rAa−

2

3
∂rKþ6Aa

∂rψ

ψ

þðAa−AbÞ
�
2

r
þ∂rb̂

b̂

�
−8πjr

�
; ð10Þ

together with the evolution of the scale factor aðtÞ, and
the asymptotic value of the lapse function αbkg (see next
section for more details). Following Ref. [16], we specify
ξ ¼ 2 to ensure strong hyperbolicity of the BSSN
equations. The above feature the radial component of the
Ricci tensor Rr

r and its trace R, as well as the quantities
∇r∇rα and∇2α. Their complete expressions in terms of the
dynamical variables are detailed in Appendix A.
The Hamiltonian and momentum constraint equations

have to be fulfilled on each spatial hypersurface and are
given by

H≡ R − ðA2
a þ 2A2

bÞ þ
2

3
K2 − 16πE ¼ 0; ð11Þ

Mr ≡ ∂rAa −
2

3
∂rK þ 6Aa

∂rψ

ψ

þ ðAa − AbÞ
�
2

r
þ ∂rb̂

b̂

�
− 8πjr ¼ 0: ð12Þ

III. IMPLEMENTATION

A. Numerics

The radial dimension is approximated by a uniformally
discretized cell-centered grid, and radial derivatives are
computed with a fourth-order finite difference scheme. We
use fourth-order Kreiss-Oliger dissipation [17]. The evo-
lution equations are solved in time with the PIRK methods
[8,9], and the applications to the evolution of BSSN
variables has been described in Ref. [16]. We only present
here a short summary. The method involves a splitting of
the evolution equations for the dynamical variables as
follows:

� ∂tu ¼ L1ðu; vÞ;∂tv ¼ L2ðuÞ þ L3ðu; vÞ: ð13Þ

In a first step of the evolution, u is numerically evolved in
an explicit way. The result is then used to evolve v partially

implicitly, making use of updated values of u in the
evaluation of the L2 operator.1

The cosmological variables a and the lapse of the
background metric αbkg are first evolved explicitly along
â, b̂, ψ , and α. The updated values are then used to evolve
_a, K, and Aa partially implicitly. Finally, the update values
are used to evolve Δ̂r partially implicitly.

B. Cosmological evolution and boundary conditions

Regularity of the dynamical variables close to the origin
is enforced, in part, by specifying their parity across the
origin. To achieve this in time, a few virtual points of
negative radius are added to the numerical grid.
The considered spacetimes are not asymptotically flat.

Instead, they tend to the cosmological FLRW solution. It is
important to note that this work takes the cosmological
solution as a homogeneous background on which the local
inhomogeneous fields have no influence.
The Friedmann and acceleration equations in the zero-

shift gauge with arbitrary lapse are given by

1

α2bkg

�
_a
a

�
2

¼ 8π

3
ρbkg; ð14Þ

1

α2bkg

ä
a
−

_a
a

_αbkg
αbkg

¼ −
8π

6
ðρbkg þ 3pbkgÞ; ð15Þ

where ρbkg and pbkg denote the homogeneous background
energy density and pressure.
We impose radiative boundary conditions at the outer

boundary

∂tf ¼ ∂tfbkg − v∂rf −
v
r
ðf − fbkgÞ; ð16Þ

where v is the speed of propagation of the variable f on the
grid. This is inferred by considering the characteristic
structure of the variables of the evolution system of
equations. In the above, fbkg ¼ fbkgðtÞ denotes the spa-
tially homogeneous asymptotic cosmological value of the
variable f, and ∂tfbkg its first time derivative. These
expressions can be read from their asymptotic values

âðt; rÞ; b̂ðt; rÞ;ψðt; rÞ → 1;

αðt; rÞ → αbkgðtÞ: ð17Þ

From the definition of the extrinsic curvature tensor, one
has

1The discrete evolution scheme used in the present paper is a
second-order PIRK method, and involves a two-stage method
described in detail in Refs. [8,9,16].
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Aaðt; rÞ; Abðt; rÞ → 0;

Kðt; rÞ → −3
1

αbkg

_a
a
; ð18Þ

and from the definition of the Δ̂r variable one further has
that

Δ̂r → 0: ð19Þ
Other outer boundary conditions have been already pre-
sented in Ref. [18] for a dynamical simulation of a
spacetime in a cosmological background of FLRW.

IV. CODE VALIDATION: PURE
GAUGE DYNAMICS

A. Equations

In order to validate our numerical code, we consider
here pure gauge dynamics on a dynamical de Sitter back-
ground. This is the solution for a universe filled with a
constant homogeneous vacuum energy density with equa-
tion of state pbkg ¼ −ρbkg. This is equivalent to adding a
cosmological constant Λ to the Einstein equations such
that Λ ¼ 8πρbkg.
We study the dynamical evolution of a Gaussian gauge

pulse in the manner of Refs. [14,16]. The only difference is
that in our case the lapse function is “perturbed” around its
cosmological (nonasympotically flat) value.
Initially, we set

αðt ¼ 0Þ ¼ α0bkg þ
α0r2

1þ r2
½e−ðr−r0Þ2 þ e−ðrþr0Þ2 �; ð20Þ

where α0bkg ¼ αbkgðt ¼ 0Þ and α0 is a constant which sets
the amplitude of the Gaussian perturbation. Setting α0bkg ¼
1 in (14) allows us to define the initial Hubble factor
H0≔

_aðt¼0Þ
aðt¼0Þ ¼ _a0

a0
. Note that, since the energy density

remains constant, one has

1

αbkg

_a
a
¼ H0; ∀t: ð21Þ

The energy component is at all times equal to the constant
homogeneous cosmological density:

E ¼ ρbkg ¼
3

8π
H2

0: ð22Þ

All the dynamical variables must fulfill both the
Hamiltonian and the momentum constraints. By compari-
son with the homogeneous cosmological case, we set

âðt ¼ 0Þ ¼ b̂ðt ¼ 0Þ ¼ ψðt ¼ 0Þ ¼ 1: ð23Þ
These assumptions and the fact that Ab ¼ − 1

2
Aa imply that

the Hamiltonian and momentum constraints, respectively,
reduce to

3

2
A2
a þ

2

3
K2 − 6H2

0 ¼ 0; ð24Þ

∂rAa −
2

3
∂rK þ 3

Aa

r
¼ 0: ð25Þ

Interestingly, upon setting x ¼ 3Aa, y ¼ 2K, these two
equations can be rewritten as

x2 þ y2 ¼ 36H2
0; ð26Þ

∂rx − ∂ryþ 3
x
r
¼ 0; ð27Þ

the former being the implicit equation of a circle of radius
6H0. The general solution of these equations can be given
in an implicit form in terms of a variable θ by defining
x ¼ 6H0 cos θ, y ¼ 6H0 sin θ. One finds

−eθ cos θ ¼ Cr3; ð28Þ
with C an integration constant. The most trivial solution
[and the only one in which the range of the coordinate
radius r is ½0;þ∞Þ] involves setting C ¼ 0 and, therefore,
cos θ ¼ 0. This corresponds to

K ¼ �3H0; Aa ¼ 0: ð29Þ
The minus sign is chosen in agreement with the cosmo-
logical expression for the background.
The evolution of the gauge dynamics is performed in the

harmonic gauge slicing in which the evolution equation for
the lapse is

∂tα ¼ −α2K: ð30Þ
This choice of gauge for the entire domain also fixes the
gauge of the cosmological background dynamics. In
addition to equations (14) and (15), one thus also needs
to solve

FIG. 1. Evolution of a pure gauge pulse in time on a de Sitter
background with H0 ¼ 0.01. The asymptotic value of α gets
rescaled during the evolution.
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_αbkg ¼ 3αbkg
_a
a
: ð31Þ

The only two independent variables for the background are
a and αbkg. We choose to solve (15) and (31). Upon
inserting (21), these equations become

_αbkg ¼ 3α2bkgH0; ð32Þ

ä
a
¼ 4α2bkgH0: ð33Þ

We then use (21) to monitor the error on these in the
manner of a constraint equation.

B. Results

We now come to discuss the stability of the scheme in the
same terms as in Ref. [16]. This allows more straightfor-
ward comparisons.
For values of the initial expansion factor of the order

H0 ∼ 10−3 or smaller, the exponential de Sitter expansion
remains linear for time scales up to t ∼ 10. In this case, the

changes are small compared to the analysis carried out in
Refs. [14,16]. The code proceeds without difficulty, yield-
ing similar results for a value of the Courant-Friedrichs-
Lewy (CFL) factor Δt=Δr ¼ 0.5.
In what follows, we set H0 ¼ 0.01 and α0 ¼ 0.01—that

is, well within the exponential regime of the cosmological
expansion.2 To proceed with such large values of the
expansion, the CFL factor must be reduced. The results
performed in this section have been obtained with
Δt=Δr ¼ 0.25.
The dynamics of the lapse in the harmonic slicing (30) is

that of a wave. As expected from the initial data, the initial
gauge pulse splits into two parts traveling in opposite
directions. One sees from Fig. 1, which shows the radial
profile of α for different values of the time, that the
continuous background follows the evolution of αbkg
imposed at the outer boundary condition and plotted in
Fig. 2 as a function of time.
Figure 3 shows the L2 norm (root mean square) of the

Hamiltonian and momentum constraints with a resolution
of Δr ¼ 0.05 as a function of time. The error hits a
maximum when the left pulse hits the inner boundary. It
goes down after it has bounced back and both pulses are
traveling outward.
In Fig. 4, we have plotted the Hamiltonian constraint for

three values of the resolution. The rescaling of the error
when resolution is doubled proves the good agreement with
the expected second-order convergence of the numerical
method. The curves shown here display a striking resem-
blance with the similar quantity obtained in Ref. [16] on a
flat background. This implies that the expansion of the
background leads only to small changes in the dynamics of

FIG. 2. Evolution of the scale factor aðtÞ (upper panel) and
background lapse function αbkg (lower panel).

FIG. 3. L2 norm of the Hamiltonian (upper panel) and the
momentum constraints (lower panel) in pure gauge dynamics
(Δr ¼ 0.05).

FIG. 4. Value of the Hamiltonian constraint in pure gauge
dynamics for three different resolutions at t ¼ 10. The rescaling
of the curves shows good agreement with the expected second-
order convergence of the numerical method.

2In comparison, the value of H0 for our Universe expressed in
the units of this paper is of the order of ∼10−23.
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the error. Aside for the fact that the CFL factor used here is
smaller than 0.5, another important difference with the
simulations in Ref. [16] is that the convergence regime is
attained for higher resolutions. This can be seen by looking
at the Hamiltonian constraint profile shown in the inner plot
of Fig. 4. The latter not being rescaled, its magnitude is of
the correct order of magnitude, but the profile is slightly
different from those of the other curves.3

V. APPLICATION: COSMOLOGICAL
SPHERICAL COLLAPSE

A. Lemaître-Tolman-Bondi solution

We now apply the code to the study of the spherical
collapse of pressureless matter (dust). This case is of
practical interest in cosmology. It is usually studied using
geodesic slicing gauge condition, α ¼ 1. In this gauge, the
most general solution to the Einstein equations is the so-
called Lemaître-Tolman-Bondi (LTB) solution. It can be
summed up in the form of the metric line element

ds2 ¼ −dt2 þ a2∥ðt; rÞ
1þ 2EltbðrÞ

þ a2⊥ðt; rÞr2dΩ2; ð34Þ

with a∥ ¼ ∂rðra⊥Þ and where EltbðrÞ is a free function.
The inhomogeneous counterparts of the Friedmann and

acceleration equations are

_a2⊥
a2⊥

¼ MðrÞ
a3⊥

þ 2

r2
EltbðrÞ
a2⊥

; ð35Þ

ä⊥
a⊥

¼ −
MðrÞ
2a3⊥

; ð36Þ

in which M is another free function related to the energy
density through

8πρ ¼ ∂rðMr3Þ
a∥a2⊥r2

: ð37Þ

One of the main interests of using the geodesic slicing
resides in the simplicity of the solution of the evolution
equation for the dust density. Indeed, conservation of
energy implies

∂tρþ
1

2
ðγrr∂tγrr þ 2γθθ∂tγθθÞρ ¼ 0: ð38Þ

In terms of the LTB metric components, the solution of the
previous equation reads

ρ ¼ ρ0
a0∥a

0⊥2

a∥a2⊥
; ð39Þ

where ρ0 is the initial density profile. It can be shown that
this is equivalent to Eq. (37).

B. Initial data

Building the initial data for the evolution of the LTB
spacetime involves specifying an initial profile for three
functions amongst a⊥, _a⊥, Eltb, ρ, and M. The remaining
variables can then be inferred from Eqs. (35) and (37). We
wish to compare the evolution in the LTB and BSSN
variables. We choose then to build the initial data from the
constraints in the BSSN formulation and compute their
equivalent in terms of the LTB variables.
To allow direct comparison, we choose as gauge variable

α ¼ 1. The initial values of the variables defined in Sec. II
are

âðt ¼ 0Þ ¼ b̂ðt ¼ 0Þ ¼ 1;

Kðt ¼ 0Þ ¼ −3H0;

Aaðt ¼ 0Þ ¼ Abðt ¼ 0Þ ¼ 0;

Eðr; t ¼ 0Þ ¼ ½1þ δmðrÞ�ρ0bkg; ð40Þ

where ρ0bkg ¼ ρbkgðt ¼ 0Þ. In our work, we choose a density
contrast profile in the form of a bump function,

δmðrÞ ¼ δ0m exp

�
−

r2

r20 − r2

�
; ð41Þ

where δ0m and r0 > 0 are constants. This profile has the
property of being smooth and has a compact support
spanning the region ½0; r0�. Other profiles have been used
with similar success, though not documented here.
In particular, the choice of K and Aa imposes that

H0 ¼
_a0
a0

¼ γrr∂tγrrjt¼0 ¼ γθθ∂tγθθjt¼0: ð42Þ

The equation for the initial value of the conformal factor is
found by plugging initial conditions from Eq. (40) into the
Hamiltonian constraint, which reduces to

a−2ψ−5
�
∂2
rψ þ 2

r
∂rψ

�
þ 6H2

0 ¼ 16πρ0bkgð1þ δ0mðrÞÞ:

ð43Þ

Using the Friedmann equation, the previous expression
becomes

∂2
rψ þ 2

r
∂rψ ¼ 16πρ0bkgδ

0
mðrÞa20ψ5: ð44Þ

3Torres et al. [19] have recently argued on how a higher value
of the CFL factor can be used by substituting the harmonic slicing
in favor of the Bona-Masso slicing with f < 1=3. Such slicing is
employed in the next section.
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Following Ref. [15], this equation is solved numerically as
a boundary value problem with conditions

∂rψ → 0 for r → 0; ð45Þ

ψ → 1þ Cψ

2r
for r → ∞: ð46Þ

The parameter Cψ is adjusted by specifying an additional
outer boundary condition:

∂rψ →
−Cψ

2r2
: ð47Þ

The solution to the initial boundary value problem is
shown in Fig. 5 for δ0m ¼ 0.1 and r0 ¼ 5 (plain line). Its
behavior agrees well with the imposed asymptotic solution
(dashed line).
We now come to set the initial data in terms of the LTB

variables. Since the analysis is performed in the zero-shift
gauge, it can be assumed that the radius coordinates of both
ansatz of the metric should only differ up to a constant
factor throughout the integration. Setting this factor to 1 in
the initial data allows us to compare the metric components
themselves between both methods.
From the decomposition introduced in Eq. (1) and using

the fact that a∥ ¼ ∂rðra⊥Þ, one obtains the initial values of
a⊥ and a∥ by differentiation:

a0⊥ ¼ ψ2
0a0; ð48Þ

a0∥ ¼ ψ2
0a0 þ 2ψ0

dψ0

dr
a0r: ð49Þ

By comparison of the radial part of the spatial metric in
both gauge, one then finds the form of the energy function

EltbðrÞ of (34). In agreement with (42), the initial time
derivatives are

_a0⊥ ¼ a0⊥H0; _a0∥ ¼ a0∥H0: ð50Þ

Using Eq. (35), MðrÞ is deduced and can then be used for
the evolution of _a using Eq. (36).

C. Evolution and results in geodesic slicing (α ¼ 1)

In terms of the BSSN variables, taking into account that
âb̂2 ¼ 1 always holds, the solution of Eq. (38) is

ρ ¼ ρ0

�
a30ψ

6
0

a3ψ6

�
; ð51Þ

where ψ0 ¼ ψðt ¼ 0Þ. This expression generalizes the
rescaling equation of dust in cosmology to the case of a
nonhomogeneous spacetime.
The background evolution proceeds in the same way as

for the case of gauge dynamics. We solve the acceleration
equation, which in the geodesic slicing and in presence of
dust only reduces to

ä
a
¼ −

8π

6
ρbkg: ð52Þ

The homogeneous part of the dust energy density is
evolved simply as ρbkg ¼ ρ0bkga

3
0=a

3.
Figure 6 shows the result of the evolution of the γrr and

γθθ 3-metric components using the LTB variables (lines)
and the BSSN equations (crosses and circles) for different
values of the coordinate time t, up to t ¼ 15. The shape of
the curves remains basically unchanged for subsequent
values of t. The simulation has been performed usingH0 ¼
0.1 and Δr ¼ 0.1. The maximum of the relative difference

FIG. 5. Initial conformal factor in the case of a dust matter
overdensity of central value δ0m ¼ 0.1 (plain line). The solution
agrees well with the asymptotic value imposed as a boundary
condition (dotted line).

FIG. 6. Metric components γrr (top curves) and γθθ=r2 (bottom
curves). The plain lines show the result of the evolution of the
LTB variables, while crosses and circles are the evolution of the
BSSN equations. The curves coincide at initial time (upper-left
panel). The maximum of the relative difference between the
curves is of the order ∼10−5.
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between the analytical and numerical values for both metric
components shown in Fig. 6 is of the order ∼10−5 and is
lower with higher resolution. These simulations were
performed using a CFL factor equal to 0.5.
The long-term stability analysis of the code is better

analyzed by looking at the evolution of the L2-norm of the
Hamiltonian constraint, displayed in Fig. 7 for different
resolutions. We obtain similar shapes in all the curves. The
difference in magnitude despite the rescaling indicates an
order of convergence above the second order. We accept
this to be a result of the fact that the evolution of matter is
simple enough to make the dominant error come from the
finite difference scheme used to compute spatial derivatives
(fourth order) rather than the time evolution integration.
The dust density contrast profile, δðt; rÞ, is defined

through the expression ρðt; rÞ ¼ ρbkgðtÞð1þ δðt; rÞÞ. It is

plotted for three different values of t in Fig. 8. The profile
grows exponentially, and its shape changes in time,
departing from the initial bump profile given in Eq. (41).
We see no effect of the central coordinate singularity on the
profile. This shows the good reliability of the PIRK
algorithm. One useful tool in cosmology is the value of
the central density contrast as a function of time, plotted in
Fig. 9. The numerical simulation can be used to investigate
the nonlinear regime of growth of dust matter density. The
background scale factor is shown in Fig. 10, along with
the local conformal scale factor defined as the product
a2ðtÞψðt; r ¼ 0Þ. In ordinary studies, it is assumed that
virialization should occur when the local scale factor
decreases to half its maximum value [2].

FIG. 7. L2-norm of the Hamiltonian constraint for long-time
evolution of the collapse of dust for different resolutions.

FIG. 8. Evolution of the dust density contrast profile.

FIG. 9. Long-term evolution of the central overdensity of dust
matter [δc≔δðt; r ¼ 0Þ].

FIG. 10. Evolution of the background scale factor in time (plain
line) compared with the central conformal expansion factor
(dotted line) defined as aðtÞψ2ðt; r ¼ 0Þ.
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D. Solution with a dynamical lapse (α ≠ 1)

The study performed in the previous section can be
modified to accommodate the case where the lapse is
dynamical. Equation (51) is only valid in geodesic slicing.
The hydrodynamic equation for the evolution of matter,

which can be derived from the local conservation of
baryon number and energy-momentum, can be written as
a first-order hyperbolic system of conserved variables,
known as the Valencia formulation [20]. This formulation
ensures very good stability of the matter evolution. The
corresponding expression in spherical symmetry is

∂tUþ ∂rFr ¼ S; ð53Þ

where U ¼ ffiffiffi
γ

p ðD; Sr; τÞ is the vector of conserved
variables, being

D ¼ ρW; ð54Þ

Sr ¼ ρhW2vr; ð55Þ

τ ¼ ρhW2 − p −D: ð56Þ

W is the Lorentz factorW≔ð1 − vrvrÞ−1
2, vr the speed of the

fluid relative to the Eulerian observer, and h is the enthalpy
of the fluid. The components of Fr and S are, respectively,
the fluxes and source functions. Their explicit expressions
can be found in Appendix B.
Following Ref. [19] we evolve the lapse using

∂tα ¼ −α2fK, with f ¼ 0.333. The cosmic time tcos is
related to the computational time t through dtcos ¼ αbkgdt.
As the lapse grows monotonically in our case, so does the
cosmic time interval. The Bona-Masso slicing thus appears
as a poor choice for long evolution in the case where the
expansion factor is so big in magnitude. It is, however, very
interesting in order to prove the stability of the method. We

use a HLLE solver and MC slope limiter to go from
conserved to primitive variables. Figures 11 and 12 show
the evolution of the Hamiltonian and momentum con-
straints for different values of the resolution as a function of
the cosmic time. We have obtained the second order of
convergence at the start of the simulation and even higher
orders at later times. We have used Δt=Δr ¼ 0.5. The
maximum of the error in the momentum constraint appears
in the range corresponding to a change in the shape of the
metric components much in the same way as what is shown
in Fig. 6 in the case of geodesic slicing.

VI. CONCLUSION AND PERSPECTIVES

This work is a first step towards the study of simulations
of nonlinear structure formations in the presence of exotic
varieties of matter or the further study of the formation of
PBH already engaged in Ref. [15]. Further directions
include the application study of the cosmological spherical
collapse including new scalar degrees of freedom (quintes-
sence). This would provide an invaluable tool to discrimi-
nate between various dark energy candidates. Such study is
currently investigated by the authors. The PIRK methods
are a very good tool, compared to explicit RK methods, to
undertake such study in the BSSN formalism, as these are
especially suited to the study of wavelike equations in
spherical coordinates. The approach presented here can
also be straightforwardly adapted to the case of a fluid with
pressure. Another interesting application to derive from the
full relativistic computation of the metric variables is to
analyze the geodesics around the structure as it collapses.
The method presented here can be used for that purpose if
teamed with a geodesic dedicated code such as the GYOTO
code presented in Ref. [21].
We have presented a full relativistic numerical method

suited for cosmological studies of problems with spherical
symmetry. The stability of the algorithm at the center of

FIG. 11. L2-norm of the Hamiltonian constraint as a function of
the cosmic time for the evolution of dust using the Bona-Masso
slicing with f ¼ 0.333 for different resolutions.

FIG. 12. L2-norm of the momentum constraint as a function of
the cosmic time for the evolution of dust using the Bona-Masso
slicing with f ¼ 0.333 for different resolutions.
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coordinates is ensured by the use of the PIRK methods.
From this point of view, the present paper generalizes the
results obtained in Ref. [16], in which the same methods
were applied to asymptotically flat spacetimes. We have
given a generalization of the treatment of a radiative
boundary condition to the case of a dynamical background
and provided proofs of the stability and convergence of the
code by solving for the dynamics of a pure gauge pulse on
an expanding de Sitter background. One of the key steps in
the process of building a numerical scheme on a flat
background involves testing it on the most basic spherically
symmetric vacuum solution, namely the Schwarzschild
black hole. We have generalized this study by applying our
code to study the numerical spherical collapse of dust
which is adequately described by the LTB solution. We
have shown how our code reproduces the same solution in
presence of identical initial data and by comparing the
metric components, and we have demonstrated its stability
in the case where the lapse function is dynamical.
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APPENDIX A: ALGEBRAIC EXPRESSIONS
OF USED QUANTITIES

The following expressions are extracted from Ref. [14].
They are repeated here for the convenience of the reader
with slight modifications regarding the change of notation,
mainly the introduction of the scale factor in the 3-metric:

Rr
r ¼ −

1

aâψ

�∂2
r â
2â

− â∂rΔ̂r −
3

4

�∂râ
â

�
2

þ 1

2

�∂rb̂

b̂

�2

−
1

2
Δ̂r∂râþ ∂râ

rb̂
þ 2

r2

�
1 −

â

b̂

��
1þ r∂rb̂

b̂

�

þ 4
∂2
rψ

ψ
− 4

�∂rψ

ψ

�
2

− 2

�∂rψ

ψ

��∂râ
â

−
∂rb̂

b̂
−
2

r

��
;

ðA1Þ

R ¼ −
1

aâψ

�∂2
r â
2â

þ ∂2
r b̂

b̂
− â∂rΔ̂r −

�∂râ
â

�
2

þ 1

2

�∂rb̂

b̂

�2

þ 2∂rb̂

rb̂

�
3 −

â

b̂

�
þ 4

r2

�
1 −

â

b̂

�

þ 8
∂2
rψ

ψ
− 8

�∂rψ

ψ

��∂râ
2â

−
∂rb̂

b̂
−
2

r

��
; ðA2Þ

∇2α ¼ 1

aâψ

�
∂2
rα − ∂rα

�∂râ
2â

−
∂rb̂

b̂
− 2

∂rψ

ψ
−
2

r

��
;

ðA3Þ

∇r∇rα ¼ 1

aâψ

�
∂2
rα − ∂rα

�∂râ
2â

þ 2
∂rψ

ψ

��
: ðA4Þ

APPENDIX B: DEFINITION OF THE
HYDRODYNAMICAL VARIABLES

The following formulas are the expressions for the fluxes
and source terms used in Sec. V D. These are extracted
from Ref. [16] and given for arbitrary lapse and shift:

Fr ¼ ffiffiffiffiffiffi
−g

p ½Dðvr − βr=αÞ;
Srðvr − βr=αÞ þ p;

τðvr − βr=αÞ þ pvr�; ðB1Þ

S ¼ ffiffiffiffiffiffi
−g

p �
0; T00

�
1

2
ðβrÞ2∂rγrr − α∂rα

�

þ T0rβr∂rγrr þ T0
r∂rβ

r þ 1

2
Trr∂rγrr;

ðT00βr þ T0rÞðβrKrr − ∂rαÞ þ TrrKrr

�
: ðB2Þ
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