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In Hořava-Lifshitz cosmology we use the holographic Ricci-like cutoff for the energy density proposed
by L. N. Granda and A. Oliveros and under this framework we study, through the cosmic evolution at late
times, the sign change in the amount of nonconservation energy (Q) present in this cosmology. We revise
the early stage (curvature-dependent) of this cosmology, where a term reminiscent of stiff matter is the
dominant, and in this stage we find a power-law solution for the cosmic scale factor although ω ¼ −1. Late
and early phantom schemes are obtained without requiring ω < −1. Nevertheless, these schemes are not
feasible according to what is shown in this paper. We also show that ω ¼ −1 alone does not imply a de
Sitter phase in the present cosmology. Thermal aspects are revised by considering the energy interchange
between the bulk and the spacetime boundary and we conclude that there is no thermal equilibrium between
them. Finally, a ghost scalar graviton (extra degree of freedom in HL gravity) is required by the
observational data.
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I. INTRODUCTION

The Hořava-Lifshitz (HL) cosmology [1] is a formalism
generated from HL gravity (a possible candidate for
quantum gravity?), which is a power-counting renormaliz-
able gravity theory (expected to be renormalizable and
unitary) that leads to modifications of Einstein’s general
relativity at high energies producing novel features for
considering cosmology. This formalism suffers from the
lack of local Hamiltonian constraint and thus there is not a
Friedmann equation here. Therefore, if a projectability
condition is imposed (the lapse function is restricted being
only time-dependent), then the Hamiltonian constraint
becomes one global. This means that the Hamiltonian
constraint in HL gravity is not a local equation but an
equation integrated over a whole space and the project-
ability condition is compatible with the foliation preserving
diffeomorphism (diffeomorphism invariance). In HL
gravity, in addition to the tensor graviton, the theory
exhibits an extra scalar degree of freedom called scalar
graviton and, as we shall see, the role of this extra degree of
freedom (which we “characterize” by a η-parameter) will
play an important role alongside parameters from the
observational data.
In the present work we follow the philosophy developed

in [2], Sec. III. In particular, the claim cited there “the
global Hamiltonian constraint that Q (amount of non-
conservation energy) does not necessarily vanish in the

local patch” is the main key of our work. In [1] and under
this scope, it is shown that Q is not zero today and only
today we haveC0=a3, that is, ϵðtÞ ¼ const=a3 (according to
the notation of [2] and [3]).
In HL cosmology (described here in a Friedmann-

Lemaitre-Robertson-Walker universe) we have a noncon-
servation equation for the cosmic fluid, and the sign change
experienced by the amount of nonconservation energy
through the cosmic evolution, treated in the present paper
as the energy interchange between the bulk and the
spacetime boundary and we mean by bulk the observable
universe and by boundary its Hubble horizon. The thermal
equilibrium between them will be discussed by using a
holographic cutoff for the energy density and we will
discuss also early and late phantom solutions obtained and
its factibility in the present cosmology.
The paper is organized as follows: Considering the flat

case in Sec. II, we inspect the sign change in the amount of
nonconservation energy through the cosmic evolution by
using the q-parameter (deceleration parameter) and a
phantom solution is found without requiring ω < −1. In
Sec. III we use a qðzÞ-parametrization in order to visualize
the sign change of the aforementioned QðzÞ. In Sec. IV we
use a ωðzÞ-parametrization in order to complement the
discussion on the sign change of QðzÞ done from Sec. III.
In Sec. V we study the early limit of HL cosmology and we
find a scheme with ω ¼ −1 where the Hubble parameter
exhibits a power-law behavior and we find a phantom
scheme in which also ω ¼ −1. In Sec. VI we analyze some
thermal aspects under the idea of a sign change of QðzÞ.
Section VII is devoted to presents our conclusions.
G ¼ c ¼ 1 units will be used.
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II. HOLOGRAPHIC RICCI-LIKE ON FLAT
HOŘAVA-LIFSHITZ COSMOLOGY

We consider the dynamic equation [1]

ηð2 _H þ 3H2Þ ¼ −ωρ; ð1Þ

where η ¼ ð3λ − 1Þ=2with λ being a dimensionless param-
eter fixed by the diffeomorphism invariance of 4D general
relativity (GR) and 0 < η < 1 (ghost instability; ghost
scalar graviton), η < 0 or η > 1 (non-ghost scalar graviton)
and η is fixed to 1 in GR. H is the Hubble parameter,
ω ¼ p=ρ being p the pressure and ρ the energy density and
the dot means the temporal derivative. The nonconservation
equation for the energy density is given by

_ρþ 3Hð1þ ωÞρ ¼ −Q; ð2Þ

where Q is the amount of nonconservation energy present
in the model and the low energy limit can be recovered if
Q ⟶ 0. We recall here that Q comes from the theory (as
an integration term in HL-cosmology) and not imposed by
hand when, for example, interacting fluids are treated.
Now, by considering ρ as a dominant component (the
unspoken components, if any, are negligible), we will
interpret the sign change of Q as energy transference
between the bulk and the spacetime boundary.
Although under a different scope at the present work, in

[4] we see observational evidence for Qð0Þ > 0, namely
decay of dark energy into dark matter. From our perspec-
tive, we can affirm something similar, that is, decay of
energy from the bulk into the boundary of spacetime.
By introducing in (1) the holographic energy density

model [5], written in terms of the q-parameter defined by
q ¼ −ð1þ _H=H2Þ,

ρ ¼ 3ðαH2 þ β _HÞ ¼ 3½α − βð1þ qÞ�H2; ð3Þ

where α and β are both positive dimensionless constant
parameters [6], we obtain

η½3 − 2ð1þ qÞ� ¼ −3ω½α − βð1þ qÞ�: ð4Þ

And from this last expression, in addition to (2), it is
straightforward to obtain

Q
3H3

¼ −2η
�
1 −

α

η
þ β

η
ð1þ qÞ

��
q −

1

2

�
− βð1þ zÞ dq

dz
;

ð5Þ

where we have used the redshift parameter defined by
1þ z ¼ a0=a being a the cosmic scale factor. The expres-
sion given in (5) will be the central key if we are consider
the sign change of Q through the evolution [7,8]. By
considering β ¼ 0, we write

Q
6H3

¼ −η
�
1 −

α

η

��
q −

1

2

�
; ð6Þ

and we can already visualize an explicit sign change of Q,
for fixed sgnð1 − α=ηÞ, given the sign change of qðzÞ at
some time during the evolution. Additionally, from (5) we
can see that Qðq ¼ 1=2Þ ≠ 0 and Q ¼ Qðq2Þ, a quadratic
dependence on q, and this fact is fully β-dependent [8].
According to (6), α ¼ η or q ¼ 1=2, both lead to Q ¼ 0.
In Sec. III we will discuss with more detail the expressions
(5)–(6) by introducing a q -parametrization while taking
into account the inequality α=η ≷ 1. For instance, if
0 < α=η < 1 and given that qð0Þ < 0, from (6) we have
Qðz ¼ 0Þ > 0 and we have energy transference today from
the bulk to the boundary.
We discuss briefly some differences between GR and the

present holographic HL cosmology. With (4) we write

1þ q ¼ 3

2

�
1þ α

η ω

1þ 3β
2η ω

�
and

q −
1

2
¼ 3

2η

�
α −

3β

2

��
ω

1þ 3β
2η ω

�
; ð7Þ

and if we do β ¼ 0 we have

1þ q ¼ 3

2

�
1þ α

η
ω

�
and q −

1

2
¼ 3

2

α

η
ω; ð8Þ

and in GR

1þ q ¼ 3

2
ð1þ ωÞ and q −

1

2
¼ 3

2
ω; ð9Þ

and we note that in both cases (HL and GR) ω ¼ 0 leads to
q ¼ 1=2. So, α=η and β=η do the difference.
We examine now some cases by considering ω ¼ const.

In this case, the solutions forHðtÞ, in addition to the cosmic
scale factor aðtÞ, are, respectively,

HðtÞ ¼ H0

�
1þ 3

2

�
1þ α

η ω

1þ 3β
2η ω

�
H0ðt − t0Þ

�
; ð10Þ

aðtÞ ¼ a0

�
1þ 3

2

�
1þ α

η ω

1þ 3β
2η ω

�
H0ðt − t0Þ

�2
3
Θ
; ð11Þ

where Θ ¼ ½1þ ð3β=2ηÞω�=½1þ ðα=ηÞω�, and we recall
that 0 < η < 1: the scalar graviton is a ghost and otherwise
(no ghost) if η > 1. As we have just seen, η < 0 is
discarded: from (8) we have qð0Þ and ωð0Þ both negatives
and so η > 0. If we consider ω < 0, we write (10)–(11) in
the form
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HðtÞ ¼ H0

�
1þ 3

2

�
1 − α

η jωj
1 − 3β

2η jωj

�
H0ðt − t0Þ

�−1
;

aðtÞ ¼ a0

�
1þ 3

2

�
1 − α

η jωj
1 − 3β

2η jωj

�
H0ðt − t0Þ

�−2
3
jΘj
; ð12Þ

and a phantom scheme arises if 3β=2ηjωj < 1 < ðα=ηÞjωj
which is consistent with α=β > 3=2, (see [5,8])

HðtÞ ¼ 2

3

���� 1 −
3β
2η jωj

1 − α
η jωj

����ðts − tÞ−1 and

ts ¼ t0 þ
2

3

���� 1 −
3β
2η jωj

1 − α
η jωj

����H−1
0 ; ð13Þ

and we have a phantom evolution without requiring
ω < −1. Given that Hðt → tsÞ → ∞, aðt → tsÞ → ∞,
ρðt → tsÞ → ∞ and p → ∞, the present singularity is
Type I (Big Rip) [9]. From (10), a de Sitter phase can
be obtained if we do ðα=ηÞω ¼ −1 and α=η ≠ 1. So, in the
present scheme, ω ¼ −1 alone does not imply a de Sitter
evolution. On the other hand, the inequality given after (12)
tells us that we can confine η to the range 3β=2 < η < α,
given that jωð0Þj ∼ 1. Additionally, in line with (13) and
(6), Qðt ⟶ tsÞ ⟶ ∞. While it is true that the above
inequality, 3β=2 < η < α, is consistent with η > 3β=2, it is
not consistent with α < η, if Qð0Þ > 0 (see the next
section). So, if we do not want a phantom scheme, we
must have α=η < 1 and then HðzÞ is well behaved (free of
singularities). The fact, α=η < 1, could be an antecedent to
consider for deleting the phantom scheme given in (13).
Finally, we revise the limit η → ∞ [10]. If we want a

finiteQ, in this limit according to (5) and (6), we must have
q ¼ 1=2, so that Q ¼ −βð1þ zÞdq=dz ≠ 0 at z ¼ z̄ ≠ ∞
(see next section) andQ ¼ 0, respectively. From (7) and (8)
we have the same: q ¼ 1=2. From (10) the solution for the
Hubble parameter is the same as GR, that is, an evolution
driven by dust: HðtÞ ¼ H0½1þ ð3=2ÞH0ðt − t0Þ�−1 and the
phantom solution disappears given that it is not possible to
satisfy the inequality 1 < ðα=ηÞjωj, when η → ∞.

III. QðzÞ AND qðzÞ—PARAMETRIZATION

In order to have the best visualization of the sign change
of QðzÞ, we will use the q-parametrization given by

qðzÞ − 1

2
¼ q1

ðzþ q2=q1Þ
ð1þ zÞ2 ; ð14Þ

where q1 ¼ 1.47þ1.89
−1.82 , q2 ¼ −ð1.46 ∓ 0.43Þ < 0 [11], and

we verify that

qðz ¼ −q2=q1Þ ¼ qð∞Þ ¼ 1

2
; ð15Þ

i.e., there are two values of z for which q ¼ 1=2 and this
fact will be relevant in the following. By doing q2 ¼ −jq2j
and z̄ ¼ jq2j=q1, we write (14) in the equivalent form

qðzÞ − 1

2
¼ q1

ðz − z̄Þ
ð1þ zÞ2 ; ð16Þ

so that the derivative on qðzÞ reads
dqðzÞ
dz

¼ q1ð1þ 2z̄Þ
�
1 −

z
1þ 2z̄

�
ð1þ zÞ−3; ð17Þ

and

dqðzÞ
dz

����
q¼1=2

¼ dqðzÞ
dz

����
z¼z̄

¼ q1
ð1þ z̄Þ2 > 0: ð18Þ

By doing jqðþÞ
2 j ¼ 1.03, jqð−Þ2 j ¼ 1.83, qðþÞ

1 ¼ 3.36, qð−Þ1 ¼
−0.35, we write

jqðþÞ
2 j=qðþÞ

1 ¼ 0.31; jqðþÞ
2 j=qð−Þ1 ¼ −2.94;

jqð−Þ2 j=qðþÞ
1 ¼ 0.54; jqð−Þ2 j=qð−Þ1 ¼ −5.23; ð19Þ

and we must discard jqðþÞ
2 j=qð−Þ1 and jqð−Þ2 j=qð−Þ1 (in both

cases, z̄ < −1). In other words, q2 ¼ −ð1.46 ∓ 0.43Þ and
q1 ¼ 3.36 in order to be consistent. So, z̄ ¼ 0.31 or
z̄ ¼ 0.54, both lie in the past, and the derivative in (18)
is positive.
We come back now to (17). Given that q1 > 0 and z̄ > 0,

we see that the sign change on the derivative occurs at
z ¼ 1þ 2z̄ (¼ 1.62 or 2.08). See, for instance, qðz̄Þ ¼ 1=2
and dqðzÞ=dz ¼ 0 at z ¼ 1þ 2z̄ > z̄, and do not forget
also that qð∞Þ ¼ 1=2. Additionally, qð0Þ ¼ 1=2 − q1z̄ < 0
(qð0Þ ¼ −0.54, if z̄ ¼ 0.31 and qð0Þ ¼ −1.31, if z̄ ¼ 0.54)
and dqð0Þ=dz ¼ q1ð1þ 2z̄Þ > 0. So, if we consider the
option qð∞Þ ¼ 1=2, from (17) we have dqðzÞ=dz ¼ 0 at
z ¼ ∞, and this result is not good if we want to see the sign
change of QðzÞ [see (5)]. So, for the present parametriza-
tion we must choose qðz̄Þ ¼ 1=2 and not qð∞Þ ¼ 1=2. The
sign change of the acceleration occurs, roughly, at ~z ∼ 0.7
[12], such that hereinafter we will use z̄ ¼ 0.54 by con-
sidering that this value is closer to ~z.
Now, by replacing (16) in (6), where β ¼ 0, we can write

QðzÞ
6H3

¼ −η
�
1 −

α

η

�
q1

ðz − z̄Þ
ð1þ zÞ2 ; ð20Þ

and we have a clear sign change of Q, i.e., sgnQðzÞ ¼
sgnðz − z̄Þ given that sgnð1 − α=ηÞ is provided as fixed. If
we use (16) and (17) in (5), we can write

ð1þ zÞ2 QðzÞ
3ηq1H3

¼ −2
�
1 −

α

η
þ β

η

�
3

2
þ q1

ðz − z̄Þ
ð1þ zÞ2

��

× ðz − z̄Þ − β

η
ð1þ 2z̄Þ

�
1 −

z
1þ 2z̄

�
:

ð21Þ
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Now, if we consider q1 ¼ 3.36 and z̄ ¼ 0.54 we have
Qð0Þ > 0 if 0 < α=η < 1 and 0 < β=η < 0.45 (see [6,8]),
and it is straightforward to show that Qðz → ∞Þ < 0 and
Qðz → −1Þ < 0, that is,we have a double sign change of
QðzÞ if β ≠ 0. This fact is clearly shown in Fig. 1.
From qðzÞ to ωðzÞ, the quotient α=η and the η-value. By

replacing (16) into (4) we obtain

ωðzÞ ¼ 2ηq1
3

�
z − z̄

ðα − 3β=2Þð1þ zÞ2 − βq1ðz − z̄Þ
�
;

and from here we can have a feeling of the η-value

η ¼ −
3ωð0Þ
2q1z̄

�
α −

3β

2
þ βq1z̄

�
;

given that we know ωð0Þ, q1, z̄, α, and β. For instance, if we
use q1 ¼ 3.36, z̄ ¼ 0.54 and the set of values for ωð0Þ, α
and β given in [6], we can verify that α=η < 1 and 0 <
η < 1 (ghost graviton), and so we verify also thatQð0Þ > 0.

IV. QðzÞ AND ωðzÞ—PARAMETRIZATION

We come back to (1) and we solve by incorporating (3)
and by doing β ¼ 0, for simplicity. First, we consider
ω ¼ const. In this case, the solution of (1) is

HðzÞ ¼ H0ð1þ zÞ3ð1þðα=ηÞωÞ=2; ð22Þ

where we have used the redshift parameter z defined by
1þ z ¼ a0=a, where a is the cosmic scale factor. By using
(3) in (2) we obtain

Q
9αH3

ðzÞ ¼ −ω
�
1 −

α

η

�
; ð23Þ

where HðzÞ is given in (22). Using (4) we can write, for
instance,

qð0Þ ¼ 1

2

�
1þ 3

α

η
ωð0Þ

�
; ð24Þ

where ωð0Þ < 0 and qð0Þ < 0 are both observational
parameters, such that we are able to write the following
constraint for α=η

α

η
>

1

3
jωð0Þj ∼ 1

3
; ð25Þ

then η > 0, as has been seen before. Therefore, according
to (23) and (25) we obtain

Q
9αH3

ð0Þ ¼ −ωð0Þ
�
1 −

α

η

�
¼ jωð0Þj

�
1 −

α

η

�

⇒ Qð0Þ > 0 if
α

η
< 1; ð26Þ

and then, if we want Qð0Þ > 0, we can establish the
following constraint for the ratio α=η∶ 1=3 < α=η < 1.
If later on we have ω < 0 and we consider (22), we have

1 − ðα=ηÞjωj ¼
(
> 0 ⟷ jωj <

�
α
η

�−1
⇒ Hðz → −1Þ → 0∶ qe;

< 0 ⟷ jωj >
�
α
η

�
−1

⇒ Hðz → −1Þ → ∞∶ ph;
ð27Þ

and if α=η ¼ jωj−1 < 1 (jωj > 1, like phantom), we have
HðzÞ ¼ const, i.e., a de Sitter phase and not necessarily
ω ¼ −1.
We inspect now (22) and (23) by considering different

stages of the evolution (each characterized by ω ¼ const).
According to (26) and independently of η, for ω ¼ 0 (dust
as the dominant component) we haveQ ¼ 0. For ω > 0 we
will always have sgnQðzÞ ¼ −sgnð1 − α=ηÞ < 0 and if
ω < 0, sgnQðzÞ ¼ sgnð1 − α=ηÞ > 0, if α=η < 1. And yet

there is nothing that we can visualize yet about the
possibility of an explicit sign change of QðzÞ through
the evolution if ω ¼ const. We study this possibility by
using the usual Chevallier-Polarski-Linder parametrization
given by ωðzÞ ¼ ωð0Þ þ ω0ð0Þzð1þ zÞ−1 [13] and as we
can see in the literature [14], the sign of ω0ð0Þ ¼ dω=dz
at z ¼ 0, is model-dependent according to the fit-values
from the observational data. In our analysis, however, we
discuss both options for the sign of ω0ð0Þ. Therefore, using

FIG. 1 (color online). The picture shows the double sign change
that QðqÞ exhibits through the evolution. We observe a one
change in the past and the other in the future. Here q1 ¼ 3.36,
z̄ ¼ 0.54, α=η ¼ 0.6, and β=η ¼ 0.1. So, we have today energy
transference from the bulk to the spacetime boundary.
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(1) and (3), it is straightforward to obtain the following
solution for the Hubble parameter

HðzÞ ¼ H0ð1þ zÞð3=2Þ½1þðα=ηÞðωð0Þþω0ð0ÞÞ�

× exp

�
−
3

2

α

η
ω0ð0Þ z

1þ z

�
; ð28Þ

and in this case we obtain for QðzÞ the expression

QðzÞ
9αH3

0

¼ −ωð0Þð1þ zÞð9=2Þ½1þðα=ηÞðω0ð0Þþωð0ÞÞ�

×

�
1 −

α

η
þ ω0ð0Þ

ωð0Þ
z

1þ z

�
exp

�
−
9

2

α

η
ω0ð0Þ z

1þ z

�
;

ð29Þ

and

Qðz →∞Þ
9αH3

0

→ −ωð0Þð1þ zÞð9=2Þ½1þðα=ηÞðωð0Þþω0ð0ÞÞ�

×

�
1−

α

η
þω0ð0Þ

ωð0Þ
�
exp

�
−
9

2

α

η
ω0ð0Þ

�
; ð30Þ

where sgn½Qðz → ∞Þ� ¼ sgn½1 − α=ηþ ω0ð0Þ=ωð0Þ�. If
Qðz → ∞Þ has to be finite and positive at early times
(reasonable consideration, see [1]), we must have 1þ
ðα=ηÞðωð0Þ þ ω0ð0ÞÞ < 0, i.e., ω0ð0Þ < 0, given that
jωð0Þj ∼ 1 and 1 − α=ηþ ω0ð0Þ=ωð0Þ > 0.
Now, we inspect now the sign change of QðzÞ. By using

(29), we perform

Qðz0Þ ¼ 0 ⟷ z0 ¼ −
�
1þ ω0ð0Þ=ωð0Þ

1 − α=η

�
−1
; ð31Þ

and then −1 < z0 < 0 if α=η < 1 and ω0ð0Þ < 0, given that
ωð0Þ < 0. So, QðzÞ will undergo a sign change in the
future. This fact is consistent with the display of Fig. 1. For
completeness, by using (31) we write (29) in the form

QðzÞ
9αH3

0

¼ −ωð0Þ
�
1 −

α

η

�
ð1þ zÞð9=2Þ½1þðα=ηÞðωð0Þþω0ð0ÞÞ�

×

�
1 −

�
1þ z0
1þ z

�
z
z0

�
e−

9
2
α
ηω

0ð0Þ z
1þz; ð32Þ

and so we can better visualize the sign change of QðzÞ. We
note that in (32), the potency of ð1þ zÞ9=2 can be written in
the form

1 − ðα=ηÞjωð0Þj½1þ jω0ð0Þ=ωð0Þj�; ð33Þ

and, independently of sgnð1 − ðα=ηÞjωð0Þjð1þ
jω0ð0Þ=ωð0ÞjÞÞ, the exponential behavior is what
decides the treated limits.

We consider now the limit Qðz → −1Þ. In this case,
according to (29) we have

Qðz → −1Þ
9αH3

0

→ ω0ð0Þ lim
z→−1

ð1þ zÞð9=2Þ½7=9þðα=ηÞðωð0Þþω0ð0ÞÞ�

× exp

�
9

2

α

η
ω0ð0Þ 1

1þ z

�
; ð34Þ

and if ω0ð0Þ < 0, then Qðz → −1Þ → −0 and, according
to (28), H ðz → −1Þ → 0. Therefore, there is energy
transference from the bulk to the boundary as just was
seen in Sec. III.
Finally, we have to ask what happens if we consider

ω0ð0Þ > 0? This is an open issue to discuss (do not forget
that sgn½ω0ð0Þ� is model-dependent, see [14]). For the
purposes of this discussion, for instance, we can maintain
the idea of Qð0Þ > 0 and thus discuss the consistency with
the previous analysis done in this section. This discussion
will not be undertaken here.

V. ρ ¼ 3 ðαH2 þ β _HÞ ON EARLY
HOŘAVA-LIFSHITZ COSMOLOGY

We consider now the following equations

3ηH2 ¼ ρ − γ
k3

a6
; ð35Þ

and

ηð2 _H þ 3H2Þ ¼ −ωρþ γ
k3

a6
; ð36Þ

where k ¼ 0, �1 (curvature index) and γ is a constant. In
Hořava-Lifshitz cosmology, the scheme (35)–(36) is gen-
erated by considering only terms in which a−6 is the
dominant one [1]. A term like γk3a−6 is reminiscent of stiff
matter (in GR: p ¼ ρ → ρ ∼ a−6) and its presence (stiff
matter) at early stages of the evolution may have played an

FIG. 2 (color online). The picture shows only a sign change of
QðzÞ (in the future) due to the fact that we considered β ¼ 0. If
we compare with Fig. 1, we note clearly the role of β ≠ 0. Here
α=η ¼ 0.6, ωð0Þ ¼ −1.1 and ωð0Þ ¼ −1.5
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important role under the scope of a holographic approach to
cosmology [15]. In [16] a Friedmann equation is derived
from a four-fermion interaction, and where an a−6-like term
appears naturally which is used there, in addition to a dust
term a−3, to avoid possible cosmic singularities. From
(35)–(36) we can obtain

2ηð _H þ 3H2Þ ¼ ð1 − ωÞρ; ð37Þ
and after replacing the given cutoff in the last equation, we
have

d lnHðzÞ ¼
�
2 − ðα=ηÞð1 − ωÞ
2 − ð3β=ηÞð1 − ωÞ

�
d ln ð1þ zÞ3; ð38Þ

and if ω ¼ 1 or η → ∞, or also α ¼ 3β (although
this equality is not required by observational fits [6,8]),
the Hubble parameter and the cosmic scale factor are,
respectively,

HðzÞ ¼ H0ð1þ zÞ3 →
aðtÞ ¼ a0½1þ 3H0ðt − t0Þ�1=3 ⇒ äðtÞ < 0; ð39Þ

i.e., the same solution as found in GR (3H2 ¼ ρ and _ρþ
3Hð1þ ωÞρ ¼ 0 with ω ¼ 1); nevertheless, in the present
case we have non-null curvature [see (35), (36)]. If we
consider now ω ¼ −1, we have

HðzÞ ¼ H0ð1þ zÞ3Δ

and

Δ ¼ ð1 − α=ηÞ=ð1 − 3β=ηÞ; ð40Þ
and the cosmic scale factor and the acceleration are given,
respectively, by

aðtÞ ¼ a0½1þ 3ΔH0ðt − t0Þ�1=3Δ; ð41Þ

(a power-law solution) and

äðtÞ ¼ a0H2
0ð1 − 3ΔÞ½1þ 3ΔH0ðt − t0Þ�ð1=3ΔÞ−2: ð42Þ

Now, if 1=6 < Δ < 1=3 the acceleration given in (42) is
positive and decreases in time although ω ¼ −1. But, at
early times we expect to have something like H ∼H0 (old
inflation-like), i.e., according to (40) α=η ∼ 1 ⇒ ω ∼ −1
and in this case aðtÞ ∼ exp ðH0tÞ. Hence, the ratio α=η is
very important here. In particular, if we put β ¼ 0
(Δ ¼ 1 − α=η > 0 ↔ α=η < 1) we write

aðtÞ ¼ a0

�
1þ 3

�
1 −

α

η

�
H0ðt − t0Þ

�
1=3ð1−α=ηÞ

;

⇒ HðtÞ ¼ H0

�
1þ 3

�
1 −

α

η

�
H0ðt − t0Þ

�
−1

ð43Þ

and the acceleration is

äðtÞ ¼ a0H2
0

�
1 − 3

�
1 −

α

η

��

×

�
1þ 3

�
1 −

α

η

�
H0ðt − t0Þ

�
−2ðα=η−5=6Þ=ðα=η−1Þ

;

ð44Þ

and by considering the inequality 2=3 < α=η < 5=6 [and
Qðz ¼ 0Þ > 0, see Secs. II, III, and IV] the acceleration
given in (44) is, as was stipulated, positive and decreases
with time, although ω ≈ −1.
A similar pattern to that shown in Fig. 3 is discussed

in [17] under the idea of “graceful” old inflation. There,
the authors have shown that cite: a false vacuum can
successfully decay to a true vacuum, producing inflation,
…, since exponential inflation is slowed down to power-law
Inflation. Thus, the present scheme built under the
holographic philosophy of HL cosmology could be con-
sidered a new antecedent giving an alternative to previous
studies done.
Early phantom phase. We consider Δ < 0 (3β < η < α

or α < η < 3β) (see [3,5] for α and β values). In this
case we have for the Hubble parameter the solution
HðtÞ¼ ðH0=3jΔjÞðts− tÞ−1, where ts ¼ t0 þ ð1=3jΔjÞH−1

0

and for the scale factor we obtain aðtÞ ¼
a0ð3jΔjH0Þ−1=3jΔjðts − tÞ−1=3jΔj. If we put β ¼ 0 and α=η >
1 (Δ < 0), the role of α=η in the raised phantom scheme
becomes more evident. Do not forget that we have with
ω ¼ −1 from (40) to (44), meaning that we have an “early”
phantom scheme without requiring ω < −1. Nevertheless,
at early times we do not have a singularity according to the
observational data and therefore, we discard this early
behavior and then we have again a strong argument for
claiming that 0 < α=η < 1 (and so, positive η).
According with (42), äðtÞ > 0 and not a phantom

ðΔ > 0Þ ⇒ 0 < ð1 − α=ηÞ=ð1 − 3β=ηÞ < 1=3, we obtain

FIG. 3 (color online). The Hubble parameter given in (43)
compared with H ¼ const (usual de Sitter phase). Here
α=η ¼ 0.78.
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0 < ðη − αÞ=ðη − 3βÞ < 1=3 ⇒

α=η < 1 and η > 3β; ð45Þ

or

0 < ðα − ηÞ=ð3β − ηÞ < 1=3 ⇒

α=η > 1 and η < 3β; ð46Þ

and in this last case we can have both options η ≷ 0. If
η < 0, we write

0 < ðjηj þ αÞ=ðjηj þ 3βÞ < 1=3 ⇒
2

3
jηj þ α < β; ð47Þ

and this option is discarded given that α > β [6,7]. We note
that, in the present situation, the limit η → ∞ does not
operate. So, α=η < 1 and we have no phantom and we
agree with the discussions performed before.
Finally, by using the q-parameter and the given holo-

graphic cutoff, from (24) we can write

1þ q ¼ 3

�
2 − ðα=ηÞð1 − ωÞ
2 − 3ðβ=ηÞð1 − ωÞ

�
; ð48Þ

and we can notice that ω ¼ 1 or η → ∞, both leading to
q ¼ 2 (usual stiff matter behavior as in GR). If we are
thinking in “old inflation,” i.e., ω ∼ −1, we have

1þ q ∼ 3

�
1 − α=η
1 − 3β=η

�
; ð49Þ

and only in the case α=η ∼ 1 we recover q ∼ −1 (as GR).

VI. THERMAL ASPECTS

Some studies have considered the possibility of energy
interchange between the bulk and the spacetime boundary
[18]. If we are think about thermal equilibrium between the
bulk and the boundary, the answer is not reflecting our
results. There is nonequilibrium given that there are two
changes in the direction of the energy interchange: one in
the past (z > 0) and other in the future (−1 < z < 0) if
β ≠ 0 or only one change (in the future) if β ¼ 0. What is
the sign of Qð0Þ? The answer is fully dependent on η,
sgnðηÞ and the values of α and β. And we haveQð0Þ > 0 in
accordance with the obtained and well justified constraint
0 < α=η < 1. On the other hand, if we consider η < 0 from
heading and by using (6), we have

Q
6H3

¼ jηj
�
1þ α

jηj
��

q −
1

2

�
; ð50Þ

and given that qð0Þ < 0, thenQð0Þ < 0. But, if we consider
(24) we obtain

qð0Þ ¼ 1

2

�
1þ 3α

����ωð0Þη

����
�

> 0; ð51Þ

and there is an inconsistency with the observational data:
qð0Þ < 0. Therefore, we apologize that η > 0 is consistent
with the current observational data, and hence we empha-
size that qð0Þ < 0 is a crucial antecedent to justify what we
have developed here.

VII. CONCLUSIONS

We have shown the existence of sign changes, through
the evolution, of the amount of nonconservation energy
QðzÞ present in the framework of the Hořava-Lifshitz
cosmology as a consequence of the philosophy of a
holographic scheme assigned to the energy-matter content
in the theory. We have analyzed the late limit and the early
limit (where a reminiscent stiff like-matter term is one
dominant), and we do not observe phantom phases, in any
event, if α=η < 1. At early times, we have found a power-
law solution for the cosmic scale factor, although ω ¼ −1,
and this fact may be considered a new antecedent to
consider if we think about in old inflation. Is it possible
to respond to this concern, the old inflation problem, within
the framework of HL-cosmology under a holographic
scope? We leave this concern for now.
Additionally, η has been relatively well confined to the

range 0 < η < 1 according to the used observational setting
for α, β and ωð0Þ. And so, we can say we have a ghost
scalar graviton in the present framework.
Finally, we live out the thermodynamic equilibrium and

we are cooling down (Qð0Þ > 0) according to what is
shown here (Figs. 1 and 2).
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