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We propose an alternative to particle dark matter that borrows ingredients of modified Newtonian
dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the
form of a scalar field with small equation of state and sound speed. This component is critical in
reproducing the success of cold dark matter for the expansion history and the growth of linear
perturbations, but does not cluster significantly on nonlinear scales. Instead, the missing mass problem
on nonlinear scales is addressed by a modification of the gravitational force law. The force law
approximates MOND at large and intermediate accelerations, and therefore reproduces the empirical
success of MOND at fitting galactic rotation curves. At ultralow accelerations, the force law reverts to an
inverse-square law, albeit with a larger Newton’s constant. This latter regime is important in galaxy clusters
and is consistent with their observed isothermal profiles, provided the characteristic acceleration scale
of MOND is mildly varying with scale or mass, such that it is 12 times higher in clusters than in galaxies.
We present an explicit relativistic theory in terms of two scalar fields. The first scalar field is governed by a
Dirac-Born-Infeld action and behaves as a dark matter fluid on large scales. The second scalar field also has
single-derivative interactions and mediates a fifth force that modifies gravity on nonlinear scales. Both
scalars are coupled to matter via an effective metric that depends locally on the fields. The form of this
effective metric implies the equality of the two scalar gravitational potentials, which ensures that lensing
and dynamical mass estimates agree. Further work is needed in order to make both the acceleration scale of
MOND and the fraction at which gravity reverts to an inverse-square law explicitly dynamical quantities,
varying with scale or mass.
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I. INTRODUCTION

The dark matter (DM) paradigm has been remarkably
successful at explaining various large-scale observations.
The expansion history, the detailed shape of the peaks in
the cosmic microwave background (CMB) anisotropy
power spectrum, the growth history of linear perturba-
tions, and the shape of the matter power spectrum are all
consistent with a nonbaryonic, clustering component
making up ∼25% of the total energy budget. Although
this is usually hailed as evidence for weakly interacting
particles, one should keep in mind that these large-scale
observations only rely on the hydrodynamical limit of
the dark component. Any perfect fluid with small equation
of state (w≃ 0) and sound speed (cs ≃ 0), and with
negligible interactions with ordinary matter, would do
equally well at fitting cosmological observations on linear
scales.
On nonlinear scales, the evidence for DM particles is

somewhat less convincing. N-body simulations reveal that
DM particles self-assemble into halos with a universal
density profile, the Navarro-Frenk-White (NFW) profile [1]:

ρNFWðrÞ ¼
ρs

r
rs
ð1þ r

rs
Þ2 : ð1Þ

The density thus scales as ∼r−1 in the interior, and
asymptotes to ∼r−3 on the outskirts.1 The regularity of
DM self-assembly is certainly a welcome feature.
Unfortunately, the NFW profile does not naturally account
for flat rotation curves of spiral galaxies and the isother-
mality of galaxy clusters, both of which require ρ ∼ r−2. The
cold dark matter paradigm also faces challenges on small
scales, for instance the cuspiness of galactic cores [3], the
mass [4] and phase-space distributions [5–8] of satellite
galaxies, and the internal dynamics of tidal dwarfs [9–11].
Of course, N-body simulations do not include baryons,
so the NFW profile is not expected to hold exactly in the
real universe. But the fact that the “zeroth-order” profile
does not readily explain the coarse features of galaxies
and clusters of galaxies should at least give us pause. The
empirical success or failure of DM particles hinges ulti-
mately on complex baryonic feedback processes.
Quantifying the impact of baryonic physics is an area

of active research, but simulations do not yet offer a
clear picture. Even qualitative questions, such as whether

1Recent simulations, e.g. [2], indicate a shallower slope in the
inner regions. The inner profile is closer to the Einasto profiles
with d ln ρ

d ln r ∼ −r1=n, with n slightly varying with halo mass. In
particular, n≃ 6 for a Milky Way size halo, in which case the
density profile reverts to ρðrÞ ∼ r−1 at 200 pc from the center.
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baryons make the DM profile more cuspy or shallower in
the core of galaxies, are still hotly debated [3]. In the
absence of a precise answer, the best one can do when
fitting data is incorporate baryonic expectations (e.g.,
adiabatic contraction [12,13]) through empirical modifica-
tions of the NFW profile. Examples include the generalized
NFW profile, cored NFW profile, Buckert profile [14], etc.
See [15] for a recent comparison of how these fare at fitting
galactic rotation curves.
Meanwhile, despite the complexity of baryonic physics,

actual structures in our Universe show a remarkable level
of regularity, embodied in empirical scaling relations. A
famous example is the Tully-Fisher relation [16], which
relates the luminosity of spiral galaxies to the asymptotic
velocity v∞ of their rotation curves:

L ∼ v4∞: ð2Þ
Another example is the Faber-Jackson relation [17] for
elliptical galaxies L ∼ σ4, where σ is the stellar velocity
dispersion. These relations are quite puzzling from the
particle DM perspective—why should the rotational veloc-
ity in the galactic tail where DM completely dominates be
so tightly correlated with the baryonic mass in the inner
region? The hope is that these scaling relations will
eventually emerge somehow from realistic simulations of
coupled baryons and dark matter.

A. MOND empirical law: Successes and shortcoming

Modified Newtonian dynamics (MOND) is a radical
alternative proposal [18–20]. It attempts to replace dark
matter entirely with a modified gravitational force law that
kicks in once the acceleration drops to a critical value a0:

a ¼
�
aN aN ≫ a0ffiffiffiffiffiffiffiffiffiffi
aNa0

p
aN ≪ a0;

ð3Þ

where aN ¼ GNMðrÞ
r2 is the standard Newtonian acceleration.

By construction, the MOND force law accounts both for
the flat rotation curves of spiral galaxies and the Tully-
Fisher relation (2). Indeed, in the MOND regime the
acceleration of a test particle orbiting a spiral galaxy

satisfies v2
r ¼

ffiffiffiffiffiffiffiffiffiffiffi
GNMa0

r2

q
, hence

v4 ¼ GNMa0: ð4Þ
This matches (2) with M ∼ L.
Figure 1, reproduced from [21], shows the rotation

curves for two galaxies: a low-surface brightness (LSB)
galaxy NGC-1560 [22] and the high-surface brightness
(HSB) galaxy NGC-2903 [23]. The HSB galaxy is in the
Newtonian regime within the optical disk and hence
approaches the asymptotic velocity with a Keplerian fall-
off. The LSB galaxy, on the other hand, is in the MOND
regime throughout and hence approaches the asymptotic

velocity from below. An intriguing fact is that the best-fit
value for the characteristic acceleration is comparable to
the Hubble parameter:

agalaxies0 ≃ 1

6
H0 ≃ 1.2 × 10−8 cm=s2: ð5Þ

The MOND force law has been remarkably successful at
explaining a wide range of galactic phenomena, from dwarf
galaxies to ellipticals to spirals. See [21,24] for compre-
hensive reviews. It explains the observed upper limit on the
surface brightness of spirals, known as Freeman’s law [25],
the characteristic surface brightness in ellipticals, known as
the Fish law [26], as well as the Faber-Jackson law for
ellipticals mentioned earlier. Even if DM particles do exist
and gravity is standard, Milgrom’s scaling relation (3)
should nonetheless be viewed on the same footing as the
Tully-Fisher and Faber-Jackson relations. It is a powerful
empirical relation that must be explained by standard
theories of galaxy formation.
Unfortunately, the empirical success of MOND is limited

to galaxies. On cluster scales, the MOND force law fails
miserably [27]. The baryonic component in clusters is
dominated by gas, which to a good approximation is in
hydrostatic equilibrium and in the MONDian regime.
Hydrostatic equilibrium determines the temperature profile
TðrÞ in terms of the observed density profile ρðrÞ and the

FIG. 1. Rotations curves from 21 cm observations of LSB
galaxy NGC-1560 [22] and HSB galaxy NGC-2903 [23],
reproduced from [21]. The dotted and dashed lines are the
Newtonian rotation curves from the stellar mass and the gas,
respectively. The solid line is the MOND fits, with a0 given by
(5). The only free parameter in each case is the mass-to-light
ratio M=L.
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(MONDian) acceleration law aðrÞ. The result does not
match the observed isothermal profile of clusters. This is
shown in Fig. 2 for the Virgo cluster, reproduced from [27].
MOND proponents are forced to assume dark matter,
usually in the form of massive neutrinos with mν ∼ 2 eV
[28–30] and/or cold (∼3 K), dense gas clouds [31].
On cosmological scales, the MOND law requires a

relativistic completion. This was achieved just over ten
years by Sanders and Bekenstein with a tensor-vector-
scalar (TeVeS) theory [34–36]. See [37] for an elegant
reformulation of the theory, and [38,39] for connections to
Einstein-aether theories [40]. (Since TeVeS, other relativ-
istic extensions have been proposed [41–44]. See [45] for a
review.) First, some good news: perturbations in the vector
field accelerate the growth of density perturbations, which
allows for the formation of structures. More problematic is
the CMB spectrum. An early analysis already revealed
some tensions with the height of the third peak [46], and
one would expect that the situation is now much worse with
the exquisite data at higher multipoles from the Planck
satellite [47] and ground-based experiments [48,49].2

Without a significant dark matter component, the baryonic
oscillations in the matter power spectrum tend to be far too
pronounced [46,51]. Finally, numerical simulations of
MONDian gravity with massive neutrinos fail to reproduce
the observed cluster mass function [52,53].

B. The best of both worlds

To summarize, the cold dark matter (CDM) picture is
very successful on linear scales, but the jury is still out as to

whether it can explain the detailed structure of galaxies and
their empirical scaling relations. MOND, on the other hand,
is very successful on galactic scales, but it seems highly
improbable that it can ever be made consistent with the
detailed shape of the CMB and matter power spectra.
In this paper we present a compromise solution: a model

which reproduces the CDM phenomenology on linear
scales and reduces to MOND on galactic scales. The
model also proposes a key modification to the MOND
force law on cluster scales to explain the observed
isothermal profile. In this model, there are no DM particles.
The model consists of three key ingredients:
(i) To reproduce the CDM phenomenology on large

scales, we assume the existence of a perfect fluid with
small equation of state (w≃ 0) and sound speed
(cs ≃ 0). For simplicity, the fluid is assumed to be
irrotational (as vorticity redshifts with the expansion)
and barotropic (unique relation between P and ρ); in
other words, it is described by a PðXÞ theory.
This dark component ensures that the cosmology

on linear scales is identical to that of the ΛCDM
model. The expansion history, the linear growth
of density perturbations, the detailed shape of the
CMB acoustic peaks, and the matter power spectra
on scales ≳ Mpc are all indistinguishable from
ΛCDM predictions.

(ii) Unlike DM particles, however, the dark fluid does
not play a major role on nonlinear scales. Instead,
the missing mass problem in galaxies and clusters
of galaxy is addressed through a modification to the
gravitational force law. In the example of Sec. III
below, this is achieved by a scalar field mediating a
fifth force between ordinary matter. The modified
force law reduces to MOND on galactic scales,
and therefore reproduces the empirical success of
MOND in galaxies. However, the force law de-
viates from MOND on cluster scales. Specifically,
it approaches an inverse-square law but with a
larger Newton’s constant.

A priori, this hybrid approach to dark matter is not
implausible. Any modification to general relativity (GR)
inevitably introduces new degrees of freedom [54], and it is
certainly possible that some of these degrees of freedom
will act as a dark matter fluid on linear scales. On nonlinear
scales, however, the new degrees of freedom modify the
gravitational force law. See [55–62] for other related hybrid
proposals.

II. LE NOUVEAU MOND

We begin by summarizing the new gravitational force
law that reduces to MOND on galactic scales and is
modified on cluster scales. Unlike MOND, it successfully
accounts for the temperature profiles of galaxy clusters.
The left panel of Fig. 3 shows the MOND acceleration

for a point mass. In the MONDian regime (a ≪ a0), the

FIG. 2. MOND and the Virgo cluster, reproduced from [27]. The
data points are from ROSAT [32] and ASCA [33] observations.
The solid lines are the MOND predictions, for different choices of
initial temperature at 1 Mpc. The MOND predictions are incon-
sistent with the nearly isothermal profile.

2More precisely, it is possible to get a high third peak without
nonbaryonic dark matter, but at the cost of distorting the power
spectrum on large angular scales [50].

ALTERNATIVE TO PARTICLE DARK MATTER PHYSICAL REVIEW D 91, 024022 (2015)

024022-3



acceleration is a≃ ffiffiffiffiffiffiffiffiffiffiffi
a0GNM

p
r . Relative to the Newtonian

acceleration aN ≃ GNM
r2 (dotted line in Fig. 3), the

MOND acceleration thus grows without bound:

a
aN

≃
ffiffiffiffiffiffi
a0
aN

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
a0

GNM

r
r → ∞: ð6Þ

A related pathology of MOND is that the gravitational
energy for a localized source diverges logarithmically.3

Our modified force law instead proposes that this growth
is bounded—the acceleration eventually reverts back to the
inverse-square-law form, but with a larger Newton’s con-
stant: GN → fGN, where f > 1. Specifically, the proposed
acceleration is

a ¼
8<
:

aN aN ≫ a0ffiffiffiffiffiffiffiffiffiffi
aNa0

p a0
f2 ≪ aN ≪ a0

faN aN ≪ a0
f2 :

ð9Þ

This is reflected in the sketch on the right panel of Fig. 3.
From this point of view, the MOND regime is just an
interpolation between the ordinary Newtonian acceleration
and a stronger inverse-square-law acceleration. From a
boundary-valued standpoint, the recovery of the 1=r fall-off
behavior for the gravitational potential is a welcome
feature: the gravitational energy for a localized source is
finite. A reversal to 1=r2 at large distances was first
proposed in [63] and has since been considered in other

contexts [64,65]. It also been used in [45,66] to ensure that
the energy of the MONDian field remains positive.
We will see in Sec. IV that the x-ray temperature profiles

of galaxy clusters are well fitted by the third regime:
a≃ faN. This relies on a simple yet remarkable fact about
clusters: on scales ranging from ∼50 kpc to ∼1 Mpc, the
density profile for the gas is approximately isothermal,
ρgas ∼ 1=r2. Not surprisingly, to match the observed tem-
perature the required increase in the strength of gravity
must be comparable to the inferred missing mass:
f ≃Ωm=Ωb ≃ 6. To ensure that galaxy clusters are in fact
in this third regime, we will find that a0 must be somewhat
larger than the value (5) inferred from fitting galaxies,
namely aclusters0 ≃ 2H0 ≃ 1.4 × 10−7 cm=s2. This means
that a0 must have some mild scale or mass dependence,
extrapolating between ≃H0=6 on galactic scales to ≃2H0

on cluster scales. In Sec. V we will check whether galaxies
remain in the MOND regime over the range of scales
probed by observations. We will find that this is the case if
f is somewhat larger on galactic scales, f ≃ 10. Hence both
a0 and f must be mildly scaled or mass dependent.4

III. RELATIVISTIC THEORY: AN EXAMPLE

The model outlined above allows in principle for various
different realizations and variants. To fix ideas, we consider
a concrete example involving two scalar fields. Both are
described by “PðXÞ” Lagrangians, with single-derivative
interactions. We describe the different ingredients below.

A. Dark scalar

The first ingredient is a PðXÞ scalar field:

Lπ ¼ M4PðXÞ; X ≡ −ð∂πÞ2: ð10Þ
Thus π has dimension of length, and X is dimensionless.
The stress-energy tensor is

FIG. 3. Sketch of the MOND acceleration law (left) and our modification to the MOND law (right), outside a static, spherically
symmetric source. Unlike the MOND case, our modified law reverts back to an inverse-square law at large distances, albeit f times
stronger than the standard Newtonian acceleration.

3The Hamiltonian for the gravitational potential Φ giving rise
to the MONDian acceleration ~a ¼ − ~∇Φ is

H ≃
Z

d3xa−10 ð ~∇Φ · ~∇ΦÞ3=2: ð7Þ

As a result, the gravitational energy for a point charge is
divergent:

E ¼ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0G3

NM
3

q Z
R dr
r
∼ logR: ð8Þ 4The idea that the MOND scale might depend on scale or mass

has been pointed out before [67,68].

JUSTIN KHOURY PHYSICAL REVIEW D 91, 024022 (2015)

024022-4



Tμν ¼ M4ð2P;X∂μπ∂νπ þ PgμνÞ: ð11Þ

Identifying a timelike unit vector uμ ¼ ∂μπffiffiffi
X

p , this describes a

perfect, irrotational and barotropic fluid. The equation of
state and sound speed are respectively given by [69]

w ¼ P
2XP;X − P

; c2s ¼
P;X

ρ;X
¼ P;X

2XP;XX þ P;X
: ð12Þ

For suitable choice of PðXÞ, both w and cs can be made
small such that the scalar field behaves as dark matter.
For instance, the power-law form PðXÞ ¼ Xn gives w ¼
c2s ¼ 1

2n−1, which is small for n ≫ 1. Another possibility is
to choose PðXÞ of the ghost condensate form [70]. Small
perturbations around the ghost condensate redshift as dust
and have vanishing cs [70–72]. See [73–80] for other
examples of scalar field dark matter models considered in
the literature.
Here we will focus on what is perhaps the most elegant

possibility, the Dirac-Born-Infeld (DBI) action [81]:

LDBI ¼ −M2
Pla

2
0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − X

p
: ð13Þ

This describes, to lowest order in derivatives, the motion
of a 3-brane in a 5-dimensional space-time. With an eye on
the MONDian field discussed below, and to minimize the
number of different scales in the theory, we have set the
brane tension to M4 ≡M2

Pla
2
0. The induced metric on

the brane is

hμν ¼ gμν þ ∂μπ∂νπ; ð14Þ

in terms of which LDBI ¼ −M2
Pla

2
0

ffiffiffiffiffiffi
−h

p
. On flat space-time

(i.e., gμν ¼ ημν), the bulk space-time is Minkowskian, and
the DBI action is protected by the 5d “boost” symmetry,

δπ ¼ vμxμ þ πðxÞvμ∂μπ: ð15Þ

It is straightforward to show that the equation of state and
sound speed are given by

w ¼ −
1

γ2
; cs ¼

1

γ
; ð16Þ

where, as usual, γ ≡ 1ffiffiffiffiffiffiffiffi
1− _π2

p is the “Lorentz” factor for the

brane motion in the extra dimension. Thus the scalar field
behaves as dark matter (w≃ 0, cs ≃ 0) in the “relativistic”
regime γ ≫ 1, and behaves as dark energy (w≃ −1,
cs ≃ 1) in the “nonrelativistic” regime γ ≃ 1.
Neglecting the coupling to matter, the background

evolution in an expanding FRW universe is governed by

d
dt
ða3P;X _πÞ ¼ 0: ð17Þ

For DBI, this implies

_πffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _π2

p ¼ C
a3

⇒ γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

a6

s
; ð18Þ

where the constant C is determined by initial conditions.
Thus γ is large in the early Universe, decreases as the
Universe expands, and approaches unity at late times. We
will focus on the situation where γ ≫ 1 up to the present
time, i.e., _π ≃ 1. The case where DBI acts as dark energy
today will be discussed in the Appendix; for reasons
explained there, the coupling to matter must be nonlocal
in that case. With C ≫ 1, the energy density becomes

ρ ¼ M2
Pla

2
0γ ≃M2

Pla
2
0

C
a3

; ð19Þ

which indeed redshifts like dust. The constant C is fixed by
matching to the observed dark matter density today5:

C ¼ 3Ωm
H2

0

a20
: ð20Þ

In the simplest scenario considered here, this can only be
achieved by tuning initial conditions. It would be interest-
ing to study generalizations of the scenario where (20)
would be explained dynamically, for instance by coupling π
to baryonic matter.
This DBI component reproduces the successful phe-

nomenological success of CDM for the expansion history
and linear growth of perturbations. Unlike in the standard
framework, where DM microscopically consists of weakly
interacting massive particles, here the scalar field is
assumed to be fundamental. The difference appears on
nonlinear scales. CDM particles cluster to form halos,
whereas the DBI fluid does not. Indeed, as perturbations of
π grow to become nonlinear, the local value of γ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− _π2þð ~∇πÞ2

p decreases to a value of order unity. At this

point, the sound speed cs ¼ γ−1 also becomes order unity,
which prevents further clustering. The DBI scalar is
therefore protected from developing large gradients and
associated caustics.6

A more quantitative understanding of the π profile in the
Universe clearly requires a careful analysis. A natural
expectation is that π forms blobs of characteristic size of
order the nonlinear scale today (∼1–10 Mpc). The mass of

5With a0 ¼ H0=6 and Ωm ≃ 0.25, (20) implies C ¼ 25, and
therefore w≃ C−2 ≃ 1.6 × 10−3 and cs ≃ C−1 ≃ 0.04. The fluid
thus behaves like dust to an excellent approximation.

6This self-protection is not generic for other choices of PðXÞ.
In the ghost condensate example, for instance, caustics may
develop—see [71] for a detailed discussion. See [39] for a
discussion of caustics in TeVeS.
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these blobs would be of orderM2
Pla

2
0, which is smaller than

the average matter density. Thus π should give a small
correction to the typical mass fluctuation on nonlinear
scales.7 For the purpose of this paper, we will ignore the
spatial gradients of π and treat it as a homogeneous
component. On nonlinear scales, the “missing mass”
problem is instead solved by a second scalar field ϕ which
modifies the gravitational force law.

B. Extending MOND

The second ingredient is another derivatively coupled
scalar field:

LNew MOND ¼ M2
Pla

2
0FðYÞ; Y ≡ −

ð∂ϕÞ2
M2

Pla
2
0

: ð21Þ

Unlike π, which has mass dimension −1, ϕ has the standard
mass dimensionþ1. This field has negligible impact on the
background evolution. Its role is limited to modifying the
gravitational force law between ordinary matter sources.
The exact form of the matter coupling will be discussed
below, but for the moment let us focus on nonrelativistic
matter and assume the coupling

Lcoupling ≃ −
ϕ

MPl
ρ: ð22Þ

In the quasi-static approximation, the equation of motion
for ϕ reduces to

~∇ · ðF;Y
~∇ϕÞ ¼ ρ

2MPl
: ð23Þ

The total acceleration on a test particle is

~a ¼ − ~∇
�
ΦN þ ϕ

MPl

�
¼ ~aN −

~∇ϕ
MPl

: ð24Þ

To reproduce the modified acceleration law (9), we claim
the function F must satisfy8

FðYÞ≃
(
− 2

3
ð−YÞ3=2 jYj ≫ 1

f2

Y
f jYj ≪ 1

f2 :
ð25Þ

Let us check the two regimes in turn. For simplicity, we will
assume f ≫ 1.

(i) “MONDian” regime: In the first regime, where
FðYÞ≃ − 2

3
ð−YÞ3=2, the equation of motion (23)

reduces to

~∇ ·

� j ~∇ϕj
MPla0

~∇ϕ

�
¼ ρ

2MPl
: ð26Þ

For a static, spherically symmetric source, this
integrates to

ϕ0

MPl
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0

GNMðrÞ
r2

r
¼ ffiffiffiffiffiffiffiffiffiffi

a0aN
p

; ð27Þ

which is the MONDian form. However, whether the
total acceleration (24) is approximately Newtonian or
MONDian depends on whether Φ0

N ≫ ϕ0=MPl
or ≪ ϕ0=MPl. In other words, the acceleration is
Newtonian (a≃ aN) whenever aN ≫ a0, and approx-
imately MONDian (a≃ ffiffiffiffiffiffiffiffiffiffi

a0aN
p

) whenever aN ≪ a0,
as desired.

(ii) Inverse-square-law regime: In the second regime,
where FðYÞ≃ Y=f, we instead have

~∇2
ϕ ¼ f

ρ

2MPl
; ð28Þ

which can be rearranged as

~∇2 ϕ

MPl
¼ 4πfGNρ: ð29Þ

This is identical to Poisson’s equation for the
gravitational potential, with Newton’s constant
rescaled by a factor of f. In the limit f ≫ 1, the
acceleration is dominated by ϕ exchange and
given by

~a≃ f~aN: ð30Þ

The transition between two regimes occurs when
j ~∇ϕj
MPl

∼ ffiffiffiffiffiffiffiffiffiffi
a0aN

p ∼ faN, i.e., when

j ~∇ϕj
MPl

∼
a0
f
: ð31Þ

In other words, the transition occurs when Y ∼ 1=f2, as
claimed in (25).
It is well known that a MONDian fifth force ϕ0 ∼ ffiffiffiffiffiffiffiffiffiffi

a0aN
p

gives too large a correction to Newtonian gravity in the
solar system to be consistent with local tests of gravity.
One possible way out is to suitably modify FðYÞ at large Y,
but this requires fine-tuning [45]. A much more elegant
solution was proposed recently based on Galileons and
Vainshtein screening [66]. One simply adds to the action
the Galileon operator [82–85]

7We thank Paolo Creminelli for helpful discussions on this
point.

8Note that Y ≃ − ð ~∇ϕÞ2
M2

Pla
2
0

< 0 in the quasistatic approximation.
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LGalileon ¼ −
l4

3
εαβγδεμνρσRγδρσ∂αϕ∂μϕ∇ν∇βϕ; ð32Þ

where l has units of length, and εμνρσ is the Levi-Civita
tensor. This operator introduces a new scale, the Vainshtein
scale rV ∼ ðGNMa0Þ1=4l, below which the scalar profile is
modified. This can restore consistency with solar system
tests if l≲ 100 kpc [66]. On scales larger than rV, this new
operator is negligible.
An important consideration is the stability of perturba-

tions. Expanding (21) around a spherically symmetric
background, ϕ ¼ ϕ̄ðrÞ þ φ, we find at quadratic order

Lquad ¼ F;Yð _φ2 − ð∂ΩφÞ2Þ − ðF;Y þ 2YF;YYÞφ02: ð33Þ

To avoid ghosts, we clearly need F;Y > 0. This is satisfied
in both regimes of (25). To avoid gradient instabilities in the
radial direction, we also need F;Y þ 2YF;YY > 0, which is
also satisfied by (25). However, the sound speed of radial
propagation,

cradials ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2YF;YY

F;Y

s
; ð34Þ

is strictly superluminal. Indeed, in the MONDian regime
where FðYÞ ∼ ð−YÞ3=2, we have cradials ≃ ffiffiffi

2
p

. This fact,
first observed long ago [86], is not surprising: our FðYÞ
theory is an example of the kinetic or k-mouflage screening
mechanism [87–89]. (See [90,91] for reviews of screening
mechanisms and observational tests.) Indeed, the scalar
force is much smaller than the Newtonian force in the limit
Y → −∞, that is, it is screened. It is well known that
derivative screening comes hand-in-hand with superlumin-
ality [92]. In particular, the UV completion of the theory
cannot be a local quantum field theory [93]. It has been
conjectured in certain examples that chronology protection
may prevent the formation of closed causal curves
[89,94,95], in analogy with Hawking’s chronology protec-
tion conjecture in GR [96]. At a more basic level, whether a
theory truly exhibits superluminal propagation can be
somewhat ambiguous at the effective field theory level [97].
Obviously there are many different choices of F that are

consistent with (25). In particular, (25) only constrains the
functional form for Y < 0; the region Y > 0, relevant for
the cosmological evolution and linear perturbations, is
completely unconstrained. Note that, around time-depen-
dent backgrounds, the quadratic action for perturbations
takes a form similar to (33), with the time and radial
components interchanged. Thus the conditions for absence
of ghosts and gradient instabilities are the same:

F;Y > 0; F;Y þ 2YF;YY > 0: ð35Þ

These conditions ensure that the Hamiltonian is bounded
below and the Cauchy problem is well defined [45,94].

As a concrete example, consider the “DBI-like” form

FðYÞ ¼ Y
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2f
3

�
2

Y

s
; ð36Þ

which clearly has the desired limits (25). It also satisfies
(35) for all Y < 0, but fails to do so for Y ≳ 3

5f2. Another
option which satisfies (35) for all Y is

FðYÞ ¼ Y
f

�
1þ

�
2f
3

�
4

Y2

�
1=4

: ð37Þ

Another desirable property of F is that, in the presence of
gravity, it admits a positive energy theorem for asymptoti-
cally flat solutions [98–101]. That is, the ADM mass
should be non-negative, vanishing only for the trivial
Minkowski solution. Recently, the standard arguments
for canonical scalar fields [102–104] have been generalized
to PðX;ϕÞ theories [105]. See also [106]. A sufficient (but
not necessary) condition to have positive energy is if
YF;Y − F is bounded from below. This is not the case
for the example (37): it is easily seen that YF;Y − F is
negative definite and → −∞ as Y → −∞. To guarantee
positive energy, one could either modify F at large jYj, or
restrict the range of allowed Y.

C. Coupling to matter

The third ingredient is the coupling of ϕ and π to matter
fields. Inspired by TeVeS [35], we assume that the matter
action is of the form Sm½~gμν;ψ �, with matter fields coupling
to the metric

~gμν ¼ e−2ϕ=MPlhμν − e2ϕ=MPl∂μπ∂νπ

¼ e−2ϕ=MPlgμν − 2∂μπ∂νπ sinh
2ϕ

MPl
; ð38Þ

where hμν was defined in (14). Note that this metric is a
local function of the fields, unlike other forms considered
in the literature, e.g. [44]. The metric ~gμν is invariant under

hμν → e2λhμν

π → e−λπ

ϕ → ϕþ λMPl: ð39Þ

This can be promoted to a symmetry of the full theory
(except for the Einstein-Hilbert term) by replacing gμν with
~gμν in the π and ϕ actions. In other words, in (10) and (21)
we would make the replacements

X ¼ −ð∂πÞ2 → −~gμν∂μπ∂νπ; ð40Þ

Y ¼ −
1

M2
Pla

2
0

ð∂ϕÞ2 → −
1

M2
Pla

2
0

~gμν∂μϕ∂νϕ: ð41Þ
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Since ~gμν ≃ gμν to leading order in ϕ=MPl, this substitution
has negligible effect on the dynamics of ϕ and π described
earlier.
The form of the metric (38) is critical to get the correct

lensing signal. In the weak-field, quasistatic regime, the
Einstein-frame metric takes the usual form:

gμνdxμdxν ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞd~x2: ð42Þ

Furthermore, assuming that the π profile is not dramatically
altered by the presence of the source, we still have _π ≃ 1
locally. For small ϕ, we can therefore approximate
∂μπ∂νπ sinh

2ϕ
MPl

≃ 2ϕ
MPl

δ0μδ
0
ν, yielding the effective metric:

d~s2 ¼ ~gμνdxμdxν

¼ −
�
1þ 2

�
Φþ ϕ

MPl

��
dt2

þ
�
1 − 2

�
Φþ ϕ

MPl

��
d~x2: ð43Þ

This is exactly of the GR form (42), albeit in terms of a
shifted gravitational potential

~Φ ¼ Φþ ϕ

MPl
: ð44Þ

In particular, the mass inferred from lensing observations
precisely matches the mass inferred from dynamical
measurements, as desired.9

Notice that the DM fluid plays a dual role in our
scenario: i) it acts as dark matter on large scales to
reproduce the ΛCDM phenomenology for the expansion
history and linear growth; ii) it offers, through the scalar
field time-derivative, an effective “aether” for the coupling
to matter, which is essential for lensing.

D. Scale dependence

As we will see in great detail in the following sections,
the parameters a0 and f of the modified force law must vary
mildly with scale or mass in order to simultaneously
reproduce the phenomenology of galaxies and clusters of
galaxies. The required values of a0 and f on different scales
are summarized in Table I.

(i) On galactic scales, the parameters are constrained by
demanding that the successful MONDian phenom-
enology is reproduced, from dwarf galaxies to large

spiral galaxies. In particular, a0 must assume the
preferred MOND value of ≃H0=6. Meanwhile, f
must be large enough to ensure that the MONDian
regime applies to the smallest galaxies. In Sec. V, we
will find this is the case for f ≳ 10.

(ii) On cluster scales, the constraint on a0 comes from
demanding that clusters are in the enhanced inverse-
square-law regime, instead of the MOND regime.
We will find in Sec. IV that this requires a0 ≳ 2H0.
Meanwhile, the value of f ≃ 6 is set by normalizing
to the observed x-ray temperatures.

(iii) On cosmological scales, the constraints are not as
stringent. The value of a0 is relatively unconstrained,
though obviously the most natural possibility is
a0 ∼H0. The value of f, however, must be some-
what smaller than for clusters, e.g., f ≲ 1. If the
value of f is too large, then the scalar-mediated force
will lead to an unacceptably large growth rate of
density perturbations.

The required scale (or mass) dependence is fairly mild—a
logarithmic behavior would suffice. This has clearly not
been included in the relativistic example described so far,
where a0 and f have been treated as constants. This clearly
points towards making a0 and f dynamical. The most
elegant possibility would be to explain the appearance of
H0 in the MONDian Lagrangian through a dynamical
mechanism. If a0 and f are determined cosmologically,
then we can expect them to vary with scale as well. One
possibility to achieve the desired scale/mass dependence of
these parameters is if their value depends on an environ-
mentally dependent scalar field, such as in the chameleon
[107–110] or symmetron mechanisms [111,112]. We leave
this to future work and for now turn our attention to
observations.

IV. GALAXY CLUSTERS

In this section we look more closely at galaxy clusters to
justify the modification to the MOND force law proposed
in Sec. II. As is well known, galaxy clusters are dominated
by baryonic gas (and dark matter, in the conventional
picture), known as the intracluster medium (ICM).
Assuming spherical symmetry and hydrostatic equilibrium,
for simplicity, the density and pressure of the gas are related
to the gravitational acceleration by

1

ρ

dP
dr

¼ −a: ð46Þ

TABLE I. Constraints on the parameters a0 and f of the
modified force law on different scales.

Scale a0 f

Galactic (Sec. V) ≃ 1
6
H0 ≳10

Cluster (Sec. IV) ≳2H0 ≃6
Cosmological ∼H0? ≲1?

9As a check on our earlier results, the ϕ coupling to a
quasistatic source Tμν ≃ ρδμ0δ

ν
0 is

Lcoupling ¼
1

2
~gμνρδ

μ
0δ

ν
0 ⊃ −

ϕ

MPl
ρ; ð45Þ

which is consistent with (22) assumed earlier.
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Approximating the gas as ideal, then

P ¼ ρ

μmp
kT; ð47Þ

wheremp ¼ 938 MeV is theprotonmass, andμ≃ 0.59 is the
meanmolecular weight per particle for a fully ionized plasma
with hydrogen mass fraction 1 − Y ¼ 0.76. Combining (46)
and (47), we obtain a differential equation relating the density
and temperature profiles to the acceleration:

d ln ρ
d ln r

þ d lnT
d ln r

¼ −
μmp

kT
ra: ð48Þ

X-ray observations measure the ICM density and tem-
perature up to distances ≲Mpc from the center. (We will
discuss shortly Sunayev-Zeldovich (SZ) and weak lensing
observations which probe larger distances.) This is illus-
trated in Fig. 4 again for the Virgo cluster, but this time with
more recent data from the XMM-Newton satellite [113].
The left panel shows the (projected) temperature profile.
The right panel shows the radial surface brightness. To
zeroth approximation, the ICM temperature is constant
over the range of scales probed, 50 kpc≲ r≲ 1 Mpc, i.e.,

d lnT
d ln r

≈ 0: ð49Þ

The surface brightness is generally well-fitted by the
β-model [114], with IðrÞ ∼ r−6βþ1 outside the central
region. The corresponding (deprojected) radial density is
ρðrÞ ∼ r−3β. The value of β varies from cluster to cluster,
of course, but a typical value is β ≈ 2=3, corresponding to
IðrÞ ∼ r−3 and ρðrÞ ∼ r−2. This is the isothermal profile.
A quick look at the right panel of Fig. 4 shows that

IðrÞ ∼ r−3 is indeed a good approximation for r≳ 10 kpc.
Therefore,

d ln ρ
d ln r

≈ −2: ð50Þ

With TðrÞ≃ const and ρðrÞ ∼ r−2, (48) requires aðrÞ ∼ r−1.
This is satisfied for an inverse-square law aðrÞ ∼MðrÞ=r2,
which is of course why the density profile ρðrÞ ∼ r−2 is
called isothermal.
Suppose that, over the relevant scales, clusters are in the

enhanced inverse-square-law regime:

aðrÞ ¼ f
GNMðrÞ

r2
: ð51Þ

With ρ ∼ r−2, the mass enclosed within a given radius is

MICMðrÞ ¼ 4π

Z
r

0

dr0r02ρðr0Þ ∼ r; ð52Þ

which implies aðrÞ ∼ r−1, as claimed. The constant f can be
fixed by normalizing to the observed temperature.
Mohr et al. [115] studied a sample of 45 galaxy clusters
using the ROSAT x-ray data. At fixed radius r ¼ 0.7 Mpc,10

they obtained the following mass-temperature relation:

M0.7Mpc ¼ ð0.82� 0.05Þ × 1013M⊙
�
kT
keV

�
1.23�0.17

:

ð53Þ

FIG. 4 (color online). Temperature (left) and surface brightness (right) profiles for the Virgo cluster from the XMM-Newton satellite,
reproduced from [113].

10We assume H0 ¼ 70 kms−1 Mpc−1 to convert the distance
scales quoted in [115]. It is worth stressing that the quoted mass is
at fixed radius, as opposed to the virial radius, which explains
why the value may at first sight appear smaller than expected.
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Assuming an isothermal profile and the force law (51), we
obtain

M0.7Mpc ¼ 0.86 × 1013M⊙ ·
kT
keV

·
6

f
: ð54Þ

The linear dependence on T is consistent with (53) within
error bars. We obtain a remarkably good fit to the normali-
zation for

fclusters ¼ 6: ð55Þ
The mass-temperature relation for clusters is often

expressed in terms of the mass at the virial radius. In
the standard CDM picture, the spherical collapse model
famously predicts [116]

M200 ∼ T3=2; ð56Þ
where M200 is the mass when the cluster density reaches
200 times the critical density, which is when virialization
should occur.11 To work out a similar prediction in our case
would require solving the spherical collapse model. A
precise calculation is nontrivial for two reasons: (i) the
modified force law is not exactly 1=r2 on all scales and at
all times; (ii) the collapsing matter only consists of baryons,
which can dissipate energy.12 To the extent that the collapse
dynamics are in the f regime and energy is conserved,
however, then the spherical collapse calculation would
proceed in the usual way, and the scaling relation (56)
would be recovered in our model as well.13 A careful study
of the spherical collapse model is beyond the scope of this
paper and is left to future work.

A. Profile in the central region

In the central region of the cluster, the physics is
complicated by the brightest central galaxy and feedback
processes. Using the REXCESS sample, the authors of
[124] obtained a central pressure profile of the form

PcentralðrÞ ∼
1

r0.31
: ð57Þ

Using this profile as input, the ideal gas law, our gravita-
tional force law, and hydrostatic equilibrium, we can derive

the density and temperature profiles in the central region.
One subtlety is whether the central region is in the MOND
regime, or in the f regime. This makes little difference, as it
turns out. In either case, we find

ρcentralðrÞ ∼
1

r1.2
; TcentralðrÞ ∼ r0.9: ð58Þ

The (scaled) density and temperature profiles of the
REXCESS sample is reproduced in Fig. 5. Wewill focus on
cool-core clusters, plotted as the blue curves, since these are
relaxed clusters with minimal feedback. In the inner region
(r≲ 0.1R500), the density profile becomes shallower,
roughly consistent with (58). The temperature of the
cool-core clusters does show a drop in the inner region,
though not as steep as (58) suggests. This may be due to
feedback from the brightest central galaxy. This issue
deserves closer study.

B. Profile in the outer region: SZ and lensing
observables

Beyond the virial radius, we expect the density profile to
become steeper than the isothermal scaling. A natural
expectation is that the enclosed mass approaches a con-
stant, which requires

ρðrÞ ∼ 1

r3þα ; α > 0: ð59Þ

In this case, the acceleration has the usual falloff
aðrÞ ∼ r−2, and it follows from (48) that

TðrÞ ∼ 1

r
: ð60Þ

For the pressure, this implies

PðrÞ ∼ ρðrÞTðrÞ ∼ 1

r4þα : ð61Þ

Although x-ray measurements do not extend far enough
to probe this falloff, we can rely on SZ and weak lensing
observations. The Planck satellite measured the pressure
profile for 62 nearby clusters [125]. Combining x-ray data
from XMM-Newton and their own SZ data, the Planck
Collaboration constrained the asymptotic pressure falloff
for the stacked sample as

PðrÞ ∼ 1

r4.13
ðXMM and Planck SZÞ; ð62Þ

which is consistent with (61) for α≃ 0.1. The T ∼ 1=r
asymptotic profile is harder to test observationally since the
x-ray brightness falls off sharply with distance, but it is
consistent with the drop observed in Chandra clusters [126]
(see their Fig. 16) and in the REXCESS sample [124] (see
right panel of Fig. 5). Weak lensing observations extend

11Note that M200 is different than the mass at a fixed physical
radius, M0.7Mpc. In the standard CDM picture, these are related
through the density profile, usually assumed to be NFW. There-
fore, there is no contradiction a priori between the scaling
relations M0.7Mpc ∼ T and M200 ∼ T3=2.

12The spherical collapse model has been studied in modified
gravity in the context of MOND [117], Galileons [118,119]
and fðRÞ=chameleon [120–123].

13Since f ¼ 6≃ Ωm=Ωb, the normalization of the mass-
temperature relation would also match the standard CDM
prediction.
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even further, out to distances of several Mpc. Figure 6 (top
panel), reproduced from [127], shows the stacked tangen-
tial shear profile for 50 massive clusters from the Local
Cluster Substructure Survey (LoCuSS). For r≳Mpc, the
shear profile is steeper than the isothermal profile Σ ∼ r−1

(green dashed line). The steeper slope is consistent with the
NFW falloff ρ ∼ r−3.

C. Consistency check

For consistency, we must check that clusters are in fact in
the enhanced inverse-square-law regime, i.e.,

aN ≲ a0
f2

; ð63Þ

where f ≃ 6. Let us focus on the isothermal region, where
ρ ∼ r−2. In this region, the Newtonian acceleration is aN ¼
ΦN=r, where ΦN ¼ constant. For a fiducial cluster of mass
M0.7Mpc ¼ 0.8 × 1013M⊙ and temperature kT ¼ keV, con-
sistent with (53), we obtain ΦN ≃ 6 × 10−7. The inequality
(63) becomes

r≳ 2H0

a0
· 50 kpc; ð64Þ

where we have used the preferred value f ¼ 6. The lower
bound should be at most ≃50 kpc, since clusters are
observed to be isothermal down to that scale. This requires

aclusters0 ≳ 2H0 ≃ 1.4 × 10−7 cm=s2: ð65Þ
In particular, had we used the MOND value inferred for
galaxy fits, agalaxies0 ≃H0=6, we would have instead
obtained a lower bound of ≃600 kpc, which is clearly
too large.
Thus we learn that the critical acceleration a0 must have

some dependence on the scale or on the mass of the object.
Note that the required scale/mass dependence is very
mild—a logarithmic dependence would do the job. If a0
is related to cosmology and dark energy, as MOND
proponents have been advocating for years, then it is
reasonable to expect a0 to approach its cosmological value
∼H0 for clusters, the largest virialized objects in the
Universe. In the next section, we will consider the impli-
cations of our modified force law for smaller objects,
namely galaxies and Lyman-α clouds.

FIG. 6 (color online). Stacked tangential shear profile for
LoCuSS clusters, reproduced from [127].

FIG. 5 (color online). Density (left) and temperature (right) profiles for the REXCESS cluster sample, reproduced from [124].
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V. PHENOMENOLOGY OF GALAXIES AND
LYMAN-α ABSORBERS

We must ensure that our modified acceleration law does
not compromise the successful MOND phenomenology for
galaxies. In other words, galaxies should lie comfortably in
the intermediate regime of (9), namely

aN ≳ agalaxies0

f2
¼ 3.6 × 103

f2
ðkm=sÞ2
kpc

; ð66Þ

where in the last step we have assumed the standard
MOND value agalaxies0 ¼ 1.2 × 10−8 cm=s2. Below we will
check (66) individually for different classes of objects. We
will find that a larger value of f is required, namely f ≳ 10,
as foreseen in Table I.

A. Spiral galaxies

Figure 7, reproduced from [128], shows the mass
discrepancy as a function of the Newtonian acceleration
for a large sample of disc galaxies, with less than 5%
velocity uncertainties. The orbits are assumed circular. We
are not concerned with the mass discrepancy, only with the
range of centripetal accelerations probed by observations.
As can be read off from the plot, the smallest acceleration in

the sample is ≈ 40
ðkm=sÞ2
kpc . In other words,

aN ≳ 40
ðkm=sÞ2
kpc

: ð67Þ

To ensure that all disc galaxies in the sample are consistent
with (66), and therefore in the MOND regime, we must
require

fgalaxies ≳ 10: ð68Þ
(A similar bound was quoted in [66].) Just like the critical
acceleration, the f parameter must also have some scale or

mass dependence, ranging from ≃10 on galactic scales to
≃6 on cluster scales.

B. Ellipticals and dwarf spheroidals

For a pressure-supported system in the MOND regime,
the velocity dispersion σ and size R are related to the
characteristic acceleration by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aNa

galaxies
0

q
¼ σ2

R
: ð69Þ

Combined with (66), we obtain

σ2

R
≳ agalaxies0

f
: ð70Þ

This is the condition for pressure-supported systems, such
as elliptical and dwarf galaxies, to be in the MOND regime.
Figure 8, reproduced from [21], is a plot of σ vs R for

various classes of objects, ranging from globular clusters to
galaxy clusters. The solid line corresponds to the relation
σ2=R ¼ agalaxies0 ; the dashed lines have a slope 5 times
smaller or larger than this relation. We have added the
dotted lines to the plot with slopes 10 times larger or
smaller. As inferred from the figure, nearly all objects
plotted have

σ2

R
≳ 0.1agalaxies0 : ð71Þ

This is consistent with (70) for fgalaxies ≳ 10.

FIG. 7. Mass discrepancy as a function of the Newtonian
acceleration for a large sample of disc galaxies, reproduced from
[128]. Each galaxy plotted has a velocity uncertainty of less than
5%. The mass-to-light ratio was obtained using the MOND fit, as
detailed in [21].

FIG. 8. Line-of-sight velocity dispersion as a function of
characteristic radius for pressure-supported systems, reproduced
from [21]. The stars are globular clusters, the circles are massive
molecular clouds, the triangles are dwarf spheroidal satellites of
the Milky Way, the dashes are compact elliptical galaxies, the
crosses are massive elliptical galaxies, and the squares are galaxy
clusters. The solid line corresponds to σ2=r ¼ agalaxies0 . The
dashed lines have slopes a factor of 5 larger or smaller than
this relation. The dotted lines (added by the author) have slopes a
factor of 10 larger or smaller.
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It should be mentioned that the Milky Way dwarf
spheroidal satellites may pose a problem for MOND
[129–133]. A recent numerical analysis of the classical
dwarfs (except for Ursa Minor, which appears to be out of
equilibrium [134]), carefully accounting for the external
field effect, finds that MOND successfully predicts the
mass-to-light ratio inferred for the most luminous dwarfs,
namely Fornax and Sculptor, but underpredicts the mass-to-
light ratio for Sextans, Carina, and Draco [133]. A possible
explanation within MOND is that observations have
overestimated the dynamical mass of these latter three
dwarfs, for instance due to binaries or contaminant outliers,
or that these systems are not in virial equilibirum.
(Ultrafaint dwarfs, which would otherwise pose a grave
problem for MOND, are also believed to be out of
equilibrium [135].) On the other hand, MOND does an
excellent job at explaining the observed velocity disper-
sions in Andromeda’s dwarf satellites [136,137].

C. Lyman-α absorbers

Lyman-α clouds (which are not included in Fig. 8)
represent another class of pressure-supported systems.
They are responsible for the absorption patterns in quasar
spectra, also known as the Lyman-α forest. It has been
argued that these systems pose a problem for MOND [27],
as reviewed below.
The physical properties of Lyman-α absorbers can be

derived using simple Jeans-like arguments [138]. In the
CDM framework, their estimated characteristic size is [138]

L ≈ 1.0102 kpc
�

NHI

1014 cm−2

�
−1=3

�
T

104 K

�
0.41

×

�
Γ

10−12 s−1

�
−1=3

ð6fgÞ2=3; ð72Þ

where NHI
is the neutral hydrogen column density, Γ is

the hydrogen photoionization rate, and fg is the fraction of
the mass in gas. The latter is expected to be close to the
cosmological value fg ≃Ωb=Ωm ≃ 1=6. Note that the
detailed nature of dark matter plays a minor role in this
derivation; dark matter only enters through fg.
The typical Newtonian acceleration in these systems is

minuscule [27],

aN ∼ 3 × 10−4agalaxies0 : ð73Þ
In the MOND framework, Lyman-α clouds are therefore
deep in the MONDian regime, with a≃ ffiffiffiffiffiffiffiffiffiffi

aNa0
p

. However,
the MOND acceleration law fails to reproduce the proper-
ties of these systems [27]. Instead of (72), MOND predicts

L ≈ 11 kpc

�
NHI

1014 cm−2

�
−1=5

�
T

104K

�
0.65

×

�
Γ

10−12 s−1

�
−1=5

ðMONDÞ: ð74Þ

This is about an order of magnitude smaller than (72),
and has the wrong scalings for all parameters. One caveat is
the external field effect in these systems, which may restore
the clouds to the desired size. See [21] for a short
discussion.
In our case, the situation is different. The characteristic

Newtonian acceleration (73) is so small that it violates (66)—
Lyman-α clouds are not in the MOND regime, but instead
the “f regime.” The relevant acceleration is an inverse-square
law, likeNewtoniangravitybutwithGN → fGN.Theanalysis
of [138] therefore applies identically, except for the trivial
replacementfg → 1=f. Specifically, insteadof (72)weobtain

L ≈ 1.0 × 102 kpc

�
NHI

1014 cm−2

�
−1=3

�
T

104K

�
0.41

×

�
Γ

10−12 s−1

�
−1=3

�
6

f

�
2=3

: ð75Þ

Our modified force law is nicely consistent with the observed
properties of Lyman-α absorbers.
It is reassuring that the f regime resolves known tensions

for MOND not just with one, but with two, vastly different
systems: galaxy clusters and Lyman-α absorbers. With
clusters only, one would naturally question the justification
of modifying MOND for just one class of objects. The fact
that a simple extension like (9) is consistent with the
MOND phenomenology for galaxies, while curing the
known problems of MOND in two other classes of systems,
is encouraging.

VI. PROBLEMATIC OBSERVATIONS?

In this section, we briefly mention two observations that
may be problematic for our scenario: the Bullet Cluster and
the ellipticity of dark matter halos. Neither observable
represents a show stopper at present, but each requires
closer inspection and more detailed predictions from the
model.

A. Bullet Cluster

The “Bullet” Cluster 1E0657-57 [139,140] shows lens-
ing peaks displaced from the gas and centered around
the galaxy distribution. This is expected in CDM: the halos
are made up of weakly interacting dark matter particles
that fly past each other, together with the galaxies, while
the baryonic plasma is slowed down by ram pressure and
ends up spatially segregated from the halos. By now
observers have identified over a handful of similar merging
systems [141].
While the Bullet system was initially hailed as ruling out

MOND [140], its asymmetric and dynamical nature makes
the analysis considerably more tricky. This issue was
studied in some detail in the context of TeVeS [142].
The lesson is that inferring the projected mass from weak
lensing maps is subtle for such extreme asymmetric
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configurations in MOND. Similarly, one would have to
carefully analyze merging clusters in the context of our
scenario, for instance using the relativistic theory described
in Sec. III. In particular, local gradients in π, largely ignored
in our discussion so far, may be important in generating the
required lensing/mass displacements.

B. Dark matter halo ellipticity

A key prediction of CDM simulations is the ellipticity of
dark matter halos [143]. This can be tested using galaxy-
galaxy weak lensing observations [144,145]. In MOND,
however, one expects the shear signal to be approximately
isotropic at large distances from the luminous matter. A
detection of halo ellipticity would therefore pose grave
problems for MONDian modifications to gravity. Such a
detection was claimed in [144], although a subsequent
analysis using Sloan Digital Sky Survey data showed
weaker (≲2σ) evidence [145]. It would be very interesting
to quantify the expected degree of isotropy in our model, in
particular whether π gradients can play an important role. It
may turn out that halo ellipticity can rule out the scenario.
On the flip side, the present model does better than CDM

with other observables. For instance, it circumvents entirely
the “too big to fail” problem [4] of CDM, i.e., simulations
predicting dark massive subhalos in the Milky Way which
have not been observed. The “cusp” problem at the core of
galaxies is also obliterated in the present framework.

VII. CONCLUSION

In this paper we proposed an alternative to particle dark
matter that incorporates some of the ingredients of the
MOND paradigm while adding new important compo-
nents. The first new feature is a dark matter fluid, in the
form of a scalar field with small equation of state and sound
speed. This component is critical in reproducing the
success of CDM for the expansion history and the growth
of linear perturbations. However, it does not play a major
role on nonlinear scales. Instead, the missing mass problem
in galaxies and clusters of galaxies is addressed via a
modification of the gravitational force law.
The new force law, given by (9), is an extension of

MOND. Like MOND, the modification kicks in below
some critical acceleration a0. The force law is MONDian
(a ¼ ffiffiffiffiffiffiffiffiffiffi

a0aN
p

) for a while until, at very low acceleration, it
reverts to an inverse-square law with a stronger Newton’s
constant (a ¼ faN). The force law reduces to MOND on
galactic scales and therefore piggybacks on the empirical
MONDian success at fitting galaxy rotation curves. On
cluster scales, however, the force law is in the inverse-
square-law regime. We argued this explains the nearly
isothermal profiles of clusters and matches the observed
temperature normalization for f ≃ 6. The modified force
law proposed here therefore solves the well-known prob-
lems of MOND on cluster scales. By the same token, it also

successfully reproduces the features of Lyman-α absorbers,
another problematic system for MOND [27].
We presented an example of a relativistic theory that

realizes these features. The theory uses two scalar fields
coupled in a particular way to matter. The first scalar is
governed by the DBI action (13),

LDBI ¼ −M2
Pla

2
0

ffiffiffiffiffiffi
−h

p
; hμν ¼ gμν þ ∂μπ∂νπ: ð76Þ

In the limit of relativistic brane motion ( _π ≃ 1, γ ≫ 1), the
equation of state w ¼ −γ−2 and sound speed cs ¼ γ−1 are
both small, and the scalar behaves as dark matter. This
component ensures that the CDM phenomenology on
linear scales is successfully reproduced.
The second scalar mediates the new MONDian modi-

fication of gravity. A prototypical action is the DBI-like
theory (36),

LNew MOND ¼ −
ð∂ϕÞ2
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2f

3MPla0

�
2

ð∂ϕÞ2
s

: ð77Þ

The resulting force interpolates between the MOND law for
large scalar gradients (fj∂ϕj ≫ MPla0) and an inverse-
square law for small gradients (fj∂ϕj ≪ MPla0).
Ordinary matter fields are coupled to the two scalars

through an effective metric (38):

~gμν ¼ e−2ϕ=MPlhμν − e2ϕ=MPl∂μπ∂νπ: ð78Þ

This form, inspired by the TeVeS [35], is crucial for lensing
mass estimates to agree with dynamical estimates. Unlike
TeVeS, which employs a timetimelike vector field, our
effective metric only involves scalar fields. A noteworthy
advantage over other scalar formulations [44] is that it is a
local function of the fields.
Many directions would be worth pursuing:
(i) The parameters f and a0 must be mildly scale

dependent, as summarized in Table I, to simulta-
neously fit galactic and cluster phenomenology. As
mentioned in Sec. III. D, a tantalizing possibility
would be a dynamical mechanism to explain the
emergence of a0 ∼H0 in the scalar Lagrangians (76)
and (77). If a0 (and f) can be determined cosmo-
logically, it would be natural to expect some scale
dependence as well.

(ii) The form of the theory, particularly the DBI action
(76) and the effective metric (78), strongly suggests
a geometric interpretation in terms of branes moving
in extra-dimensional bulk space-times. A geometric
realization, if possible, might point the way towards
a string theory embedding. Even at the level of
effective field theory, a geometric embedding can
unveil new symmetries, inherited from bulk isome-
tries, whose 4d realization is highly nontrivial.
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(iii) Detailed predictions should be worked out for the
Bullet Cluster and similar merging systems. This will
require a careful modeling of the π and ϕ profiles in
time-dependent, asymmetric configurations.
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APPENDIX: DBI AS DARK MATTER
AND DARK ENERGY

A virtue of the DBI scalar is that it can act both as dark
matter and as dark energy. Let us restore the arbitrary scale
M and write the DBI action (13) as

Lπ ¼ −M4
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − X

p
: ðA1Þ

As shown in Sec. III A, the energy density is given by

ρ ¼ M4γ ¼ M4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

a6

s
: ðA2Þ

It behaves as dust at early times and as a cosmological
constant at late times. The expansion history is somewhat
different, and possibly distinguishable, from ΛCDM. The
expansion rates in the two cases are given by, assuming a
spatially flat (k ¼ 0) universe,

HðzÞ
H0

¼ 1 −Ωm þ Ωm

a3
ðΛCDMÞ;

HðzÞ
H0

¼
�
1þ C2ð1þ zÞ6

1þ C2

�
1=4

ðDBIÞ; ðA3Þ

where in the DBI case we wrote M4 ¼ 3H2
0
M2

Plffiffiffiffiffiffiffiffiffi
1þC2

p . The

luminosity distances are shown in Fig. 9 as functions of
redshift. The solid curve is the ΛCDM luminosity distance
with Ωm ¼ 0.25; the dashed curve, fitted by eye, is the DBI
distance with C ¼ 0.32. The percentage difference is less
than 5% over the entire redshift range, peaking at z≃ 1.
The main drawback of this scenario is that the coupling

to matter must be modified in a nonlocal way. Indeed, since
_π ≠ 1 at the present time (e.g., _π ≃ 0.3 for C ¼ 0.32), the
effective metric coupling to matter will not be of the form
(43) required for lensing. One can instead couple matter to
the following metric:

~gμν ¼ e−2ϕ=MPlgμν − 2uμuν sinh
2ϕ

MPl
; ðA4Þ

where uμ ≡ ∂μπ=
ffiffiffiffi
X

p
is the unit timelike vector for the DM

fluid. At the linear level, this does reduce to the form (43)
required to match lensing observables. However, the
effective metric now depends on π in a nonlocal way.
This is why we focused on the “pure-dust” behavior in the
main text, since it allows the local effective metric (38).
Nevertheless, the connection to dark energy is tantalizing,
and it would be interesting to further explore this version of
the scenario.
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