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We report a new class of SOð3;CÞ and diffeomorphism invariant formulations for general relativity with
either a vanishing or a nonvanishing cosmological constant, which depends functionally on a SOð3;CÞ
gauge connection and a complex-valued 4-form via a holomorphic function of the trace of a symmetric
3 × 3 matrix that is constructed from these variables. We present two members of this class, one of which
results from the implementation of a method for obtaining action principles belonging to the class. For the
case of a nonvanishing cosmological constant, we solve for the complex-valued 4-form and get pure
connection action principles. We perform the canonical analysis of the class. The analysis shows that only
the Hamiltonian constraint is modified with respect to the Ashtekar formulation and that the members of
the class have two physical degrees of freedom per space point.
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I. INTRODUCTION

The gauge connection formulations for classical general
relativity (GR) are relatively new ways of thought that open,
in principle, new roads toward the quantization of the
gravitational field [1]. In these formulations, the gauge
connection is the main structure used to describe the
gravitational field, while the metric is a derived object. A
remarkable feature that makes them attractive is that the field
equations can be substantially simpler than the ones emerg-
ing directly from Einstein’s original formulation based on
the metric field. Among these approaches we find the one
due to Plebanski, who showed that GR can be expressed as a
BF theory supplemented with a constraint on the B fields.
This formulation involves a SOð3;CÞ gauge connection, a
SOð3;CÞ 2-form, a SOð3;CÞ scalar field, and a Lagrange
multiplier [2]. Based on such a work, Capovilla, Dell, and
Jacobson (CDJ) went one step further and presented a pure
spin connection formulation for GR without a cosmological
constant, where the variables involved are a gauge con-
nection and a scalar density [3]. The generalization of this
formulation to the case including a nonvanishing cosmo-
logical constant has shown to be a nontrivial task. Indeed,
the same authors attempted to carry this out [4], however,
erroneously [5]. A correct action principle involving the
cosmological constant was derived later by Capovilla and
Jacobson [6] together with Peldan [7], using totally different
methods. Unfortunately, this action principle has not been
widely applied because of some technical aspects that
prevent its handling. Recently, Krasnov has achieved a
different action principle for GR that requires a nonvanishing
cosmological constant and that depends functionally on a
SOð3Þ gauge connection only [8].

In this paper, we report a new class of gauge connection
formulations for GR, in the Lorentzian signature case,
which has as fundamental variables a SOð3;CÞ gauge
connection and a complex-valued 4-form. We explore the
members of this class and find a new action principle for
GR that works well with or without a cosmological
constant. Furthermore, considering some caveats that we
will clarify later on, a particular case of this member can be
related to the action principle found in Ref. [5]. We also
develop a method for constructing the members of the
class by integrating certain holomorphic functions. This
method is illustrated with a new action principle for GR
with a nonvanishing cosmological constant. We also derive
pure connection action principles from the class with a
nonvanishing cosmological constant, by eliminating the
dependence of the action on the auxiliary 4-form. Finally,
we develop the canonical analysis of the class and show
that the Hamiltonian constraint is modified with respect to
the Ashtekar formulation, whereas the Gauss and vector
constraints remain unchanged. The class has two complex
degrees of freedom per space point.

II. THE CLASS OF FORMULATIONS FOR
GENERAL RELATIVITY

Let us begin by fixing the notation and convention.
The fundamental variables considered in this paper are a
SOð3;CÞ gauge connection Ai with curvature Fi ¼ dAi þ
1
2
εijkAj ∧ Ak and a nonvanishing complex-valued 4-form

ρ. The indices i; j; k ¼ 1; 2; 3 are raised and lowered with
the Kronecker delta δij and εijk is the Levi-Cività symbol
(ε123 ¼ þ1). The wedge product of forms is denoted by ∧.
Now, let us define a complex 3 × 3 matrix ΨðAi; ρÞ, which
is a function of Ai and ρ via

Fi ∧ Fj þ 2ρXi
kXjk ¼ 0; ð1Þ
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where X ≡Ψþ ð1=3ÞΛI. Here, Λ is the usual cosmologi-
cal constant and I is the identity 3 × 3 matrix.
From now on we restrict the analysis to configurations

such that X is symmetric and nonsingular, as is usual in
the pure spin connection formulations for GR [4,6]. This
restriction is needed in order to hold the equivalence
between our formulation and Plebanki’s equations of
motion for GR. Because X is nonsingular, then the
symmetric density matrix ~M of weight 1 and defined by
~Mijd4x ¼ Fi ∧ Fj is also nonsingular on account of (1).
Since X is symmetric, then (1) becomes ~M ¼ −2~μX2 where
ρ ¼ ~μd4x. The action principles considered in this paper
depend on TrΨ≡Ψijδij; therefore, we need to compute X
from ~M ¼ −2~μX2, next compute Ψ, and finally compute
TrΨ. The solution for X exists [9], but is not unique
generically [10]. Nevertheless, the action principles intro-
duced below work well for any of these solutions. In the
pure spin connection formulations for GR there is a debate
about whether an additional criterion must be introduced in
order to select just one or whether all the solutions must be
allowed to describe GR [6,7].
Having defined ΨðAi; ρÞ, we are ready to give the action

principle

S½Ai; ρ� ¼
Z

ρfðTrΨÞ; ð2Þ

where f is a given holomorphic function that depends on
TrΨ and that has the same dimensions of the cosmological
constant. It is worth pointing out that Ψij is a tensor density
of weight zero, and hence any function f is also of weight
zero and leaves the action (2) correctly defined. Then it
makes sense to consider an arbitrary holomorphic function
f. However, an arbitrary choice of f may lead to other
theories of gravity different from GR. In this paper we
emphasize that we only consider functions f such that (2) is
an action for GR. The other possible cases are also
interesting and will be treated elsewhere.
We find thatGRemerges fromtheclassof formulations (2)

if f is a holomorphic function in a domain Ω in C to which
zero belongs, and if it satisfies the following properties:

(i) The only zero of f − 1
2
ðTrΨþ ΛÞf0, as a function of

TrΨ, is TrΨ ¼ 0;
(ii) f00 ≡ f0jTrΨ¼0 ≠ 0;

where “0” denotes the derivative with respect to TrΨ. The
requirement of conditions (i) and (ii) will be evident below.
Now we prove that given a function f satisfying (i) and

(ii), the class of formulations (2) describes GR with and
without a cosmological constant. To do this, it is useful to
begin by determining the equations of motion of the action
(2), in the case in which f is an arbitrary holomorphic
function. These equations are given by

δρ∶ f −
1

2
ðTrΨþ ΛÞf0 ¼ 0; ð3Þ

δAi∶ D

�
−
f0

2
ðX−1ÞijFj

�
¼ 0; ð4Þ

where D is the covariant derivative with respect to Ai. Here
we have used our assumption that X is symmetric and
nonsingular. To compute the variations of TrΨ with respect
to ρ and Ai, we employ Eq. (1) to get ρδTrΨ ¼ − 1

2
TrXδρ

and ρδTrΨ ¼ − 1
2
ðX−1ÞijFi ∧ δFj, respectively.

To simplify Eqs. (3) and (4), we now consider that f is
endowed with the desired properties (i) and (ii). Since f
satisfies condition (i), equation of motion (3) implies

TrΨ ¼ 0: ð5Þ

Notice that (5) is equivalent to the constraint TrX ¼ Λ,
which also appears in the pure spin connection formulation
of Ref. [6]. We remark that in our approach, as well as in
Ref. [6], the appropriate value for TrΨ comes from the
equation of motion for the auxiliary field ρ, and that a
different value of TrΨ will lead to other theories of
gravitation. This is one reason why the field ρ is relevant.
Moreover, note that Xij and f0 have weight zero, and

hence the term in the argument of the covariant derivative
of Eq. (4) is actually a well-defined 2-form. Furthermore,
this 2-form must be evaluated at TrΨ ¼ 0 because of (5),
and, at this point, it does not vanish trivially because f
satisfies the property (ii). Therefore, the equation of motion
(4) acquires the form

DΣi ¼ 0; ð6Þ

in which the 2-form Σi is given by

Σi ¼ ðX−1ÞijFj: ð7Þ

Note that f00 does not appear in (6), since it is a non-
vanishing dimensionless constant. Now it is clear the role
of conditions (i) and (ii).
The remarkable fact is that Eqs. (5) and (6) along with

the definition (7) are Einstein’s equations for GR. Indeed,
combining (1) with (7), we obtain the Plebanski constraints

Σi ∧ Σj þ 2ρδij ¼ 0: ð8Þ

This means that the Σ’s are actually those of the Plebanski
formulation for general relativity. Furthermore, notice that
Σi ∧ Σi ≠ 0 since ρ ≠ 0. Then, Eq. (8) together with the
reality conditions

Σi ∧ Σ̄j ¼ 0; Σi ∧ Σi þ Σ̄i ∧ Σ̄i ¼ 0 ð9Þ

imply Σi ¼ iθ0 ∧ θi − 1
2
εijkθ

j ∧ θk, where fθ0; θig are four
linearly independent real 1-forms and i is the imaginary
unit. The overbar denotes the complex conjugate. We recall
that the reality conditions do not come from the formulation
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(2), but they are introduced by hand in order to relate the
complex 2-forms Σi with real 1-forms [2,11].
On the other hand, Eq. (6) is a system of 12 linear

equations for the 12 unknowns contained in the compo-
nents of Ai. For Plebanski’s Σi this system is nondegenerate
and can be solved for Ai ¼ AiðΣÞ [12]; however, further
assumptions are needed to link Ai with a spacetime
connection because there are no spacetime geometrical
structures involved in the class of gauge connection
formulations (2) nor in any other gauge connection for-
mulation [12]. According to Levi-Cività, a spacetime
connection is uniquely defined by specifying its torsion
and its action on a spacetime metric. Therefore, the
first assumption consists in defining the spacetime
metric, which is given by the Urbantke metric in terms
of Σi [13], namely, ð1=12ÞεijkΣi

MIΣj
JKΣk

LN ~η
IJKL, where

I; J;… ¼ 0; 1; 2; 3 and ~ηIJKL is a totally antisymmetric
density of weight 1 (~η0123 ¼ 1). A direct calculation using
the expression for Σi in terms of the real 1-forms shows that
this metric turns out to be the Minkowski metric. The
second assumption is that the spacetime connection has no
torsion. As a result, the connection Ai is the self-dual part of
the spin connection (i.e., the Levi-Cività spacetime con-
nection) and Eq. (6) becomes the first Cartan’s structure
equation with vanishing torsion. This in turn implies that Fi

is the self-dual part of the curvature of the spin connection.
Next, Fi can be solved from (7),

Fi ¼ Ψi
jΣj þ 1

3
ΛΣi; ð10Þ

which means that Fi is self-dual as a 2-form.
Finally, Eqs. (5) and (10) together with the relation

between Fi and curvature of the spin connection imply
Einstein’s equations for GR. Indeed, Eqs. (5), (6), (8),
and (10) are exactly the set of equations of motion of the
Plebanski formulation for complex GR with a cosmological
constant. More details on the Plebanski formulation can
be obtained in Refs. [12,14]. In addition, the trace-free
symmetric matrix Ψ becomes the self-dual part of the Weyl
tensor.

III. EXAMPLE: POLYNOMIAL FUNCTIONS

To illustrate how the class of formulations (2) works, we
present the simple, but rather significant, case of a quadratic
function of the TrΨ. To this end, let us begin by considering
the function

f ¼ α1ð2TrΨþ ΛÞ þ α2ðTrΨþ ΛÞ2; ð11Þ

where α1 and α2 are arbitrary constants with appropriate
units. Our goal is to demonstrate that, with a specific choice
of α1 and α2, the function (11) is holomorphic on a certain
region Ω containing zero and satisfying conditions (i) and
(ii). The first requirement is satisfied because (11) is a

polynomial function, and hence holomorphic in the whole
complex plane. Conditions (i) and (ii) are satisfied if α1 ≠ 0
and α1 þ α2Λ ≠ 0, respectively. Note that these conditions
are fulfilled for Λ ¼ 0 as well as for Λ ≠ 0. Indeed if, for
instance, Λ ¼ 0, then both conditions reduce to α1 ≠ 0. In
view of this, we can conclude that the new action principle
(2) with f given by (11), where α1 ≠ 0 and α1 þ α2Λ ≠ 0,
has the equations of motion (5) and (6), and therefore it
describes GR with or without a cosmological constant Λ.
For the special case of the choice α2 ¼ 0, Eq. (11) is a

linear function in TrΨ which, together with the action (2),
leads to

Slinear½Ai; ρ� ¼ α1

Z
ρð2TrX − ΛÞ; ð12Þ

where we use Ψ ¼ X − ð1=3ÞΛ. This action, which also
works well for both Λ ¼ 0 and Λ ≠ 0, corresponds to the
simplest case of an action belonging to our class of
formulations. Notice that (12) has the same form of the
action principle (3) of Ref. [5]. It is important to point out
that the action principle (12) and the one of Ref. [5] were
obtained following different approaches. In fact, Eq. (3) in
Ref. [5] was obtained from the Plebanski action. In the case
α2 ≠ 0, the quadratic term in (11) remains and gives a
different action principle with the same equations of motion
of the case α2 ¼ 0. Moreover, the action with the quadratic
term has no analog with any other gauge connection
formulation for GR.
Note that α2 is an arbitrary parameter for Λ ¼ 0 and

Λ ≠ 0 (except α2 ≠ −α1=Λ), and that appears in the action
principle but not in the equations of motion. Then, in this
sense, α2 resembles the Barbero-Immirzi parameter
involved in the Holst action [15]. On the other hand, it
can be shown that there are not polynomial functions on
TrΨ with degree three or greater satisfying conditions (i)
and (ii) either with Λ ¼ 0 or with Λ ≠ 0. Then, the
quadratic function (11), under the mentioned conditions
on α1 and α2, is the most general case for a viable
polynomial function on TrΨ for GR.

IV. A METHOD TO OBTAIN f ðTrΨ Þ
In addition to the quadratic function, there are many

other functions satisfying conditions (i) and (ii). However,
instead of giving another example, we shall briefly present
a method to obtain such viable functions for GR, i.e., a
method to construct action principles belonging to our class
of formulations (2).
Consider a holomorphic function hðTrΨÞ in the domain

Ω, which has only a zero of order κ at TrΨ ¼ 0.
Furthermore, it is well known [16] that for such h, a
holomophic function qðTrΨÞ exists in Ω, which has no
zeros and such that h ¼ ðTrΨÞκq. This suggests that it is
convenient to construct f from h via the complex differ-
ential equation
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f −
1

2
ðTrΨþ ΛÞf0 ¼ ðTrΨÞκq: ð13Þ

The reason to consider this particular equation is that its
solution, the function f, is holomorphic in Ω and satisfies
condition (i). Indeed, the solution is found to be

f ¼ ðTrΨþ ΛÞ2ðpþ αÞ; ð14Þ

where the function pðTrΨÞ is a primitive of −2ðTrΨÞκq=
ðTrΨþ ΛÞ3 and α is an arbitrary constant. It can be verified
that the term ðTrΨþ ΛÞ2p is holomorphic at −Λ, despite
the fact that p is not. It can also be checked by direct
calculation that (14) satisfies condition (i). For instance,
the quadratic function (11) arises from the simplest case of
h, namely, κ ¼ 1 and q ¼ α1 (¼ const). From this point of
view, α2 ¼ α is actually an integration constant that is not
necessarily equal to zero.
Now, it is convenient to express condition (ii) in terms of

ðTrΨÞκq. Then, using (14) to calculate f00, condition
(ii) becomes

lim
TrΨ→0

�ðTrΨÞκq
TrΨþ Λ

− ðTrΨþ ΛÞp
�
≠ αΛ: ð15Þ

In particular, if Λ ¼ 0, the only possible case satisfying
condition (ii) is κ ¼ 1. In such a case, Eq. (15) reduces to
q0 ≡ qjTrΨ¼0 ≠ 0, which is satisfied by assumption. For
Λ ≠ 0, the first term on the left-hand side of (15) vanishes,
and therefore condition (ii) is equivalent to p0 ≡
pjTrΨ¼0 ≠ −α. In this case all possible values of κ are
allowed.
At this point the reader may have noticed that there are

many suitable functions for GR that can be found by
following this approach. For example, consider the function
h ¼ βTrΨ exp ð2TrΨ=ΛÞ with β a nonzero constant and
Λ ≠ 0. This function is clearly holomorphic on C and has a
zero at TrΨ ¼ 0, as it is desirable. Thereby, Eq. (14)
constructed using h directly satisfies condition (i). Indeed,
Eq. (14) gives the function

f ¼ −Λβ expð2TrΨ=ΛÞ þ αðTrΨþ ΛÞ2; ð16Þ

which satisfies condition (i) provided that β ≠ 0. It remains
to test whether (16) satisfies condition (ii). To do this we
can proceed in two different ways. One way is by verifying
condition (ii) directly using (16). The second one is through
the use of (15) with h. From any of these ways it follows
that condition (ii) is satisfied if p0 ¼ −β=Λ ≠ −α. Then,
the upshot of our example is a new action for GR with
Λ ≠ 0, namely, the action (2) with f given by (16),
provided that β ≠ 0 and β ≠ αΛ.
To close the analysis of the method described above we

can, alternatively, remark that the class of formulations (2)
with f defined by the function (14) describes GR provided

that the holomorphic function hðTrΨÞ has only one zero at
TrΨ ¼ 0 and satisfies condition (15).

V. PURE CONNECTION FORMULATION

For the case Λ ≠ 0 of the class of formulations (2) it is
possible to eliminate the auxiliary field ρ, and then get
formulations that depend on the gauge connection only.
The aim of this section is to derive such pure connection
formulations. We follow a procedure with the same logic as
that of Refs. [4] and [6]. That is, the elimination of the field
ρ is achieved by using its equation of motion.
Consider that Λ ≠ 0 and that f satisfies conditions (i)

and (ii). First, we want to express the equation of motion (5)
in terms of ~M, ~μ, and Λ. To do this we make use of the fact
that ~M ¼ −2~μX2 can be solved for X, and then we use
Ψ ¼ X − ð1=3ÞΛI to get TrΨ. Then Eq. (5) reads

� 1

ð−2~μÞ1=2 Tr
~M1=2 − Λ ¼ 0; ð17Þ

where ~M1=2 is a symmetric square root of ~M, that is, ~M ¼
~M1=2 ~M1=2 and ~M1=2 ¼ ð ~M1=2ÞT . Recall that such ~M1=2

exists since ~M is symmetric and nonsingular [9]. Now, it is
straightforward to solve (17) for ~μ,

~μ ¼ −
1

2Λ2
ðTr ~M1=2Þ2: ð18Þ

With this solution, it is time to get the pure connection
actions. Substituting (5) and (18) into (2), we obtain

S½Ai� ¼ −
1

4

f00
Λ

Z
ðTr ~M1=2Þ2d4x; ð19Þ

where we have used f0 ≡ fjTrΨ¼0 ¼ 1
2
Λf00 that comes from

the fact that f satisfies condition (i). The outcome is that
all the members with Λ ≠ 0 belonging to class (2) reduce to
the pure connection action principles (19), which share the
same dependence on Ai, but the factor in front of the action
has a dependence on Λ through f00=Λ; thus there is a
reminiscence of f on this factor. This Λ dependence is
different from that of Ref. [8]. Recall that f00 does not
vanish since f satisfies condition (ii), and that in general it
involves the cosmological constant. For instance, if we
consider the functions (11) and (16) the factor is f00 ¼
2ðα1 þ α2ΛÞ and f00 ¼ 2ð−β þ αΛÞ, respectively. Further-
more, we also remark that the procedure employed in the
derivation of (19) is different from the one followed
in Ref. [8].
An advantage of the class (2) is that the resulting actions

(19) have a very compact form, in contrast to the case of the
pure connection formulation for GRwithΛ ≠ 0 analyzed in
Refs. [6] and [7]. Indeed, in Ref. [7] it is pointed out that
the elimination of the auxiliary field from the formulation
of the references aforementioned seems to lead to a
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“terrible expression” for the Lagrangian and that for such a
reason that calculation was not completely done.
For the treatment of the Λ ¼ 0 case, it is natural to try to

apply the same strategy. However, this time the field ρ
cannot be solved from (5), which is easy to see by setting
Λ ¼ 0 in (17). Hence (2), like the CDJ action [3], fails to
reduce to pure connection action principles in this case.

VI. CANONICAL ANALYSIS

In Ref. [17] it was shown that the particular action (12)
with Λ ≠ 0 leads to the usual constraints of GR in terms of
the Ashtekar variables. In this section, we perform the
canonical analysis of the class of formulations presented
in Sec. II.
By performing the spacetime decomposition we rewrite

the class of actions (2) as

S ¼
Z

dtd3x ~L ¼
Z

dtd3x ~μfðTrΨÞ; ð20Þ

and Eq. (1) as

Fði
0aFjÞ

bc ~η
abc þ 2~μXi

kXjk ¼ 0; ð21Þ

where Fi
0a ¼ _Ai

a −DaAi
0 and Fi

ab ¼ ∂aAi
b − ∂bAi

aþ
εijkAj

aAk
b. Here Da is the covariant derivative correspond-

ing to the spatial connection Ai
a and a; b; c ¼ 1; 2; 3 are

spatial indices. We define the momenta conjugate to Ai
a as

~πai ≔
∂ ~L

∂ _Ai
a

¼ −
f0

4
ðX−1Þij ~Baj; ð22Þ

where ~Ba
i ¼ Fibc ~η

abc is the corresponding “magnetic” field.
We will restrict our analysis to nondegenerate magnetic
fields, that is, det ~B ≔ ð1=3!Þεijkη

~
abc

~Ba
i
~Bb
j
~Bc
k ≠ 0. This

restriction implies that det ~π ≔ ð1=3!Þεijkη
~
abc ~π

a
i ~π

b
j ~π

c
k ¼

−ðf0=4Þ3 det ~B= detX ≠ 0 since f00 ≠ 0 and detX ≠ 0.
The phase space variables are Ai

a and ~πai , whereas Ai
0

and ~μ are nondynamical variables, since they have vanishing
conjugate momenta.
The Gauss constraint follows from the fact that there are

no time derivatives of the variables in the spatial projection
of the equation of motion (4). The constraint then reads

~Gi ≡Da ~π
a
i ≈ 0: ð23Þ

The vector constraint can be obtained from the require-
ment that Xij is symmetric. Indeed, this constraint turns out
to be

~Vb ≡ ~πai F
i
ab ¼ −

f0

4
ðX−1ÞijFi

ab ~η
acdFj

cd ¼ 0; ð24Þ

where it can be checked that Fi
ab ~η

adeFj
de ¼

−Fj
ab ~η

adeFi
de. Notice that the resulting Gauss and vector

constraints of the class of formulations are still the same
as those for the usual GR in terms of the Ashtekar
variables.
The Hamiltonian constraint is derived from the equation

of motion (5). Explicitly, using TrΨ ¼ TrX − Λ and
multiplying by det ~π we can rewrite (5) as

ðTrX − ΛÞ det ~π ¼ 0: ð25Þ

Using now the expression for the momenta ~πai , we get

Xij det ~π ¼ −
f0

8
εjklη

~
abc ~π

a
k ~π

b
l
~Bci: ð26Þ

Taking the trace of (26) and substituting it into (25) gives
the Hamiltonian constraint

~~H≡ f0

8
εijkη

~
abc ~π

a
i ~π

b
j
~Bc
k þ

Λ
6
εijkη

~
abc ~π

a
i ~π

b
j ~π

c
k ≈ 0: ð27Þ

It is interesting to note the presence of function f0 in this
constraint. The Hamiltonian constraint is then a modifica-
tion of the familiar Ashtekar version of the Hamiltonian
constraint. We recall that f0 is a dimensionless holomorphic
function of TrΨ and that f00 ≠ 0 since f enjoys the pro-
perty (ii). For instance, the functions (11) and (16) lead to
f0 ¼ 2α1 þ 2α2ðTrΨþ ΛÞ and f0 ¼ −2β expð2TrΨ=ΛÞþ
2αðTrΨþ ΛÞ, respectively. In particular, if α2 ¼ 0 in (11),
f0 ¼ 2α1 ¼ const and hence (27) reduces to the usual
Hamiltonian constraint for GR, as was first found in
Ref. [17].
It is worth mentioning that (27) is reminiscent of

Krasnov’s modified Hamiltonian constraint [18], but is
not the same. In Ref. [18] the cosmological constant that
appears in the usual Hamiltonian constraint is replaced by
an arbitrary function that has a dependence different
from f0.
Next, it remains only to consider the Poisson brackets

among the constraints. Since the Gauss and vector
constraints remain unchanged, the Poisson brackets that
must be computed are those that involve the Hamiltonian

constraint. Taking into account that ~~H is gauge invariant,

the Poisson bracket of ~Gi and ~~H does not change.

Similarly, the Poisson bracket between ~Va and ~~H gives
the known result. Therefore, we are bound to calculate
only the Poisson bracket of the Hamiltonian constraint
with itself.
Let us introduce the smeared Hamiltonian constraint

C ̰N ≔
Z

d3x̰N ~~H; ð28Þ

where the test field ̰N has weight −1. Then, the Poisson
bracket of interest is
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fC̰N1
; C̰N2

g ¼
Z

d3x

 
δC̰N1

δAi
a

δC̰N2

δ ~πai
−
δC̰N2

δAi
a

δC̰N1

δ ~πai

!
: ð29Þ

For the purpose of computing this Poisson bracket, it is
convenient to obtain the variation of C̰N by using (26) and
δf0 ¼ f00δTrΨ. Then,

δC̰N ¼
Z

d3x̰N

�
1

4
γ1δðεijkη

~
abc ~π

a
i ~π

b
j
~Bc
kÞ

þ 1

6
γ2δðεijkη

~
abc ~π

a
i ~π

b
j ~π

c
kÞ
�
; ð30Þ

where the functions γ1 ¼ γ1ðTrΨÞ and γ2 ¼ γ2ðTrΨÞ are
given by

γ1 ≔
1

4

ðf0Þ2
ðf − 1

2
ðTrΨþ ΛÞf0Þ0 ; ð31Þ

γ2 ≔ Λþ 1

2

ðTrΨþ ΛÞ2f00
ðf − 1

2
ðTrΨþ ΛÞf0Þ0 : ð32Þ

Now having (30), we get the required variations

δC̰N

δAi
a
¼ Dbð ̰Nγ1εi

jk ~πaj ~π
b
kÞ; ð33Þ

δC̰N

δ ~πai
¼ 1

2
̰Nεijkη

~
abc ~π

b
j ðγ1 ~Bc

k þ γ2 ~π
c
kÞ: ð34Þ

By substituting (33) and (34) into (29) the Poisson bracket
can finally be written as

n
C̰N1

; C̰N2

o
¼
Z

d3xγ21 ̰N̰b
~~Q
ab
Fi

ac ~π
c
i ; ð35Þ

where

̰N̰b
≔ ∂bðN̰1Þ̰N2 − ∂bð̰N2ÞN̰1; ð36Þ

~~Q
ab

≔ ~πai ~π
b
jδ

ij: ð37Þ

Therefore (35) differs from the usual Poisson bracket
only by the nontrivial function γ1. For the functions (11)
and (16), we obtain, respectively,

γ1 ¼
ðα1 þ α2ðTrΨþ ΛÞÞ2

α1
; ð38Þ

and

γ1 ¼
Λðβ expð2TrΨ=ΛÞ − αðTrΨþ ΛÞÞ2

βð2TrΨþ ΛÞ expð2TrΨ=ΛÞ : ð39Þ

Note that if α2 ¼ 0 in (38), i.e., in the case of action
principle (12), we get γ1 ¼ α1 ¼ const and hence (35) is
simply the usual Poisson bracket.

Notice that ~Gi, ~Va, and
~~H form a set of 3þ 3þ 1 ¼ 7

first class constraints. Also we have 3 × 3 ¼ 9 configura-
tion variables Ai

a. Therefore, we are left with two complex
degrees of freedom per space point, as it should be for
complex GR.

VII. CONCLUSIONS

We conclude with some remarks. (a) In this paper we
have introduced a new class of formulations for GR with
either a vanishing or a nonvanishing cosmological con-
stant that depends on a SOð3;CÞ gauge connection and a
complex-valued 4-form, via a holomorphic function of
the trace of a symmetric 3 × 3 matrix ΨðAi; ρÞ that was
constructed from these variables. (b) As a consequence
of our class, we have achieved a very simple action
principle for general relativity, given by (2) with (11),
that involves a quadratic function on the trace of Ψ. One
advantage of this action principle is that it works well
with and without a cosmological constant, a result that
contrasts with the action principles of Refs. [3] and [8],
which do not either support or necessarily require a
nonvanishing cosmological constant. An interesting
novelty of this action is that it involves an arbitrary
parameter that resembles the Barbero-Immirzi parameter.
Furthermore, in the particular case when this quadratic
function is reduced to a linear one, the resulting action
principle can be related to the one found in Ref. [5].
(c) We have also developed a method for constructing
action principles for general relativity belonging to the
class of formulations by integrating holomorphic func-
tions with certain desirable properties. (d) In particular,
and as a straightforward implementation of the method,
we have also reported a new action principle for general
relativity with a nonzero cosmological constant, given by
(2) with (16), which involves an exponential function of
the trace of Ψ. The action principles mentioned in (b) and
(d) are new and had not been reported before. (e) We
have obtained the pure connection action principles from
the members of the class with a nonzero cosmological
constant, by eliminating the field ρ, and also compared
the resulting actions with that of Ref. [8]. (f) We have
carried out the canonical analysis of the class of
formulations. It was found that the only constraint that
gets modified with respect to those of the Ashtekar
formulation is the Hamiltonian constraint. The modifica-
tion consists in promoting a constant factor to the
nontrivial function f0. Therefore, each member of the
class of formulations leads to a different Hamiltonian
constraint, whereas the Gauss and vector constraints
remain unchanged. The analysis shows that the members
of the class have 2 complex degrees of freedom per space
point, as it should be for complex formulations of GR.
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Furthermore, a natural way to generalize the class of
formulations presented in this paper is in the spirit of
Refs. [19] and [20], i.e., by promoting the holomorphic
function from a dependence on the trace of Ψ to a
dependence on the three independent scalar invariants of
the matrix Ψ. Work in this direction is in progress. Another
relevant aspect of future work is to linearize the class of
formulations (2), which can be done in the sense of Ref. [21].
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