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We study some geometric properties of Killing horizons in four-dimensional stationary and axisym-
metric space-times with an electromagnetic field and a cosmological constant. Using a ð1þ 1þ 2Þ
space-time split, we construct relations between the space-time Riemann tensor components and the
components of the Riemann tensor corresponding to the horizon surface. The Einstein equations allow to
derive the space-time scalar curvature invariants—Kretschmann, Chern-Pontryagin, and Euler—on the
two-dimensional spacelike horizon surface. The derived relations generalize the relations known for Killing
horizons of static and axisymmetric four-dimensional space-times. We also present the generalization of
Hartle’s curvature formula.
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I. INTRODUCTION

Killing horizons play a significant role in the analysis of
pseudo-Riemannian manifolds and are important character-
istics of such manifolds. They help to define the global
structure of space-time, such as black hole event horizons,
Cauchy horizons, cosmological event horizons, and local
isometry horizons (for details see [1–4] and references
therein). A Killing horizon is a null hypersurface in a
pseudo-Riemannian manifold which is invariant with
respect to a one-parameter group of isometries of the
manifold, and its null geodesic generator is an orbit of
the group [1]. In a four-dimensional space-time, a two-
dimensional spacelike Killing horizon surface is a margin-
ally locally trapped surface whose future-directed null
normals are not expanding. The generator of a Killing
horizon, which is a null Killing vector field, has many
interesting geometric properties explored in the works of
Carter [1], Boyer [5], and Wald [6]. The reader can find the
comprehensive presentation of many such properties in the
meaty book Ref. [7].
Due to special features of a Killing horizon, the

corresponding space-time structure takes a special form
on and in the vicinity of it. In particular, the space-time
geometry and the Einstein equations get simplified due
to an enhancement of the space-time symmetries in space-
times with the so-called extremal Killing horizon. The
well-known example is that of the extreme Kerr black hole
solution where the near-horizon geometry (the extreme
Kerr throat) has enhanced symmetry, and, as a result, the
Killing tensor becomes reducible (see, e.g., [8]). There are
many examples of symmetry enhancement of the near-
horizon geometry of extreme (as well as supersymmetric)
horizons in four- and higher-dimensional space-times
(see, e.g., [9–12] and references therein). There are other
examples illustrating the special nature of a Killing horizon.

It was demonstrated that space-times of local four-
dimensional vacuum black holes represented by static
and axisymmetric Weyl solutions of the vacuum Einstein
equations are of Petrov type I (algebraically general), but
they become of Petrov type D on the horizon due to the
“appearance” of two repeated principal null directions [13].
The same situation takes place for the horizon of a local
four-dimensional static and axisymmetric black hole [14]
and for the inner and outer horizons of a local four-
dimensional static and axisymmetric electrically charged
black hole [15]. It was shown that space-time scalar
curvature invariants get greatly simplified when calculated
on a Killing horizon (see, e.g., [14–18]).
In this paper we shall study geometric properties of

Killing horizons in four-dimensional stationary and axi-
symmetric space-times with an electromagnetic field and a
cosmological constant. We shall not be interested in the
global space-time structure and shall study Killing horizons
quasilocally. In this sense, the Killing horizon is a particular
class of the so-called isolated horizons, which were defined
and later extensively studied in, e.g., [19–25]. We shall
focus on space-time curvature invariants calculated on a
Killing horizon. There are 14 algebraically independent
scalar invariants constructed from the Riemann curvature
tensor [26]. Note that a space-time metric of a four-
dimensional Lorentzian manifold can be completely
characterized by scalar polynomial curvature invariants
constructed from the Riemann tensor and its covariant
derivatives, except for the case when its metric is of
degenerate Kundt form [27]. Here, we will calculate the
second-order space-time scalar curvature invariants—the
Kretschmann, Chern-Pontryagin, and Euler invariants
(see, e.g., [28])—on a stationary Killing horizon. Killing
horizons considered in this paper are regular in the sense
that these invariants are finite. The results derived here are
an extension of the previous works [14–18] where the
Kretschmann invariant was calculated on static Killing
horizons. The Kretschmann scalar of a Killing horizon in a*ashoom@ualberta.ca
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four-dimensional electrovacuum (without a magnetic field)
static space-time was derived in [15],

K ≗ 3ðRþ F2Þ2 þ 2F4; ð1Þ

whereR is the Ricci scalar of the horizon two-dimensional
spacelike surface and F2 ¼ FαβFαβ is the electromagnetic
field invariant.1 Another work [18] contains a study of
Killing horizons within the d-dimensional Einstein-
Maxwell-dilaton model with a cosmological constant.
Beside an analysis of geometric properties of a Killing

horizons, the sought relations have many applications.
For instance, the expression of the Kretschmann scalar
was used in [29,30] to prove the uniqueness theorems
for the Schwarzschild and Reissener-Nordström black hole
solutions. An investigation of properties of scalars and
tensor invariants constructed from the Weyl tensor, the
Killing vector, and their derivatives near a Killing horizon
is necessary to calculate the vacuum energy density near
a static four-dimensional black hole using the approxima-
tions of Page [31] and Brown [32] (see, e.g., [16]).
Expressions involving second-order space-time scalar cur-
vature invariants are useful for calculation of the vacuum
and thermal stress-energy tensors in static space-times in
the Killing approximation [17]. The relation (1) was used in
[15] to analyze the curvature of the (inner) Cauchy horizon
of a distorted, static, and axisymmetric Reissner-Nordström
black hole by studying the curvature of its outer horizon.
Such an analysis was possible due to a certain duality
transformation between the black hole’s horizons. The
relations derived in this paper can help to analyze the
curvature of the Cauchy horizon of a distorted, stationary,
and axisymmetric Kerr-Newman black hole solution con-
structed in [33].
Our paper is organized as follows: In Sec. II we construct

the metric of a stationary and axisymmetric space-time in
ð1þ 1þ 2Þ-split form that allows for the space-time
foliation suitable for studying the Killing horizon surface.
In Sec. III we derive relations between the space-time
Riemann tensor components and the components of the
Riemann tensor corresponding to the horizon surface.
Section IV contains the Einstein equations of a stationary
and axisymmetric space-time with an electromagnetic field
(without a source) and a cosmological constant and
expressions of the space-time curvature invariants in the
form corresponding to the ð1þ 1þ 2Þ-split of the metric.
In Sec. V we define the Killing horizon and, using the
results of the previous sections, calculate the space-time
curvature invariants on the horizon surface. Section VI
contains discussion of the derived results and presents them
in terms of the gravitoelectric and gravitomagnetic fields
as well as an illustrating example.

In this paper we use the following convention of units:
G ¼ c ¼ 1. The space-time signature is þ2, and the sign
conventions are those adopted in [34].

II. SPACE-TIME SPLIT

In this section, we construct metric of a four-dimensional
stationary and axisymmetric space-time and present it in
ð1þ 1þ 2Þ-split form. We consider a foyr-dimensional
Lorentzian manifold ðM; gαβÞ, where gαβ satisfies the
Einstein equations, which has a two-parameter Abelian
group of isometries fφt;φϕg. Orbits of φt are timelike at
asymptotic infinity and orbits of φϕ are spacelike and
closed. The generators of the group are the commuting
Killing vector fields ξðtÞ and ξðϕÞ, which are not orthogonal.
We choose the space-time coordinates such that ξαðtÞ ¼ δαt ,

where t is time coordinate and ξαðϕÞ ¼ δαϕ, where ϕ is a

spatial coordinate, which in the axisymmetric case is
an azimuthal angular coordinate. A space-time is called
stationary (pseudostationary, in the case when the Killing
vector field ξðtÞ is not timelike everywhere), but not static,
if the timelike Killing vector ξαðtÞ is not hypersurface

orthogonal, i.e., the condition

ξ½αðtÞ∇βξγ�ðtÞ ¼ 0 ð2Þ

does not hold. Otherwise, it is called static, which is a
special case of being stationary. Here and in what follows,
the symbol ∇ stands for a covariant derivative defined with
respect to the metric gαβ.
Let us now consider a hypersurface Σt defined

by t ¼ const. We define a unit vector field n,
n · n ¼ ϵ ¼ �1.2 The vector field is defined to be stationary,
i.e. £ξðtÞn ¼ 0 and hypersurface Σt orthogonal, i.e. nα ∝ δtα.
Let Σt be spanned by the vectors eαðaÞ ¼ δαa; nαeαðaÞ ¼ 0,

where small Latin letters ða; b; c;…Þ stand for coordinates
on Σt, and let γab be the induced metric on the hypersurface.
Then, we can present the space-time metric as

gαβ ¼ ϵnαnβ þ γabeαðaÞe
β
ðbÞ: ð3Þ

We shall assume that the conditions for Frobenius’s theorem
hold for the space-time of interest. Namely, using Wald’s
formulation of Frobenius’s theorem [35], we say that for
the given space-time (or in a simply connected open
subdomain D) the following conditions hold:
C1: ξ½αðtÞξ

β
ðϕÞ∇γξδ�ðtÞ and ξ½αðtÞξ

β
ðϕÞ∇γξδ�ðϕÞ vanish at least one

point of the space-time;

C2: ξ½αðtÞξ
β
ðϕÞR

γ�
δξ

δ
ðtÞ ¼ ξ½αðtÞξ

β
ðϕÞR

γ�
δξ

δ
ðϕÞ ¼ 0.

1In this paper we use the symbol ≗ to define a relation between
quantities calculated on a Killing horizon.

2Here, for generality, we consider both the cases when ϵ ¼ −1,
corresponding to a space-time hypersurface where n is timelike,
and when ϵ ¼ þ1, corresponding to a space-time hypersurface
where n is spacelike.
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These conditions imply that the two-parametric Abelian
group of isometries fφt;φϕg is orthogonally transitive, and
thus invertible in D [1]. In other words, two-dimensional
surfaces of transitivity of the isometry group which are
spanned by the Killing vectors ξðtÞ and ξðϕÞ are orthogonal to
the family of surfaces of conjugate dimension. As a result,
one can present the space-time metric as a direct sum of
the metrics on the two-dimensional orthogonal surfaces
[see Eqs. (10)–(12) below].
One of the cases to satisfy the conditions is to consider

a vacuum space-time region, which contains a nonempty
subset of fixed points of the group. Another, less trivial,
example is the case of electromagnetic space-times, which
we consider here. It was showed by Carter [1,2] that the
conditions hold for a stationary and axisymmetric electro-
magnetic field. Because the metric tensor is invertible,
an addition of a cosmological constant to the Einstein
equations does not violate the conditions.
We choose eαðϕÞ ¼ ξαðϕÞ. Then the Killing vector ξαðtÞ lies

in a two-dimensional subspace spanned by fn; ξðϕÞg. We
define

ξðtÞ · n ¼ k; ξðϕÞ · ξðϕÞ ¼ γϕϕ; ξðtÞ · ξðϕÞ ¼ ωγϕϕ;

ð4Þ
where k and ω are some scalar functions. Then,

ξðtÞ ¼ knþ ωξðϕÞ: ð5Þ

In the coordinate basis ðt; xaÞ,

nα ¼ k−1ðδαt − ωaδαaÞ; ωa ¼ ωδaϕ; nα ¼ ϵkδtα;

ð6Þ
and the metric (3) takes the following form:

gαβ ¼
�

ϵ=k2 −ϵωb=k2

−ϵωa=k2 γab þ ϵωaωb=k2

�
: ð7Þ

The covariant form of the space-time metric gαβ is

gαβ ¼
�
ϵk2 þ ωcωc ωa

ωb γab

�
: ð8Þ

Here γacγcb ¼ δba and Latin indices of the objects living in
Σt are lowered and raised by γab and γab, respectively,
e.g., ωa ¼ γabω

b.
To further specify our metric, we assume that ∇αk∇αk

vanishes nowhere in the domain of interest. Thus, one can
take k as one of the space-time coordinates and define
eαðkÞ ¼ δαk . We denote by x the remaining spatial coordinate,

such that eαðxÞ ¼ δαx . Let us consider a two-dimensional

spacelike surface Σt;k defined by t; k ¼ const. and spanned

by feαðxÞ; eαðϕÞg with the metric hAB (xA ¼ ðx;ϕÞ) on it,

which can always be brought to diagonal form. The
spacelike vector ∇αk ¼ δkα is orthogonal to such a surface
and we define

∇αk∇αk ¼ δα
kgαβδβk ¼ gkk ¼ −ϵκ2; ð9Þ

so that for different signs of ϵ the metric signature is
preserved.
As a result, the metric (8) can be written in the following

form:

ds2 ¼ ðϵk2 þ ωcωcÞdt2 þ 2ωadtdxa þ γabdxadxb; ð10Þ

γabdxadxb ¼ −ϵκ−2dk2 þ hABdxAdxB; ð11Þ

hABdxAdxB ¼ hxxdx2 þ hϕϕdϕ2: ð12Þ

The expressions (10)–(12) define a ð1þ 1þ 2Þ split of the
space-time. We shall use capital Latin letters ðA;B;C;…Þ
for the horizon surface coordinates.

III. REDUCTION OF THE CURVATURE TENSOR

In this section we define relations between the Riemann
curvature tensor of the four-dimensional space-time and
geometrical quantities of a two-dimensional surface Σt;k.
This procedure we shall accomplish in two steps. In the first
step, we consider relations between the four-dimensional
Riemann curvature tensor and the intrinsic and extrinsic
geometry of a hypersurface Σt. Such relations can be found
by introducing the projection tensor

Pαβ ¼ gαβ − ϵnαnβ; ð13Þ

and using the definition of the Riemann tensor (for details
see, e.g., [34,36,37]). The relations are the following:

Rα
aβbnαnβ ¼ S̄acS̄c

b−k−1ðϵkjab− ½£ωS̄�abþ S̄ab;tÞ; ð14Þ

Rα
abcnα ¼ S̄abjc − S̄acjb; ð15Þ

Rabcd ¼ R̄abcd − ϵðS̄acS̄bd − S̄adS̄bcÞ; ð16Þ

where S̄ab is the extrinsic curvature of a hypersurface Σt
defined as

S̄αβ ¼ S̄βα ≡ Pμ
αPν

β∇μnν; ð17Þ

S̄ab ¼ −k−1ωðajbÞ þ
1

2
k−1γab;t; ð18Þ

(although the last term vanishes, we shall keep it for the
second step), £ωS̄ is the Lie derivative of S̄ab in the
direction of the vector field ω,
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½£ωS̄�ab ¼ S̄ab;cω
c þ S̄cbω

c
;a þ S̄acω

c
;b; ð19Þ

and R̄abcd is the Riemann tensor corresponding to the
metric γab. Here and in what follows, the barred geometric
quantities correspond to hypersurfaces Σt, and the stroke j
stands for the covariant derivative defined with respect to
the metric γab.
Using the relations (14)–(16), we derive the following

components of the Riemann tensor:

Rta
bc ¼ k−1Ha

bc; ð20Þ

Rab
cd ¼ R̄ab

cd −Qab
cd − 2k−1ω½aHb�

cd; ð21Þ

Rta
tb ¼ k−1ωcHa

cb −Qac
bc − k−1ðkjajb − La

bÞ; ð22Þ

Rbc
ta ¼ ωdðR̄bc

da −Qbc
daÞ þ 2ω½bQc�d

ad þ ϵkHa
bc

− 2k−1ðωdω½bHc�
da − ω½bkjc�ja þ ω½bLc�

a Þ; ð23Þ

where

Ha
bc ¼ 2ϵS̄a½bjc�; Qab

cd ¼ 2εS̄a½cS̄
b
d�; La

b ¼ ϵ½£ωS̄�ab:
ð24Þ

In the second step, we write the components of the three-
dimensional Riemann tensor R̄abcd in terms of geometric
quantities corresponding to a two-dimensional surface Σt;k.
Applying the replacements corresponding to gαβ → γab,

ϵ→−ϵ; t→k; k→ κ−1; ωa→0; γab→hAB;

Rαβ
γδ→ R̄ab

cd; R̄ab
cd→RAB

CD; S̄ab→SAB; ð25Þ

to the relations (20)–(23) we derive

R̄AB
CD ¼ RAB

CD þ ϵðSA
CSB

D − SA
DSB

CÞ; ð26Þ

R̄kA
BC ¼ −ϵκðSA

B;C − SA
C;BÞ; ð27Þ

R̄BC
kA ¼ κ−1ðSB ;C

A − SC ;B
A Þ; ð28Þ

R̄kA
kB ¼ ϵκhACSCB;k − ϵSA

CSC
B − κðκ−1Þ;A;B; ð29Þ

where RABCD is the Riemann tensor of a two-dimensional
surface Σt;k,

RAB
CD ¼ 1

2
ðδACδBD − δADδ

B
CÞR; ð30Þ

RAB
CDRCD

AB ¼ R2; RA
B ¼ 1

2
δABR; ð31Þ

where R is its Ricci scalar and SAB is its extrinsic
curvature,

SAB ¼ 1

2
κhAB;k: ð32Þ

Here and in what follows, the semicolon stands for
the covariant derivative defined with respect to the two-
dimensional metric hAB.
To express the other four-dimensional quantities that enter

the expressions (20)–(23) in terms of two-dimensional ones,
we shall use the Christoffel symbols corresponding to the
metric γab,

Γ̄k
kk¼−κ−1κ;k; Γ̄k

kA¼−κ−1κ;A; Γ̄k
AB¼ ϵκSAB;

Γ̄A
kk¼−ϵκ−3κ;A; Γ̄A

kB¼ κ−1SA
B; Γ̄A

BC¼πABC; ð33Þ

where πABC’s are theChristoffel symbols associatedwith the
metric hAB,

πxxx ¼
1

2
hxx;x; πxϕϕ ¼ −

1

2
hϕϕ;x; πϕxϕ ¼ 1

2
hϕϕ;x:

ð34Þ

Then, for the metric (8) we derive

kjkjk¼−ϵκκ;k; kjkjA¼−ϵκκ;A; kjAjk¼ κ−1κ;A; ð35Þ

kjAjB¼−ϵκSA
B; kjaja¼−ϵκðκ;kþSÞ; S¼SA

A: ð36Þ

The nonzero extrinsic curvature components read

S̄kA ¼ −
1

2
k−1hϕϕω;kδ

ϕ
A; S̄AB ¼ −k−1hϕϕδ

ϕ
ðAω;BÞ: ð37Þ

Note that because ϕ is a Killing coordinate, S̄a
a ¼ 0.

The expressions above allow us to present the four-
dimensional components of the Riemann and Ricci tensors
in terms of the two-dimensional ones, associated with the
metric hAB and the four-dimensional metric functions.

IV. THE EINSTEIN EQUATIONS AND
CURVATURE INVARIANTS

In this section we construct the Einstein equations
corresponding to stationary space-time, Eqs. (10)–(12),
with an electromagnetic field and a cosmological constant,
and derive expressions for scalar curvature invariants. The
Einstein equations read

Rα
β ¼ Λδαβ þ 8π

�
Tα

β −
1

2
Tδαβ

�
; T ¼ Tα

α: ð38Þ

A. The electromagnetic field

Here we shall consider an electromagnetic field without
sources in a simply connected space-time domain D. The
electromagnetic stress-energy tensor is
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Tα
β ¼

1

4π

�
FαγFβγ −

1

4
δαβF2

�
; F2 ¼ FαβFαβ; ð39Þ

and T ¼ 0. The electromagnetic field tensor Fαβ can be
derived from a 4-vector potential A which will be assumed
to satisfy the group invariance conditions

£ξðtÞA ¼ 0; £ξðϕÞA ¼ 0; ð40Þ

and the electromagnetic potential circularity condition [2],

A½αξðtÞβξðϕÞγ� ¼ 0: ð41Þ

As a result, it depends only on the k and x coordinates and
can be presented in the form

Aα ¼ −Φδtα þAδϕα; ð42Þ

where Φ ¼ Φðk; xÞ and A ¼ Aðk; xÞ. The corresponding
electromagnetic field tensor Fαβ ¼ Aβ;α − Aα;β has the
following components:

Fta ¼ −Fat ¼ Φ;a; Fab ¼ 2A½;aδb�ϕ;

Fta ¼ −Fat ¼ ϵk−2ðΦ;a þ ωA;aÞ;
Fab ¼ 2ðhϕϕA½;a þ ωFt½aÞδb�ϕ: ð43Þ

The Maxwell equations for a source-free electromagnetic
field read

∇βFαβ ¼ 1ffiffiffiffiffiffi−gp ð ffiffiffiffiffiffi
−g

p
FαβÞ;β ¼ 0; ð44Þ

where g ¼ detðgαβÞ ¼ −k2κ−2h and h ¼ detðhABÞ. Using
the expressions (43) the Maxwell equations can be written
in the form

½k−1κ−1
ffiffiffi
h

p
ðΦ;a þ ωA;aÞ�;a ¼ 0;

k−1κ−1
ffiffiffi
h

p
ω;aðΦ;a þ ωA;aÞ þ ϵ½kκ−1

ffiffiffi
h

p
hϕϕA;a�;a ¼ 0:

ð45Þ

The electromagnetic field invariant and energy density are
the following:

F2 ¼ 2A;aA;ahϕϕ þ 2ϵk−2ðΦ;a þ ωA;aÞðΦ;a þ ωA;aÞ;
E ¼ ϵ

16π
ðF2 − 4A;aA;ahϕϕÞ: ð46Þ

B. The Einstein equations

The Ricci tensor components and the Ricci scalar read

Rt
t ¼ Rta

ta; Rt
a ¼ Rtb

ab; Ra
t ¼ Rab

tb;

Ra
b ¼ Rta

tb þ Rac
bc; R ¼ 2Rta

ta þ Rab
ab: ð47Þ

With the aid of the expressions (20)–(23) and (47), the
Einstein equations (38) can be written as follows:

k−1Hb
ab ¼ 8πTt

a; Wab
ab ¼ 2Λþ 2 ~Ta

a; ð48Þ

Va
b −Qac

bc − k−1ðkjajb − La
bÞ ¼ 0; ð49Þ

where

Wab
cd ¼ R̄ab

cd −Qab
cd; ~Ta

b ¼ 8πðTa
b þ ωaTt

bÞ;
Va

b ¼ Wac
bc − ~Ta

b − Λδab: ð50Þ

C. The scalar curvature invariants

As we mentioned in the introduction, in this paper we
consider the Kretschmann, Chern-Pontryagin, and Euler
curvature invariants defined as follows:

K1 ¼RαβγδRαβγδ ¼ CαβγδCαβγδþ2RαβRαβ−
1

3
R2;

K2 ¼�RαβγδRαβγδ ¼�CαβγδCαβγδ;

K3 ¼�R�
αβγδR

αβγδ ¼−CαβγδCαβγδþ2RαβRαβ−
2

3
R2; ð51Þ

respectively. Here Cαβγδ is the Weyl tensor, and the star
symbol stands for the left and right Hodge dual quantities,
e.g.,

�Rαβγδ ¼
1

2
εαβμνRμν

γδ; R�
αβγδ ¼

1

2
εγδμνRαβ

μν: ð52Þ

Here

εαβγδ ¼
ffiffiffiffiffiffi
−g

p
ε̄αβγδ; εαβγδ ¼ ε̄αβγδffiffiffiffiffiffi−gp ;

ε̄tkxϕ ¼ þ1; ε̄tkxϕ ¼ −1 ð53Þ

is a four-dimensional Levi-Civita pseudotensor.
Using the expressions of this section and the

Riemann tensor components (20)–(23) we can write the
Kretschmann and Chern-Pontryagin invariants in the form

K1 ¼ Rab
cdRcd

ab þ 4Rta
bcRbc

ta þ 4Rta
tbRtb

ta

¼ Wab
cdW

cd
ab þ 4Va

bVb
a þ 4ϵHa

bcHbc
a; ð54Þ

K2 ¼ �Rab
cdRcd

ab þ 2ð�Rta
bcRbc

ta þ �Rbc
taRta

bcÞ
þ 4�Rta

tbRtb
ta

¼ 2ϵa
bcðHa

deWde
bc − 2Hd

bcVa
dÞ: ð55Þ

Here
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ϵabc ¼
ffiffiffiffiffi
jγj

p
ϵ̄abc; ϵabc ¼ ϵ̄abcffiffiffiffiffijγjp ;

γ ¼ detðγabÞ ¼ −ϵκ−2h;

ϵ̄kxϕ ¼ þ1; ϵ̄kxϕ ¼ −ϵ ð56Þ

is a three-dimensional Levi-Civita pseudotensor. Note
that according to the definition of Ha

bc [see (24)], we
have ϵabcHabc ¼ 0.
The Euler curvature invariant can be derived from the

Kretschmann invariant, the square of the Ricci tensor
RαβRαβ, and the Ricci scalar R,

Rα
βRβ

α ¼ 4Λ2 þ 64π2Tα
βTβ

α; ð57Þ

R ¼ Rα
α ¼ 4Λ; ð58Þ

through the following expression:

K3 ¼ 4RαβRαβ − R2 −K1: ð59Þ

V. GEOMETRIC PROPERTIES OF THE
KILLING HORIZON

A. Killing horizon

Let us consider the Killing vector field

χ ¼ ξðtÞ þ ΩξðϕÞ; ð60Þ

where Ω ¼ const. We have

χ · χ ¼ ϵk2 þ ðω2 þ 2ωΩþ Ω2Þγϕϕ; ð61Þ

and the condition

ω ≗ −Ω; ð62Þ

implies that k ¼ 0 is a Killing horizon, i.e., χ · χ ≗ 0.
According to this condition, χ is hypersurface orthogonal
on k ¼ 0, i.e., χ½α∇βχγ� ≗ 0. A meaning of the condition
(62) can be seen from the definition of the angular velocity
of a horizon,

ΩH ≗ −
gtϕ
gϕϕ

¼ Ω; ð63Þ

which implies that the Killing horizon rotates as though it
were a solid body; i.e., the condition (62) implies rigidity of
the Killing horizon.
The metric function κ calculated on the Killing horizon

coincides with its surface gravity,

κ2 ≗
ϵ

2
lim
k→0

ð∇αχβÞð∇αχβÞ: ð64Þ

If κ vanishes on the Killing horizon, it is called degenerate
(or extremal), otherwise, it is called nondegenerate
(or nonextremal). In the following calculations we shall
assume that κ ≠ 0.
The Killing horizon is a totally geodesic hypersurface

[5], which implies its extrinsic curvature vanishes [38].
To calculate the extrinsic curvature of a hypersurface Σk
(k ¼ const.) we define a unit vector Nα orthogonal to it,

Nα¼−ϵκ−1δαk; Nα ¼ κδαk; NαNα ¼−ϵ; ð65Þ

and the corresponding projection tensor,

Παβ ¼ gαβ þ ϵNαNβ: ð66Þ

The extrinsic curvature of a hypersurface Σk is defined as

~Sαβ ¼ ~Sβα ≡ Πμ
αΠν

β∇μNν; ð67Þ

and its nonzero components read

~Stt ¼ ϵκkþ κωhϕϕω;k þ
1

2
κω2hϕϕ;k;

~StA ¼ 1

2
κðhϕϕωÞ;kδϕA; ~SAB ¼ SAB ¼ 1

2
κhAB;k: ð68Þ

Thus, for a nondegenerate Killing horizon we have

ω;k ≗ 0 hAB;k ≗ 0: ð69Þ

Geometric and field invariants are finite on a regular Killing
horizon. In particular, the invariants Qab

ab and F2 are finite
on k ¼ 0. Thus, according to the expressions (37) [see (62)
as well] and the Maxwell equations (45), we have

ω;A ≗ 0; Φ;k ≗ 0; A;k ≗ 0; Φ;A þ ωA;A ≗ 0:

ð70Þ

We consider the metric and the field functions φðk; xÞ ¼
fω; κ; hAB;Φþ ωAg on and at the vicinity of the Killing
horizon of class Cr, r ≥ 2 in our coordinates. Then
according to the Schwarz’s (Clairaut’s) theorem,

lim
k→0

k−1φ;A ¼ φ;Akð0; xAÞ ¼ φ;kAð0; xAÞ

¼ lim
ΔxA→0

φ;kð0; xA þ ΔxAÞ − φ;kð0; xAÞ
ΔxA

¼ 0;

ð71Þ

where the last equality follows from (69) and (70). Using
these conditions and taking the limit k → 0 in the expres-
sion (37) one can show that

S̄AB ≗ 0; ð72Þ
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and S̄kA is finite on the horizon. As a result, the Lie
derivative of S̄ab (19) vanishes on the horizon. Then, using
the Einstein equations (48)–(49) one can see that kjajb
vanishes on the horizon and the expressions (35)–(36) give

κ;k ≗ 0; κ;A ≗ 0: ð73Þ

Thus, the quantities ω, κ, and Φþ ωA are constant on the
Killing horizon. This result is well known. It can be derived
by using geometric properties of Killing horizons derived
in [5] and [6] (see [7]). The derivation presented here
includes the k-derivatives of the functions which are used in
the derivation of our main results.

B. Curvature invariants on the Killing Horizon

In this subsection we derive the relations between the
space-time curvature invariants calculated on the Killing
horizon. Using the results of the previous subsection and
the expressions (26)–(31) we derive

WkA
kB ≗ MA

B þMδAϕδ
ϕ
B −

1

4
δABðRþ F2 − 2ΛÞ;

WkA
BC ≗ 0; WBC

kA ≗ 0;

WAB
CD ≗

R
2
ðδACδBD − δADδ

B
CÞ;

~Tk
k ≗

1

2
F2 − 2M; ~Tk

A ≗ 0;

~TA
k ≗ 0; ~TA

B ≗ 2MA
B þ 2MδAϕδ

ϕ
B −

1

2
F2δAB; ð74Þ

where

MA
B ¼ hϕϕA;AA;B; M ¼ MA

A: ð75Þ

Using this result we derive the following expressions of the
curvature invariants on the Killing horizon:

K1 ≗ 3

�
Rþ ϵ ~E−

2

3
Λ

�
2

þ4ϵHabcHabcþ2 ~E2þ8

3
Λ2;

K2 ≗ 6ϵaABHaAB

�
Rþ ϵ ~E−

2

3
Λ

�
;

K3 ≗−3
�
Rþ ϵ ~E−

2

3
Λ
�

2

−4ϵHabcHabcþ2~E2−
8

3
Λ2;

RαβRαβ ≗ ~E2þ4Λ2; R¼ 4Λ; ~E¼ 16πE: ð76Þ

The factor ϵ ¼ �1, which enters the expressions, suggests a
discontinuity in the space-time curvature invariants in the
case when the Killing horizon separates the space-time into
the regions where the vector n is timelike and spacelike.
However, such a discontinuity is not present, for there
is another such factor “hidden” in the stationary term
HabcHabc, so that effectively one has ϵ2 ¼ 1.

The expressions (76) are the main result of our
paper. The expressions in the preceding subsection were
derived for a nondegenerate Killing horizon. However,
assuming that the space-time admits the limit of κ → 0,
which can be accomplished by the corresponding limit of
the space-time parameters, the final result (76) remains
valid for a degenerate Killing horizon as well. The
derived expressions generalize the curvature invariants
constructed in [18] for a static Killing horizon to the
stationary one.3

VI. DISCUSSION

Let us summarize our results. We studied the geometric
properties of stationary and axisymetric Killing horizons.
Such horizons have zero extrinsic curvature, constant
surface gravity, angular velocity, and electromagnetic
field (the combination Φþ ωA) and the derivatives of
these quantities (except for the extrinsic curvature) in
the direction orthogonal to the horizon surface vanish.
We derived the relations between the Kretschmann, Chern-
Pontryagin, and Euler space-time curvature invariants, as
well as the square of the Ricci tensor and the Ricci scalar,
calculated on a Killing horizon in terms of the geometric
quantities corresponding to the horizon’s surface. These
relations are generalizations of the analogous known
relations for horizons of static four-dimensional electro-
vacuum space-times [see (1)].
There is a direct analogy between the electromagnetic

field tensor Fαβ and the Weyl tensor Cαβγδ. Namely, there
are the gravitoelectric and gravitomagnetic parts of the
Weyl tensor (see, e.g., [37,39–41]) which we define as
follows:

Eαβ ¼ Cαγβδuγuδ; Bαβ ¼ �Cαγβδuγuδ; ð77Þ
where uα ¼ −ϵnα [cf. (6)] is the zero-angular-momentum
observer’s (ZAMO’s) 4-velocity (see, e.g., [39,40]).
Because these fields are orthogonal to n, they live on a
hypersurface Σt and are effectively three-dimensional
tensor fields. According to the symmetries of the Weyl
tensor, they are symmetric and traceless. As a result, the
Weyl invariants CαβγδCαβγδ and �CαβγδCαβγδ are analogous to
the electromagnetic field invariants, FαβFαβ ¼ 2ðB2 − E2Þ
and �FαβFαβ ¼ 4E · B, where E and B are electric and
magnetic fields, respectively.
One can evaluate the gravitoelectric field component

which is orthogonal to the horizon surface,

Ek
k ≗

ϵ

2

�
Rþ ϵ ~E −

2

3
Λ

�
: ð78Þ

3In order to compare the expressions, the electromagnetic field
invariant given in the paper [18] has to be rescaled as follows:
F2 → 4F2.
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This expression is a generalization of Hartle’s curvature
formula, which was derived by using the Newman-Penrose
formalism (see, e.g., [40,42]). It is interesting to note that
there is an additional additive contribution (not only
through the space-time metric) to the scalar curvature of
the horizon surface from the electromagnetic field energy
density and the Λ term. We can express the Weyl invariants
in terms of Eab and Bab as follows:

CαβγδCαβγδ ¼ 8ðEabEab −BabBabÞ; ð79Þ
�CαβγδCαβγδ ¼ 16EabBab: ð80Þ

A comparison with the expressions (76) implies

EabEab ≗
3

8

�
Rþ ϵ ~E −

2

3
Λ

�
2

; ð81Þ

BabBab ≗ −
ϵ

2
HabcHabc; ð82Þ

EabBab ≗
3

8
ϵaABHaAB

�
Rþ ϵ ~E −

2

3
Λ

�
: ð83Þ

The gravitomagnetic part (82), which is analogous to the
electromagnetic expression B2 ¼ ð∇ × AÞ2, is due to the
extrinsic curvature S̄ab of a hypersurface Σt, which, in turn,
is analogous to the vector potential A. The curvature occurs
due to the twist metric function ω. Such a twist gives an
additional contribution to the space-time curvature on the
Killing horizon. Thus, the expressions (83) allow to present
the curvature invariants (76) in terms of the gravitoelectric
and gravitomagnetic fields calculated by ZAMO at the
horizon. Note that as in the case of the electromagnetic field
invariants, the Weyl invariants CαβγδCαβγδ and �CαβγδCαβγδ

are observer independent.
The Killing horizon considered here is a rigid rotating

ZAMO surface, which belongs to a family of ZAMO
surfaces of the given space-time. For the Kerr space-time
such a family, which includes both the event and the
Cauchy horizons of a Kerr black hole, was constructed and
analyzed in [43].

A. Example: Kerr black hole

To illustrate the derived results let us consider the
Kerr black hole space-time. The Kerr metric given in the
Boyer-Lindquist coordinates (see, e.g., [7]) reads

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Marsin2θ
Σ

dtdϕ

þ Σ
Δ
dr2 þ Σdθ2

þ
�
r2 þ a2 þ 2Ma2rsin2θ

Σ

�
sin2θdϕ2;

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð84Þ

The constants M and a represent the mass and the angular
momentum per unit mass, a ¼ J=M, of the black hole, as
measured at the asymptotically flat infinity. It is convenient
to introduce the coordinate transformations

r¼m

�
xþ1þα2

1−α2

�
; cosθ¼ y; jαj∈ ð0;1Þ; ð85Þ

where the parameters m and α are related to M and a as
follows:

M ¼ m

�
1þ α2

1 − α2

�
; a ¼ 2mα

1 − α2
: ð86Þ

The black hole horizons are defined by x� ¼ �1, where
‘þ’ stands for the event horizon and ‘−’ stands for the
Cauchy horizon of the black hole.
Matching theKerr black holemetric fgtt;gtϕ;gxx;gyy;gϕϕg

with the metric (10)–(12) gives

k ¼
ffiffiffiffiffi
ϵ

gtt

r
; ω ¼ gtϕ

gϕϕ
;

γab ¼ fgxx; gyy; gϕϕg; hAB ¼ fgyy; gϕϕg: ð87Þ
Using the definitions of R, Habc, and ϵabc, and taking
ϵ ¼ −1, we derive

R� ¼ ð1þ α�2Þð1 − α�2Þ2ð1 − 3α�2y2Þ
2m2ð1þ α�2y2Þ3 ; ð88Þ

½ϵaABHaAB�� ¼ α�1yð3 − α�2y2Þ
ð1 − 3α�2y2Þ R�; ð89Þ

½HabcHabc�� ¼ 3

4
ð½ϵaABHaAB��Þ2: ð90Þ

These expressions allow us to calculate the curvature invar-
iants (76). The geometric properties of the horizons presented
here can be used for calculation of a space-time curvature at a
Killing horizon of four-dimensional, stationary, and axisym-
metric electromagnetic space-times with a cosmological
constant. Such space-times include a variety of black hole
horizons which are perturbed by stationary and axisymmetric
distribution of matter and fields around a black hole. The
derived expressions for the curvature invariants (76) allowus to
analyze the perturbation on the black hole horizon. Moreover,
one can study the perturbation in terms of the gravitoelectric
and gravitomagnetic fields calculated on the horizon.
As it was already mentioned in the introduction, one can

use the constructed expressions of the curvature invariants
to analyze the curvature of the outer and inner horizons
of distorted Kerr and Kerr-Newman black holes. These
expressions can be calculated with much less computa-
tional cost than what is required for calculations of the
curvature invariants of the corresponding space-times and
finding their values on the horizons. Moreover, as it will be
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shown in a forthcoming paper, by using the duality
relations between the outer and inner horizon these
expressions allow us to analyze the curvature of the inner
horizon of a distorted rotating black hole by studying
curvature invariants of its outer horizon. Finally, the results
of this paper may be important for applications to holo-
graphic models and for more general understanding of
properties of space-time horizons as well.
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