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We study some geometric properties of Killing horizons in four-dimensional stationary and axisym-
metric space-times with an electromagnetic field and a cosmological constant. Using a (14 1+ 2)
space-time split, we construct relations between the space-time Riemann tensor components and the
components of the Riemann tensor corresponding to the horizon surface. The Einstein equations allow to
derive the space-time scalar curvature invariants—Kretschmann, Chern-Pontryagin, and Euler—on the
two-dimensional spacelike horizon surface. The derived relations generalize the relations known for Killing
horizons of static and axisymmetric four-dimensional space-times. We also present the generalization of

Hartle’s curvature formula.
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I. INTRODUCTION

Killing horizons play a significant role in the analysis of
pseudo-Riemannian manifolds and are important character-
istics of such manifolds. They help to define the global
structure of space-time, such as black hole event horizons,
Cauchy horizons, cosmological event horizons, and local
isometry horizons (for details see [1-4] and references
therein). A Killing horizon is a null hypersurface in a
pseudo-Riemannian manifold which is invariant with
respect to a one-parameter group of isometries of the
manifold, and its null geodesic generator is an orbit of
the group [1]. In a four-dimensional space-time, a two-
dimensional spacelike Killing horizon surface is a margin-
ally locally trapped surface whose future-directed null
normals are not expanding. The generator of a Killing
horizon, which is a null Killing vector field, has many
interesting geometric properties explored in the works of
Carter [1], Boyer [5], and Wald [6]. The reader can find the
comprehensive presentation of many such properties in the
meaty book Ref. [7].

Due to special features of a Killing horizon, the
corresponding space-time structure takes a special form
on and in the vicinity of it. In particular, the space-time
geometry and the Einstein equations get simplified due
to an enhancement of the space-time symmetries in space-
times with the so-called extremal Killing horizon. The
well-known example is that of the extreme Kerr black hole
solution where the near-horizon geometry (the extreme
Kerr throat) has enhanced symmetry, and, as a result, the
Killing tensor becomes reducible (see, e.g., [8]). There are
many examples of symmetry enhancement of the near-
horizon geometry of extreme (as well as supersymmetric)
horizons in four- and higher-dimensional space-times
(see, e.g., [9—12] and references therein). There are other
examples illustrating the special nature of a Killing horizon.
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It was demonstrated that space-times of local four-
dimensional vacuum black holes represented by static
and axisymmetric Weyl solutions of the vacuum Einstein
equations are of Petrov type I (algebraically general), but
they become of Petrov type D on the horizon due to the
“appearance” of two repeated principal null directions [13].
The same situation takes place for the horizon of a local
four-dimensional static and axisymmetric black hole [14]
and for the inner and outer horizons of a local four-
dimensional static and axisymmetric electrically charged
black hole [15]. It was shown that space-time scalar
curvature invariants get greatly simplified when calculated
on a Killing horizon (see, e.g., [14—18]).

In this paper we shall study geometric properties of
Killing horizons in four-dimensional stationary and axi-
symmetric space-times with an electromagnetic field and a
cosmological constant. We shall not be interested in the
global space-time structure and shall study Killing horizons
quasilocally. In this sense, the Killing horizon is a particular
class of the so-called isolated horizons, which were defined
and later extensively studied in, e.g., [19-25]. We shall
focus on space-time curvature invariants calculated on a
Killing horizon. There are 14 algebraically independent
scalar invariants constructed from the Riemann curvature
tensor [26]. Note that a space-time metric of a four-
dimensional Lorentzian manifold can be completely
characterized by scalar polynomial curvature invariants
constructed from the Riemann tensor and its covariant
derivatives, except for the case when its metric is of
degenerate Kundt form [27]. Here, we will calculate the
second-order space-time scalar curvature invariants—the
Kretschmann, Chern-Pontryagin, and Euler invariants
(see, e.g., [28])—on a stationary Killing horizon. Killing
horizons considered in this paper are regular in the sense
that these invariants are finite. The results derived here are
an extension of the previous works [14-18] where the
Kretschmann invariant was calculated on static Killing
horizons. The Kretschmann scalar of a Killing horizon in a
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four-dimensional electrovacuum (without a magnetic field)
static space-time was derived in [15],

K =3(R+ F?)? +2F4, (1)

where R is the Ricci scalar of the horizon two-dimensional
spacelike surface and F? = F,;F* is the electromagnetic
field invariant." Another work [18] contains a study of
Killing horizons within the d-dimensional Einstein-
Maxwell-dilaton model with a cosmological constant.

Beside an analysis of geometric properties of a Killing
horizons, the sought relations have many applications.
For instance, the expression of the Kretschmann scalar
was used in [29,30] to prove the uniqueness theorems
for the Schwarzschild and Reissener-Nordstrom black hole
solutions. An investigation of properties of scalars and
tensor invariants constructed from the Weyl tensor, the
Killing vector, and their derivatives near a Killing horizon
is necessary to calculate the vacuum energy density near
a static four-dimensional black hole using the approxima-
tions of Page [31] and Brown [32] (see, e.g., [16]).
Expressions involving second-order space-time scalar cur-
vature invariants are useful for calculation of the vacuum
and thermal stress-energy tensors in static space-times in
the Killing approximation [17]. The relation (1) was used in
[15] to analyze the curvature of the (inner) Cauchy horizon
of a distorted, static, and axisymmetric Reissner-Nordstrom
black hole by studying the curvature of its outer horizon.
Such an analysis was possible due to a certain duality
transformation between the black hole’s horizons. The
relations derived in this paper can help to analyze the
curvature of the Cauchy horizon of a distorted, stationary,
and axisymmetric Kerr-Newman black hole solution con-
structed in [33].

Our paper is organized as follows: In Sec. II we construct
the metric of a stationary and axisymmetric space-time in
(I +1+2)-split form that allows for the space-time
foliation suitable for studying the Killing horizon surface.
In Sec. III we derive relations between the space-time
Riemann tensor components and the components of the
Riemann tensor corresponding to the horizon surface.
Section IV contains the Einstein equations of a stationary
and axisymmetric space-time with an electromagnetic field
(without a source) and a cosmological constant and
expressions of the space-time curvature invariants in the
form corresponding to the (1 + 1 + 2)-split of the metric.
In Sec. V we define the Killing horizon and, using the
results of the previous sections, calculate the space-time
curvature invariants on the horizon surface. Section VI
contains discussion of the derived results and presents them
in terms of the gravitoelectric and gravitomagnetic fields
as well as an illustrating example.

'In this paper we use the symbol = to define a relation between
quantities calculated on a Killing horizon.

PHYSICAL REVIEW D 91, 024019 (2015)

In this paper we use the following convention of units:
G = ¢ = 1. The space-time signature is +2, and the sign
conventions are those adopted in [34].

II. SPACE-TIME SPLIT

In this section, we construct metric of a four-dimensional
stationary and axisymmetric space-time and present it in
(1414 2)-split form. We consider a foyr-dimensional
Lorentzian manifold (M, g,z), where g,; satisfies the
Einstein equations, which has a two-parameter Abelian
group of isometries {¢,,p,}. Orbits of ¢, are timelike at
asymptotic infinity and orbits of ¢, are spacelike and
closed. The generators of the group are the commuting
Killing vector fields &,y and &4, which are not orthogonal.
We choose the space-time coordinates such that 5?:) = o0f,
where ¢ is time coordinate and 5@) = 5;, where ¢ is a

spatial coordinate, which in the axisymmetric case is
an azimuthal angular coordinate. A space-time is called
stationary (pseudostationary, in the case when the Killing
vector field &) is not timelike everywhere), but not static,
if the timelike Killing vector 5(();) is not hypersurface

orthogonal, i.e., the condition
Ve =0 @)

does not hold. Otherwise, it is called static, which is a
special case of being stationary. Here and in what follows,
the symbol V stands for a covariant derivative defined with
respect to the metric g,z.

Let us now consider a hypersurface X%, defined
by t=-const We define a unit vector field n,
n-n = e = £1.> The vector field is defined to be stationary,
Le. £¢ n = 0 and hypersurface X, orthogonal, i.e. n, 6.
Let X, be spanned by the vectors e’(”a) =69, nae((’a) =0,
where small Latin letters (a, b, c, ...) stand for coordinates
on %;, and let y,;, be the induced metric on the hypersurface.
Then, we can present the space-time metric as

g = ennf 4 7“be’(’a)e{b). (3)
We shall assume that the conditions for Frobenius’s theorem
hold for the space-time of interest. Namely, using Wald’s
formulation of Frobenius’s theorem [35], we say that for
the given space-time (or in a simply connected open
subdoirllain D) tg]le follow[ing condi{%ions hold:
Cl.: 5(,>§{¢)VV5(,> and .}:O)g@)vq@) vanish at least one
point of the space-time;

4 s _ sa s
C2: &0 &0, R1580) = £ RNt = 0.

2Here, for generality, we consider both the cases when € = —1,
corresponding to a space-time hypersurface where n is timelike,
and when € = +1, corresponding to a space-time hypersurface
where n is spacelike.
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These conditions imply that the two-parametric Abelian
group of isometries {¢,, ,} is orthogonally transitive, and
thus invertible in D [1]. In other words, two-dimensional
surfaces of transitivity of the isometry group which are
spanned by the Killing vectors ;) and £, are orthogonal to
the family of surfaces of conjugate dimension. As a result,
one can present the space-time metric as a direct sum of
the metrics on the two-dimensional orthogonal surfaces
[see Egs. (10)—(12) below].

One of the cases to satisfy the conditions is to consider
a vacuum space-time region, which contains a nonempty
subset of fixed points of the group. Another, less trivial,
example is the case of electromagnetic space-times, which
we consider here. It was showed by Carter [1,2] that the
conditions hold for a stationary and axisymmetric electro-
magnetic field. Because the metric tensor is invertible,
an addition of a cosmological constant to the Einstein
equations does not violate the conditions.

We choose e@) = 5((145)- Then the Killing vector 5‘("’) lies

in a two-dimensional subspace spanned by {n, & }. We
define

S-n=k &4 Ep)=Ypp &) Ep) = Wy
(4)
where k and w are some scalar functions. Then,
E(,) =kn + w§(¢). (5)
In the coordinate basis (7, x%),
n® = k=1(8% — w*6%,), o’ = wéy, n, = €kd',,
(6)
and the metric (3) takes the following form:
2 b 12
s < e/k e’ [k ) 7)
_€wa/k2 7/ab + ew”a)b/k2
The covariant form of the space-time metric g is
k> + oo, o,
Yap = ( ) (8)
wp Yab

Here y,.7°* = 8% and Latin indices of the objects living in
¥, are lowered and raised by y,, and y“°, respectively,
e.g., w, = Yo"

To further specify our metric, we assume that V, kV%k
vanishes nowhere in the domain of interest. Thus, one can
take k as one of the space-time coordinates and define
e‘(’k> = 6. We denote by x the remaining spatial coordinate,
such that e‘(’x ) = 0%. Let us consider a two-dimensional

spacelike surface X, ; defined by ¢, k = const. and spanned
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by {ef,.e{;,} with the metric h,p (x* = (x,¢)) on it
which can always be brought to diagonal form. The

spacelike vector V, k = 8% is orthogonal to such a surface
and we define

V kVek = 5, ¢85k = * = —ex?, 9)

so that for different signs of € the metric signature is
preserved.

As a result, the metric (8) can be written in the following
form:

ds? = (ek? + 0° 0, )di + 20,dtdx + ypdxdx’, (10
Yapdx@dxb = —ex™2dk* + hypdx*dxB,  (11)
hapdx*dx® = hy dx® + hyydd?*. (12)

The expressions (10)—(12) define a (1 + 1 + 2) split of the
space-time. We shall use capital Latin letters (A, B, C, ...)
for the horizon surface coordinates.

III. REDUCTION OF THE CURVATURE TENSOR

In this section we define relations between the Riemann
curvature tensor of the four-dimensional space-time and
geometrical quantities of a two-dimensional surface X, .
This procedure we shall accomplish in two steps. In the first
step, we consider relations between the four-dimensional
Riemann curvature tensor and the intrinsic and extrinsic
geometry of a hypersurface Z,. Such relations can be found
by introducing the projection tensor

Pop = Gup — €NgNy, (13)

and using the definition of the Riemann tensor (for details
see, e.g., [34,36,37]). The relations are the following:

Raaﬁbnanﬂ = 5,uc‘_gcb -k (€k|ab - [fws‘}ab + Sab,l)? (14)

R peng = Sah\c - Sac\b’ (15)

Rupea = Rabcd - €<Sachd - Sadsbc>’ (16)

where S, is the extrinsic curvature of a hypersurface X,
defined as

Sop = Spa = PaPyV,un,, (17)

1
Sap = _k_lw(a\h) =+ Ek_l}/ab,t» (18)

(although the last term vanishes, we shall keep it for the
second step), £,S is the Lie derivative of S,, in the
direction of the vector field w,
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[‘fw‘_g]uh = 5‘ab,cwc + S"cbwc,a + 5,acwc,b’ (19)
and R,,.; is the Riemann tensor corresponding to the
metric y,;,. Here and in what follows, the barred geometric
quantities correspond to hypersurfaces X,, and the stroke |
stands for the covariant derivative defined with respect to
the metric y,,.

Using the relations (14)—(16), we derive the following
components of the Riemann tensor:

R, = k7 H,, (20)
Ry =R® ey = Qi = 2% 0 H g (21)
Ry, = k7w H® .y — Q¢ — k™ (K19, — L§), (22)
R = 0! (R gy = Q1S + 200 Q] + ek >
— 2Nl H 4y — 0K, + @PLS),  (23)

where

LY = e[£,5)¢.
(24)

Habc = 2€Sa[b‘c], Q?S = 283&35

]7

In the second step, we write the components of the three-
dimensional Riemann tensor R,,.; in terms of geometric
quantities corresponding to a two-dimensional surface %, ;.
Applying the replacements corresponding to g3 = 7ap»

t—k, k—oxl,

pab AB
R* cd_)R CD>

€— —¢, w,—0,

Yab = hAB’
= ab _
R(lﬁyg_)Ra eds

Sap = Sas. (25)
to the relations (20)—(23) we derive

RY¥cp =R cp +€(S*cSPp = S*pSPc),  (26)

R e = —€’<(SAB;C - SAC;B)a (27)

RIC,, =17 (85C - 557). (28)

R p = exh*CScpy — eSS p — k(x4 5, (29)

where R 4pcp 1s the Riemann tensor of a two-dimensional
surface X, ,

1
R cp = ) (8*c0%p = 8 pd" )R, (30)

1
RABCDRCDAB =R, RAB = §5ABR, (31)

where R is its Ricci scalar and S,p is its extrinsic
curvature,
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1
Sap = EKhAB,k- (32)

Here and in what follows, the semicolon stands for
the covariant derivative defined with respect to the two-
dimensional metric hyp.

To express the other four-dimensional quantities that enter
the expressions (20)—(23) in terms of two-dimensional ones,
we shall use the Christoffel symbols corresponding to the
metric ¥,

1

k- Pk
[ia=—k"ka, [Mpp=€xSyp,

rgC:”ABC’ (33)

Pk -l

F kk__K K,k’
A o 3eA  TA _—1GA
Il =—exx, I'fp=x"'8S5,

where 7 5’s are the Christoffel symbols associated with the
metric h,p,

1

1
Tapp = =5 Mg >

g = 5 M-
(34)

Txxx = 5 hxx,x’

Then, for the metric (8) we derive

k‘k‘k:—ekk‘.k, k‘k‘A:—GKK’A, kIA‘k:K‘_lK"A, (35)

k|A|B:—€KSAB, k‘a‘a:—ek(KJ('f'S), S:SAA. (36)

The nonzero extrinsic curvature components read
- 1 -
SkA - —Ek_lhd,qba)yké‘ﬁA, SAB - —k_1h¢¢5((ﬁAa)qB). (37)

Note that because ¢ is a Killing coordinate, S¢, = 0.

The expressions above allow us to present the four-
dimensional components of the Riemann and Ricci tensors
in terms of the two-dimensional ones, associated with the
metric /45 and the four-dimensional metric functions.

IV. THE EINSTEIN EQUATIONS AND
CURVATURE INVARIANTS

In this section we construct the Einstein equations
corresponding to stationary space-time, Egs. (10)—(12),
with an electromagnetic field and a cosmological constant,
and derive expressions for scalar curvature invariants. The
Einstein equations read

1
Raﬁ = Aéaﬁ + SH(Taﬁ —_ ETéaﬁ) . T = T(la (38)

A. The electromagnetic field

Here we shall consider an electromagnetic field without
sources in a simply connected space-time domain D. The
electromagnetic stress-energy tensor is
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1 1
a __ o a 2

F?2 = F4F%, (39)
T

and T = 0. The electromagnetic field tensor F,4 can be
derived from a 4-vector potential A which will be assumed
to satisfy the group invariance conditions

e, A =0, (40)
and the electromagnetic potential circularity condition [2],

ASnp @y = 0- (41)

As a result, it depends only on the k and x coordinates and
can be presented in the form

A(z = _q)éta + ./45{/)(1, (42)

where ® = ®(k,x) and A = A(k, x). The corresponding
electromagnetic field tensor F,; = Az, — A,z has the
following components:

Fla = _Fut = q>,a’ Fab = 2A[,a5h](/)9

Fla = —F4 = ek (D 4+ wA“),

Fb =2(h#? Al + wF'la)st] . (43)

The Maxwell equations for a source-free electromagnetic
field read

1
VyF? = \/—_—g(\/:éFaﬂ),ﬂ =0, (44)

where g = det(g,5) = —k*c2h and h = det(h,p). Using
the expressions (43) the Maxwell equations can be written
in the form

k' ' VR(D4 + 0 A, =0,
'k Who (2 + 0 A) + e[k VR A, = 0.
(45)

The electromagnetic field invariant and energy density are
the following:

F? =24, AN + 2e¢k72( , + oA L) (P + wA),

E=——(F?—4A,AN). (46)
167

B. The Einstein equations
The Ricci tensor components and the Ricci scalar read
Rtt = Rmta’ Rta = Rtbabv Ra[ = Rabtb’
RY, =Ry, + Ry, R=2R, +R,.  (47)
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With the aid of the expressions (20)—(23) and (47), the
Einstein equations (38) can be written as follows:

k~'H’,, = 8xT",, Wb = 2N 4+2T¢,, (48
ab

Ve, — Q8 — k' (Kl — Lg) = 0, (49)
where

W?s = Rabcd - ?s, Tab = Sﬂ(Tab + w"T‘b),
Ve, = Wi — T, — A§%,. (50)

C. The scalar curvature invariants

As we mentioned in the introduction, in this paper we
consider the Kretschmann, Chern-Pontryagin, and Euler
curvature invariants defined as follows:

1
K, = Rwﬁy(sR”’ﬂ}"S = Caﬁy&caﬂ?’fs + 2R(1/)’R(lﬁ _ ng,
/Cz % Raﬂy5 RaPré — *Crz[)’yécaﬁyﬁ’

2
IC3 — *R;ﬂyéRaﬂyﬁ = —Caﬂy(scaﬂyé + 2RaﬁRaﬂ — §R27 (51)

respectively. Here C,s is the Weyl tensor, and the star
symbol stands for the left and right Hodge dual quantities,

e.g.,

1
*Ra/}}/é = 5 gaﬂnyIwy&? :t/)’yﬁ = 5 8}’5/4VR0’/””D' (52)
Here
g.a/)’yé
Eaprs = " Feaprsr €T = N
E‘th(/, - +1, E‘th{/) - —1 (53)

is a four-dimensional Levi-Civita pseudotensor.

Using the expressions of this section and the
Riemann tensor components (20)—(23) we can write the
Kretschmann and Chern-Pontryagin invariants in the form

ICI = RabcdRCdab + 4RmbcRbcta =+ 4RmtbRtbta

= Wawed +4ve, VP, +4eH", H",, (54)

ICZ — *RabcdRcdab + 2<*RtabcRbcm + *RbcmRtabc)
4 4*RtatbRtbm
= 2€abC(HadeWZ$ - 2Hdbcvad>' (55)

Here
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€abe = |y‘éahc s

y = det(y,) = —ex2h,

ékx(/) = +1, E'kxd) = —€ (56)

is a three-dimensional Levi-Civita pseudotensor. Note
that according to the definition of H%,. [see (24)], we
have €“*°H . = 0.

The Euler curvature invariant can be derived from the
Kretschmann invariant, the square of the Ricci tensor
R,sR*, and the Ricci scalar R,

RGRP = 4N* + 647* T4 TV, (57)
R =R%, =4A, (58)
through the following expression:

K3 - 4RaﬁRaﬁ - R2 - ICI. (59)

V. GEOMETRIC PROPERTIES OF THE
KILLING HORIZON

A. Killing horizon
Let us consider the Killing vector field

x =& + Q). (60)
where Q = const. We have
X x =€k’ + (0* + 20Q + Qz)y¢¢, (61)
and the condition
w=-Q, (62)

implies that kK =0 is a Killing horizon, i.e., y-y =0.
According to this condition, y is hypersurface orthogonal
on k=0, ie., ¥, Vsry = 0. A meaning of the condition
(62) can be seen from the definition of the angular velocity
of a horizon,

iz _q (63)
9o

which implies that the Killing horizon rotates as though it
were a solid bodys; i.e., the condition (62) implies rigidity of
the Killing horizon.

The metric function « calculated on the Killing horizon
coincides with its surface gravity,

20 €0 ayp
© = S lim(V) (V) (64)
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If k vanishes on the Killing horizon, it is called degenerate
(or extremal), otherwise, it is called nondegenerate
(or nonextremal). In the following calculations we shall
assume that « # 0.

The Killing horizon is a totally geodesic hypersurface
[5], which implies its extrinsic curvature vanishes [38].
To calculate the extrinsic curvature of a hypersurface %,
(k = const.) we define a unit vector N, orthogonal to it,

N, =—ex"1'5,%,

N*=k5%, N°N,=—e, (65)

and the corresponding projection tensor,
Haﬁ = Yap + eN(lN/} (66)
The extrinsic curvature of a hypersurface X, is defined as
5(1[} = S/}a = HﬁHZvMNu’ (67)
and its nonzero components read

1
Stt = exk + Ka)hwa),k + EKa)zh(ﬁ(pyk,

- 1 ~ 1
Sia = EK(hrﬁtﬁw),k&ﬁ’ Sap=Sap = EKhAB,k- (68)

Thus, for a nondegenerate Killing horizon we have
wr =0 hypp=0. (69)

Geometric and field invariants are finite on a regular Killing
horizon. In particular, the invariants Q% and F? are finite
on k = 0. Thus, according to the expressions (37) [see (62)
as well] and the Maxwell equations (45), we have

C()’A = 0, é,k = O,

A’k = O, (b,A + C()A’A = 0.

(70)

We consider the metric and the field functions ¢(k,x) =
{w,k, hyp, ® + w A} on and at the vicinity of the Killing
horizon of class C", r>2 in our coordinates. Then
according to the Schwarz’s (Clairaut’s) theorem,

limk_l(p_A = @ (0, XA) = @A (OJCA)

k—0
i 90 A —,(0.0%)

=0,
AxA =0 AXA

(71)
where the last equality follows from (69) and (70). Using
these conditions and taking the limit £ — O in the expres-

sion (37) one can show that

S'AB = 01 (72)
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and S,, is finite on the horizon. As a result, the Lie
derivative of S, (19) vanishes on the horizon. Then, using
the Einstein equations (48)—(49) one can see that k|“|;,
vanishes on the horizon and the expressions (35)—(36) give

ki =0, ka=0. (73)
Thus, the quantities w, k, and ® + w.A are constant on the
Killing horizon. This result is well known. It can be derived
by using geometric properties of Killing horizons derived
in [5] and [6] (see [7]). The derivation presented here
includes the k-derivatives of the functions which are used in
the derivation of our main results.

B. Curvature invariants on the Killing Horizon

In this subsection we derive the relations between the
space-time curvature invariants calculated on the Killing
horizon. Using the results of the previous subsection and
the expressions (26)—(31) we derive

1
W = MYy + M&)s), — 105 (R+F? =20,

Wik 2o, w20
AB © R ‘A <B 5A B
Wen =§(5 c0’p=08"pd°c),
Fk o ] - o
T’;:EFQ—ZM, k=0,

N ~ 1
T4 20,74 2 2M4 + 2M6" 460 — sFets (74)
where

M3 = h?? AAA g, M = M4,. (75)
Using this result we derive the following expressions of the
curvature invariants on the Killing horizon:

=~ 2 \2 = 8
Ky é3<R+e8—§A> —|—4€Hath“b"+2€2—|—§A2,
R ~ 2
’C2=6€HABHQAB(R+€E:—§A)’

2 \2 s
K3é—3<R+€g—§A> —4€Hathabc+252—§A2,

RyR?=E +4A2, R=4A, E=16x€. (76)
The factor ¢ = %1, which enters the expressions, suggests a
discontinuity in the space-time curvature invariants in the
case when the Killing horizon separates the space-time into
the regions where the vector n is timelike and spacelike.
However, such a discontinuity is not present, for there
is another such factor “hidden” in the stationary term

H ,,.H®, so that effectively one has €? = 1.
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The expressions (76) are the main result of our
paper. The expressions in the preceding subsection were
derived for a nondegenerate Killing horizon. However,
assuming that the space-time admits the limit of x — 0,
which can be accomplished by the corresponding limit of
the space-time parameters, the final result (76) remains
valid for a degenerate Killing horizon as well. The
derived expressions generalize the curvature invariants
constructed in [18] for a static Killing horizon to the
stationary one.?

VI. DISCUSSION

Let us summarize our results. We studied the geometric
properties of stationary and axisymetric Killing horizons.
Such horizons have zero extrinsic curvature, constant
surface gravity, angular velocity, and electromagnetic
field (the combination ® + w.A) and the derivatives of
these quantities (except for the extrinsic curvature) in
the direction orthogonal to the horizon surface vanish.
We derived the relations between the Kretschmann, Chern-
Pontryagin, and Euler space-time curvature invariants, as
well as the square of the Ricci tensor and the Ricci scalar,
calculated on a Killing horizon in terms of the geometric
quantities corresponding to the horizon’s surface. These
relations are generalizations of the analogous known
relations for horizons of static four-dimensional electro-
vacuum space-times [see (1)].

There is a direct analogy between the electromagnetic
field tensor F,; and the Weyl tensor C,,5. Namely, there
are the gravitoelectric and gravitomagnetic parts of the
Weyl tensor (see, e.g., [37,39-41]) which we define as
follows:

(gaﬂ = Ca},ﬂ(gl/tyué, e%aﬂ = *Ca},ﬂ(;ltyu&, (77)
where u* = —en” [cf. (6)] is the zero-angular-momentum
observer’s (ZAMO’s) 4-velocity (see, e.g., [39,40]).
Because these fields are orthogonal to n, they live on a
hypersurface X, and are effectively three-dimensional
tensor fields. According to the symmetries of the Weyl
tensor, they are symmetric and traceless. As a result, the
Weyl invariants C,sC*"° and *C,,; C*° are analogous to
the electromagnetic field invariants, F,zF* = 2(B* — E?)
and *F,zF*% = 4E - B, where E and B are electric and
magnetic fields, respectively.

One can evaluate the gravitoelectric field component
which is orthogonal to the horizon surface,

~ 2
%f;ég(mreg—g/\). (78)

*In order to compare the expressions, the electromagnetic field
invariant given in the paper [18] has to be rescaled as follows:
F? - 4F2,
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This expression is a generalization of Hartle’s curvature
formula, which was derived by using the Newman-Penrose
formalism (see, e.g., [40,42]). It is interesting to note that
there is an additional additive contribution (not only
through the space-time metric) to the scalar curvature of
the horizon surface from the electromagnetic field energy
density and the A term. We can express the Weyl invariants
in terms of & and %, as follows:

Caﬁy5caﬂy5 = 8(%1117 &b — ggabggab)’ (79)

*Caﬁ},(scaﬂyﬁ - 16Cgab‘%ab_ (80)

A comparison with the expressions (76) implies
2

3 ~ 2
%abgab é§<R+€g_§A> (81)

‘%ab‘%ab = _gHabcHabC’ (82)
3 ~ 2
%ab%ab = gGaABHaAB (R =+ 65 - 3A> . (83)

The gravitomagnetic part (82), which is analogous to the
electromagnetic expression B> = (V x A)?, is due to the
extrinsic curvature S, of a hypersurface X,, which, in turn,
is analogous to the vector potential A. The curvature occurs
due to the twist metric function w. Such a twist gives an
additional contribution to the space-time curvature on the
Killing horizon. Thus, the expressions (83) allow to present
the curvature invariants (76) in terms of the gravitoelectric
and gravitomagnetic fields calculated by ZAMO at the
horizon. Note that as in the case of the electromagnetic field
invariants, the Weyl invariants C,z,sC%"° and *C,z,C?"°
are observer independent.

The Killing horizon considered here is a rigid rotating
ZAMO surface, which belongs to a family of ZAMO
surfaces of the given space-time. For the Kerr space-time
such a family, which includes both the event and the
Cauchy horizons of a Kerr black hole, was constructed and
analyzed in [43].

A. Example: Kerr black hole

To illustrate the derived results let us consider the
Kerr black hole space-time. The Kerr metric given in the
Boyer-Lindquist coordinates (see, e.g., [7]) reads

M AMarsin?0
ds? = —(1 —Zr>dt2—a;mdtd¢

)
+ Zdrz + Xd6?

A=7r>—2Mr+a*.  (84)

+ (r2+a2+

Y = 12 + a?cos?0,
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The constants M and a represent the mass and the angular
momentum per unit mass, a = J/M, of the black hole, as
measured at the asymptotically flat infinity. It is convenient
to introduce the coordinate transformations

1 2
r:m<x+ +a2>’ cosf=y, |aje€(0,1), (85)

l-a

where the parameters m and « are related to M and a as
follows:

1 +a? 2ma
M = , = . 86
m(l—a2> “ 1-a (86)

The black hole horizons are defined by x, = +1, where
‘+’ stands for the event horizon and ‘-’ stands for the
Cauchy horizon of the black hole.

Matching the Kerr black hole metric {g,;,g.4.Gxx+9yy 9o }
with the metric (10)—(12) gives

k = %, w = gﬁy
Vg 9o
Yab = {gxx7 Gyy» g¢¢}’ hAB = {gyy’ g¢¢}' (87)

Using the definitions of R, H,,., and €,,., and taking
e = —1, we derive

B (1 + aﬁ)(l _ a:t2)2(1 _ 3aj:2y2)

Ry = , 88
+ 2m2(1 _|_ai2y2)3 ( )
+1 +2..2
aAB o )7(3 —ay )
Hupply =22 2R, 89
[6 aAB]i (l _ 3ai2y2) + ( )
abc 3 aAB 2
[HabcH ]:t = Z ([6 HaAB]:t) . (90)

These expressions allow us to calculate the curvature invar-
iants (76). The geometric properties of the horizons presented
here can be used for calculation of a space-time curvature at a
Killing horizon of four-dimensional, stationary, and axisym-
metric electromagnetic space-times with a cosmological
constant. Such space-times include a variety of black hole
horizons which are perturbed by stationary and axisymmetric
distribution of matter and fields around a black hole. The
derived expressions for the curvature invariants (76) allow us to
analyze the perturbation on the black hole horizon. Moreover,
one can study the perturbation in terms of the gravitoelectric
and gravitomagnetic fields calculated on the horizon.

As it was already mentioned in the introduction, one can
use the constructed expressions of the curvature invariants
to analyze the curvature of the outer and inner horizons
of distorted Kerr and Kerr-Newman black holes. These
expressions can be calculated with much less computa-
tional cost than what is required for calculations of the
curvature invariants of the corresponding space-times and
finding their values on the horizons. Moreover, as it will be
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shown in a forthcoming paper, by using the duality
relations between the outer and inner horizon these
expressions allow us to analyze the curvature of the inner
horizon of a distorted rotating black hole by studying
curvature invariants of its outer horizon. Finally, the results
of this paper may be important for applications to holo-
graphic models and for more general understanding of
properties of space-time horizons as well.
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ACKNOWLEDGMENTS

The author is grateful to the Natural Sciences and
Engineering Research Council of Canada for financial
support and to Professor Don N. Page for reading the
manuscript and providing useful suggestions. The author is
thankful to the anonymous referee for useful comments
and suggestions.

[1] B. Carter, J. Math. Phys. (N.Y.) 10, 70 (1969).

[2] B. Carter, in Black Holes: Les Houches 1972, edited by
C. DeWitt and B. S. DeWitt (Gordon and Breach Science
Publishers, Inc., New York, 1973).

[3] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space-time (Cambridge University Press, Cambridge,
England, 1973).

[4] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738
1977).

[5] R. H. Boyer, Proc. R. Soc. A 311, 245 (1969).

[6] R.M. Wald, Black Hole Physics, edited by V. De Sabatta
and Z. Zhang, NATO ASI (Kluwer Academic Publishers,
1992), p. 55.

[7]1 V.P. Frolov and 1. D. Novikov, Black Hole Physics: Basic
Concepts and Recent Developments (Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1998), chap. 6.

[8] J. Bardeen and G.T. Horowitz, Phys. Rev. D 60, 104030
(1999).

[9] H. K. Kunduri, J. Lucietti, and H.S. Reall, Classical
Quantum Gravity 24, 4169 (2007).

[10] H.K. Kunduri and J. Lucietti, J. High Energy Phys. 12
(2007) 015.

[11] H. K. Kunduri and J. Lucietti, J. Math. Phys. (N.Y.) 50,
082502 (2009).

[12] H. K. Kunduri and J. Lucietti, Classical Quantum Gravity
26, 245010 (2009).

[13] D. Papadopoulos and B. C. Xanthopoulos, Nuovo Cimento
Soc. Ital. Fis. 83B, 113 (1984).

[14] V.P. Frolov and A.A. Shoom, Phys. Rev. D 76, 064037
(2007).

[15] S. Abdolrahimi, V. P. Frolov, and A. A. Shoom, Phys. Rev.
D 80, 024011 (2009).

[16] V.P. Frolov and N. Sanchez, Phys. Rev. D 33, 1604 (1986).

[17] V.P. Frolov and A.I. Zel’nikov, Phys. Rev. D 35, 3031
(1987).

[18] S. Abdolrahimi and A. A. Shoom, Phys. Rev. D 83, 104023
(2011).

[19] A. Ashtekar, S. Fairhurst, and B. Krishnan, Phys. Rev. D 62,
104025 (2000).

[20] 1. Booth and S. Fairhurst, Phys. Rev. D 75, 084019 (2007).

[21] I. Booth and S. Fairhurst, Phys. Rev. D 77, 084005
(2008).

[22] T. Liko and I. Booth, Classical Quantum Gravity 25, 105020
(2008).

[23] I. Booth and T. Liko, Phys. Lett. B 670, 61 (2008).

[24] 1. Booth, Phys. Rev. D 87, 024008 (2013).

[25] I. Booth and D. W. Tian, Classical Quantum Gravity 30,
145008 (2013).

[26] L. Witten, Phys. Rev. 113, 357 (1959).

[27] A. Coley, S. Hervik, and N. Pelavas, Classical Quantum
Gravity 26, 025013 (2009).

[28] C. Cherubini, D. Bini, S. Capozziello, and R. Ruffini, Int. J.
Mod. Phys. A 11, 827 (2002).

[29] W. Israel, Phys. Rev. 164, 1776 (1967).

[30] W. Israel, Commun. Math. Phys. 8, 245 (1968).

[31] D.N. Page, Phys. Rev. D 25, 1499 (1982).

[32] M.R. Brown and A.C. Ottewill, Phys. Rev. D 31, 2514
(1985).

[33] N. Breton, A. A. Garcia, V. S. Manko, and T. E. Denisova,
Phys. Rev. D 57, 3382 (1998).

[34] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman and Co., San Francisco, 1973).

[35] R. M. Wald, General Relativity (The University of Chicago
Press, Chicago, 1984).

[36] H. Stephani, General Relativity (Cambridge University
Press, Cambridge, England, 1982).

[37] H. Stephani, D. Kramer, M. Maccallum, C. Hoenselaers,
and E. Herlt, Exact Solutions to Einstein’s Field Equations
(Cambridge University Press, Cambridge, England, 2003).

[38] L.P. Eisenhart, Riemannian Geometry  (Princeton
University Press, Princeton, NJ, 1993).

[39] R.H. Price and K.S. Thorne, Phys. Rev. D 33, 915
(1986).

[40] K.S. Thorne, R.H. Price, and D.A. Macdonald, Black
Holes: The Membrane Paradigm (Yale University Press,
New Haven and London, 1986).

[41] A. Matte, Can. J. Math. 5, 1 (1953).

[42] J. B. Hartle, Phys. Rev. D 9, 2749 (1974).

[43] A.V. Frolov and V.P. Frolov, Phys. Rev. D 90, 124010
(2014).

024019-9


http://dx.doi.org/10.1063/1.1664763
http://dx.doi.org/10.1103/PhysRevD.15.2738
http://dx.doi.org/10.1103/PhysRevD.15.2738
http://dx.doi.org/10.1098/rspa.1969.0116
http://dx.doi.org/10.1103/PhysRevD.60.104030
http://dx.doi.org/10.1103/PhysRevD.60.104030
http://dx.doi.org/10.1088/0264-9381/24/16/012
http://dx.doi.org/10.1088/0264-9381/24/16/012
http://dx.doi.org/10.1088/1126-6708/2007/12/015
http://dx.doi.org/10.1088/1126-6708/2007/12/015
http://dx.doi.org/10.1063/1.3190480
http://dx.doi.org/10.1063/1.3190480
http://dx.doi.org/10.1088/0264-9381/26/24/245010
http://dx.doi.org/10.1088/0264-9381/26/24/245010
http://dx.doi.org/10.1007/BF02721584
http://dx.doi.org/10.1007/BF02721584
http://dx.doi.org/10.1103/PhysRevD.76.064037
http://dx.doi.org/10.1103/PhysRevD.76.064037
http://dx.doi.org/10.1103/PhysRevD.80.024011
http://dx.doi.org/10.1103/PhysRevD.80.024011
http://dx.doi.org/10.1103/PhysRevD.33.1604
http://dx.doi.org/10.1103/PhysRevD.35.3031
http://dx.doi.org/10.1103/PhysRevD.35.3031
http://dx.doi.org/10.1103/PhysRevD.83.104023
http://dx.doi.org/10.1103/PhysRevD.83.104023
http://dx.doi.org/10.1103/PhysRevD.62.104025
http://dx.doi.org/10.1103/PhysRevD.62.104025
http://dx.doi.org/10.1103/PhysRevD.75.084019
http://dx.doi.org/10.1103/PhysRevD.77.084005
http://dx.doi.org/10.1103/PhysRevD.77.084005
http://dx.doi.org/10.1088/0264-9381/25/10/105020
http://dx.doi.org/10.1088/0264-9381/25/10/105020
http://dx.doi.org/10.1016/j.physletb.2008.10.020
http://dx.doi.org/10.1103/PhysRevD.87.024008
http://dx.doi.org/10.1088/0264-9381/30/14/145008
http://dx.doi.org/10.1088/0264-9381/30/14/145008
http://dx.doi.org/10.1103/PhysRev.113.357
http://dx.doi.org/10.1088/0264-9381/26/2/025013
http://dx.doi.org/10.1088/0264-9381/26/2/025013
http://dx.doi.org/10.1142/S0218271802002037
http://dx.doi.org/10.1142/S0218271802002037
http://dx.doi.org/10.1103/PhysRev.164.1776
http://dx.doi.org/10.1007/BF01645859
http://dx.doi.org/10.1103/PhysRevD.25.1499
http://dx.doi.org/10.1103/PhysRevD.31.2514
http://dx.doi.org/10.1103/PhysRevD.31.2514
http://dx.doi.org/10.1103/PhysRevD.57.3382
http://dx.doi.org/10.1103/PhysRevD.33.915
http://dx.doi.org/10.1103/PhysRevD.33.915
http://dx.doi.org/10.4153/CJM-1953-001-3
http://dx.doi.org/10.1103/PhysRevD.9.2749
http://dx.doi.org/10.1103/PhysRevD.90.124010
http://dx.doi.org/10.1103/PhysRevD.90.124010

