
Gravitational spin Hamiltonians from the S matrix

Varun Vaidya*

Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
(Received 8 November 2014; published 12 January 2015)

We utilize generalized unitarity and recursion relations combined with effective field theory techniques
to compute spin-dependent interaction terms for an inspiralling binary system in the post-Newtonian (PN)
approximation. Using these methods offers great computational advantage over traditional techniques
involving Feynman diagrams, especially at higher orders in the PN expansion. As a specific example, we
reproduce the spin-orbit (up to 2.5PN order) and the leading-order S2 (2PN) Hamiltonian for a binary
system with one of the massive objects having nonzero spin using the S-matrix elements of elementary
particles. For the same system, we also obtain the S3 (3.5PN) spin Hamiltonian for an arbitrary massive
object, which was until now known only for a black hole. Furthermore, we derive the missing S4

Hamiltonian at leading order (4PN), again for an arbitrary massive object and establish that the minimal
coupling of an elementary particle to gravity automatically captures the physics of a spinning black hole.
Finally, the Kerr metric is obtained as a series inGN by comparing the action of a test particle in the vicinity
of a spinning black hole to the derived potential.
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I. INTRODUCTION

To observe gravitational waves, one needs very sensitive
detectors due to the tiny cross section of the waves with
matter. There are several ground-based detectors like
VIRGO and LIGO [1,2] which have a good chance of
detecting gravitational waves in the next few years. For the
data analysis of such a signal, if and when it is discovered,
it is necessary to have a theoretical template of the signal
that is expected from inspiralling binary sources. While it
is not possible to get an exact analytical solution for
such a system in all regimes of its evolution, we can use
approximate methods to get highly accurate analytical
results in the slow-motion and wide-separation phase.
The Hamiltonians for spinning and nonspinning objects
in the post-Newtonian (PN) approximation known to date
were neatly listed in Ref. [3]. These interactions have been
derived using different formalisms: the Arnowitt-Deser-
Misner formalism [4–7] which computes the Hamiltonians,
nonrelativistic general relativity (NRGR) [8–11] which
obtains the result in the form of a Lagrangian, and also
the formalism used in Refs. [12–14] which used an non-
relativistic gravitational (NRG) effective field theory (EFT)
to derive Hamiltonians.
In this paper we extend the method introduced in

Ref. [15] to spinning sources, via effective field theory
techniques using recent advances in S-matrix calculations
in particle physics. A similar approach was used in a recent
paper to compute quantum gravity effects [16]. We forgo
Einstein’s point of view of treating gravity as a manifes-
tation of space-time geometry and instead treat all effects of
gravity as the propagation of a massless spin-2 particle on a

flat background. Classical spinning objects are treated as
local sources of gravitons and the modes which give rise to
the classical potential between such objects are factorized
from the radiative modes in an EFT (see Ref. [17] for
review). For example, the technique of NRGR relies on the
explicit separation of scales relevant to the problem: the
size of the objects rs, the size of the orbit r and natural
radiation wavelength r=v. Here the relative velocity v ≪ c.
Finite-sized effects are treated by including new terms in
the wordline action which are needed to regularize the
theory. This usually involves terms obeying the correct
symmetry constructed using the Riemann tensor and the
velocity v. The accuracy in the PN expansion can be
improved by adding higher-dimensional operators. The
coefficients of these operators are obtained by matching
onto the full underlying theory which is general relativity.
While doing calculations in such an EFT, Feynman dia-
grams will show up at the tree and loop level as perturbative
techniques to iteratively solve for the Green’s function of
the full theory.
In our technique, we compute the interaction

Hamiltonians as the nonrelativistic limit of on-shell scatter-
ing amplitudes. Modern methods of computation have
dramatically reduced the effort involved in calculating loop
amplitudes. Most of these involve the recursive use of
on-shell amplitudes, which means that only the on-shell
propagating modes of a field are used in any calculation.
This technique automatically gets rid of the need for a
gauge choice, thus eliminating the huge amount of redun-
dancy involved in traditional Feynman diagrams.
The most useful of these for our purposes is the Britto-

Cachazo-Feng-Witten (BCFW) recursion relation [18] and
generalized unitarity methods [19,20]. These methods are
traditionally applied for calculating on-shell S-matrix*vpvaidya@andrew.cmu.edu
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elements, but we are primarily interested in calculating the
off-shell potential between spinning classical objects. The
scattering amplitude is matched onto an EFT in which
the graviton is essentially integrated out. This leads to a
well-defined and IR-finite classical potential. The calcu-
lated potential is a series in the relative velocity for a
virialized orbit v2 ∼ Gm

r and the spin. Both quantities count
as 1PN in the PN power-counting parameter.
This method has been applied for nonspinning objects in

Ref. [15]. We extend this to the case of a binary system with
one spinning component and demonstrate the use of this
technique for calculating the spin-orbit Hamiltonian to
2.5 PN order. We also present Hamiltonians for S2, S3 and
S4 terms at leading order for an arbitrary spinning object
and show that a minimal coupling to gravity gives the
interaction terms for a black hole. The Kerr metric is then
derived as a series in the PN power-counting parameter by
expanding out the action of a test particle moving around a
spinning black hole.

II. SPIN-DEPENDENT HAMILTONIANS FOR
COMPACT BINARY SYSTEMS

In the calculations that follow, we obtain spin-dependent
Hamiltonians from on-shell scattering amplitudes of a
massive scalar particle with other massive particles with
nonzero spin. From the addition rules of angular momen-
tum, it is clear that the scattering of a scalar with a particle of
spin j will generate terms of 2j; 2j − 1;…0 power in spin
when we match onto an EFT. For example, the scattering
with a spin-1=2 particle will produce terms which are spin
independent and linear in spin. Since we are interested
in terms up to the fourth order in the PN expansion, we need
to go up to S ¼ 2, to generate the S4 piece. While it is true
that all the relevant pieces that we need can be obtained by
considering the scattering with a S ¼ 2 particle, in order to
obtain terms that are higher order inG, it is computationally
efficient to consider the scattering of the smallest-spin
particle that can give us the required result. To that end,
we first consider the scattering of the scalar with a massive
spin-1=2 particle to generate the spin-orbit Hamiltonian up
to 2.5 PN order.
For all the amplitudes that we calculate, we will need

the three-point interaction term of the scalar particle with
a graviton. Assuming a minimal coupling to gravity
gives us

Mðp3; p4; mbÞ
¼ κ

2
½p3νp4μ þ p3μp4ν − ημνðp3 · p4 þm2

bÞ� ð1Þ

where p3 and p4 are incoming momenta of the scalars with
mass mb and κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32πGN
p

.
We can also add a gauge-invariant operator Rϕ2, but this

does not affect the classical result. For calculating the loop

amplitude, we will also need the on-shell three-point
amplitude in the spinor-helicity formalism (for a review
see Refs. [21,22]). where we use 3 and 4 in place of p3

and p4, respectively, while using the spinor-helicity
notation

iMð3; 4; 5þÞ ¼ κ

2

hr35�2
hr5i2 : ð2Þ

Here, r is any lightlike vector not proportional to the
positive-helicity graviton momentum 5. The amplitude for
the negative-helicity graviton is obtained by interchanging
the angle and square brackets.
For future use, we give the four-point scalar graviton

amplitude constructed using the BCFW recursion relation.
This involves complexifying the momentum of two exter-
nal massless particles while still maintaining momentum
conservation. To apply this method, in principle, we need
the theory to be BCFW constructible. This requires that
the amplitude which is now a function of the complex
variable z, should satisfy the condition limz→∞MðzÞ=z ¼ 0.
However, in our case this condition can be relaxed, since
the terms that are not captured by the recursion do not
contribute to the classical potential. Also, we only need
the four-point amplitude with opposite helicities for the
gravitons [15]:

Mð3; 4; 5−; 6þÞ

¼ κ2

4

h536�4
ð5þ 6Þ2

�
1

ð5þ 3Þ2 −m2
b

þ 1

ð5þ 4Þ2 −m2
b

�
: ð3Þ

A. Spin orbit

To begin, we consider the scattering of a scalar with a
massive spin-1=2 fermion. For tree-level scattering, we will
use the usual Feynman rules. As before, a minimal coupling
to gravity gives us the interaction of fermions with
gravity,

iMðp1; p2; maÞ ¼
−iκ
2

�
ðp1 þ p2Þνγμ þ ðp1 þ p2Þμγν

− ημν

�
1

2
ðp1 þ p2Þ −ma

��
ð4Þ

where p1 is the incoming and p2 is the outgoing momen-
tum of the fermion with mass ma. On the other hand for
loop calculations, generalized unitarity methods become
invaluable and to use them we need the on-shell three-point
amplitude

Mð1; 2; 5þÞ ¼ κ

2
ūð2Þγμuð1Þ

hrγμ5�hr15�
hr5i2 : ð5Þ

The expression for the graviton with negative helicity is
similar but with the angles interchanged with square
brackets. Using this seed we can use the BCFW relation
to construct the four-point amplitudes:
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Mð1; 2; 5−; 6þÞ ¼ κ2

4
ūð2Þγμuð1Þ

h5γμ6�h516�3
½ð5þ 6Þ2�2

×

�
1

ð1þ 5Þ2 −m2
a
þ 1

ð1þ 6Þ2 −m2
a

�
:

ð6Þ
For calculating tree-level scattering amplitudes, we use the
graviton propagator in the harmonic or Feynman gauge.
For all our calculations, we choose the incoming and
outgoing scalar particles with rest mass mb to have
momenta p3 and p4, respectively. The particles with

nonzero spin with mass ma have momenta p1 and p2.
In the center-of-mass frame

pμ
1 ¼ ðE1; ~pþ ~q=2Þ; pμ

2 ¼ ðE2; ~p − ~q=2Þ;
pμ
3 ¼ ðE3;−~p − ~q=2Þ; pμ

4 ¼ ðE4;−~pþ ~q=2Þ:

The nonrelativistic limit of this amplitude has been
obtained in Ref. [23]. In order to calculate the spin-orbit
piece up to 2.5 PN, we need to expand out the spin-
independent piece to 1PN order, where we have kept only
the classical contributions:

M ¼ 4πGmamb

~q2

�
χa†f χai

�
1þ ~p2

2m2
am2

b

ð3m2
a þ 3m2

b þ 8mambÞ
�

þ i~S · ð~p × ~qÞ
m2

amb

�
4ma þ 3mb

2
þ ~p2

8m2
amb

½8mamb − 5m2
b þ 18m2

a�
��

ð7Þ

where χaf and χ
a
i are the spinors for the initial and final states of the fermion in the rest frame and Si ¼ χa†f

σi

2
χai is the spin vector.

To extract the effective potential we match this result onto a nonrelativistic EFT in which the graviton is integrated out,

Vsið~p; ~qÞψ†
~p−~q=2ψ ~pþ~q=2ϕ

†
−~pþ~q=2ϕ−~p−~q=2 þ Vj

soð~p; ~qÞSjϕ†
−~pþ~q=2ϕ−~p−~q=2 ð8Þ

where Vsi is the spin-independent piece and V
j
soSj is the spin-orbit piece of the potential. To get the complete spin orbit term

at 2.5PN order, we need to consider the scattering amplitude at one loop. Using generalized unitarity methods we can
construct the one-loop amplitude by sewing together the four-point amplitudes for the scalar and fermion as shown in Fig. 1:

Mð1; 2; 3; 4Þ ¼
Z

d4l
ð2πÞ4

iMð1; 2; l−;−l0þÞiMð3; 4;−lþ; l0−Þ þ ðþ ↔ −Þ
l2l02

: ð9Þ

The basic idea is to simplify the numerator of the
integrand by treating the gravitons (l; l0) to be on-shell
in four-dimensional space. After the simplification we will
have a decomposition into standard scalar integrals. Using
this we can accurately obtain the coefficients of those scalar
integrals which contain all the cut propagators. In this case
we are going for a t-channel cut which involves a cut on the
two massless graviton propagators. The only scalar inte-
grals which give a classical contribution are those given by
the triangle diagram with exactly one massive propagator.

This means that the t-channel cut is sufficient to calculate
all the coefficients we need.
Moreover since we are using dimensional regularization,

the loop integral in l is in d dimensions. But the reduction
is much simpler in four dimensions and it is justified in
this case since the errors produced are rational terms
(polynomials) in the transfer momentum q which do not
affect the long-range classical result. As before, we con-
sider the nonrelativistic limit with a normalization factor
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E12E22E32E4

p
to give

FIG. 1. Fusing two tree-level on-shell four-point amplitudes.
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Mð2Þ ¼ G2π2

q

�
mambχ

a†
f χai ð6ma þ 6mbÞ þ i~S · ð~p × ~qÞ

×

�
20m3

a þ 9m3
b þ 53m2

amb þ 41mam2
b

2maðma þmbÞ
þm2

am2
bð3mb þ 4maÞ

ðma þmbÞp2
0

��
ð10Þ

where p2
0 ¼ ~p2 þ ~q2=4. This result has a singular behavior

in the limit p0 → 0. To define a well-behaved potential, we
match onto our EFT. This requires us to subtract out the
iterated tree-level potential from the loop scattering ampli-
tude. To obtain the potential in position space, we Fourier
transform the resulting coefficients of our EFTwith respect

to the transfer momentum vector ~q. We now match this
nonrelativistic EFT onto a point-particle Hamiltonian by
treating r as the conjugate position variable to the canonical
momentum p. This choice of a coordinate system is a
specific one and hence makes the Hamiltonian gauge
dependent:

H ¼ ~p2

2ma
þ ~p2

2mb
−

~p4

8m3
a
−

~p4

8m3
b

−
Gmamb

r

�
1þ ~p2

2m2
am2

b

ð3m2
a þ 3m2

b þ 8mambÞ

þ
~S · ð~p × ~rÞ
r2m2

amb

�
4ma þ 3mb

2
þ ~p2

8m2
amb

ð8mamb − 5m2
b þ 18m2

aÞ
��

þ G2~S · ð~p × ~rÞ
2r4maðma þmbÞ

ð12m3
a þ 10m3

b þ 45m2
bma þ 41mam2

bÞ

þ G2

2r2
mambðma þmbÞ

�
1þ mamb

ðma þmbÞ2
�
: ð11Þ

We are working in a frame in which the momentum (~p) is directed transverse to ~r and we do not have a ~p · ~r term. In order
to compare our result with the existing literature, we choose a different coordinate system to express our result.
This amounts to a canonical transformation of the Hamiltonian. The most general form of the generator to implement
this transformation is

g ¼ a1
Gðma þmbÞð~p · ~rÞ

r
þ a2

G~S · ð~p × ~rÞð~p · ~rÞ
r3

: ð12Þ

This generates a correction to the Hamiltonian fg;Hg. The choice of constants a1 ¼ mamb
2ðmaþmbÞ2 and a2 ¼

2maþmb
4maðmaþmbÞ gives the

result

Hint ¼ −
Gmamb

r

�
1þ ~p2

2m2
am2

b

ð3m2
a þ 3m2

b þ 7mambÞ þ
ð~p · ~rÞ2
2mamb

�
þ G2

2r2
mambðma þmbÞ

−
G~S · ð~p × ~rÞ

r3ma

�
4ma þ 3mb

2
þ ~p2

8m2
amb

ð6mamb − 5m2
b þ 14m2

aÞ þ
ð~p · ~rÞ2
4r2m2

amb
ð6ma þ 3mbÞ

�

þ G2~S · ð~p × ~rÞ
2r4maðma þmbÞ

ð12m3
a þ 10m3

b þ 38mbm2
a þ 36mam2

bÞ: ð13Þ

In this case, the spin-independent result agrees with the Einstein-Infeld-Hoffmann (EIH) potential. The spin-dependent
piece agrees with the result obtained by Damour et al. [4] in the center-of-mass frame.

B. Spin quadrupole

The S2 piece of the amplitude can be obtained by scattering a scalar with a massive spin-1 particle. We begin with the
Proca action for a massive particle of spin 1,
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S ¼
Z

d4x

�
−
1

4
GμνGμν þ 1

2
m2ϕμϕμ

�
: ð14Þ

We consider a minimal coupling to gravity to determine
the interaction. In this paper, we are interested only in the
leading-order S2 piece, and hence a tree-level scattering
amplitude is sufficient. This means that the massive
particles are always on-shell and we can use equations
of motion to simplify the stress energy tensor:

Tμν ¼ κ

2
½∂μϕα∂νϕα þ ∂αϕ

μ∂αϕν − ∂μϕα∂αϕ
ν − ∂νϕα∂αϕ

μ

−m2ϕμϕν� þ κ

4
ημν½−∂αϕβ∂αϕβ þ ∂αϕβ∂βϕα

þm2ϕαϕ
α�: ð15Þ

Scattering this off a scalar with mass mb gives us
the following scattering amplitude in the center-of-mass
frame:

iM ¼ −
4πGmamb

~q2
fϵ�ðp2Þ · ϵðp1Þ þ p̂1 · ϵ�ðp2Þp̂2 · ϵðp1Þ

þ 2½p̂2 · ϵðp1Þp̂3 · ϵ�ðp2Þ þ p̂1 · ϵ�ðp2Þp̂3 · ϵðp1Þ
− p̂2 · ϵðp1Þp̂1 · ϵ�ðp2Þ�g ð16Þ

where p̂1 ¼p1=ma;p̂2¼p2=ma;p̂3 ¼p3=mb;p̂4¼p4=mb.
We now consider the nonrelativistic limit of this amplitude
using the following approximations:

ϵ�ðp2Þ · ϵðp1Þ ≈ −ϵ̂1 · ϵ̂�2 −
1

2m2
a
~q · ϵ̂1 ~q ·ϵ̂�2 −

1

2m2
a
ðqipj − piqjÞϵ̂1iϵ̂�2j; p̂2 · ϵðp1Þp̂3 · ϵ�ðp2Þ þ p̂1 · ϵ�ðp2Þp̂3 · ϵðp1Þ

≈ −
1

m2
a
~q · ϵ̂1 ~q ·ϵ̂�2 −

�
1

m2
a
þ 1

mamb

�
ðqipj − piqjÞϵ̂1iϵ̂�2j;

p̂2 · ϵðp1Þp̂1 · ϵ�ðp2Þ ≈ −
1

m2
a
~q · ϵ̂1 ~q ·ϵ̂�2 ð17Þ

where ϵ̂i is the polarization tensor of the spin-1 particle with
momentum pi in the rest frame. This reduces the amplitude
to the following compact form:

M ≃ 4πGmamb

~q2

�
ϵ̂1

iϵ̂�2
i −

1

m2
a
qiqjϵ̂1iϵ̂�2

j

þ
�
3mb þ 4ma

m2
amb

�
qipjðϵ̂1iϵ̂�2j − ϵ̂�2

iϵ̂1
jÞ
�
: ð18Þ

The effective potential between the two objects in position
space is

Vð~p; ~rÞ ¼ Gmamb

�
−
1

r
ϵ̂1

iϵ̂2
�i −

1

m2
a

�
3rirj

r5
−
δij

r3

�
ϵ̂1

iϵ̂2
�j

þ i

�
3mb þ 4ma

m2
amb

�
ri

r3
pjðϵ̂1iϵ̂2j − ϵ̂2

�iϵ̂1jÞ
�
:

In order to match this amplitude onto the EFT, we need to
consider the relevant operators that will appear in our EFT
Lagrangian. In the rest frame of the particles, the only
nontrivial vector operator that is available is spin. This
implies that any tensor constructed using the polarization
vectors has to map onto some linear combination of
corresponding tensors constructed using the spin vector
and other invariant tensors. We can define the spin
operators using the following identities:

ϵ̂1
iϵ̂2

�j − ϵ̂2
�iϵ̂1j ¼

i
2
ϵijmhs ¼ 1; m2jSmjs ¼ 1; m1i;

3

2
ðϵ̂1iϵ̂2�j þ ϵ̂2

�iϵ̂1jÞ − δijϵ̂1
kϵ̂2

�k

¼ −
D
s ¼ 1; m2

			 3
2
ðSiSj þ SjSiÞ − ~S2δij

			s ¼ 1; m1

E
:

ð19Þ

Here m1 and m2 are the z components of the spin in the
initial and final states for the massive spin-1 particle. Apart
from the minimal coupling, we can add other gauge-
invariant operators to the Proca Lagrangian. It turns out
that the only relevant operator that we can add which has a
nontrivial effect on the classical result is

Lint ¼
C1

8
RμναβGμνGαβ: ð20Þ

This additional piece leaves the Newtonian and spin-orbit
terms unchanged, but alters the spin-quadrupole term
giving us the final result

Vð~p;~rÞ¼Gmamb

�
−
1

r
þ
�
C1þ

1

2m2
a

�
1

r3

�
3ð~S ·~rÞ2

r2
− ~S2

�

þ
�
3mbþ4ma

2m2
ambr3

�
~S · ð~r× ~pÞ

�
:
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By comparing this with the existing literature [24] we
see that this is the result for a black hole when C1 ¼ 0.
This indicates that minimal coupling to gravity corresponds
to a black hole structure. This also demonstrates the
universal form of the spin-orbit term for the interaction
between any two classical objects. The arbitrary coefficient
C1 allows us to account for any other massive classical
object (e.g. a neutron star). In order to determine this
coefficient, we can do a matching procedure using any
other spin-dependent observable related to the star. For
example, Ref. [25] used an EFT to model any star as a point
source with finite-size effects encoded into effective oper-
ators. This is essentially an expansion in multipolar degrees
of freedom. The dynamics of these multipoles can be
obtained by matching the gravitational field of the actual
star with that of the effective point source.

C. Spin octupole

To derive the spin-octupole Hamiltonian at leading order,
we need to consider the scattering of a spin-2 particle. We
begin with the Fierz-Pauli action for a massive elementary
particle with spin 2 [26],

S ¼
Z

d4x

�
−
1

2
∂λϕμν∂λϕμν þ ∂μϕνλ∂νϕμλ − ∂μϕ

μν∂νϕ

þ 1

2
∂λϕ∂λϕ −

1

2
m2ðϕμνϕ

μν − ϕ2Þ
�

where ϕ ¼ ϕμ
μ is the trace over the spin-2 tensor.

The equations of motion from this free-field Lagrangian
give a symmetric traceless rank-2 tensor which restricts the
number of on-shell modes to five:

∂μϕ
μν ¼ 0;

ϕ ¼ 0;

ð∂2 þm2Þϕμν ¼ 0: ð21Þ
We consider a minimal coupling to gravity

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
−
1

2
∇λϕμν∇λϕμν þ∇μϕνλ∇νϕμλ

−∇μϕ
μν∇νϕþ 1

2
∇λϕ∇λϕ −

1

2
m2ðϕμνϕ

μν − ϕ2Þ
�
:

This gives us a symmetric and conserved stress-energy
tensor which we again simplify using the equations of
motion,

Tγδ ¼ −∂γϕνλ∂νϕδλ − ∂δϕνλ∂νϕγλ þ ∂μϕ
νδ∂νϕ

μγ

þ 1

2
∂γϕνλ∂δϕλν þ ∂μϕ

νγ∂μϕδ
ν − ∂μ∂νϕ

γδϕμν

−m2ϕγ
μϕμδ þ 1

2
ηγδ

�
−
1

2
∂λϕμν∂λϕμν þ ∂μϕνλ∂νϕμλ

þ 1

2
m2ϕμνϕ

μν

�
: ð22Þ

We now consider the leading-order elastic scattering
amplitude between a massive spin-2 particle and a massive
scalar,

M ¼ 4πGmamb

~q2
fϵðp1Þμνϵ�ðp2Þμν − 4ϵðp1Þαβϵ�ðp2Þβν

× ðp̂2αp̂3
ν þ p̂3αp̂1

νÞ þ 2ϵðp1Þαβϵ�ðp2Þμν
× ð2p̂2αp̂3βp̂1μp̂3ν þ p̂3αp̂3βp̂1μp̂1ν

þ p̂2αp̂2βp̂3μp̂3νÞg: ð23Þ

In order to extract the effective potential, we take the
nonrelativistic limit of this amplitude. This can be done
using the following approximations:

ϵðp1Þμνϵ�ðp2Þμν≃ ϵ̂1
ikϵ̂2

�kiþ
�
1

m2
a
qiqj −

1

m2
1

ðqipj−piqjÞ
�

× ϵ̂1
ikϵ̂2

�kjþ
�

1

2m4
a
qiqjðpkql−plqkÞ

þ 1

4m4
a
qiqjqkql

�
ϵ̂1

ikϵ̂2
�jl ð24Þ

where repeated indices on the right-hand side are summed
over and are all spatial. ϵ̂1

ij; ϵ̂2�kl are the polarization
tensors in the rest frame,

ϵðp1Þαβϵ�ðp2Þβνðp̂2αp̂3
ν þ p̂3αp̂1

νÞ≃
�
1

m2
a
qiqj −

�
1

m2
a
þ 1

mamb

�
ðqipj − piqjÞ

�
ϵ̂1

ikϵ̂2
�kj

þ
��

1

m4
a
þ 1

2m3
amb

�
qiqjðpkql − plqkÞ þ 1

2m4
a
qiqjqkql

�
ϵ̂1

ikϵ̂2
�jl; ð25Þ

ϵðp1Þαβϵ�ðp2Þμνð2p̂2αp̂3βp̂1μp̂3ν þ p̂3αp̂3βp̂1μp̂1ν þ p̂2αp̂2βp̂3μp̂3νÞ

≃
�
2

�
1

m4
a
þ 1

mamb

�
qiqjðpkql − plqkÞ þ 1

m4
a
qiqjqkql

�
ϵ̂1

ikϵ̂2
�jl: ð26Þ
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This reduces the amplitude to the following compact form:

M ≃ 4πGmamb

~q2

�
ϵ̂1

ikϵ̂2
�ki −

3

m2
a
qiqjϵ̂1ikϵ̂2�kj þ

�
3mb þ 4ma

m2
amb

�
qipjðϵ̂1ikϵ̂2�kj − ϵ̂2

�ikϵ̂1kjÞ

þ
�

1

2m4
a
þ 2

m3
amb

�
qiqjpkqlðϵ̂1ikϵ̂�2jl − ϵ̂2

�ikϵ̂1jlÞ þ
1

4m4
a
qiqjqkqlϵ̂1ikϵ̂2�jl

�
ð27Þ

which in turn gives us the potential

Vð~p; ~rÞ ¼ Gmamb

�
−
1

r
ϵ̂1

ikϵ̂2
�ki −

3

m2
a

�
3rirj

r5
−
δij

r3

�
ϵ̂1

ikϵ̂2
�kj þ i

�
3mb þ 4ma

m2
amb

�
ri

r3
pjðϵ̂1ikϵ̂2�kj − ϵ̂2

�ikϵ̂1kjÞ

þ 3i

�
1

2m4
a
þ 2

m3
amb

�
pi

�
δklrj

r5
þ δjlrk

r5
þ δkjrl

r5
− 5

rkrjrl

r7

�
ðϵ̂1ikϵ̂2�jl − ϵ̂2

�ilϵ̂1jkÞ − ϵ̂1
ikϵ̂2

�jl 3

4m4
a

×

�
δijδkl

r5
þ δikδjl

r5
þ δilδjk

r5
−

5

r7
ðrirjδkl þ rirkδjl þ rjrlδik þ rjrkδil þ rjrlδkj þ rkrlδijÞ þ 35

rirjrkrl

r9

��
: ð28Þ

As for the case of spin 1, we now match onto the spin operators. The easiest way to do this for the case of spin 2 is to
match the coefficients of irreducible tensor structures,

ϵ̂1
ikϵ̂2

�kj − ϵ̂2
�ikϵ̂1kj ¼

−i
2
ϵijmhs ¼ 2; m2jSmjs ¼ 2; m1i;

3

2
ðϵ̂1ikϵ̂2�kj þ ϵ̂2

�ikϵ̂1kjÞ − δijϵ̂1
ikϵ̂2

�ki ¼ −
1

6

D
s ¼ 2; m2

			 3
2
ðSiSj þ SjSiÞ − ~S2δij

			s ¼ 2; m1

E
:

The identities for S3 and S4 operators are more involved due to the multitude of nonequivalent structures that are possible:

f2δjkðϵ̂1hiϵ̂2�lh − ϵ̂2
�hiϵ̂1lhÞ − 5ðϵ̂1ijϵ̂2�kl − ϵ̂2

�ikϵ̂1jlÞg þ ðj ↔ lÞ þ ðk ↔ lÞ

¼ 1

18
hs ¼ 2; m2jifδjk½3ϵilmSm~S2 − SiϵalmSmSa − ϵalmSmSaSi�

−
5

2
½ϵilmSmSjSk þ SlϵijmSmSk þ SlSjϵikmSm þ ϵikmSmSlSj þ SkϵilmSmSj þ SkSlϵijmSm�g

þ ðj ↔ lÞ þ ðk ↔ lÞjs ¼ 2; m1i; ð29Þ

fϵ̂1hmϵ̂2�hmðδijδkl þ δilδjkÞ − 5ðϵ̂1ihϵ̂2�jhδkl þ ϵ̂1
hkϵ̂2

�hlδil þ ϵ̂1
ihϵ̂2

�jhδkj þ ϵ̂1
hkϵ̂2

�hlδijÞ þ 35ϵ̂1
ikϵ̂2

�jlg

þ all permutations of i; j; k; l ¼ 1

6
hs ¼ 2; m2jfð~S2~S2δijδkl þ ~Sa ~Sb ~Sa ~Sb δikδjl þ ~S2~S2δilδjkÞ

− 5ð ~S2SiSjδkl þ SiSaSkSaδjl þ SaSjSaSlδik þ SaSjSkSaδil þ ~S2SiSlδkj þ ~S2SkSlδijÞ þ 35SiSjSkSlg
þ all permutations of i; j; k; ljs ¼ 2; m1i: ð30Þ

We can also add three relevant gauge-invariant operators:

Lint ¼
C1

8m2
a
RμναβUμνγUαβ

γ þ C2Rαβγρðϕαγϕβρ − ϕβγϕαδÞ þ C3

2m2
a
Rμναβ∂μϕρα∂ρϕ

νβ ð31Þ

where Uμνγ ¼ ∂μϕνγ − ∂νϕμγ . These additional pieces leave the Newtonian and spin-orbit terms unchanged, but they alter
the spin-quadrupole and -octupole terms giving us the result
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Vð~p; ~rÞ ¼ Gmamb

�
−
1

r
þ
��

C1 þ
1

2
þ C2

3

�
1

m2
ar3

��
3ð~S · ~rÞ2

r2
− ~S2

�
þ
�
3mb þ 4ma

2m2
ambr3

�
~S · ð~r × ~pÞ

þ 1

2r4

�
ðC3 þ 4C1Þ

�
1

m2
a
þ 1

mamb

�
þ
�

1

2m4
a
þ 2

m3
amb

��
~S · ð~r × ~pÞ

�
~S2 − 5

ð~S · ~rÞ2
r2

�

−
�
C1

m4
ar5

þ 4C2 þ 1

8m4
ar5

��
3ð ~S2Þ2 − 30

~S2ð~S · ~rÞ2
r2

þ 35
ð~S · ~rÞ2
r4

��
: ð32Þ

This gives us the result for the missingHS4 Hamiltonian for
a compact star,

HS4 ¼ −
�
C1

m4
ar5

þ 4C2 þ 1

8m4
ar5

�

×

�
3ð ~S2Þ2 − 30

~S2ð~S · ~rÞ2
r2

þ 35
ð~S · ~rÞ2
r4

�
: ð33Þ

As before, we recover the universal form of the spin-orbit
piece. Since we have three additional operators for the spin-
2 case, we get arbitrary coefficients for the S2, S3 and S4

pieces. The limit for the black hole is obtained for C1 ¼
C2 ¼ C3 ¼ 0 [27], which again demonstrates that a min-
imal coupling to the graviton implies a black hole. The
Wilson coefficients for these operators can be obtained
from a matching procedure with any other spin-dependent
observable. The result for the S3 Hamiltonian was derived
in the limit of a black hole [24,27]. An attempt to derive the
quartic spin Hamiltonian for a black hole was made in
Ref. [27] but was found to be inconsistent with the results
of Ref. [28] which computed the binding energy of a test
particle in the extreme mass ratio in a circular orbit with the
spin of the massive star aligned perpendicular to the orbit.
In this limit, the Hamiltonian above reduces to

HS4 ¼ −
3Gmb

8m3
ar5

ð ~S2Þ2: ð34Þ

A comparison with the result in Ref. [28] gives a match for
the binding energy.

III. KERR METRIC

As another consistency check we can easily obtain the
Kerr metric to leading power in G and up to fourth order in
spin using the calculation done so far. We consider the
worldline action of a probe particle in a Kerr background
field,

S ¼ −mb

Z
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00 þ g0ivi þ gijvij

p
: ð35Þ

For the leading-order spin-dependent pieces, this gives us
the result

g00 ¼ 1þ 2Gma

�
−
1

r
þ 1

2m2
ar3

�
3ð~S · ~rÞ2

r2
− ~S2

�

−
1

8m4
ar5

�
3ð ~S2Þ2 − 30

~S2ð~S · ~rÞ2
r2

þ 35
ð~S · ~rÞ4

r4

��
:

ð36Þ

Comparing g00 with the corresponding result for the Kerr
metric in harmonic coordinates [29] again confirms the S4

Hamiltonian piece.

IV. SUMMARY AND OUTLOOK

We have used modern methods of amplitude compu-
tation combined with EFT techniques to obtain spin-
dependent Hamiltonians for a binary inspiralling system
in the PN approximation. The use of on-shell methods
substantially reduces the effort of computing loop dia-
grams. We have also shown how the idea of treating
gravity as spin-2 massless particle provides a natural way
of obtaining higher-order spin corrections for arbitrary
classical objects. The possible gauge-invariant interaction
operators that we can write down, automatically account
for any spinning classical objects including a black hole.
Using a massive spin-2 particle scattering at tree level, we
were able to obtain the S3 interaction for an arbitrary
object in terms of coefficients which depend on the
specific equation of state for a star, which was until
now known only for a black hole. We were also able to
calculate in a simple manner the hitherto unknown S4

Hamiltonian and show that three independent operators
are needed to account for other stellar equations of state up
to fourth order in the PN expansion. What is really
interesting, is the universality of the interaction terms
that appear as we move to particles of higher spin. Also, a
curious fact is revealed that the minimal coupling of a
massive elementary particle to gravity automatically
accounts for any spin-dependent interactions of a black
hole. In principle, all the spin-dependent Hamiltonians
up to 4PN order can be obtained by considering loop
corrections for the scattering of two spin-1 particles.
The spin-2 particle scattering is required only at tree
level.
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Note added.—As this paper was being finalized, another
paper appeared [30] which also investigated the cubic
and quartic spin Hamiltonians using the NRGR formal-
ism which uses the traditional effective field theory
approach.
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