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The integrability conditions for the existence of a conformal Killing–Yano tensor of arbitrary order are
worked out in all dimensions and expressed in terms of the Weyl tensor. As a consequence, the integrability
conditions for the existence of a Killing–Yano tensor are also obtained. By means of such conditions, it is
shown that in certain Einstein spaces one can use a conformal Killing–Yano tensor of order p to generate a
Killing–Yano tensor of order ðp − 1Þ. Finally, it is proved that in maximally symmetric spaces the covariant
derivative of a Killing–Yano tensor is a closed conformal Killing–Yano tensor and that every conformal
Killing–Yano tensor is uniquely decomposed as the sum of a Killing–Yano tensor and a closed conformal
Killing–Yano tensor.
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I. INTRODUCTION

The so-called hidden symmetries of curved manifolds,
represented by Killing tensors and Killing–Yano (KY)
tensors, have proved to be invaluable tools to the develop-
ment of general relativity, both from the physical and
mathematical points of view. They yield conservation laws
that enable the separability of differential equations, which,
in turn, can lead to the integrability of equations of motion.
For instance, the geodesic equation in four-dimensional
Kerr spacetime could be fully integrated thanks to the
existence of a nontrivial Killing tensor of order 2 [1,2].
Moreover, this Killing tensor has enabled the integration of
Klein–Gordon and Dirac field equations in the Kerr back-
ground [3,4] as well as the separability of gravitational and
electromagnetic perturbations [5]. Since such Killing tensor
turns out to be the square of a Killing–Yano tensor of order
2 [6,7], we can say that these integrability properties are
due to the existence of a KY tensor in Kerr spacetime.
Analogously, conformal Killing–Yano (CKY) tensors are
associated with conservation laws along null geodesics and
the integrability of massless field equations. Furthermore,
in Ref. [8], the CKY tensors were used to motivate a
suitable definition of asymptotic flatness in four-dimensional
spacetimes.
More recently, Killing–Yano tensors proved to be of

great relevance in higher-dimensional spacetimes as well.
In Ref. [9], these tensors were used to define gravitational
charges in spacetimes that are asymptotically flat in a
restricted number of spatial directions, which is of appli-
cability in manifolds with branes. Additionally, it was
shown that the family of Kerr–NUT–(anti-)de Sitter [(A)
dS] spacetimes [10] admits, in arbitrary dimension, a set of
Killing–Yano tensors of various orders [11]. These KY
tensors were then used to integrate the geodesic equation

[12,13] as well as the Klein–Gordon [14] and Dirac
equations [15] in such a background. The issue of sepa-
rability of gravitational perturbations was investigated in
Ref. [16]. Interestingly, it turns out that all these KY tensors
necessary to achieve integrability in Kerr–NUT–(A)dS
spacetimes can be constructed from a single conformal
Killing–Yano tensor that is closed [11]. For a review on the
role played by CKY tensors in exact solutions of Einstein’s
equation, see Ref. [17]. A connection between the existence
of a closed CKY tensor and the integrability of maximally
isotropic distributions [18], i.e., distributions generated by
pure spinors, has also been obtained. These facts make
evident the huge importance of CKY tensors to higher-
dimensional gravitational theories.
The intent of the present article is to investigate the

integrability conditions for the existence of a conformal
Killing–Yano tensor of arbitrary order in a manifold of any
dimension. An approach toward the investigation of the
same problem has also been done by Kashiwada [19].1 The
particular case of KY and CKY tensors of order 2 was
already addressed by Tachibana in Refs. [21] and [20]
respectively, while Killing tensors of order 2 were studied
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1I thank Tsuyoshi Houri for pointing out this reference.
Unfortunately, my attention was driven to Kashiwada’s work
only after I released the preprint of the present article, so this
article has a considerable overlap with Ref. [19]. The main reason
for such an overlap is that both works share the same goal,
namely, to generalize Tachibana’s results obtained in Ref. [20] to
CKY tensors of arbitrary rank. In spite of the similarities, the
present article adds some new contributions, such as the recog-
nition that the integrability condition can be expressed just in
terms of the Weyl tensor and the analysis of some of its
consequences. Moreover, here, all steps on the deduction of
the integrability condition are explicit, whereas in Ref. [19] some
cumbersome manipulations are omitted. Finally, the procedure
adopted here is simpler, since just a few indices are permuted
during the manipulations, while in Ref. [19], all free indices are
involved in the permutations.
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in Ref. [22]. Killing–Yano tensors of order n − 1, with n
standing for the dimension of the manifold, were fully
analyzed in Ref. [23]. Furthermore, the integrability con-
ditions for Killing spinors in four-dimensional spacetimes
have been addressed in Ref. [24]. Such integrability
conditions proved to be valuable in four-dimensional
general relativity, since they have provided connections
between the algebraic type of the Weyl tensor and the
existence of hidden symmetries [2,6,25]. Hopefully, the
study performed here will, likewise, be of relevance to
higher-dimensional general relativity.
In addition to general relativity, Killing–Yano tensors and

their conformal relatives also have applicability in other
areas. For instance, they can be used to define symmetry
operators that commute with the d’Alembertian and Dirac
operators [26], which is of relevance to quantum field theory.
Notably, while classical symmetries associated to KY
tensors are preserved at the quantum level, those associated
to Killing tensors generally are not [27]. One can also use
KY tensors to find conserved charges and integrate equations
of motion of conservative systems in classical mechanics
[28] as well as to solve Maxwell’s equation in curved spaces
[29]. Killing–Yano tensors have further been used to con-
struct Lax pairs in curved manifolds [30], which is of interest
for the theory of integrable systems. Moreover, hidden
symmetries proved to be of relevance in the study of
supersymmetric systems [27,31].
The outline of the present article is as follows. Section II

sets the notation and reviews the basic definitions con-
cerning conformal Killing–Yano tensors. In Sec. III, the
integrability conditions for the existence of a CKY tensor of
arbitrary order in arbitrary dimensions are worked out. As a
bonus, the integrability conditions for the existence of KY
tensors as well as closed CKY tensors are also obtained.
Particularly, the allowed algebraic types for the Weyl tensor
in a four-dimensional manifold admitting a CKY tensor of
order 2 are displayed in Sec. III B. Then, in Sec. IV, it is
shown how one can use a CKY tensor of order p to
construct a KY tensor of order ðp − 1Þ in Einstein spaces
with constrainedWeyl tensors. The particular case of p ¼ 3
in a four-dimensional Lorentzian manifold is explicitly
worked out as an example. Finally, in Sec. V, some results
regarding conformal Killing–Yano tensors in maximally
symmetric spaces are proved. Particularly, it is shown that
every CKY tensor in a maximally symmetric space can
be decomposed as the sum of a KY tensor and a closed
CKY tensor.

II. GENERAL ASPECTS OF CONFORMAL
KILLING–YANO TENSORS

In this section, we shall define and quickly present the
main properties of CKY tensors; for more details, the
reader is referred to Refs. [11,32]. We will work in a
Riemannian manifold ðM; gÞ of dimension n, with the
signature of the metric g being arbitrary. In what follows,

∇a denotes the Levi-Civitá connection. Square brackets
around the tensorial indices mean that the enclosed indices
are antisymmetrized, while round brackets denote symmet-
rization. With this notation, a totally skew-symmetric
tensor Y of rank p is called a CKY tensor of order p if
it obeys the equation

∇aYb1b2���bp þ∇b1Yab2���bp ¼ 2ga½b1hb2���bp� þ 2gb1½ahb2���bp�;

ð1Þ

where hb2���bp is some skew-symmetric tensor of rank p − 1.
It turns out that the above equation is equivalent to the
following one:

∇aYb1b2���bp ¼ ∇½aYb1b2���bp� þ 2ga½b1hb2���bp�: ð2Þ

Contracting the latter equation with gab1 , one can see that h
is essentially the divergence of Y,

hb2���bp ¼
p

2ðnþ 1 − pÞ∇
aYab2���bp : ð3Þ

Although not exploited here, the equation satisfied by a
CKY tensor can be nicely cast in terms of differential forms
[11,33,34]. For instance, in Ref. [34], the latter approach
was used to study global aspects of CKY tensors in
Sasakian manifolds and to stress the resemblance between
these tensors and twistors. Actually, it turns out that
twistors can be used to generate CKY tensors [34], while
Killing spinors give rise to Killing–Yano tensors [35].
The CKY tensors can be used to construct conformal

Killing tensors. Indeed, if Y and ~Y are both conformal
Killing–Yano tensors of order p, then

Kab ¼ Yðac2���cp ~YbÞc2���cp ð4Þ

is a conformal Killing tensor of order 2. This means that the
symmetric tensor K obeys the following equation:

∇ðaKbcÞ ¼ gðabkcÞ; with

kc ¼
2

p
ðYc

d2���dp ~hd2���dp þ ~Yc
d2���dphd2���dpÞ: ð5Þ

In particular, we can take Y ¼ ~Y in Eqs. (4) and (5).
Therefore, we say that the square of a CKY tensor is a
conformal Killing tensor of order 2, but the converse
generally is not true. The usefulness of conformal
Killing tensors relies on the fact that they lead to conserved
scalars along null geodesics. Indeed, if l is a null affinely
parametrized geodesic vector field,

lala ¼ 0 and la∇alb ¼ 0;

then the scalar C ¼ Kbclblc is constant along the geodesic
curves tangent to l:
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la∇aC ¼ lalblc∇aKbc ¼ lalblc∇ðaKbcÞ ¼ lalblcgabkc ¼ 0:

Hence, because of Eqs. (4) and (5), it follows that CKY
tensors are associated with conserved scalars along null
geodesics. There are also special types of conformal
Killing–Yano tensors that are related to conservation laws
along all geodesics, null and non-null, as shown in the
remainder of this section. But, before proceeding, it is
worth pointing out that, besides the totally symmetric
conformal Killing tensors and the totally skew-symmetric
CKY tensors, higher-rank generalizations of the conformal
Killing vectors with indices of nondefinite symmetry have
also been investigated elsewhere; see Ref. [33] and refer-
ences therein.

A. Killing–Yano tensors

When the second term on the right-hand side of Eq. (2)
vanishes, h ¼ 0, we say that Y is a KY tensor [36]. Thus, a
KY tensor is just a CKY tensor whose divergence is zero.
Note that if ~A and A are both KY tensors of order p, then
Eqs. (4) and (5) guarantee that

Kab ¼ Aðac2���cp ~AbÞc2���cp

is a Killing tensor, namely, ∇ðaKbcÞ ¼ 0. So, if t is an
affinely parametrized geodesic vector field, ta∇atb ¼ 0,
then the scalar C ¼ Kabtatb is conserved along the geo-
desic tangent to t. Note that t need not be null. Moreover,
the following skew-symmetric tensor is also conserved
along the geodesic:

Pc2���cp ¼ tbAbc2���cp :

Indeed, using Eq. (2) with h ¼ 0, we find

ta∇aPc2���cp ¼ tatb∇aAbc2���cp ¼ tatb∇½aAbc2���cp� ¼ 0;

where the last equality follows because in the above
equation the pair of indices ab is antisymmetrized while
contracted with a symmetric tensor. Note that the conserved
scalar C is just the square of this conserved tensor,
C ¼ Pc2���cpPc2���cp . An extensive account of KY tensors
in four-dimensional spacetimes can be found in
Refs. [37,38].

B. Closed conformal Killing–Yano tensors

We say that Y is a closed conformal Killing–Yano tensor
whenever the first term on the right-hand side of Eq. (2)
vanishes, ∇½aYb1b2���bp� ¼ 0. These tensors have two very
special properties [11]: the Hodge dual of a closed CKY
tensor is a KY tensor and, therefore, leads to conservation
laws along any geodesic, and the exterior product of two
closed CKY tensors is another closed CKY tensor. More
explicitly, if H and ~H are both closed CKY tensors of

order p and q, respectively, and ϵa1a2���an is the local volume
form of the manifold, then

ðH∧ ~HÞa1a2���apb1b2���bq ≡
ðpþ qÞ!
p!q!

H½a1a2���ap ~Hb1b2���bq�

is a closed conformal Killing–Yano tensor of order ðpþ qÞ,
and

ð⋆HÞb1b2���bn−p ≡
1

p!
Ha1a2���apϵ

a1a2���ap
b1b2���bn−p

is a KY tensor of order ðn − pÞ. Conversely, one can
show that the Hodge dual of a KY tensor is a closed CKY
tensor. Since a closed CKY tensor obeys the equation
∇aHb1b2���bp ¼ 2ga½b1hb2���bp�, it follows that if t is an affinely
parameterized geodesic vector field then the tensor

P̂bc1c2���cp ≡ t½bHc1c2���cp�

is conserved along the orbits of t. Indeed, on account of
ta∇atb ¼ 0, it follows that

ta∇aP̂bc1c2���cp ¼ ta∇aH½c1c2���cp tb� ¼ 2taga½c1hc2���cp tb� ¼ 0:

Particularly, the scalar P̂bc1c2���cpP̂bc1c2���cp is also conserved
along the geodesic tangent to t.
Closed CKY tensors proved to be of great relevance in

higher-dimensional general relativity. Indeed, a closed
CKY tensor of order 2 is the central object for achieving
integrability of Klein–Gordon, Dirac, and geodesic equa-
tions in the family of Kerr–NUT–(A)dS spacetimes.
In Refs. [11,13], it is shown that these spacetimes admit
a nondegenerate closed conformal Killing–Yano tensor
such that the exterior products of this tensor with itself
yield a tower of closed CKY tensors. Then, by means of the
Hodge dual operation, these tensors are used to construct
KY tensors, which, in turn, lead to a set of Killing tensors
of order 2. The latter objects provide conserved scalars
along geodesics, which, eventually, lead to the separability
and integrability of the mentioned differential equations.

III. INTEGRABILITY CONDITIONS

In the present section, the integrability conditions for
the existence of a conformal Killing–Yano tensor will be
worked out. As we shall see, the curvature of the manifold
must be constrained in order for Eq. (1) to admit a solution.
Thus, analyzing the integrability conditions, one can obtain
the possible algebraic types that the curvature must have
in order for the space to possess a hidden symmetry. For
example, in four dimensions, a spacetime admits a non-
reducible Killing–Yano tensor only if the Weyl tensor is
either of Petrov type D or vanishes [7]. This fact draws our
attention to the possibility of type D spacetimes being of
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relevance. Indeed, spacetimes of type D have proved to be
quite special, since Einstein’s vacuum equation can be
completely integrated in this case [39]. Moreover, all
known four-dimensional black holes are of this type.
Since algebraic classifications for the Weyl tensor are
now available in any dimension [40–43], the results of
this section pave the way for performing an analogous
investigation in manifolds with more than four dimensions.
In what follows, let us assume that Y is a CKY tensor

of order p, meaning that it obeys Eq. (1). Before
proceeding to find the integrability conditions, it is
helpful to set few definitions. To avoid too many indices,
we shall define capital indices to be a set of ðp − 2Þ
indices as follows:

B≡ b3b4 � � � bp; D≡ d3d4 � � � dp:

Using these collective indices, the Ricci identity will be
written as

ð∇a∇b −∇b∇aÞYcdE ¼ Rabc
fYfdE þ Rabd

fYcfE

þ Rabê
f̂YcdF̂; ð6Þ

where the last term in the above identity amounts to the
following expression:

Rabê
f̂YcdF̂ ≡Xp

i¼3

Rabei
fYcde3���e

̬
ifeiþ1���ep : ð7Þ

Where, in the latter sum, the notation e
̬
i means that the

index ei is absent. Now, let us denote the covariant
derivative of the tensor h defined in Eq. (1) by

h0a1a2B ¼ h0a1a2b3���bp ≡∇a1ha2b3���bp :

Thanks to the skew symmetry of h, we have that h0
obeys h0a1a2b3���bp ¼ h0a1½a2b3���bp�. Moreover, using this skew

symmetry along with Eq. (3), one can see that h0 is
totally traceless,

h0aaC ∝ 2∇a∇bYabC ¼ ð∇a∇b −∇b∇aÞYabC

∝ Rab
a
dYdbC þ Rab

b
dYadC þ Rab

ĉ
d̂YabD̂ ¼ 0;

where in the latter equality the fact that the Ricci tensor
is symmetric as well as the Bianchi identity was used.
Finally, it is also useful to define the following tensor:

SabC ≡ h0abC þ h0baC ¼ ∇ahbC þ∇bhaC: ð8Þ

Particularly, note that S vanishes if, and only if, h is a
Killing–Yano tensor of order ðp − 1Þ. Moreover, since h0
is traceless, so is the tensor S. With these definitions, we
are ready to move on and find the wanted integrability
conditions.
Differentiating Eq. (1) and then making a permutation on

the indices, we easily find the following relations:

∇a∇bYcdE þ∇a∇cYbdE ¼ 2h0a½dEgb�c þ 2h0a½dEgc�b;

∇b∇cYadE þ∇b∇aYcdE ¼ 2h0b½dEgc�a þ 2h0b½dEga�c;

−∇c∇aYbdE −∇c∇bYadE ¼ −2h0c½dEga�b − 2h0c½dEgb�a:

Now, summing these three equations and using the Ricci
identity (6), as well as the Bianchi identity, leads to the
following relation:

2∇a∇bYcdE ¼ 2Rcba
fYfdE þ Rabd

fYcfE þ Rabê
f̂YcdF̂

þ Rcad
fYbfE þ Rcaê

f̂YbdF̂ þ Rcbd
fYafE

þ Rcbê
f̂YadF̂ þ 2h0a½dEgb�c þ 2h0a½dEgc�b

þ 2h0b½dEgc�a þ 2h0b½dEga�c − 2h0c½dEga�b

− 2h0c½dEgb�a: ð9Þ

We can make the above equation more explicit by means of
the following algebraic identity:

h0a½dEgb�c ¼
1

p
gbch0adE −

p− 1

p
h0ab½Egd�c

¼ 1

p
gbch0adE −

1

p
gdch0abE þ

ðp− 2Þ
p

h0abd½e4���epge3�c:

Using the latter expansion in Eq. (9) leads us to the
expression for the second derivative of the conformal
Killing–Yano tensor Y,

2∇a∇bYcdE ¼ 2Rcba
fYfdE þ Rabd

fYcfE þ Rabê
f̂YcdF̂ þ Rcad

fYbfE þ Rcaê
f̂YbdF̂

þ Rcbd
fYafE þ Rcbê

f̂YadF̂ þ 2

p
½2gbch0adE þ 2gach0bdE − 2gabh0cdE

þ gdaðh0cbE − h0bcEÞ þ gdbðh0caE − h0acEÞ − gdcðh0abE þ h0baEÞ�

−
2ðp − 2Þ

p
½h0cbd½e4���epge3�a − h0bcd½e4���epge3�a þ h0cad½e4���epge3�b

− h0acd½e4���epge3�b − h0abd½e4���epge3�c − h0bad½e4���epge3�c�; ð10Þ
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where it is worth recalling that the simplifying notation (7) was used. Now, just handling Eq. (2), we can find the following
expression:

∇a∇bYcdE þ∇a∇cYdbE þ∇a∇dYbcE ¼ 3∇a∇bYcdE −
6

p
ðgbch0adE − gbdh0acEÞ

þ 2ðp − 2Þ
p

ðh0adb½e4���epge3�c þ h0abc½e4���epge3�d − 2h0acd½e4���epge3�bÞ: ð11Þ

Then, taking advantage of Eq. (10), and its copies with the indices bcd permuted, to rewrite the left-hand side of Eq. (11),
we end up with

2∇a∇bYcdE ¼ −3Rf
a½bcYd�fE − Rf̂

ê½bcYd�aF̂ − 2Rf̂
êa½bYcd�F̂

þ 4

p
ðgbch0adE − gbdh0acE − 3ga½bh0cd�EÞ

−
2ðp − 2Þ

p
ð−2h0½bcd�½e4���epge3�a þ h0½abd�½e4���epge3�c þ h0½acb�½e4���epge3�d

þ h0½adc�½e4���epge3�b þ h0adb½e4���epge3�c þ h0abc½e4���epge3�d þ h0adc½e4���epge3�bÞ: ð12Þ

Now, equating the right-hand sides of Eqs. (10) and (12), we find, after some algebra, the relation

0 ¼ Rf
acbYdfE þ Rf

bdaYcfE þ Rf
cadYbfE þ Rf

dbcYafE þ Rf̂
ê½bcYd�aF̂ þ 2Rf̂

êa½bYcd�F̂

þ 2Rf̂
êbcYadF̂ − 3Rf̂

ê½abYc�dF̂ þ 2

p
ðgacSbdE þ gbdSacE − gabScdE − gcdSabEÞ

þ 2ðp − 2Þ
3p

ðSdcb½e4���epge3�a − Sdbc½e4���epge3�a þ Scda½e4���epge3�b − Scad½e4���epge3�b

þ Sbad½e4���epge3�c − Sbda½e4���epge3�c þ Sabc½e4���epge3�d − Sacb½e4���epge3�dÞ; ð13Þ

where the tensor S used above was defined in Eq. (8).
Equation (13) is not the integrability condition yet, since S
is defined in terms of the second derivative of Y. However,
contracting (13) with gab, one can find an expression for S
depending just on the Riemann tensor and Y, without
derivatives. The final result is

ScdE ¼ p
n − p

�
RfðcYdÞfE þ 1

2
Raf̂

êðcYdÞaF̂

�
; ð14Þ

with Ra
b ≡ Rca

cb standing for the Ricci tensor. Inserting
this relation into Eq. (13), we finally arrive at the integra-
bility condition for Y to be a conformal Killing–Yano
tensor of order p. Note that such an integrability condition
amounts to an algebraic constraint for the Riemann tensor.
It is worth stressing that, albeit this integrability condition
is necessary for the existence of a CKY tensor, it is not
sufficient. Although the right-hand side of Eq. (14) diverges
when n ¼ p, it is not necessary to worry about this case
since every nonzero n-form is a CKY tensor. Therefore, the
existence of a CKY tensor of order p ¼ n represents no
local constraint. Expanding the Riemann tensor in terms of

the Weyl tensor, the Ricci tensor, and the Ricci scalar, we
can put Eq. (14) in the form

ScdE ¼ p
n − 2

RfðcYdÞfE þ p
2ðn − pÞC

af̂
êðcYdÞaF̂; ð15Þ

with Cab
cd standing for the Weyl tensor. Note that the case

p ¼ 1 is not encompassed by the calculations performed
in this section. However, in such a case, Y is a conformal
Killing vector and does not represent a hidden symmetry.
Anyway, the integrability conditions for the existence of a
closed conformal Killing vector can be found in Ref. [23].
Thus, in what follows, let us assume p ≥ 2.

A. Invariance under conformal transformations

It turns out that the equation satisfied by a conformal
Killing–Yano tensor, Eq. (1), is invariant under conformal
transformations. More precisely, one can prove that if
Ya1���ap is a CKY tensor of order p in the manifold
ðM; gabÞ then the tensor Ωpþ1Ya1���ap is a CKY tensor in
the manifold ðM;Ω2gabÞ, where Ω is any nonvanishing
function. Therefore, we should expect the integrability
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condition for the existence of a conformal Killing–Yano
tensor to be invariant under conformal transformations.
Thus, since the conformally invariant part of the
Riemann tensor is the Weyl tensor, it is reasonable that
such an integrability condition could be expressed just in
terms of the Weyl tensor and the CKY tensor. Indeed,
expanding the Riemann tensor in Eq. (13) in terms of the

Weyl tensor, the Ricci tensor, and the Ricci scalar and
inserting Eq. (15) into Eq. (13), one can prove that the
terms containing the Ricci tensor and the Ricci scalar are
canceled out, so we are left with an integrability con-
dition involving just the Weyl tensor. More explicitly, the
integrability condition (13) is equivalent to the analogous
equation

0 ¼ Cf
acbYdfE þ Cf

bdaYcfE þ Cf
cadYbfE þ Cf

dbcYafE þ Cf̂
ê½bcYd�aF̂ þ 2Cf̂

êa½bYcd�F̂

þ 2Cf̂
êbcYadF̂ − 3Cf̂

ê½abYc�dF̂ þ 2

p
ðgacWbdE þ gbdWacE − gabWcdE − gcdWabEÞ

þ 2ðp − 2Þ
3p

½Wdcb½e4���epge3�a −Wdbc½e4���epge3�a þWcda½e4���epge3�b −Wcad½e4���epge3�b

þWbad½e4���epge3�c −Wbda½e4���epge3�c þWabc½e4���epge3�d −Wacb½e4���epge3�d�; ð16Þ

where WcdE is the part of ScdE in Eq. (15) that is
conformally invariant:

WcdE ≡ p
2ðn − pÞC

af̂
êðcYdÞaF̂:

Now, let us explore some specific cases of the above
development.

B. Case p ¼ 2

Suppose now that p ¼ 2. Since in this circumstance Y
has just two indices, in the above expressions, we shall
ignore the terms such that the indices ei appear in the
Riemann tensor or in the metric. So, just the free indices a,
b, c, and d should be present when p ¼ 2. Taking this into
account, Eqs. (12), (13), and (14) become, respectively,

2∇a∇bYcd¼−3Rf
a½bcYd�fþ2ðgbch0ad−gbdh0ac−3ga½bh0cd�Þ;

0¼Rf
acbYdfþRf

bdaYcfþRf
cadYbfþRf

dbcYaf

þðgacSbdþgbdSac−gabScd−gcdSabÞ; ð17Þ

Scd ¼
2

n − 2
RfðcYdÞf: ð18Þ

These equations are in perfect agreement with the ones
proved by Tachibana in Ref. [20]. As explained in
Sec. III A, inserting Eq. (18) into Eq. (17), we find that
the Ricci tensor and the Ricci scalar are canceled out, so we
end up with the following integrability condition:

0 ¼ Cf
acbYdf þ Cf

bdaYcf þ Cf
cadYbf þ Cf

dbcYaf: ð19Þ

Now, let us investigate which restrictions the integra-
bility condition (19) imposes over the algebraic type of the
Weyl tensor in four-dimensional manifolds of arbitrary
signature. For this purpose, it is useful to use spinorial
language [44,45]. Note that Eq. (19) can be written as

Gabcd ¼ 0; where Gabcd ≡ Cab½cfYd�f þ Ccd½afYb�f:

The interesting thing about the tensor G is that it has the
same algebraic symmetries of the Weyl tensor:

Gabcd ¼ G½ab�½cd�; Gabcd ¼ Gcdab;

Ga½bcd� ¼ 0; and Ga
bad ¼ 0:

Therefore, just as the spinorial representation of the self-
dual part of the Weyl tensor in four-dimensional manifolds
is Ψαβρσ ¼ ΨðαβρσÞ, the spinorial representation of the self-
dual part of G must, likewise, have four totally symmetric
indices, Γαβρσ ¼ ΓðαβρσÞ, with the Greek indices being
spinorial indices ranging from 1 to 2. Since G is a
contraction of the Weyl tensor with Y, by lack of other
possibilities, we must have

Γαβρσ ∝ ΨκðαβρϒσÞκ;

with ϒαβ ¼ ϒðαβÞ denoting the spinorial equivalent of the
self-dual part of the bivector Yab. Thus, the integrability
condition for the existence of a CKY tensor is

ΨκðαβρϒσÞκ ¼ 0 ð20Þ

along with the anti-self-dual analog of this equation. In a
four-dimensional manifold, the self-dual part of a bivector
can have just two algebraic types, it can either be null or
non-null. In the former case, its spinorial representation in a
suitable frame is ϒαβ ¼ oαoβ. Inserting this into Eq. (20),
we are led to the conclusion that oαΨαβρσ ¼ 0, which
implies that either the self-dual part of the Weyl tensor
vanishes or its Petrov type is N. On the other hand, if the
self-dual part of the bivector is non-null, we have that
ϒαβ ∝ oðαιβÞ, where ιαoα ¼ 1. Inserting this expression for
ϒαβ into Eq. (20), we find that either Ψαβρσ vanishes or its
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only nonzero component is oαoβΨαβρσι
ρισ. In the latter

case, the self-dual part of the Weyl tensor is of Petrov type
D. Since an analogous analysis holds for the anti-self-dual
part of the Weyl tensor, we conclude that if a four-
dimensional manifold admits a CKY tensor of order 2
then the algebraic type of the Weyl tensor, in the notation
of Ref. [46], must be one of the following: ðO;OÞ, ðO;NÞ,
ðO;DÞ, ðN;NÞ, ðN;DÞ, or ðD;DÞ. Particularly, using the
results of Ref. [46], this implies that if a four-dimensional
Lorentzian spacetime admits a CKY tensor of order 2 then
the Petrov type of the Weyl tensor is O, N, or D, a fact
that has already been established before [47]. This also
generalizes the results obtained in Refs. [6,7] for KY
tensors in Lorentzian spacetimes. In the same vein, one

concludes that if a four-dimensional manifold of
Euclidean signature admits a CKY tensor of order 2 then
the algebraic type of the Weyl tensor might be ðO;OÞ,
ðO;DÞ, or ðD;DÞ. For a review about the Petrov classi-
fication, see Ref. [48].

C. Case p ¼ 3

Since cases p ¼ 1 and p ¼ 2 have been widely consid-
ered before in the literature [20,23], the case p ¼ 3 is the
first relevant case in this article. Therefore, it is worth
making the previous equations explicit in this particular
case. Assuming p ¼ 3 in Eqs. (12), (13), and (14), we find
the following equations, respectively:

2∇a∇bYcde ¼ −3Rf
a½bcYd�fe − Rf

e½bcYd�af − 2Rf
ea½bYcd�f

þ 2

3
½2gbch0ade − 2gbdh0ace − 6ga½bh0cd�e þ ðh0abd − h0½abd�Þgec

þ ðh0acb − h0½acb�Þged þ ðh0acd þ h0½acd�Þgeb þ 2h0½bcd�gea�;
0 ¼ Cf

acbYdfe þ Cf
bdaYcfe þ Cf

cadYbfe þ Cf
dbcYafe þ Cf

e½bcYd�af þ 2Cf
ea½bYcd�f

þ 2Cf
ebcYadf − 3Cf

e½abYc�df þ
2

3
ðgacWbde þ gbdWace − gabWcde − gcdWabeÞ ð21Þ

þ 2

9
½ðWdcb −WdbcÞgea þ ðWcda −WcadÞgeb þ ðWbad −WbdaÞgec þ ðWabc −WacbÞged�;

Wcde ¼
3

2ðn − 3ÞC
af

eðcYdÞaf: ð22Þ

1. Comparison with Kashiwada’s result

As mentioned in the Introduction, an integrability con-
dition for CKY tensors of arbitrary rank have also been
worked out by Kashiwada in Ref. [19]. In what follows, the
latter integrability condition will be compared with the one
obtained here for the case p ¼ 3. If Y is a rank-3 CKY
tensor, then Kashiwada’s result states that the following
condition must hold:

Rf
b½daYe�fc − Rf

c½daYe�fb − 2Rcb
f ½dYae�f

þ 4

3
ðSb½dage�c − Sc½dage�bÞ ¼ 0;

where

Scde ¼
3

n − 2
RfðcYdÞfe þ

3

2ðn − 3ÞC
af

eðcYdÞaf:

However, as argued in Sec. III A, since the CKY equation
is conformally invariant, it follows that its integrability
condition can be expressed just in terms of the Weyl tensor,
a fact that was not pointed out in Ref. [19]. In particular,
one can check that Kashiwada’s integrability condition can
be written as

Cf
b½daYe�fc − Cf

c½daYe�fb − 2Ccb
f ½dYae�f

þ 4

3
ðWb½dage�c −Wc½dage�bÞ ¼ 0; ð23Þ

with W given by Eq. (22). Antisymmetrizing the indices
ade in Eq. (21), one verifies that Eq. (23) is readily
obtained. This proves that Kashiwada’s result is contained
in the integrability condition obtained here. Conversely,
adding Eq. (23) to its permutation obtained by means of the
change fa; bg↔fc; dg, one arrives at Eq. (21).2 Therefore,
Kashiwada’s integrability condition is equivalent to the one
obtained here. It is interesting noting that, whereas here just
four indices of the second derivative of the CKY tensor are
permuted in order to obtain the integrability condition,
irrespective of the order of the CKY tensor, in Kashiwada’s
deduction, all free indices are treated on the same footing
by means of antisymmetric permutations. Therefore, it
would be natural for the integrability condition obtained

2Throughout these manipulations, it is useful to make use
of some algebraic properties of the tensor Wabc. Besides the
identity Wabc ¼ WðabÞc, it follows from Eq. (22) that WðabcÞ ¼ 0.
As a consequence, one can prove that WaðbcÞ ¼ − 1

2
Wbca and

Wa½bc� þWb½ac� ¼ 3
2
Wabc.
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here to be more general than the one obtained by
Kashiwada. However, as we have just seen, both integra-
bility conditions turn out to be equivalent. It is also
worth noting that in Ref. [34] Semmelmann has recast
Kashiwada’s integrability condition using differential
forms; see also Ref. [49].

D. Killing–Yano tensors

A Killing–Yano tensor is a conformal Killing–Yano
tensor whose divergence vanishes. So, according to
Eq. (3), Y is a KY tensor if, and only if, h vanishes
identically. Thus, to obtain the integrability condition for a
KY tensor of order p, we just need to plug h ¼ 0 into the
previous equations. In particular, this means that h0 and S
are both zero. Hence, Eqs. (13) and (15) yield the following
integrability conditions for a KY tensor A of order p ≥ 2:

0 ¼ Rf
acbAdfE þ Rf

bdaAcfE þ Rf
cadAbfE þ Rf

dbcAafE

þ Rf̂
ê½bcAd�aF̂ þ 2Rf̂

êa½bAcd�F̂ þ 2Rf̂
êbcAadF̂

− 3Rf̂
ê½abAc�dF̂;

0 ¼ 2ðn − pÞRfðcAdÞfE þ ðn − 2ÞCaf̂
êðcAdÞaF̂:

In addition, Eq. (12) implies that the second derivative of a
Killing–Yano tensor is

2∇a∇bAcdE ¼ −3Rf
a½bcAd�fE − Rf̂

ê½bcAd�aF̂ − 2Rf̂
êa½bAcd�F̂:

Since A is a KY tensor, it follows that the left-hand side of
the above equation is totally antisymmetric in the indices
bcdE. Therefore, we have the right to skew symmetrize
these indices on the right-hand side of such an equation.
Performing this antisymmetrization and using the Bianchi
identity, we eventually arrive at the expression for the
second derivative of a KY tensor,

2∇a∇bAcdE ¼ −ðpþ 1ÞAf½dERbc�af; ð24Þ

a relation that has already been obtained before by
Tachibana and Kashiwada in Ref. [50]; see also Ref. [35].

E. Closed conformal Killing–Yano tensors

As reasoned in Sec. II B, another special class of
conformal Killing–Yano tensors is formed by the closed
CKY tensors. These are skew-symmetric tensors H that
obey the following equation:

∇aHb1b2���bp ¼ 2ga½b1hb2���bp�: ð25Þ

Then, taking the covariant derivative of this equation, we
find

∇a∇bHcdE ¼ 2h0a½dEgc�b:

Using the above equation along with the Ricci identity (6)
leads to the following relation:

Rabc
fHfdE þ Rabd

fHcfE þ Rabê
f̂HcdF̂ − 2h0a½dEgc�b

þ 2h0b½dEgc�a ¼ 0: ð26Þ

Finally, contracting (26) with gac yields

h0bdE ¼ p
4ðn − pÞ ð2Rb

fHdfE þ Raf
bdHafE þ Raf̂

bêHadF̂Þ:

ð27Þ
Inserting Eq. (27) into Eq. (26) leads to the integrability
condition for a closed CKY tensor of order p. So, compared
with a general CKY tensor, the integrability condition is
much simpler in the closed case. Taking the symmetric part
of the pair of indices bd in Eq. (27), we easily see that the
expression for S is the same as in the general case; see
Eqs. (8) and (14). Another (equivalent) way of analyzing
the integrability conditions for the existence of a closed
CKY tensor is to use the fact that its Hodge dual is a KY
tensor and then employ the results of Sec. III D. It is worth
pointing out that in Ref. [51] it was proved that a spacetime
admitting a nondegenerate CKY tensor of order 2 must be
contained in the Kerr–NUT–(A)dS class.

IV. CONSTRUCTING KILLING–YANO TENSORS
IN EINSTEIN SPACES

An Einstein space is a manifold such that the Ricci tensor
is proportional to the metric, Rab ¼ Λgab. Because of the
contracted Bianchi identity, it follows that Λ is necessarily
constant. Physically, these spaces represent solutions of
Einstein’s vacuum equation with a cosmological constant.
It turns out that, in an Einstein space, given a CKY tensor of
order p ¼ 2, one can construct a Killing vector. Indeed,
using Eq. (18), we see that if Y is a CKY tensor of order 2 in
an Einstein space then

Scd ¼
1

n − 2
ðRf

cYdf þ Rf
dYcfÞ ¼

Λ
n − 2

ðYdc þ YcdÞ ¼ 0:

Since S was defined in Eq. (8) by Sab ¼ ∇ahb þ∇bha
when p ¼ 2, it follows from the above equation that ha is a
Killing vector field, where it was assumed that ha ≠ 0,
namely, Y is not a KY tensor. This fact was first proved in
Ref. [20], and it was of fundamental importance for the
construction of the tower of symmetries in the Kerr–NUT–
(A)dS spacetimes of arbitrary dimension [11].
Since a Killing vector is a KY tensor of order p ¼ 1, in

the preceding paragraph, we showed that, in an Einstein
space, the divergence of a CKY tensor of order 2 is a KY
tensor of order 1. So, a natural question to be posed is the
following: If Ya1a2���ap is a CKY tensor of order p > 2 in an
Einstein space, then is ha2���ap , defined in Eq. (3), a KY
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tensor of order ðp − 1Þ? The answer is generally no, since
Eqs. (8) and (15) imply that in an Einstein space we have

∇chdE þ∇dhcE ¼ p
2ðn − pÞC

af̂
êðcYdÞaF̂:

Therefore, h is a Killing–Yano tensor if, and only if,

Caf̂
êðcYdÞaF̂ ¼ 0; ð28Þ

where we shall assume that Y is not a KY tensor, namely,
h ≠ 0. Equation (28) represents an algebraic constraint for
the Weyl tensor. Therefore, differently from the case p ¼ 2,
when p > 2, the divergence of a CKY tensor in an Einstein
space is a KY tensor only in manifolds with algebraically
constrained Weyl tensors. In principle, one could reason
that condition (28) could be just a consequence of the
integrability condition (16). However, after working with
Eq. (16), it seems that the latter possibility does not hold.
Thus, it would be valuable to investigate what Eq. (28)
implies in terms of the algebraic classifications of
Refs. [40–43]. As an example, let us work out these
implications for the case p ¼ 3 in four-dimensional
spacetimes.

A. Case p ¼ 3 in four dimensions

Let Yabc be a CKY tensor with nonvanishing divergence
in an Einstein space. Then, according to Eq. (28), the
skew-symmetric tensor

hab ¼
3

2ðn − 2Þ∇
aYabc

is a KY tensor if, and only if,

Cde
aðbYcÞde ¼ 0:

It is simple matter to prove that the latter condition is
tantamount to

Cde
abYcde ¼ Cde½abYc�de: ð29Þ

Interestingly, the term on the right-hand side of Eq. (29)
is just the action of the Weyl operator on the 3-form Yabc;
see Ref. [41]. Therefore, it is reasonable to expect that
the algebraic classification defined in Ref. [41] plays an
important role in the analysis of condition (29). For
instance, it was proved in Ref. [41] that in four dimensions
the action of the Weyl operator in 3-forms gives zero. So, in
the particular case n ¼ 4, Eq. (29) implies that

Cde
abYcde ¼ 0: ð30Þ

Instead of analyzing condition (30) in terms of Y, it is
fruitful to use its Hodge dual. Defining the 1-form ξ by
Ybcd ¼ ξaϵabcd, it follows that Eq. (30) is equivalent to

Cab
½cdξe� ¼ 0: ð31Þ

In particular, contracting the indices a and e in Eq. (31),
we find that ξaCabcd ¼ 0. Conversely, it turns out that in
Lorentzian four-dimensional manifolds the latter condition
implies (31). Furthermore, if ξaCabcd ¼ 0, then either the
Weyl tensor vanishes or its Petrov type isN with ξ being the
repeated principal null direction [48]. Therefore, we have
just proved that if Y is a CKY tensor of order 3 in a four-
dimensional Einstein manifold of Lorentzian signature and
nonvanishing Weyl tensor then its divergence is a KY
tensor of order 2 if, and only if, the Weyl tensor is type N
with the Hodge dual of Y being the repeated principal null
direction.

V. MAXIMALLY SYMMETRIC SPACES

In this section, we shall prove some interesting results
concerning CKY tensors in maximally symmetric spaces.
These results are generalizations of the ones obtained in
Ref. [20] for the particular case p ¼ 2. This attempt of
generalizing the results of Ref. [20] to arbitrary p has also
been pursued by Kashiwada in Ref. [19]. A manifold of
dimension n is called a maximally symmetric space when it
admits the maximum number of isometries, which means
that it has 1

2
nðnþ 1Þ independent Killing vector fields. For

instance, the de Sitter and anti-de Sitter spacetimes are
maximally symmetric manifolds of Lorentzian signature.
The Riemann tensor of a maximally symmetric space is
given by

Rabcd ¼ λðgacgbd − gadgbcÞ; ð32Þ

where λ is some constant scalar. Equivalently, a maximally
symmetric manifold is characterized as being an Einstein
space that is conformally flat,

Rab ¼ ðn − 1Þλ gab and Cabcd ¼ 0: ð33Þ

Since the case λ ¼ 0 represents the trivial flat space, in what
follows, it is assumed λ ≠ 0.
Now, let A be a KY tensor of order p in a maximally

symmetric space. Then, inserting Eq. (32) into Eq. (24), we
find that

∇a∇bAcdE ¼ −ðpþ 1Þλ ga½bAcdE�:

Thus, comparing with Eq. (25), we conclude that∇bAcdE is
a closed CKY tensor of order ðpþ 1Þ. Note that, sinceA is
a KY tensor, the tensor ∇bAcdE is totally skew symmetric,
as it should be in order to be called a CKY tensor. So, we
have just proved the following:
Theorem 1: IfA is a Killing–Yano tensor of order p in a

maximally symmetric space, then its covariant derivative
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HbcdE ≡∇bAcdE is a closed conformal Killing–Yano
tensor of order ðpþ 1Þ. More precisely, we have that

∇aHbcdE ¼ 2ga½bJcdE� with JcdE ≡ −
λ

2
ðpþ 1ÞAcdE:

Conversely, in Ref. [52], it has been proved that in a
maximally symmetric space of nonzero curvature every
closed CKY tensor is the covariant derivative of a KY
tensor. It is worth noting that in Ref. [35] some interesting
examples of this theorem are constructed by means of
Killing spinors. Moreover, in Sasaki spaces, there are some
important KY forms whose covariant derivatives are closed
CKY tensors as well [53]. Since the Hodge dual of a closed
CKY tensor is a KY tensor, it follows that ⋆H is a KY
tensor of order ðn − p − 1Þ. Thus, in a maximally sym-
metric space, one can use a KY tensor to generate another
KY tensor. Then, one could, in principle, follow the same
procedure and use the new KY tensor of order ðn − p − 1Þ
to generate one more KY tensor of order p. However, it
turns out that this third KY tensor is, apart from a
multiplicative constant, just the tensorA, which represents
no new symmetry.
Now, let Y be any CKY tensor of order p, meaning that

∇aYb1b2���bp þ∇b1Yab2���bp ¼ 2ga½b1hb2���bp� þ 2gb1½ahb2���bp�
ð34Þ

holds. Then, thanks to Eqs. (33), (8), and (15), we conclude
that hb2���bp is a KY tensor of order ðp − 1Þ. So, by means of
Theorem 1, it is possible to construct the following closed
CKY tensor of order p:

Hb1b2���bp ≡ −
2

λp
∇b1hb2���bp : ð35Þ

Since now the initial KY tensor h has order ðp − 1Þ,
Theorem 1 states that the tensor H defined in Eq. (35)
obeys the following equation:

∇aHb1b2���bp ¼ 2ga½b1hb2���bp�: ð36Þ

Then, using Eqs. (34) and (36), one can easily see that the
tensor

Ab1b2���bp ≡ Yb1b2���bp −Hb1b2���bp

is a KY tensor of order p. Writing the latter equation as

Y ¼ AþH;

we see that Y is the sum of a KY tensor and a closed CKY
tensor. Since Y is an arbitrary CKY tensor, we have proved
the following statement.
Theorem 2: In a maximally symmetric space, any

conformal Killing–Yano tensor can be decomposed as

the sum of a Killing–Yano tensor and a closed conformal
Killing–Yano tensor.
As the Hodge dual of a closed CKY tensor is a KY

tensor, the latter theorem implies that to each CKY tensor
of order p in a maximally symmetric manifold are
associated two KY tensors, one of order p, namely, A,
and the other of order ðn − pÞ, namely, ⋆H.
Finally, let us prove that the decomposition of Theorem 2

is unique. Indeed, suppose that the conformal Killing–Yano
tensor Y admits two decompositions:

Y ¼ AþH and Y ¼ ~Aþ ~H:

Then, equating both equations, we find that

A − ~A ¼ ~H −H: ð37Þ

But, the left-hand side of Eq. (37) is a KY tensor, while the
right-hand side is a closed CKY tensor. If a tensor is
simultaneously a KY tensor and a closed CKY tensor,
then it is covariantly constant. Therefore, we conclude that
ðA − ~AÞ and ðH − ~HÞ are both covariantly constant.
However, as we shall prove, it turns out that, besides the
zero tensor, an n-dimensional maximally symmetric space
with λ ≠ 0 admits no covariantly constant skew-symmetric
tensor of rank p < n. Indeed, let Fa1���ap ¼ F½a1���ap� be an
antisymmetric covariantly constant tensor,

∇aFb1���bp ¼ 0:

Then, using the Ricci identity, we have that

0 ¼ ð∇a∇b −∇b∇aÞFc1���cp ¼
Xp
i¼1

Rabci
eFc1���c

̬
ieciþ1���cp ;

where the symbol c
̬
i means that the index ci is absent.

Contracting the latter equation with gac1 and using Eq. (32),
eventually we are led to

λðn − pÞFbc2���cp ¼ 0:

So, if p ≠ n and λ ≠ 0, the covariantly constant skew-
symmetric tensor F must be the zero tensor. In particular,
if the order of the CKY tensor Y is less than n, we have
that ðA − ~AÞ ¼ 0 and ðH − ~HÞ ¼ 0, proving the following
result.
Theorem 3: In a nonflat maximally symmetric space of

dimension n, the decomposition of a CKY tensor of order
p < n as the sum of a KY tensor and a closed CKY tensor
is unique. Moreover, apart from the zero tensor, this
manifold admits no covariantly constant skew-symmetric
tensor of rank p < n.
Hopefully, the results presented in this section will be

of relevance for the study of asymptotic symmetries and
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gravitational charges in spacetimes that are asymptotically
(A)dS [8,9].

VI. CONCLUSIONS

The significance of the present work relies on unques-
tionable relevance of symmetries, and its associated con-
served charges, in physics. Conservation laws are of special
importance to gravitational theories, since the field equa-
tions are usually nonlinear and, therefore, really hard solve
without suitable tools. That is the reason why Killing–Yano
and conformal Killing–Yano tensors have proved to be
so helpful, since they provide conserved quantities. For
instance, the existence of a closed CKY tensor enabled
the integration of the geodesic equation as well as Klein–
Gordon and Dirac equations on the Kerr–NUT–(A)dS
spacetimes of arbitrary dimension [11]. With this physical
context in mind, here, the integrability conditions for the
existence of KY and CKY tensors of arbitrary order in
manifolds of arbitrary dimension have been obtained.
Particularly, one of the main contributions of this article
has been putting the integrability conditions for the CKY
tensors in an explicit conformally invariant form and
working out some of their consequences. For instance, it
has been proved that, differently to the well-known case of
a CKY tensor of order 2, the divergence of a CKY tensor
of higher order in an Einstein manifold generally is not a
KY tensor. Moreover, the analysis of how the existence of a
CKY tensor of order 2 constrains the Petrov classification
in four-dimensional manifolds has been extended to arbi-
trary signature.
The (C)KY tensors earned the name of hidden sym-

metries because, generally, it is highly non-trivial to
integrate the (C)KY equation from scratch. It turns out
that the integrability conditions obtained in the present
article can be quite helpful for accomplishing this task, as
they constrain the algebraic form of the (C)KY tensor,
which, in turn, eliminates several degrees of freedom in
the general ansatz of a CKY tensor. In addition, the
integrability conditions presented here can be of relevance
for understanding the integrability of Einstein’s equation
as well. For example, the Petrov classification of a

four-dimensional spacetime admitting a nonreducible KY
tensor must be either type D or O, where the latter type
represents the trivial case of a vanishing Weyl tensor. Since
Einstein’s vacuum equation can be completely integrated
for the type D class of spacetimes [39], there should be a
connection between the existence of CKY tensors and the
integrability of Einstein’s equation. Indeed, it turns out that
all type-D vacuum solutions admit at least two Killing
vectors and one CKY tensor of order 2 [54]. It would be
interesting to look for similar relations in higher dimensions.
It is believed that general relativity is just the low-energy

effective theory of a quantum theory of gravity. So, at higher
energies, the Einstein–Hilbert action should be corrected
by terms of higher order in the curvature. Besides, there
have been several attempts to modify Einstein’s equation in
order to explain the issues of dark matter, dark energy, and
cosmological inflation, as exemplifies the so-called fðRÞ
theories [55]. As long as the connection used in these
theories is metric compatible and torsion free, the KY and
CKY tensors remain being objects of great relevance. Thus,
as a consequence, the integrability conditions obtained here
should also be a valuable tool on the study of these modified
theories of gravity.3 Since gravitational theories with torsion
are also of great interest for their richness, especially in the
presence of matter fields with intrinsic spin, its is natural to
extend the present work to the case of connections with
torsion. This is the plan for future research.
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